
1

SCHOOL OF BIO AND CHEMICAL

DEPARTMENT OF BIOMEDICAL ENGINEERING

UNIT-1-VIRTUAL BIOINSTRUMENTATION – SBM1402

2

I Introduction

Historical perspective, advantages, block diagram and architecture of a virtual instrument,

data-flow techniques, graphical programming in data flow, comparison with conventional

programming

1.1 INTRODUCTION

An instrument is a device designed to collect data from an environment, or from a unit under

test, and to display information to a user based on the collected data. Such an instrument may

employ a transducer to sense changes in a physical parameter, such as temperature or pressure, and

to convert the sensed information into electrical signals, such as voltage or frequency variations.

The term instrument may also be defined as a physical software device that performs an analysis on

data acquired from another instrument and then outputs the processed data to display or recording

devices. This second category of recording instruments may include oscilloscopes, spectrum

analyzers, and digital millimeters. The types of source data collected and analyzed by instruments

may thus vary widely, including both physical parameters such as temperature, pressure, distance,

frequency and amplitudes of light and sound, and also electrical parameters including voltage,

current, and frequency.

Virtual instrumentation is an interdisciplinary field that merges sensing, hardware, and

software technologies in order to create flexible and sophisticated instruments for control and

monitoring applications. The concept of virtual instrumentation was born in late 1970s, when

microprocessor technology enabled a machine’s function to be more easily changed by changing its

software. The flexibility is possible as the capabilities of a virtual instrument depend very little on

dedicated hardware – commonly, only application specific signal conditioning module and the

analog-to- digital converter used as interface to the external world. Therefore, simple use of

computers or specialized onboard processors in instrument control and data acquisition cannot be

defined as virtual instrumentation. Increasing number of biomedical applications use virtual

instrumentation to improve insights into the underlying nature of complex phenomena and reduce

costs of medical equipment and procedures.

1.2 History of Instrumentation Systems

Historically, instrumentation systems originated in the distant past, with measuring rods,

thermometers, and scales. In modern times, instrumentation systems have generally consisted of

individual instruments, for example, an electromechanical pressure gauge comprising a sensing

transducer wired to signal conditioning circuitry, outputs a processed signal to a display panel and

3

perhaps also to a line recorder, in which a trace of changing conditions is linked onto a rotating

drum by a mechanical arm, creating a time record of pressure changes. Complex systems such as

chemical process control applications employed until the 1980s consisted of sets of individual

physical instruments wired to a central control panel that comprised an array of physical data

display devices such as dials and counters, together with sets of switches, knobs, and buttons for

controlling the instruments. A history of virtual instrumentation is characterized by continuous

increase of flexibility and scalability of measurement equipment. Starting from first manual-

controlled vendor- defined electrical instruments, the instrumentation field has made a great

progress toward contemporary computer-controlled, user-defined, sophisticated measuring

equipment. Instrumentation had the following phases:

– Analog measurement devices

– Data acquisition and processing devices

– Digital processing based on general purpose computing platform

– Distributed virtual instrumentation

The first phase is represented by early “pure” analog measurement devices, such as oscilloscopes

or EEG recording systems. They were completely closed dedicated systems, which included power

suppliers, sensors, translators, and displays. They required manual settings, presenting results on

various counters, gauges, CRT displays, or on the paper. Further use of data was not part of the

instrument package, and an operator had to physically copy data to a paper notebook or a data sheet.

Performing complex or automated test procedures was rather complicated or impossible, as

everything had to be set manually.

Second phase started in 1950s, as a result of demands from the industrial control field.

Instruments incorporated rudiment control systems, with relays, rate detectors, and integrators. That

led to creation of proportional– integral–derivative (PID) control systems, which allowed greater

flexibility of test procedures and automation of some phases of measuring process. Instruments

started to digitalize measured signals, allowing digital processing of data, and introducing more

complex control or analytical decisions. However, real-time digital processing requirements were

too high for any but an onboard special purpose computer or digital signal processor (DSP). The

instruments still were standalone vendor defined boxes.

In the third phase, measuring instruments became computer based. They began to include

interfaces that enabled communication between the instrument and the computer. This relationship

started with the general-purpose interface bus (GPIB) originated in 1960s by Hewlett-Packard (HP),

then called HPIB, for purpose of instrument control by HP computers. Initially, computers were

primarily used as off-line instruments. They were further processing the data after first recording the

measurements on disk or type. As the speed and capabilities of general-purpose computers

advanced exponentially general-purpose computers became fast enough for complex real-time

measurements. It soon became possible to adapt standard, by now high-speed computers, to the

online applications required in real-time measurement and control. New general-purpose computers

4

from most manufactures incorporated all the hardware and much of the general software required

by the instruments for their specific purposes. The main advantages of standard personal computers

are low price driven by the large market, availability, and standardization. Although computers’

performance soon became high enough, computers were still not easy to use for experimentalists.

Nearly all of the early instrument control programs were written in BASIC, because it had

been the dominant language used with dedicated instrument controllers. It required engineers and

other users to become programmers before becoming instrument users, so it was hard for them to

exploit potential that computerized instrumentation could bring. Therefore, an important milestone

in the history of virtual instrumentation happened in 1986, when National Instruments introduced

LabVIEW 1.0 on a PC platform. LabVIEW introduced graphical user interfaces and visual

programming into computerized instrumentation, joining simplicity of a user interface operation

with increased capabilities of computers. Today, the PC is the platform on which most

measurements are made, and the graphical user interface has made measurements user-friendlier. As

a result, virtual instrumentation made possible decrease in price of an instrument. As the virtual

instrument depends very little on dedicated hardware, a customer could now use his own computer,

while an instrument manufactures could supply only what the user could not get in the general

market.

The fourth phase became feasible with the development of local and global networks of

general purpose computers. Since most instruments were already computerized, advances in

telecommunications and network technologies made possible physical distribution of virtual

instrument components into telemedical systems to provide medical information and services at a

distance.

Possible infrastructure for distributed virtual instrumentation includes the Internet, private

networks, and cellular networks, where the interface between the components can be balanced for

price and performance.

The introduction of computers into the field of instrumentation began as a way to couple an

individual instrument, such as a pressure sensor, to a computer, and enable the display of

measurement data on virtual instrument panel on the computer screen using appropriate

software. The instrumental so contained buttons for controlling the operation of the sensor. Thus,

such instrumentation software enabled the creation of a simulated physical instrument, having the

capability to control physical sensing components.

1.3 Virtual Instrumentation

 Virtual instrumentation achieved mainstream adoption by providing a new model for building

measurement and automation systems. Keys to its success include rapid PC advancement; explosive

low-cost, high-performance data converter (semiconductor) development; and system design

software emergence. These factors make virtual instrumentation systems accessible to a very broad

base of users.

5

Definition

A virtual instrumentation system is software that is used by the user to develop a

computerized test and measurement system, for controlling an external measurement hardware

device from a desktop computer, and for displaying test or measurement data on panels in the

computer screen. The test and measurement data are collected by the external device interfaced with

the desktop computer. Virtual instrumentation also extends to computerized systems for controlling

processes based on the data collected and processed by a PC based instrumentation system.

1.4 Block diagram and architecture of a virtual instrument

A virtual instrument is composed of the following blocks:

 Sensor module

 Sensor interface

 Information systems interface

 Processing module

 Database interface

 User interface

Figure shows the general architecture of a virtual instrument. The sensor module detects

physical signal and transforms it into electrical form, conditions the signal, and transforms it into a

digital form for further manipulation. Through a sensor interface, the sensor module communicates

with a computer. Once the data are in a digital form on a computer, they can be processed, mixed,

compared, and otherwise manipulated, or stored in a database.

Then, the data may be displayed, or converted back to analog form for further process control.

Virtual instruments are often integrated with some other information systems. In this way, the

configuration settings and the data measured may be stored and associated with the available

records. In following sections each of the virtual instruments modules are described in more detail.

Fig 1: Architecture of a virtual instrument

6

 Sensor Module

The sensor module performs signal conditioning and transforms it into a digital form for further

manipulation. Once the data are in a digital form on a computer, they can be displayed, processed,

mixed, compared, stored in a database, or converted back to analog form for further process control.

The database can also store configuration settings and signal records. The sensor module interfaces

a virtual instrument to the external, mostly analog world transforming measured signals into

computer readable form. A sensor module principally consists of three main parts:

• The sensor
• The signal conditioning part
• The A/D converter

The sensor detects physical signals from the environment. If the parameter being measured is

not electrical, the sensor must include a transducer to convert the information to an electrical signal,

for example, when measuring blood pressure.

The signal-conditioning module performs (usually analog) signal conditioning prior to AD

conversion. This module usually does the amplification, transducer excitation, linearization,

isolation, or filtering of detected signals.

The A/D converter changes the detected and conditioned voltage into a digital value. The

converter is defined by its resolution and sampling frequency. The converted data must be precisely

time- stamped to allow later sophisticated analyses. Although most biomedical sensors are

specialized in processing of certain signals, it is possible to use generic measurement components,

such as data acquisition (DAQ), or image acquisition (IMAQ) boards, which may be applied to

broader class of signals. Creating generic measuring board, and incorporating the most important

components of different sensors into one unit, it is possible to perform the functions of many

medical instruments on the same computer.

 Sensor Interface

There are many interfaces used for communication between sensors modules and the computer.

According to the type of connection, sensor interfaces can be classified as wired and wireless.Wired

Interfaces are usually standard parallel interfaces, such as GPIB, Small Computer Systems Interface

(SCSI), system buses (PCI eXtension for Instrumentation PXI or VME Extensions for

Instrumentation (VXI), or serial buses (RS232 or USB interfaces).Wireless Interfaces are

increasingly used because of convenience. Typical interfaces include 802.11 family of standards,

Bluetooth, or GPRS/GSM interface. Wireless communication is especially important for implanted

sensors where cable connection is impractical or not possible. In addition, standards, such as

Bluetooth, define a self-identification protocol, allowing the network to configure dynamically and

describe itself. In this way, it is possible to reduce installation cost and create plug-and-play like

networks of sensors. Device miniaturization allowed development of Personal Area Networks

(PANs) of intelligent sensors Communication with medical devices is also standardized with the

IEEE 1073 family of standards. This interface is intended to be highly robust in an environment

7

where devices are frequently connected to and disconnected from the network.

 Processing Module

Integration of the general purpose microprocessors/microcontrollers allowed flexible

implementation of sophisticated processing functions. As the functionality of a virtual instrument

depends very little on dedicated hardware, which principally does not perform any complex

processing, functionality and appearance of the virtual instrument may be completely changed

utilizing different processing functions. Broadly speaking, processing function used in virtual

instrumentation may be classified as analytic processing and artificial intelligence techniques.

 Analytic functions define clear functional relations among input parameters. Some of the

common analyses used in virtual instrumentation include spectral analysis, filtering, windowing,

transforms, peak detection, or curve fitting. Virtual instruments often use various statistics function,

such as, random assignment and bio statistical analyses. Most of those functions can nowadays be

performed in real-time.

 . Artificial intelligence technologies could be used to enhance and improve the efficiency, the

capability, and the features of instrumentation in application areas related to measurement, system

identification, and control. These techniques exploit the advanced computational capabilities of

modern computing systems to manipulate the sampled input signals and extract the desired

measurements. Artificial intelligence technologies, such as neural networks, fuzzy logic and expert

systems, are applied in various applications, including sensor fusion to high- level sensors, system

identification, prediction, system control, complex measurement procedures, calibration, and

instrument fault detection and isolation. Various nonlinear signal processing, including fuzzy logic

and neural networks, are also common tools in analysis of biomedical signals. Using artificial

intelligence it is even possible to add medical intelligence to ordinary user interface devices. For

example, several artificial intelligence techniques, such as pattern recognition and machine

learning, were used in a software-based visual-field testing system.

 Database Interface

Computerized instrumentation allows measured data to be stored for off-line processing, or to keep

records as a part of the patient record. There are several currently available database technologies

that can be used for this purpose. Simple usage of file systems interface leads to creation of many

proprietary formats, so the interoperability may be a problem. The eXtensible Markup Language

(XML) may be used to solve interoperability problem by providing universal syntax. The XML is a

standard for describing document structure and content. It organizes data using markup tags,

creating self-describing documents, as tags describe the information it contains. Contemporary

database management systems such SQL Server and Oracle support XML import and export of

data. Many virtual instruments use DataBase Management Systems(DBMSs). They provide

efficient management of data and standardized insertion, update, deletion, and selection. Most of

8

these DBMSs provided Structured Query Language (SQL) interface, enabling transparent execution

of the same programs over database from different vendors. Virtual instruments usethese DMBSs

using some of programming interfaces, such as ODBC, JDBC,ADO, and DAO.

 Information System Interface

Virtual instruments are increasingly integrated with other medical information systems, such as

hospital information systems. They can be used to create executive dashboards, supporting decision

support, real time alerts, and predictive warnings. Some virtual interfaces toolkits, such as

LabVIEW, provide mechanisms for customized components, such as ActiveX objects, that allows

communication with other information system, hiding details of the communication from virtual

interface code. In Web based applications this integration is usually implemented using Unified

Resource Locators (URLs). Each virtual instrument is identified with its URL, receiving

configuration settings via parameters. The virtual instrument then can store the results of the

processing into a database identified with its URL.

 Presentation and Control

An effective user interface for presentation and control of a virtual instrument affects efficiency and

precision of an operator do the measurements and facilitates result interpretation. Since computer’s

user interfaces are much easier shaped and changed than conventional instrument’s user interfaces,

it is possible to employ more presentation effects and to customize the interface for each user.

According to presentation and interaction capabilities, we can classify interfaces used in virtual

instrumentation in four groups:

• Terminal user interfaces

• Graphical user interfaces

• Multimodal user interfaces and

• Virtual and augmented reality interfaces

Terminal User Interfaces

First programs for instrumentation control and data acquisition had character-oriented

terminal user interfaces. This was necessary as earlier general-purpose computers were not capable

of presenting complex graphics. As terminal user interfaces require little of system resources, they

were implemented on many platforms. In this interfaces, communication between a user and a

computer is purely textual. The user sends requests to the computer typing commands, and receives

response in a form of textual messages.

Graphical User Interfaces

Graphical user interfaces (GUIs) enabled more intuitive human–computerinteraction, making

virtual instrumentation more accessible. Simplicity ofinteraction and high intuitiveness of graphical

user interface operations madepossible creation of user-friendlier virtual instruments. GUIs allowed

creationof many sophisticated graphical widgets such as graphs, charts, tables, gauges,or meters,

which can easily be created with many user interface tools.

Multimodal Presentation

In addition to graphical user interfaces that improve visualization, contemporarypersonal

computers are capable of presenting other modalities suchas sonification or haptic rendering.

9

Multimodal combinations of complementarymodalities can greatly improve the perceptual quality

of user interfaces.

Virtual Instruments versus Traditional Instruments

Stand-alone traditional instruments such as oscilloscopes and waveform generators are very

powerful, expensive, and designed to perform one or more specific tasks defined by the vendor.

However, the user generally cannot extend or customize them. The knobs and buttons on the

instrument, the built-in circuitry, and the functions available to the user, are all specific to the nature

of the instrument. In addition, special technology and costly components must be developed to

build these instruments, making them very expensive and slowto adapt.

Table 1: Traditional Instruments Vs Virtual Instruments

Traditional Instruments Virtual Instruments

Vendor defined User-defined

Function specific,stand alone with limited

connectivity

Application oriented system with connectivity

to networks,peripherals, and applications

Hardware is the key Software is the key

Expensive Low cost , reusable

Closed, fixed functionality Open, flexible functionality

Slow turn on technology Fast turn on technology

Minimal economics of scale Maximum economics of scale

High development and maintenance cost Software minimizes development and

maintenance cost

1.5 Advantages of VI

The virtual instruments running on notebook automatically incorporate their portable nature

to the Engineers and scientists whose needs, applications and requirements change very quickly,

need flexibility to create their own solutions. We can adapt a virtual instrument to our particular

needs without having to replace the entire device because of the application software installed on

the PC and the wide range of available plug-in hardware.

Performance

In terms of performance, LabVIEW includes a compiler that produces native code for the

CPU platform. The graphical code is translated into executable machine code by interpreting the

syntax and by compilation. The LabVIEW syntax is strictly enforced during the editing process and

compiled into the executable machine code when requested to run or upon saving. In the latter case,

the executable and the source code are merged into a single file. The executable runs with the help

of the LabVIEW run-time engine, which contains some precompiled code to perform common tasks

that are defined by the G language. The run-time engine reduces compile time and also provides a

consistent interface to various operating systems, graphic systems, hardware components, etc.

Platform-Independent Nature

A benefit of the LabVIEW environment is the platform-independent nature of the G-code,

10

which is (with the exception of a few platform specific functions) portable between the different

LabVIEW systems for different operating systems (Windows, MacOSX, and Linux). National

Instruments is increasingly focusing on the capability of deploying LabVIEW code onto an

increasing number of targets including devices like Pharlap OS-based LabVIEW realtime

controllers, PocketPCs, PDAs, Fieldpoint modules, and into FPGAs on special boards.

Flexibility

Except for the specialized components and circuitry found in traditional instruments, the

general architecture of stand-alone instruments is very similar to that of a PC-based virtual

instrument. Both require one or more microprocessors, communication ports (for example, serial

and GPIB), and display capabilities, as well as data acquisition modules. These devices differ from

one another in their flexibility and the fact that these devices can be modified and adapted to the

particular needs.

Lower Cost

By employing virtual instrumentation solutions, lower capital costs, system development costs,

and system maintenance costs are reduced, increasing the time to market and improving the quality

of our own products.

Plug-In and Networked Hardware

There is a wide variety of available hardware that can either be plugged into the computer or

accessed through a network. These devices offer a wide range of data acquisition capabilities at a

significantly lower cost than that of dedicated devices.

The Costs of a Measurement Application

The costs involved in the development of a measurement application can be divided into five

distinct areas composed of hardware and software prices and several time costs. The price of the

hardware and software was considered as the single largest cost of their most recent test or

measurement system. However, the cumulative time costs in the other areas make up the largest

portion of the total application cost.

Reducing System Specification Time Cost

Deciding the types of measurements to take and the types of analysis to perform takes time.

Once the user has set the measurement specifications, the user must then determine exactly the

method to implement the measurement system. The time taken to perform these two steps equals

the system specification time.

Lowering the Cost of Hardware and Software

The price of measurement hardware and software is undoubtedly the most visible cost of a

data-acquisition system. Many people attempt to save money in this area without considering the

effect on the total development cost.

Minimizing Set-Up and Configuration Time Costs

Once the users have specified and purchased measurement hardware, the real task of

developing the application begins. However, the user must first install the hardware and software,

configure any necessary setting and ensure that all pieces of the system function properly.

Dataflow Programming

11

Lab VIEW follows a dataflow model for running VIs. A block diagram node executes when

all its inputs are available. When a node completes execution, it supplies data to its output terminals

and passes the output data to the next node in the dataflow path. Visual Basic, C + +, JAVA, and

most other text-based programming languages follow a control flow model of program execution.

In control flow, the sequential order of program elements determines the execution order of a

program. For a dataflow-programming example, consider a block diagram that adds two numbers

and then subtracts 50.00 from the result of the addition as illustrated in Fig. In this case, the block

diagram executes from left to right, not because the objects are placed in that order, but because the

Subtract function cannot execute until the Add function finishes executing and passes the data to the

Subtract function. Remember that a node executes only when data are available at all of its input

terminals, and it supplies data to its output terminals only when it finishes execution.

In the following example in Fig. 2.consider which code segment would execute first – the

Add, Random Number, or Divide function. In a situation where one code segment must execute

before another and no data dependency exists between the functions, the user can use other

programming methods, such as error clusters, to force the order of execution.

Fig. 2. Dataflow programming example

‘G’ Programming

The ‘G’ sequence structure is used to control execution order when natural data dependency

does not exist. The user also can create an artificial data dependency in which the receiving node

does not actually use the data received. Instead, the receiving node uses the arrival of data to trigger

its execution. The programming language used in LabVIEW, called “G”, is a dataflow language.

Execution is determined by the structure of a graphical block diagram (the LV-source code) on

which the programmer connects different function-nodes by drawing wires. These wires propagate

variables and any node can execute as soon as all its input data become available. Since this might

be the case for multiple nodes simultaneously, “G” is inherently capable of parallel execution.

Multiprocessing and multi-threading hardware is automatically exploited by the built-in scheduler,

which multiplexes multiple OS threads over the nodes ready for execution. Programmers with a

12

background in conventional programming often show a certain reluctance to adopt the LabVIEW

dataflow scheme, claiming that LabVIEW is prone to race conditions. In reality, this stems from a

misunderstanding of the data-flow paradigm. The afore-mentioned data-flow (which can be

“forced,” typically by linking inputs and outputs of nodes) completely defines the execution

sequence, and that can be fully controlled by the programmer. The graphical approach also allows

nonprogrammers to build programs by simply dragging and dropping virtual representations of the

lab equipment with which they are already familiar. The LabVIEW programming environment,

with the included examples and the documentation, makes it easy to create small applications. This

is a benefit on one side but there is also a certain danger of underestimating the expertise needed for

good quality “G” programming. For complex algorithms or large-scale code it is important that

the programmer understands the special LabVIEW syntax and the topology of its memory

management well. The most advanced Lab-VIEW development systems offer the possibility of

building standalone applications.

1.6 Virtual Instruments

Virtual Instruments are front panel and block diagram. The front panel or user interface is

built with controls and indicators. Controls are knobs, pushbuttons, dials, and other input devices.

Indicators are graphs, LEDs, and other displays.

Front Panel

The front panel is the window through which the user interacts with the program. The input

data to the executing program is fed through the front panel and the output can also be viewed on

the front panel, thus making it indispensable.

Front Panel Toolbar controls and Indicators

The front panel is primarily a combination of controls and indicators, which are the interactive input

and output terminals of the VI, respectively. Controls are knobs, push buttons, dials, and other input

devices. Indicators are graphs, LEDs, and other displays. Controls simulate instrument input devices

and supply data to the block diagram of the VI. Indicators simulate instrument output devices and

display data the block diagram acquires or generates.

13

Fig 3: Front panel tool bars

 Controls and Indicators :

Controls and Indicators are generally not interchangeable; the difference should be clear among the

user. The user can “drop” controls and indicators onto the front panel by selecting them from a

subpalette of the floating Controls palette window shown in Figure.

14

Fig 4: Controls and Indicators

Once an object is on the front panel, the user can easily adjust its size, shape, position, color, and

other attributes. Controls and indicators can be broadly classified as:

• Numeric controls and indicators

• Boolean controls and indicators

Numeric Controls and Indicators

The two most commonly used numeric objects are the numeric control and the numeric

indicator, as shown in Fig. The values in a numeric control can be entered or changed by selecting

the increment and decrement buttons with the Operating tool or double-clicking the number with

either the Labeling tool or the Operating tool.

Boolean Controls and Indicators

The Boolean controls and indicators (Fig) are used to enter and display Boolean (True or

false) values. Boolean objects simulate switches, push buttons, and LEDs. The most common

Boolean objects are the vertical toggle switch and the round LED.

15

Fig 5: Numeric Control and Indicator

Block Diagram

The block diagram window holds the graphical source code of a LabVIEW’sblock diagram

corresponds to the lines of text found in a more conventional language like C or BASIC – it is the

actual executable code. The block diagram can be constructed with the basic blocks such as:

terminals, nodes, and wires.

Terminals

Terminals are entry and exit ports that exchange information between the front panel and

block diagram. Terminals are analogous to parameters and constants in text-based programming

languages.

Types of terminals include control or indicator terminals and node terminals. Control and

indicator terminals belong to front panel controls and indicators. When a control or indicator is

placed on the front panel, LabVIEW automatically creates a corresponding terminal on the block

diagram. The terminals represent the data type of the control or indicator. The user cannot delete a

block diagram terminal that belongs to a control or indicator. The terminal disappears when its

corresponding control or indicator is deleted on the front panel. The front panel controls or

indicators can be configured to appear as icon or data type terminals on the block diagram. By

default, front panel objects appear as icon terminals.

Control terminals have thick borders, while indicator terminal borders are thin. It is very

important to distinguish between the two since they are not functionally equivalent i.e.,

control=input, indicator=output, and so they are not interchangeable.

Nodes:

Nodes are analogous to statements, operators, functions, and subroutines in standard

programming languages. The AND and XOR functions represent one type of node. A structure is

another type of node. Structures can execute code repeatedly or conditionally, similar to loops and

Case statements in traditional programming languages. LabVIEW also has special nodes, called

Formula Nodes, which are useful for evaluating mathematical formulas or expressions.

Wires

Wires connecting nodes and terminals hold a LabVIEW VI together. Wiresare the data paths

16

between source and destination terminals, they deliver data from one source terminal to one or more

destination terminals. Wires are analogous to variables in text-based programming languages. If

more than one source or no source at all is connected to a wire, LabVIEW disagrees and the wire

will appear broken. This principle of wires connecting source and destination terminals explains

why controls and indicators are not interchangeable; controls are source terminals, whereas

indicators are destinations, or sinks. Each wire has a different style or color, depending on the data

type that flows through the wire. The below Table shows a few wires and their corresponding types.

By default, basic wire styles are used in block diagrams. To avoid confusion among the data types,

the colors and styles are simply matched.

Block Diagram Toolbar

When a VI is run, buttons appear on the block diagram toolbar that can beused to debug the VI.

Table 2: Data type and representation

Table 3 :Dialogue box menu

17

Startup Menu

The menus at the top of a VI window contain items common to other applications, such as

Open, Save, Copy, and Paste, and other items specific to LabVIEW. Some menu items also list

shortcut key combinations (Mac OS).The menus appear at the top of the screen (Windows and

UNIX).The menus display only the most recently used items by default. The arrows at the bottom of

a menu are used to display all items. All menu items can be displayed by default by selecting Tools-

>Options

Palletes

LabVIEW has graphical; floating palettes to help the user to create and run VIs.LabVIEW

has three often-used floating palettes that can be placed in a convenient spot on the screen: the

Tools palette, the Controls palette, and the Functions palette. Controls and Functions Palettes. The

Controls palette will often be used, since the controls and indicators that are required on the front

panel are available. The user will probably use the Functions palette even more often, since it

contains the functions and structures used to build a VI. The Controls and Functions palettes are

unique in several ways. Most importantly the Controls palette is only visible when the front panel

window is active, and the Functions palette is only visible when the block diagram window is

active. Both palettes have subpalettes containing the objects to be accessed. As the cursor is passed

over each subpalette button in the Controls and Functions palettes, the subpalette’s name appears at

the top of the window. If a button is clicked, the associated subpalette appears and replaces the

previous active palette. To select an object in the subpalette, the mouse buttonis clicked over the

object, and then clicked on the front panel or block diagram to place it wherever desired. Like

palette button names, subpalette object name appear when the cursor is run over them.

To return to the previous(“owning”) palette, the top-left arrow on each palette is selected.

Clicking on the spyglass icon the user can search for a specific item in a palette, and then the user

can edit palettes by clicking the options buttons. There is another way to navigate palettes that some

people find a little easier. Instead of having each subpalette replace the current palette, the user can

pass through subpalettes in a hierarchical manner without them replacing their parent palettes.

Controls Palette

The Controls palette can be displayed by selecting Window->Show ControlsPalette or right-clicking

the front panel workspace. The Controlspalette can also be tacked down by clicking the thumbtack

on the top left corner of the palette. By default, the Controls palette starts in the Expressview. The

Express palette view includes subpalettes on the top level of theControls and Functions palettes.

The All Controls and All Functions subpalettes contain the complete set of built-in controls,

indicators, VIs, and functions. The Advanced palette view includes subpalettes on the top level of

the Controls and Functions palettes that contain the complete set of built in controls, indicators, VIs,

and functions. The Express subpalettes contain Express VIs and other objects required to build

common measurement applications. Click the Options button on the Controls or Functions palette to

change to another palette view or format.

Functions Palette

The Functions palette is available only on the block diagram. The Functions palette contains the VIs

and functions used to build the block diagram. The Functions Palette can be displayed by selecting

the Windows->Show or right-clicking the block diagram workspace to display the Functions palette.

18

Fig : 6 Function Palette

Tools Palette

A tool is a special operating mode of the mouse cursor. Tools are used to perform specific

diting and operation functions, similar to that used in a standard paint program.

Fig :7 Tool Palette

Table 4 : Tool Palatte Menu

1

References:

1. Jerome, Virtual Instrumentation Using LabView, PHI, 2010

2. https://www.youtube.com/watch?v=I8pc8-VcVFo

3. https://www.youtube.com/watch?v=90yKPBLmDJ4

1

SCHOOL OF BIO AND CHEMICAL

DEPARTMENT OF BIOMEDICAL ENGINEERING

UNIT-II-VIRTUAL BIOINSTRUMENTATION – SBM1402

2

II Programming Techniques

VIS and sub-VIS, loops & charts, arrays, clusters, graphs, case & sequence structures, formula

modes, local and global variable, string & file input. Publishing measurement data in the web.

2.1 Loops & Charts:

LabVIEW offers two loop structures namely, the For Loop and While Loop to control

repetitive operation in a VI. A For Loop executes a specific number of times; a While Loop

executes until a specified condition is no longer true.

 The FOR Loop

A For Loop executes the code inside its borders, called its sub diagram, for total of count times,

where the count equals the value contained in the count terminal. The count can be set by wiring a

value from outside the loop of the count terminal. If ‘0’ is wired to the count terminal, the loop does

not execute.The iteration terminal contains the current number of completed loop iterations; 0

during the first iteration, 1 during the second, and so on, up to N-1 (where N is the number of times

the loop executes).

Fig 1: Structure Palette

Fig 2: Flow chart of FOR loop

3

Fig 3: FOR Loop

The For Loop is located on the Functions->All Functions->Structures

The value in the count terminal (an input terminal), indicates how many times to repeat the

sub diagram.

The iteration terminal (an output terminal), contains the number of iterations completed. The

iteration count always starts at zero. During the first iteration, the iteration terminal returns 0.

 The While Loop

The While Loop executes the subdiagram inside its borders until the Boolean value wired to its

conditional terminal is FALSE. LabVIEW checks the conditional terminal value at the end of

iteration. If the value is TRUE, the iteration repeats. The default value of the conditional terminal is

FALSE, so if left unwired, the loop iterates only once.

The While Loop is equivalent to the following pseudocode:

Do

Execute sub diagram

While condition is TRUE

It change the state that the conditional terminal of the While Loop checks, so that instead

looping while true, we can have it loop unless it’strue. To do this, we pop-up on the conditional

terminal, and select “Stop ifTrue.”

Fig 4: While loop terminals

4

Fig 5: Flowchart of while loop

Do

Execute subdiagram

While condition is NOT TRUE

 The While Loop is located on the Functions>>Execution Control palette

 The section of code to be added inside the While loop is dragged or while loop

encloses the area of code to be executed conditionally.

Condition Terminal

The While Loop executes the subdiagram until the conditional terminal, an input terminal,

receives a specific Boolean value. The default behavior and appearance of the conditional terminal

is Stop If True. When a conditional terminal is Stop If True, the While Loop executes its

subdiagram until the conditional terminal receives a True value.

Iteration Terminal

The iteration terminal, an output terminal, contains the number of completed iterations. The iteration

count always starts at zero. During the first iteration, the iteration terminal returns 0.

EXAMPLE 1

Problem statement: To find the sum of first 10 natural numbers using For Loop.

Block diagram construction:

– The For Loop is added from the structures sub palette on the functions Palette located on the block

diagram.

– The count terminal is wired with the value 10 for 10 natural numbers.

– The iteration terminal is wired the greater than or equal to node from the Comparison subpalette

from the Functions palette.

– The Boolean Output of the greater than or equal to is wired to the conditional terminal as in Fig.

Front panel construction:

– The control and indicator are added from the controls palette of the front panel. Using the labeling

tool the Owned label is changed as input and output, respectively.

– The front panel with the result is shown in Fig. .

5

Fig 7: Block diagram of for loop example

Fig 8: Front panel of For loop example

Example 2

Problem statement: To find the sum of first 10 natural numbers using while loop

Block diagram construction:

– The While Loop is added from the structures subpalette on the functions palette located on the

block diagram.

– The count terminal is wired with the value 10 for 10 natural numbers.

– The iteration terminal is wired the greater than or equal to node from the comparison subpalette

from the Functions palette.

– The Boolean Output of the greater than or equal to is wired to the conditional terminal of the While

Loop as in Fig.

Front panel construction:

– The control and indicator are added from the controls palette of the front panel as in Fig. Using

the labeling tool the Owned label is changed as input and output, respectively.

6

Fig 9: Block diagram of while loop for the above example

Fig 10: Front panel

2.2 Arrays:

A LabVIEW array is a collection of data elements that are all the same type similar to

traditional programming languages. An array can have one or more dimensions, and has elements

231per dimension (memory permitting, of course). An array element can have any type except

another array, a chart, or a graph.

Single and Multidimensional Arrays:

Single Dimensional Array:

Array elements are accessed by their indices; each element’s index is in range 0 to N − 1, where N is

the total number of elements in the array.The first element has index 0, the second element has index

1, and so on. Generally, waveforms are often stored in arrays, with each point in the waveform

comprising an element of the array. Arrays are also useful for storing data generated in loops, where

each loop iteration generates one element of the array.

Two steps are involved to make the controls and indicators for compound data types such as arrays

and clusters.

Step 1. The array control or indicator known as the Array shell is created from the Array subpalette

of the Controls palette available in the front panel

Step 2. The array shell is combined with a data object, which can be numeric, Boolean, or string (or

cluster).Using the above two steps the created structure resembles

7

Fig11: Single Dimensional Array

Fig12: Array control and indicator

The user can also create array constants on the block diagram just like creating numeric, Boolean,

or string constants. Array Constant can be chosen from the Array subpalette of the Functions

palette. Then the data is placed in an appropriate data type (usually another constant) similar to that

created on the front panel. This feature is useful when the user needs to initialize shift registers or

provide a data type to a file or network functions. To clear an array control, indicator, or constant of

data, the user can pop-on the index display.

Two-Dimensional Arrays

A two-dimensional, or 2D, array stores elements in a gridline fashion. It requires two indices to

locate an element: a column index and a row index, both of which are zero-based in LabVIEW

Fig13: 6*4 2D array

The user can add dimensions to an array control or indicator by popping up on its index display (not

on the element display) and choosing Add Dimension from the Pop-up menu. In a 2D array of

digital controls the user will have two indices to specify each element. The grid cursor of the

Positioning tool can be used to expand the element display in two dimensions so that more elements

can be seen. Unwanted dimensions can be removed by selecting Remove Dimension from the

index display’s Pop-up menu.

Creating Two-Dimensional Array

Two For Loops, one inside the other, can be used to create a 2D array on the front panel. The

8

inner For Loop creates a row, and the outer For Loop “stacks” these rows to fill in the columns of

the matrix. In two For Loops creating a 2D array of random numbers using auto indexing

Autoindexing

The For Loop and the While Loop can index and accumulate arrays at their boundaries

automatically, adding one new element for each loop iteration. This capability is called

autoindexing. One important thing to remember is that autoindexing enabled by default on For

Loops but disabled by default on While Loops. The For Loop autoindexes, an array at its boundary.

Each iteration creates the next array element. After the loop completes, the arraypasses out of the

loop to the indicator; none of the array data are available until the Loop finishes. Notice that the

wire becomes thicker as it changes to an array wire type at the Loop border.

Fig14: For loop for creating 2 D array

Fig15: Auto indexing disabled

Fig16: Auto indexing enabled

9

To wire a scalar value out of a For Loop without creating an array, autoindexing must be

disabled. This can be done by popping up on the tunnel (the square with the [] symbol) and

choosing Disable Indexing from the tunnel’s Pop-up menu. Since autoindexing is disabled by

default, to wire array data out of a While Loop, the user must pop-up on the tunnel and select

Enable Indexing. When autoindexing is disabled, only the last value returned from the Random

Number (0–1) function passes out of the loop. Notice that the wire remains the same size after it

leaves the loop. Pay attention to this wire size, because autoindexing is a common source of

problems among beginners. Autoindexing also applies when the user is wiring arrays into loops. If

indexing is enabled, the loop will index off one element from the array each time it iterates (note

how the wire becomes thinner as it enters the loop). If indexing is disabled, the entire array passes

in to the loop at once. Because For Loops are often used to process arrays, LabVIEW enables

autoindexing by default when an array is wired into or out of them.

2.3 Clusters :

Cluster is a data structure that groups data. However, unlike an array, a cluster can group data

of different types (i.e., numeric, Boolean, etc.); it is analogous to a struct in C or the data members

of a class in C++ or Java.

Cluster elements can be accessed by unbundling them all at once or by indexing one at a time,

depending on the function chosen; each method has its place. Unbundling a cluster is similar as

unwrapping a telephone cable and having access to the different-colored wires. Unlike arrays,

which can change size dramatically, clusters have a fixed size, or a fixed number of wires in them.

The Unbundled By Name function is used to access specific cluster elements. Cluster terminals can

be connected with a wire only if they have exactly the same type; in other words, both clusters must

have the same number of elements, and corresponding elements must match in both data type and

order. The principle of polymorphism applies to clusters as well as arrays, as long as the data types

match.

Clusters are often used in error handling. The error clusters, Error In.ctl and Error Out.ctl,

are used by LabVIEW to pass a record of errors between multiple VIs in a block diagram

Creating Cluster Controls and Indicators

A cluster is created by placing a Cluster shell (Array & Cluster subpalette of the Controls

palette) on the front panel. Like arrays, objects can be added directly inside when they are pulled

out from the Controls palette, or the user can drag an existing object into a cluster. Objects inside

a cluster mustbe all controls or all indicators.

A cluster cannot have a combination of both controls and indicators; this is based on the

status of the first object one place inside it. The cluster can be resized with the Positioning tool if

necessary. The cluster can conform exactly to the size of the objects inside it, by popping up on the

border(not inside the cluster) and choosing an option in the Auto sizing menu.

Creating Cluster Constants

If a cluster control or indicator is available on the front panel and if the user wants to create a cluster

constant containing the same elements on the block diagram, then the user can either drag that

cluster from the front panel to the block diagram or right-click the cluster on the front panel and

select Create>>Constant from the shortcut menu.

10

Fig17: Cluster palette

Bundling Data

The Bundle function (Cluster palette) assembles individual components into a new cluster or

allows us to replace elements in an existing cluster. The function appears as the icon at the left when

one places it in the diagram window. Dragging a corner of the function with positioning tool can

increase the number of inputs. When wired on each input terminal, a symbol representing the data

type of the wired element appears on the empty terminal. The order of the resultant cluster will be

the order of inputs to the Bundle. To create a new cluster the user need not wire an input to the

center cluster input of the Bundle function. This needs to be wired only if elements are replaced in

the cluster.

 Fig18: Bundle Function

11

Unbundling Clusters

The unbundled function (Cluster palette) in Fig. 19 splits a cluster into each of its individual

components. The output components are arranged fromtop to bottom in the same order they have in

the cluster. If they have the same data type, the elements’ order in the cluster is the only way to

distinguish among them. Dragging a corner in the function with the Positioning tool can increase

the number of outputs. The Unbundled function must be sized to contain the same number of

outputs as there are elements in the input cluster, or it will produce bad wires. When an input cluster

is wired to the correctly sized Unbundled, the previously blank output terminals will assume the

symbols of the data types in the cluster example has been shown in Fig. LabVIEW does have a way

to bundle and unbundled clusters using element names.

Fig19: Unbundle function

Bundling and Unbundling by Name

Sometimes there is no need to assemble or disassemble an entire cluster – the user just needs to

operate on an element or two. This is accomplished using Bundle By Name and Unbundle By Name

functions. Unbundle By Name, also located in the Cluster palette, returns elements whose name(s)

are specified. There is no need to consider cluster order to correct Unbundle function size. The

unbundle function is illustrated in Fig.

Bundle by Name, found in the Cluster palette, references elements by name instead

of by position (as Bundle does). Unlike Bundle, we can access only the elements that are required.

However, Bundle by Name cannot create new clusters; it can only replace an element in an existing

cluster. Unlike Bundle, Bundle by Name’s middle input terminal should be wired to allow the

function know which element in the cluster has to be to replaced. This function is illustrated in Fig.

All cluster elements should have owned labels when the By Name functions are used. As soon as

12

the cluster input of Bundle By Name or Unbundled By Name is wired, the name of the first element

in the cluster appears in the name input or output.

Fig20: Bundle by name

Fig21: Unbundle by name

13

2.4 Graphs:

The graphs located on the Controls_Graph Indicators palette include the waveform graph and XY

graph. The waveform graph plots onlysingle-valued functions, as in y = f(x), with points evenly

distributed along the x-axis, such as acquired time-varying waveforms.

Fig 22: waveform graph

Single-Plot Waveform Graphs

The waveform graph accepts a single array of values and interprets the data as points on the

graph and increments the x index by one starting at x = 0. The graph also accepts a cluster of an

initial x value, and an array of y data.

Fig 23: Single Plot Graph

14

Multiple-Plot Waveform Graphs

A multi plot waveform graph accepts a 2D array of values, where each row of the array is a

single plot. The graph interprets the data as points on the graph and increments the x index by one,

starting at x = 0. Wire a 2D array data type to the graph, right-click the graph, and select Transpose

Array from the shortcut menu to handle each column of the array as a plot.

XY Graphs

XY graphs display any set of points, evenly sampled or not. Resize the plot legend to

display multiple plots. Use multiple plots to save space on the front panel and to make

comparisons between plots. XY and waveform graphs automatically adapt to multiple plots.

Single Plot XY Graphs

The single-plot XY graph accepts a cluster that contains an x array and a y array. The XY

graph also accepts an array of points, where a point is a clusterthat contains an x value and a y value.

Multiplot XY Graphs

The multiplot XY graph accepts an array of plots, where a plot is a cluster that contains an x

array and a y array. The multi plot XY graph also accepts an array of clusters of plots, where a plot

is an array of points.

Waveform Charts

A plot is simply a graphical display of X versus Y values. Often, Y values in a plot represent

the data value, while X values represent time. The waveform chart, located in the Graph subpalette

of the Controls palette, is a special numeric indicator that can display one or more plots of data.

Fig24: Waveform chart and its component

Chart Update Modes

The waveform chart has three update modes – strip chart mode, scope chart mode, and sweep

15

chart mode. The update mode can be changed by poppingup on the waveform chart and choosing

one of the options from the Advanced>>update Mode>>menu. Modes can be changed while the

VI isrunning by selecting Update Mode from the chart’s runtime Pop-up menu.The default mode is

Strip Chart. The strip chart has a scrolling display similar to a paper strip chart . The scope chart

and the sweep chart have retracing displays similar to that of an oscilloscope.

Strip Chart

A strip chart shows running data continuously scrolling from left to right across the chart.

Fig:25 Strip chart

Scope chart:

A scope chart shows one item of data, such as a pulse or wave, scrolling part way across the chart

Fig: 26 Scope chart

Sweep Chart:

16

A sweep chart is similar to an EKG display. A sweep chart works similarly to a scope except

it shows the older data on the right and the newer data on the left separated by a vertical line. The

scope chart and sweep chart have retracing displays similar to an oscilloscope. Because there is less

overhead in retracing a plot, the scope chart and the sweep chart display plots significantly faster

than the strip chart.

Fig:27 Sweep Chart

Wiring Charts

A scalar output can be wired directly to a waveform chart.

2.5 Strings

A string is a sequential collection of displayable or nondisplayable ASCII characters. Strings

provide a platform-independent format for information and data. Often, strings may be used for

displaying simple text message.

Some of the more common applications of strings include the following:
• Creating simple text messages.

• Passing numeric data as character strings to instruments and then converting the strings to

numeric values.

• Storing numeric data to disk. To store numeric values in an ASCII file, the numeric values

must be first converted to strings before writing the numeric values to a disk file.

• Instructing or prompting the user with dialog boxes. On the front panel, strings appear as

tables, text entry boxes, and labels.

Creating String Controls and Indicators

The string control and indicator located on the Controls_Text Controls and Controls_Text Indicators

palettes are used to simulate text entry boxes and labels. Using the Operating tool or labeling tool text

data can betyped or edited in a string control. The Positioning tool is used to resize a frontpanel string

object. The space occupied by a string object can be minimized byright-clicking the object and

selecting the Visible Items_Scrollbar optionfrom the shortcut menu. The display types can be selected

by right-clickinga string control or indicator on the front panel

17

String Functions

String Length returns the number of characters in a given string asshown in Fig 28.

Concatenate Strings concatenates all input strings into a single outputstring as shown in Fig

29.The function appears as the icon shown in block diagram in Fig 29.The function can be resized

with the Positioning tool to increase the numberof inputs. In addition to simple strings, the user can

also wire a 1D array ofstrings as input; the output will be a single string containing a

concatenationof strings in the array.

String Subset accesses a particular section of a string. It returns the substringbeginning at

offset and containing length which indicates the number

Fig:28 string length

 Fig 29: Concatenate Strings

Sequence Structures (Flat and Stacked Structures)

Determining the execution order of a program by arranging its elements ina certain sequence is

called control flow. Visual Basic, C, and most other Fig. 30.

18

Fig30: Block diagram

Fig 31: Front panel

procedural programming languages have inherent control flow because statementsexecutes in the

order in which they appear in the program. LabVIEWuses the Sequence Structure to obtain control

flow within a dataflow framework.A Sequence Structure executes frame 0, followed by frame 1,

then frame2, until the last frame executes. Only when the last frame completes dataleaves the

structure.The Sequence Structure as shown in Fig. 30, looks like a frame of film.It can be found in

the Structures subpalette of the Functions palette.Like the Case Structure, only one frame is visible

at a time – the arrowsat the top of the structure can be selected to see other frames; or the topdisplay

can be clicked to obtain a listing of existing frames, or the user canpop-up on the structure border

and choose Show Frame. When a SequenceStructure is first dropped on the block diagram, it has

only one frame; thus,it has no arrows or numbers at the top of the structure to designate whichframe

is showing. New frames can be created by popping up on the structureborder and selecting Add

Frame After or Add Frame Before as shownin Fig. 31.The Sequence Structure is used to control

the order of execution of nodesthat are not data dependent on each other. Within each frame, as in

the rest ofthe block diagram, data dependency determines the execution order of nodes.

2.6 The Formula Node

The Formula Node is a resizable box that is used to enter algebraic formulasdirectly into the block

diagram. The Formula Node is a convenient text-basednode used to perform mathematical

19

operations on the block diagram. FormulaNodes are useful for equations that have many variables

or are otherwisecomplicated and for using existing text-based code. The existing text-basedcode can

be copied and pasted into a Formula Node rather than recreatingit graphically on the block diagram.

This feature is found to be extremelyuseful when the user has a long formula to solve. For example,

consider thefairly simple equation y = x 3 + sin(x). Even for this simple formula,

whenimplemented equation using regular LabVIEW arithmetic functions, the blockdiagram is a

little bit harder to follow than the text equationsThe same equation can be implemented using

formula node. With theFormula Node, the user can directly enter a formula or formulas, in lieu

ofcreating complex block diagram subsections. The task is very simple; the usercan simply enter the

formula inside the box. The input and output terminalsof the Formula Node can be created by

popping up on the border of the nodeand choosing Add Input or Add Output from the Pop-up

menu as illustrate

in Fig32. Then enter variable names into the input and output boxes.Names are case sensitive, and

each formula statement must terminate witha semicolon (;). The equation is typed in the structure.

Formula Nodes canalso be used for decision-making similar to case structure and select

functiondiscussed in the previous sections.

Fig32: Formula mode

Fig33: Formula mode example

The inputis ‘x’ which is given as input to the Formula Node. The node computes thegiven function

and returns the output in terms of ‘y’

20

2.7 Case Structures

The case structureis LabVIEW’s method of executing conditional text, sort of like an“if–then–

else”statement. It is located in the Structures subpalette of the Functions palette. The Case

Structure, has two or more subdiagrams, orcases; only one of them executes, depending on the value

of the Boolean,numeric, or string value wired to the selector terminal.If a Boolean value is wired to

the selector terminal, the structure has twocases, FALSE and TRUE. If a numeric or string data type

is wired to the selector, the structure can have from zero to almost unlimited cases. Initially only

two cases are available, but number of cases can be easily added. More than one value can be

specified for a case, separated by commas. In addition, the user can always select a “Default” case

that will execute if the value wired to the selector terminal doesn’t match any of the other cases.

When a case structure is first placed on the panel, the Case Structure appears in its Boolean form; it

assumes numeric values as soon as a numeric data type is wired to its selector terminal.Case

Structures can have multiple subdiagrams, but the user can see only one case at a time, sort of like a

stacked deck of cards. Clicking on the decrement(left) or increment (right) arrow at the top of the

structure displays the previous or next subdiagram, respectively. The user can also click on the

display at the top of the structure for a pull-down menu listing all cases, and then pop-up on the

structure border and select Show Case. If a floating-point number is wired to the selector,

LabVIEW rounds that number to the nearest integer value. LabVIEW coerces negative numbers to 0

and reduces any value higher than the highest-numbered case to equal the number of that case. The

selector terminal can be positioned anywhere along the left border. If the data type wired to the

selector is changed from a numeric to a Boolean, cases 0 to 1 change to FALSE and TRUE. If other

cases exist (2 to n), Lab-VIEW does not discard them, in case the change in data type is accidental.

However, these extra cases must be deleted before the structure can execute. For string data types

wired to case selectors, the user should always specify the case values as strings between quotes.

Fig 34: Boolean case structure

21

Boolean Case Structure

The following example is a Boolean Case structure shown in Fig34. The cases are shown

overlapped to simplify the illustration. If the Boolean controlwired to the selector terminal is True,

the VI increments the numeric value. Otherwise, the VI decrements the numeric value.

Integer Case Structure

The following example is an integer Case structure shown in Fig35. Integer is a text ring

control located on the Controls_Text Controls palette that associates numeric values with text

items. If the text ring control wired to the selector terminal is 0 (add), the VI decrements the

numeric values. If the value is 1 (subtract), the VI increments the numeric values. If the text ring

control is any other value than 0 (add) or 1 (subtract), the VI adds the numeric values, because that

is the default case.

Fig 35: Integer Case Structure

String Case Structure

The following example is a string Case structure as shown in Fig36. IfString is “Increment,” the VI

increments the numeric values. If String is “Decrement,” the VI decrements the numeric values.

22

Fig 36: string case

Enumerated Case Structure

The following example is an enumerated Case structure as shown in Fig.37 An enumerated

control gives users a list of items from which to select.

Fig:37 Enumerated case

The data type of an enumerated control includes information about the numeric values and

string labels in the control. When an enumerated control is wired to the selector terminal of a Case

structure, the case selector displays acase for each item in the enumerated control. The Case

structure executes the appropriate case subdiagram based on the current item in the enumerated

control. If Enum is “Increment,” the VI increments the numeric values. If Enum is “Decrement,” the

VI decrements the numeric values.

Error Case Structure

When an error cluster is wired to the selector terminal of a Case structure, the case selector

label displays two cases, Error and No Error, and the border of the Case structure changes color –

red for Error and green for No Error. The Case structure executes the appropriate case subdiagram

based on the error state. When an error cluster is wired to the selection terminal, the Case structure

recognizes only the status Boolean of the cluster.

SEQUENCE STRUCTURES

A sequence structure contains one or more subdiagrams, or frames, that execute in sequential

order. Within each frame of a sequence structure, as in the rest of the block diagram, data

Dependency determines the execution order of nodes. There are two types of sequence structure the

Flat Sequence structure and the Stacked Sequence structure. The Flat Sequence structure, shown as

follows, displays all the frames at once and executes the frames from left to right and when all data

values wired to a frame are available, until the last frame executes. The data values leave each frame

as the frame finishes executing. Use the Flat Sequence structure to avoid using sequence locals and to

better document the block diagram. When you add or delete frames in a Flat Sequence structure, the

structure resizes automatically. To convert a Flat Sequence structure to a Stacked Sequence structure,

right-click the Flat Sequence structure and select Replace with Stacked Sequence from the shortcut

menu. If you change a Flat Sequence to a Stacked Sequence and then back to a Flat Sequence,

23

LabVIEW moves all input terminals to the first frame of the sequence. The final Flat Sequence

should operate the same as the Stacked Sequence. After you change the Stacked Sequence to a Flat

Sequence with all input terminals on the first frame, you can move wires to where they were located

in the original Flat Sequence.

Fig:38 Flat sequence

Stacked Sequence Structure

The Stacked Sequence structure, shown as follows, stacks each frame so you see only one frame at a

time and executes frame 0, then frame 1, and soon until the last frame executes. The Stacked

Sequence structure returns data only after the last frame executes. Use the Stacked Sequence

structure if you want to conserve space

on the block diagram. To convert a Stacked Sequence structure to a Flat Sequence structure, right-

click the Stacked Sequence structure and select Replace»Replace with Flat Sequence from the

shortcut menu. The sequence selector identifier, shown as follows, at the top of the Stacked

Sequence structure contains the

current frame number and range of frames. Use the sequence selector identifier to navigate through

the available frames and rearrange frames. The frame label in a Stacked Sequence structure is

similar to the case selector label of the Case structure. The frame label contains the frame number in

the center and decrement and increment arrows on each side. Click the decrement and increment

arrows to scroll through the available frames. You also can click the down arrow next to the frame

number and select a frame from thepull-down menu. Right-click the border of a frame, select Make

This Frame, and select a framenumber from the shortcut menu to rearrange the order of a Stacked

Sequence structure. Unlike the case selector label, you cannot enter values in the frame label. When

you add, delete, or rearrange frames in a Stacked Sequence structure, LabVIEW automatically

adjusts the numbers in the frame labels. To pass data from one frame to any subsequent frame of a

Stacked Sequence structure, use a sequence local terminal shown .An outward-pointing arrow

appears in the sequence local terminal of the frame that contains the data source. The terminal in

subsequent frames contains an inward-pointing arrow, indicating that the terminal is a data source

for that frame. You cannot use the sequence local terminal in frames that precede the first frame

where you wired the sequence local.

24

Fig 39: Stacked Structure

BASICS OF FILE INPUT/OUTPUT

File I/O records or reads data in a file. File I/O operations pass data to and from files. Use the fileI/

O VIs and functions located on the Functions->All Functions»File I/O palette to handle all aspects

of file I/O, including the following:

● Opening and closing data files

● Reading data from and writing data to files

● Reading from and writing to spreadsheet-formatted files

● Moving and renaming files and directories

● Changing file characteristics

● Creating, modifying and reading configuration files

LabVIEW can use or create the following file formats: Binary, ASCII, LVM, and TDM.

● Binary—Binary files are the underlying file format of all other file formats.

● ASCII—An ASCII file is a specific type of binary file that is a standard used by most programs. It

consists of a series of ASCII codes. ASCII files are also called text files.

● LVM—The LabVIEW measurement data file (.lvm) is a tab-delimited text file you can open with

a spreadsheet application or a text-editing application. The .lvm file includes information about the

data, such as the date and time the data was generated. This file format is a specific type of ASCII

file created for LabVIEW.

● TDM—This file format is a specific type of binary file created for National Instruments products.

It actually consists of two separate files: an XML section contains the data attributes and a binary

file for the waveform.

Use of Text Files

Use text format files for your data to make it available to other users or applications, if disk

space and file I/O speed are not crucial, if you do not need to perform random access reads or

writes, and if numeric precision is not important. Text files are the easiest format to use and to

share. Almost any computer can read from or write to a text file.

Use of Binary Files

Storing binary data, such as an integer, uses a fixed number of bytes on disk. For example,

storingany number from 0 to 4 billion in binary format, such as 1, 1,000, or 1,000,000, takes up 4

bytesfor each number. Use binary files to save numeric data and to access specific numbers from a

fileor randomly access numbers from a file. Binary files are machine readable only, unlike text

fileswhich are human readable. Binary files are the most compact and fastest format for storing data.

Use of Datalog Files

Use datalog files to access and manipulate data only in LabVIEW and to store complex data

structures quickly and easily. A datalog file stores data as a sequence of identically structured

records, similar to a spreadsheet, where each row represents a record. Each record in a datalog File

must have the same data types associated with it. LabVIEW writes each record to the file as acluster

containing the data to store.

A typical file I/O operation involves the following process,

1. Create or open a file. Indicate where an existing file resides or where you want to create a new

file by specifying a path or responding to a dialog box to direct LabVIEW to the file location. After

25

the file opens, a refnum represents the file.

2. Read from or write to the file.

3. Close the file.

File I/O VIs and some File I/O functions, such as the Read from Text File and Write to Text

File functions, can perform all three steps for common file I/O operations. The VIs and functions

designed for multiple operations might not be as efficient as the functions configured or designed

for individual operations.

LOCAL VARIABLES

 Local variables transfer data within a single VI and allow data to be passed between parallel

loops
 They also break the dataflow programming paradigm.

Two ways to create

a local variable are right-click on an object’s terminal and select Create->Local Variable.

Fig 40: Local Variable

Fig41: Creating local variable

Another way is to select the Local Variable from the Structures palette. Create the front panel and

select a local variable from the Functions palette and place it on the block diagram. The local

variable node, shown as follows, is not yet associated with a control or indicator. To associatea local

variable with a control or indicator, right-click the local variable node and select Select Item from

the shortcut menu.

GLOBAL VARIABLES
 Global variables are built-in LabVIEW objects.

26

 use variables to access and pass data among several VIs that run simultaneously

 A local variable shares data within a VI; a global variable also shares data, but it shares data

with multiple VIs.

For example, suppose you have two VIs running simultaneously. Each VI contains a While Loop

and writes data points to a waveform chart. The first VI contains a Boolean control to terminate both

VIs. You can use a global variable to terminate both loops with a single Boolean control as shown

in Figure . If both loops were on a single block diagram within the same VI, you could use a local

variable to terminate the loops.

When you create a global variable, LabVIEW automatically creates a special global VI, which has a

front panel but no block diagram. Add controls and indicators to the front panel of the global VI to

define the data types of the global variables. Select a global variable as shown inFigure42 .from the

Functions palette and place it on the block diagram. Double-click the global variable node to display

the front panel of the global VI. Place controls and indicators on this front panel the same way you

do on a standard front panel. LabVIEW uses owned labels to identify global variables, so label the

front panel controls and indicators with descriptive owned labels.

Fig:42 Global Variable

References:

1. Jerome, Virtual Instrumentation Using LabView, PHI, 2010

2. Lisa K. Wells and Jeffrey Travis, LABVIEW for Everyone, PHI, 1997.

3. Skolkoff, Basic concepts of LABVIEW 4, PHI, 1998

1

SCHOOL OF BIO AND CHEMICAL

DEPARTMENT OF BIOMEDICAL ENGINEERING

UNIT – III-VIRTUAL BIOINSTRUMENTATION – SBM1402

2

III Data Acquisition

Data acquisition basics: Introduction to data acquisition on PC, Sampling fundamentals,

Input/Output techniques and buses. ADC, DAC, Digital I/O, counters and timers, DMA, Software and

hardware installation, Calibration, Resolution, Data acquisition interface requirements.

3.1 Introduction to data acquisition on PC

Fig 1:A general PC-based DAQ system with signal conditioning

PC-based data acquisition (DAQ) systems and plug-in boards are used in awide range of

applications in the laboratory, in the field, and on the manufacturing plant floor. Typically, DAQ

plug-in boards are general-purpose data acquisition instruments that are well suited for

measuring voltage signals. However, many real-world sensors and transducers output signals that

must be conditioned before a DAQ board can effectively and accurately acquire the signal. This

front-end preprocessing, which is generally referred to as signal conditioning, includes functions

such as signal amplification, filtering, electrical isolation, and multiplexing. In addition, many

transducers require excitation currents or voltages, bridge completion, linearization, or high

amplification for proper and accurate operation. Therefore, most PC-based DAQ systems include

some form of signal conditioning in addition to the plug-in DAQ board and personal computer,

as shown in Fig. 1.An instrument may be defined as a device or a system, which is designed to

maintain a functional relationship between prescribed properties of physical variables and must

include ways and means of communication to a human observer. The functional relationship

remains valid only as long as the static calibration of system remains constant. On the other

hand, the performance of a measurement system can be described in terms of static and dynamic

characteristics. It is possible and desirable to describe the operation of a measuring instrument or

a system in a generalized manner without resorting to intricate details of the physical aspects of a

specific instrument or a system. The whole operation can be described in terms of functional

elements. Most of the measurement systems contain three main functional elements such as the

primary sensing element, variable conversion element, and data presentation element. Each

functional element is made up of a distinct component or groups of components, which perform

the required and definite steps in the measurement. These may be taken as basic elements, whose

scope is determined by their functioning rather than their construction. Primary sensing element.

The quantity under measurement makes its first contact with the primary sensing element of a

3

measurement system. In other words the measurand is first detected by primary sensor. This act

is then immediately followed by the conversion of measurand into an analogous electrical signal

performed by a transducer. A transducer in general, is defined

as a device which converts energy from one form to another. But in Electrical measurement

systems, this definition is limited in scope. A transducer is defined as a device which converts a

physical quantity into an electrical quantity. The physical quantity to be measured, in the first

place is sensed and detected by an element which gives the output in a different analogous form.

This output is then converted into an electrical signal by a transducer. This is true of most of the

cases but is not true for all. In many cases the physical quantity is directly converted into an

electrical quantity by a transducer. The first stage of a measurement system is known as a

detector transducer stage. Variable conversion element. The output of the primary sensing

element may be electrical signal such as a voltage, a frequency or some other electrical

parameter. Sometimes this output is not suited to the system. For the instrument to perform the

desired function, it may be necessary to convert this output to some other suitable form while

preserving the information content of the original signal. For example, suppose output is in

analog form and the next stage of the system accepts input signals only in digital form and

therefore, an A/D converter will have to be used for converting signals from A/D form for them

to be acceptable for the next stage of the system. Variable manipulation element. The function of

this element is to manipulate the signal presented to it preserving the original nature of the

signal. Manipulation here means only a change in numerical value of the signal. For example, an

electronic amplifier accepts a small voltage signal as input and produces an output signal which

is also voltage but of greater magnitude. Thus voltage amplifier acts as a variable manipulation

element. It is not necessary that a variable manipulation element should follow the variable

conversion element as shown in Fig.

 It may precede the variable conversion element in many cases. In case, the voltage is too high,

attenuators are used which lower the voltage or power for the subsequent stages of the system.

As discussed earlier, the output of transducer contains information needed for further processing

by the system and the output signal is usually a voltage or some other form of electrical signal.

The two most important properties of voltage are its magnitude and frequency though polarity

may be a consideration in some cases. Many transducers develop low voltages of the order

Fig 2: Functional elements of an instrumentation system

of mV and some even µV. A fundamental problem is to prevent this signal being contaminated

by unwanted signals like noise due to an extraneous source which may interfere with the original

output signal. Mother problem is that a weak signal may be distorted by processing equipment.

The signal after being sensed cannot transmitted to the next stage without removing the

interfering sources, as otherwise highly distorted results may be obtained which far from true.

Many a times it becomes necessary to perform certain operations on the signal before it is

4

transmitted further. These processes may be linear like amplification, attenuation, integration,

differentiation, addition and subtraction. Some nonlinear processes like modulation, detection,

sampling, filtering, chopping and clipping, etc. are also performed on the signal to bring it to the

desired form to be accepted by the next stage of measurement system. This process of conversion

is called Signal Conditioning. The term signal conditioning includes many other functions in

addition to variable conversion and variable manipulation. In fact the element that follows the

primary sensing element in any instrument or measurement system is called Signal Conditioning

Element. When the elements of an instrument are actually physically separated, it becomes

necessary to transmit data from one to another. The element that performs this function is called

a Data Transmission Element. For example, space-crafts are physically separated from the earth

where the control stations guiding their movements are located. Therefore control signals are

sent from these stations to space-crafts by complicated telemetry systems using radio signals.

The signal conditioning and transmission stage is commonly known as Intermediate Stage.

In the signal conditioning stage, the signals are passed through a slew of steps like:

 Amplification

 Rectification

 Filtering

 Scaling

Data presentation element. The information about the quantity under measurement has to be

conveyed to the personnel handling the instrument or the system for monitoring, control, or

analysis purposes. The information conveyed must be in a form intelligible to the personnel or to

the intelligent instrumentation system. This function is done by data presentation element. In

case data is to be monitored, visual display devices are needed. These devices may be analog or

digital indicating instruments like ammeters, voltmeters, etc. In case the data is to be recorded,

recorders like magnetic tapes ,high speed camera and TV equipment, storage type C.R.T,

printers, analog and digital computers, or microprocessors may be used. For control and analysis

purpose microprocessors or computers may be used. The final stage in a measurement system is

known as terminating stage. As an example of a measurement system, consider the simple

bourdon tube

Fig 3:Bourdon tube pressure gauge

5

Fig 4:Schematic diagram of a Bourdon tube pressure gauge

Pressure gauge as shown in Fig. 3. This gauge offers a good example of a measurement system.

In this case the bourdon tube acts as the primary sensing element and a variable conversion

element. It senses the input quantity (pressure in this case). On account of the pressure the closed

end of the bourdon tube is displaced. Thus the pressure is converted into a small displacement.

The closed end of the bourdon tube is connected through mechanical linkage to a gearing

arrangement. The gearing arrangement amplifies the small displacement and makes the pointer

to rotate through a large angle. The mechanical linkage thus acts as a data transmission element

while the gearing arrangement acts as a data manipulation element. The final data presentation

stage consists of the pointer and dial arrangement; which when calibrated with known pressure

inputs, gives an indication of the pressure signal applied to the bourdon tube. The schematic

diagram of this measurement system is given in Fig. 4.When a control device is used for the final

measurement stage, it is necessary to apply some feedback to the input signal to accomplish the

control objectives. The control stage compares the signal representing the measured variable

with a reference signal of the same form. This reference signal has a value the measured signal

should have and is presented to a controller. If the measured signal agrees with the reference

value, the controller does nothing. However, if there is a difference between the measured value

and the reference value, an error signal is generated. Thus the controller sends a signal to a

device which acts to alter the value of the measured signal. Suppose the measured variable is

flow of a liquid, then the control device is a motorized valve placed in the flow system. In case

the measured flow rate is too low than the preset flow rate, then the controller would cause the

valve to open, thereby increasing the flow rate. If on the other hand, the flow rate were too high,

the valves are closed. The operation of closing or opening of valve will cease when the output

flow rate is equal to preset value of flow rate. The physical phenomenon, which is the signal

from external world, faces signal abnormalities, so these have to be rectified in order to make the

signal more effective.

3.2 Sampling fundamentals

A fundamental rule of sampled data systems is that the input signal must be sampled at a rate

greater than twice the highest frequency component in the signal. This is known as the

Nyquistcriterion. Stated as a formula, it requires that fs/2 >fa, where fs is the sampling frequency

and fa is the signal being sampled. Violating the Nyquist criteria is called under sampling, and

results in aliasing.

Filtering and Averaging

To get rid of aliasing, a type of low-pass filter has to be used, known as an anti-aliasing

filter. Analog filters are absolutely mandatory, regardless of the sampling rate, unless the signal’s

frequency characteristics are known

6

Fig 5:Power spectrum of a 1 kHz sine wave with low pass-filtered noise added

.In order to limit the bandwidth of the raw signal to fs/2 an analog filter isused. The analog

filter can be in the transducer, the signal conditioner, on the A/D board, or in all three sections.

The filter is usually made up of resistors, capacitors, and sometimes, operational amplifiers, in

which case it is called an active filter. One problem with analog filters is that they are very

complex and expensive. If the desired signal is fairly close to the Nyquist limit, the filter needs to

cut off very quickly, which requires lots of stages, which depends on the order of the filter

.Digital filters can augment, but cannot replace, analog filters. Digital filter VIs is included with

the LabVIEW analysis VIs, and they are functionally equivalent to analog filters. The simplest

type of digital filter is a moving averager, which has the advantage of being usable in real-time

on a sample by-sample basis. One way to simplify the anti-aliasing filter problem is to

oversample the input. If the A/D hardware is fast enough, the sampling rate is first increased and

then a digital filter is used to eliminate the higher frequencies that are of no interest. This makes

the analog filtering design problem simpler because the Nyquist frequency has been raised much

higher, so the analog filter need not be sharp. The signal has to be sampled at a rate high enough

to avoid significant aliasing with a modest analog filter, but sampling at too high rate may not be

practical because the hardware is too expensive and extra data may overload the CPU. Figure 4.9

illustrates the occurrence of aliasing in a 1 kHz sine wave with low pass filtered noise in it. A

potential problem with averaging comes up while handling nonlinear data. The process of

averaging is defined to be the summation of several values, divided by the number. If the main

concern is rejecting 60 Hz line frequency interference, an old trick is to grab an array of samples

over one line period (16.66 ms). This should be done for every channel. Using plug-in boards

with LabVIEW’s data acquisition drivers, the user can adjust the sampling interval with high

precision, making this a reasonable option. First, a simple experiment is set to acquire and

average data from a noisy input. The sampling period is varied and checked for a null noise at

each 16.66 ms multiple there is an attempt to average recurrent waveforms to reduce noise, the

arrays of data that are acquired must be perfectly in-phase

7

Fig 6:A sine wave and its representation by a 3-bit ADC sampling every 5 ms.

If a phase shift occurs during acquisition, then the waveforms will partially cancel each

other or distort in some other way. Triggered data acquisition is the normal solution because it

helps to guarantee that each buffer of data is acquired at the same part of the signal’s cycle.

Some other aspects of filtering that may be important to some of the applications are impulse

response and phase response. For ordinary datalogging, these factors are generally ignored. But

if the user is doing dynamictesting like vibration analysis, acoustics, or seismology, impulse and

phase response can be very important. As a rule of thumb, when filters becom every complex

(high-order), they cutoff more sharply, have more radical phase shifts around the cutoff

frequency, and (depending on the filter type) exhibit ringing on transients. The best way to

analyze filtering needs is to use a spectrum analyzer since we are able to know exactly what

signals are present and what has to be filtered out. Some common methods used for filtering

are:– A dedicated spectrum analyzer instrument (very expensive)– A digital oscilloscope with

FFT capability (LabVIEW computes the power spectrum)

 Even a multifunction I/O board running as fast as possible with LabVIEW doing the power

spectrum. Looking at the power spectrum in Fig. 4.10, some of the noise power is above the

floor for the ADC and is also at frequencies above 2.75 kHz. This little triangle represents

aliased energy and gives the user a qualitative feel for how much contamination the user can

expect. It depends on the nature of the out-of-band noise.

3.3 Analog-to-Digital Control (ADC)

Fig 7:Analog-to-digital converter

Connecting digital circuitry to sensor devices is simple if the sensor devices are inherently

digital in nature. witches, relays, and encoders are easily interfaced with gate circuits due to the

8

on/off nature of their signals. However, when analog devices are involved, interfacing becomes

much more complex. Some mechanism is needed to electronically translate analog signals into

digital(binary) quantities, and visa-versa. An analog-to-digital converter, or ADC, performs the

former task while a digital-to-analog converter, or DAC, performs the latter. An ADC inputs an

analog electrical signal such as voltage or current and outputs a binary number. In block diagram

form, it can be representedas shown in Fig. 7.

Understanding Integrating ADCs:

I n t e g r a t i n g A D C s p r o v i d e h i g h r e s o l u t i o n A / D c o n v e r s i o n s , w i t h g o o d

noise rejection. These ADCs are ideal for digitizing low band width signals, and are used

in applications such as digital multimeters and panel meters. They often include LCD or LED

drivers and can be used stand alone without a microcontroller host. The following section

explains how integrating ADCs work. Discussions include single-, dual- and multislope

conversions. Also, an in-depth analysis of the integrating architecture will be discussed. Finally a

comparison against other ADC architectures will aid in the understanding and selection of

integrating ADCs. Integrating analog-to-digital converters (ADCs) provide high resolution and

can provide good line frequency and noise rejection. Having started with the ubiquitous 7106,

these converters have been around for quite some time. The integrating architecture provides a

novel and straightforward approach to converting a low bandwidth analog signal into its digital

representation. These types of converters often include built-in drivers for LCD or LED displays

and are found in many portable instrument applications, including digital panel meters and

digital multimeters.

Single-Slope ADC Architecture

Fig 8:(a) Single-slope ADC circuit (b) Response of single slope ADC

The simplest form of an integrating ADC uses single-slope architecture (Figs. 8a, b). Here,

an unknown input voltage is integrated and the value is compared against a known reference

value. The time it takes for the integrator to trip the comparator is proportional to the unknown

voltage (VINT/VIN).In this case, the known reference voltage must be stable and accurate to

guarantee the accuracy of the measurement. One drawback to this approach is that the accuracy

is also dependent on the tolerances of the integrator’s R and C values. Thus in a

9

production environment, slight differences in each component’s value change the

conversion result and make measurement repeatability quite difficult to attain. To overcome this

sensitivity to the component values, the dual-slope integrating architecture is used.

Dual-Slope ADC Architecture

Fig 9:Dual slope integration

A dual-slope ADC (DS-ADC) integrates an unknown input voltage (VIN) for a fixed

amount of time (TINT), then “disintegrates” (TDEINT) using a known reference voltage (VREF)

for a variable amount of time (Fig. 9).

The key advantage of this architecture over the single-slope is that the final conversion

result is insensitive to errors in the component values. That is, any error introduced by a

component value during the integrate cycle will be canceled out during the de-integrate phase. In

above equation form:

Fig 10:Dual Slope Converter

From this equation, it is found that the de-integrate time is proportional to the ratio of

VIN/VREF. A complete circuit diagram of a dual-slope converter is shown in Fig. 10.As an

example, to obtain 10-bit resolution, integration is performed for1024 (210) clock cycles, then

disintegrated for 1024 clock cycles (giving a maximum conversion of two 210 cycles). For more

resolution, increase the number of clock cycles. This tradeoff between conversion time and

resolution is inherent in this implementation. It is possible to speed up the conversion time for a

given resolution with moderate circuit changes. Unfortunately, all improvements shift some of

the accuracy to matching, external components, charge injection, etc. In other words, all speed-

up techniques have larger error budgets. Even in the simple converter in Fig. 4.1, there are many

potential error sources to consider such as power supply rejection (PSR),common-mode rejection

10

(CMR), finite gain, over-voltage concerns, integrator saturation, comparator speed, comparator

oscillation, “rollover,” dielectric absorption, capacitor leakage current, parasitic capacitance,

charge injection ,etc.

SAR ADC:

Successive-approximation-register (SAR) analog-to-digital converters (ADCs) represent the

majority of the ADC market for medium to high resolution ADCs. SAR ADCs provide up to 5

Msps (mega samples per second) sampling rate with resolution from 8 to 18 bits. The SAR

architecture allows for high performance, low power ADCs to be packaged in small form factors

for today’s demanding applications. It also provides an explanation for the heart of the SAR

ADC, the capacitive DAC and also the high-speed comparator. Finally, the article will contrast

the SAR architecture against pipeline, flash ADCs. SAR ADCs are frequently the architecture of

choice for medium to-high-resolution applications with sample rates under 5 Msps. SAR

ADCs most commonly range in resolution from 8 to 16 bits and provide low power consumption

as well as a small form factor. This combination makes the mideal for a wide variety of

applications, such as portable/battery-powered instruments, pen digitizers, industrial controls,

and data/signal acquisition. As the name implies, the SAR ADC basically implements a binary

search algorithm. Therefore, while the internal circuitry may be running at several megahertz

(MHz), the ADC sample rate is a fraction of that number due to the successive-approximation

algorithm.

Architecture:

Although there are many variations in the implementation of an SAR ADC, the basic

architecture is quite simple (Fig. 11). The analog input voltage(VIN) is held on a track/hold. To

implement the binary search algorithm, the N-bit register is first set to mid scale (that is, 100 00,

where the MSB is set to “1”). This forces the DAC output (VDAC) to be VREF/2, where VREF

is the reference voltage provided to the ADC. A comparison is then performed to determine if

VIN is less than or greater than VDAC. If VIN is greater than VDAC, the comparator output is at

logic high or “1”and the MSB of the N-bit register remains at “1.” Conversely, if VIN is less

than VDAC, the comparator output is logic low and the MSB of the register is cleared to logic

“0.” The SAR control logic then moves to the next bit down, forces that bit high, and does

another comparison. The sequence continues all the way down to the LSB. Once this is done, the

conversion is complete, and the N-bit digital word is available in the register. The y-axis (and the

bold line in Fig. 4.33) represents the DAC output voltage. In the example, the first comparison

shows that VIN <VDAC. Thus, bit 3 is set to “0.” The DAC is then set to 01002 and the second

comparison is performed. As VIN >VDAC, bit 2 remains at “1.”

The DAC is then set to 01102, and the third comparison is performed. Bit 1 is set to “0,”

and theDAC is then set to 01012 for the final comparison. Finally, bit 0 remains at“1” because

VIN>VDAC.

11

Fig 11:Simplified N-bit SAR ADC architecture

Fig 12: SAR operation

Four comparison periods are required for a 4-bit ADC. Generally speaking, an N-bit SAR

ADC will require N comparison periods and will not be ready for the next conversion until the

current one is complete. Thus, these types of ADCs are power and space-efficient. Some of the

smallest ADCs available on the market are based on the SAR architecture. The MAX1115-

MAX1118 series of 8-bit ADCs as well as their higher resolution counterparts, the MAX1086

and the MAX1286 (10 and 12 bits, respectively), fit in tiny SOT23 packages measuring 3mm by

3 mm. Another feature of SAR ADCs is that power dissipation scales with the sample rate,

unlike flash or pipelined ADCs, which usually have constant power dissipation versus sample

rate. This is especially useful in low-power applications or applications where the data

acquisition is not continuous as in the case of PDA Digitizers.

3.4 DIGITAL TO ANALOG (DAC)

A digital to analog converter (DAC) converts a digital signal to an analog voltage or current

output

Types of DACs

□ Many types of DACs available.

□ Usually switches, resistors, and op-amps used to implement conversion

□ Two Types:

o Binary Weighted Resistor

▪ R-2R Ladder

12

Binary Weighted Resistor

Utilizes a summing op-amp circuit Weighted resistors are used to distinguish each bit from

the most significant to the least significant Transistors are used to switch

between Vref and ground (bit high or low)

□ Assume Ideal Op-amp

□ No current into op-amp

□ Virtual ground at inverting input

□ Vout= -IRf

Fig 13: Binary Weighted Resistor

R-2R Ladder

Fig 14: R-2R Ladder

Specifications of DACs

• Resolution

• Speed

• Linearity

• Settling Time

• Reference Voltages

• Errors

V V

V

V

Vr

ef
R

2

R

4

R

I R
f

-

+

V

ou

t

2n

R

13

Resolution
□ Smallest analog increment corresponding to 1 LSB change

□ An N-bit resolution can resolve 2N distinct analog
levels Common DAC has a 8-16 bit resolution

Speed

□ Rate of conversion of a single digital input to its analog equivalent
□ Conversion rate depends on

■ clock speed of input signal
■ settling time of converter

□ When the input changes rapidly, the DAC conversion speed must be high.
Linearity

□ The difference between the desired analog output and the actual output over the full
range of expected values

Applications

□ Digital Motor Control

□ Computer Printers
□ Sound Equipment (e.g. CD/MP3 Players, etc.)
□ Electronic Cruise Control

Counters and Timers

A counter is a digital timing device. Typical applications of counters are event counting,

frequency measurement, period measurement, position measurement, and pulse generation. A

counter contains the following four main components:

 Count Register. Stores the current count of the counter. The user can query the count

register with software.

 Source. An input signal that can change the current count stored in the count register. The

counter looks for rising or falling edges on the source signal. Whether a rising or falling edge

changes the count is software selectable. The type of edge selected is referred to as the active

edge of the signal. When an active edge is received on the source signal, the count

changes.

Whether an active edge increments or decrements the current

count is also software selectable.

 Gate. An input signal that determines if an active edge on the source will change the

count. Counting can occur when the gate is high, low, or between various combinations of

rising and falling edges. Gate settings are made in software.

 Output. An output signal that generates pulses or a series of pulses, otherwise known as a

pulse train. When a counter is configured for simple event counting, the counter increments

when an active edge is received on the source. In order for the counter to increment on an

active edge, the counter must be started. A counter has a fixed number it can count

to as determined by the resolution of the counter.

14

3.5 DMA

Direct memory access, a technique for transferring datafrom main memory to a device without

passing it through the CPU.

Computers that have DMA channels can transfer data to and from devices much more quickly

than computers without a DMA channel can. This is useful for making quick backups and

for real-time applications. Some expansion boards, such as CD-ROM cards, are capable of

accessing the computer's DMA channel.

Modes of operation

Burst mode

An entire block of data is transferred in one contiguous sequence. Once the DMA controller is

granted access to the system bus by the CPU, it transfers all bytes of data in the data block before

releasing control of the system buses back to the CPU, but renders the CPU inactive for

relatively long periods of time. The mode is also called "Block Transfer Mode". It is also used to

stop unnecessary data.

Cycle stealing mode

The cycle stealing mode is used in systems in which the CPU should not be disabled for the

length of time needed for burst transfer modes. In the cycle stealing mode, the DMA controller

obtains access to the system bus the same way as in burst mode, using BR (Bus Request) and

BG (Bus Grant) signals, which are the two signals controlling the interface between the CPU

and the DMA controller. However, in cycle stealing mode, after one byte of data transfer, the

control of the system bus is deserted to the CPU via BG. It is then continually requested again

via BR, transferring one byte of data per request, until the entire block of data has been

transferred. By continually obtaining and releasing the control of the system bus, the DMA

controller essentially interleaves instruction and data transfers. The CPU processes an

instruction, then the DMA controller transfers one data value, and so on. On the one hand, the

data block is not transferred as quickly in cycle stealing mode as in burst mode, but on the other

hand the CPU is not idled for as long as in burst mode. Cycle stealing mode is useful for

controllers that monitor data in real time.

Transparent mode

The transparent mode takes the most time to transfer a block of data, yet it is also the most

efficient mode in terms of overall system performance. The DMA controller only transfers data

15

when the CPU is performing operations that do not use the system buses. It is the primary

advantage of the transparent mode that the CPU never stops executing its programs and the

DMA transfer is free in terms of time. The disadvantage of the transparent mode is that the

hardware needs to determine when the CPU is not using the system buses, which can be

complex.

Resolution

Resolution is important. The number of bits used to represent an analog signal determines the

resolution of the ADC. The resolution on a DAQ device is similar to the marks on a ruler. The more

marks a ruler has, the more precise the measurements are. The higher the resolution is on a DAQ

device, the higher the number of divisions into which a system can break down the ADC range, and

therefore, the smaller the detectable change. A 3-bit ADC divides the range into 23 or eight divisions.

A binary or digital code between000 and 111 represents each division. The ADC translates each

measurement of the analog signal to one of the digital divisions. Figure 11.19 shows a 5-kHz sine

wave digital image obtained by a3-bit ADC. The digital signal does not represent the original signal

adequately because the converter has too few digital divisions to represent the varying voltages of the

analog signal. However, increasing the resolution to 16 bits to increase the ADC number of divisions

from eight (23) to 65,536 (216) allows the 16-bit ADC to obtain an extremely accurate representation

of the analog signal.

Fig : 3 bit and 16 bit resolution

Range refers to the minimum and maximum analog signal levels that the ADC can digitize. Many

DAQ devices feature selectable ranges (typically 0 to 10 V or –10 to 10 V), so you can match the

ADC range to that of the signal to take best advantage of the available resolution to accurately

measure the signal. For example, in Figure 11.20, the 3-bit ADC in chart 1 has eight digital

divisions in the range from 0 to 10 V, which is a unipolar range. If you select a range of – 10 to 10

V, which is a bipolar range, as shown in chart 2, the same ADC separates a 20 V range into eight

divisions. The smallest detectable voltage increases from 1.25 to 2.50 V, and the right chart is a

much less accurate representation of the signal.

Amplification or attenuation of a signal can occur before the signal is digitized to

improve the representation of the signal. By amplifying or attenuating a signal, you can effectively

decrease the input range of an ADC and thus allow the ADC to use as many of the available digital

divisions as possible to represent the signal. For example, the below fig shows the effects of

applying amplification to a signal that fluctuates between 0 and 5 V using a 3-bit ADC and a range

of 0 to 10

16

V. With no amplification, or gain = 1, the ADC uses only four of the eight divisions in the

conversion .By amplifying the signal by two before digitizing, the ADC uses all eight digital

divisions, and the digital representation is much more accurate. Effectively, the device has an

allowable input range of 0 to 5 V because any signal above 5 V when amplified by a factor of two

makes the input to the

ADC greater than 10 V. The range, resolution, and amplification available on a DAQ device

determine the smallest detectable change in the input voltage. This change in voltage represents one

least significant bit (LSB) of the digital value and is also called the code width.

Fig : Effects of applying amplification in resolution using the following formula

Where C is code width,

D is device input range, and R is bits of resolution.

Device input range is a combination of the gain applied to the signal and the input range of the

ADC. For example, if the ADC input range is –10 to +10 V peak to peak and the gain is 2, the device

input range is –5 to +5 V peak to peak, or 20 V. The smaller the code width, the more accurately a

device can represent the signal. The formula confirms what you have already learned in the

discussion on resolution, range and gain:

● Larger resolution = smaller code width = more accurate representation of the signal

● Larger amplification = smaller code width = more accurate representation of the signal

● Larger range = larger code width = less accurate representation of the signal

Hardware installation of DAQ Windows Configuration Manager

The Windows Configuration Manager keeps track of all the hardware installed in the computer,

including National Instruments DAQ devices. If a Plug &Play (PnP) device, such as an E Series

MIO device is available, the Windows Configuration Manager automatically detects and configures

the device. If the device is a non-PnP device, or legacy device, the user must configure the device

manually using the Add New Hardware option in the Control Panel. LabVIEW installs

Measurement & Automation Explorer (MAX), which establishes all device and channel

configuration parameters. After installing a DAQ device in the computer, the user must run this

configuration utility.MAX reads the information the Device Manager records in the Windows

Registry and assigns a logical device number to each DAQ device.

Channel and Task Configuration

Using Traditional NI-DAQ a set of virtual channels can be configured. A collection of

property settings that include a physical channel, the type of measurement or generation specified in

the channel name, and scaling information are also configured using this utility. In Traditional NI-

17

DAQ and earlier versions, virtual channels are a simple method to remember which channels

are used for different measurements. NI-DAQmx channels are similar to the virtual channels of

Traditional NI-DAQ. NI-DAQmx also includes tasks that are integral to the API. A task is a

collection of one or more channels and the timing, triggering, and other properties that apply to the

task itself.

Hardware Triggering

There are two ways to begin a DAQ operation:

1. Through a software trigger.

2. Through a hardware trigger.

With software triggering, the DAQ operation begins when the software function that initiates the

acquisition executes. For example, the “Easy” DACVIs use software triggering.

Analog Input

Analog input is used to perform A/D conversions.

Digital Output

Measuring and generating digital values is used in a variety of applications, including

controlling relays and monitoring alarm states.

DAQ Software

DAQ software is specialized software that has been developed specifically for use with data

acquisition boards, cards and systems. This software can range from simple software used for one

application such as data logging, or it can be extremely robust, offering a wide range of uses for

measurement and control and laboratory applications. DAQ software in conjunction with a personal

computer is used to control the data acquisition board’s functions.

High-Level Functions

More elaborate functions provided by DAQ software includes acquiring, converting to

engineering units, and displaying data graphically on a PC monitor; analyzing a complex analog

input signal, providing linearization and cold junction compensation calculations for various types

of thermocouple signals; or simultaneously sampling multiple channels of analog input data,

comparing them, and plotting them in a three-dimensional presentation.

High-Level Mathematical Functions

FFT and frequency analysis, signal generation, mathematics, curve fitting and interpolation,

along with time and frequency domain analysis, allow users to derive meaningful information from

data.

Application Development

Whether the user is taking temperature measurements with an A/D board, analyzing signals

using a stand-alone oscilloscope board, or measuring pressure with a sophisticated signal

conditioner; using specialized application development DAQ software with the appropriate driver is

ideal for the application. From data acquisition to instrument control, and image acquisition to

motion control, application development software provides the tools to rapidly develop the

acquisition system.

18

References:

1. Jerome, Virtual Instrumentation Using LabView, PHI, 2010

2. Lisa K. Wells and Jeffrey Travis, LABVIEW for Everyone, PHI, 1997.

3. Skolkoff, Basic concepts of LABVIEW 4, PHI, 1998

1

SCHOOL OF BIO AND CHEMICAL

DEPARTMENT OF BIOMEDICAL ENGINEERING

UNIT – IV-VIRTUAL BIOINSTRUMENTATION – SBM1402

2

IV Instrument Interfaces

Current loop, RS 232C/RS 485, GPIB, System basics, interface basics: USB, PCMCIA,

networking basics for office & industrial application VISA & IVI, image acquisition &

processing, Motion Control. ADC, DAC, DIO, DMM, waveform generator.

4.1 4–20mA Current Loop

Current-mode data transmission is the preferred technique in many environments, particularly

in industrial applications. Most systems employ the familiar 2-wire, 4–20mA current loop, in which

a single twisted-pair cable supplies power to the module and carries the output signal as well. The

3-wire interface is less common but allows the delivery of more power to the module electronics. A

2-wire system provides only 4mA at the line voltage (the remaining 16mA carries the signal).

Current loops offer several advantages over voltage-mode output transducers:

– They do not require a precise or stable supply voltage.

– Their insensitivity to IR drops makes them suitable for long distances.

– A 2-wire twisted-pair cable offers very good noise immunity.

– The 4mA of current required for information transfer serves two purposes:

it can furnish power to a remote module, and it provides a distinction between zero (4 mA) and no

information (no current flow).In a 2-wire, 4–20mA current loop, supply current for the sensor

electronics must not exceed the maximum available, which is 4mA (the remaining 16mAcarries the

signal). Because a 3-wire current loop is easily derived from the2-wire version, the following

discussion focuses on the 2-wire version.

Need for a Current Loop

The 4–20mA current loop shown in Fig. 1 is a common method of transmitting sensor information

in many industrial process-monitoring applications. A sensor is a device used to measure physical

parameters such as temperature, pressure, speed, liquid flow rates, etc. Transmitting sensory

information through a current loop is particularly useful when the information has to be sent to a

remote location over long distances (1,000 ft, or more). The loop’s operation is straightforward: a

sensor’s output voltage is first converted to a proportional current, with 4mA normally representing

the sensor’s zero-level output, and 20mA representing the sensor’s full-scale output. Then, a

receiver at the remote end converts the 4–20mA current back into a voltage which in turn can be

further processed by a computer or display module. However, transmitting a sensor’s output as a

voltage over long distances has several drawbacks. Unless very high input-impedance devices are

used, transmitting voltages over long distances produces correspondingly lower voltages at the

receiving end due wiring and interconnect resistances. However, high-impedance instruments can

be sensitive to noise pickup since the lengthy signal-carrying wires often run in close proximity to

other electrically noisy system wiring. Shielded wires can be used to minimize noise pickup, but

their high cost may be prohibitive when long distances are involved. Sending a current over long

distances produces voltage losses proportional to the wiring’s length. However, these voltage losses

also known as loop drops” do not reduce the 4–20mA current as long as the transmitter an loop

supply can compensate for these drops. The magnitude of the current in the loop is not affected by

voltage drops in the system wiring since all of the current (i.e., electrons) originating at the negative

(−) terminal of the loop power supply has to return back to its positive (+) terminal

3

 Fig1: Typical components in a loop

Fig2: 4-20 mA transmitter

Basic 2-wire Circuit

A voltage output should be converted to current when configuring a ratio metric 4–20mA

circuit, because current-mode applications require a 4mA offset and 16mA span. This section

presents the circuit details and results obtained from a current-loop configuration based on the

MAX1459 sensorsignal conditioner. In principle, a voltage regulator is to be added, which converts

the 10–32V loop voltage to a fixed 5V for operating the MAX1459. Figure shows the circuitry

required for implementing a standard ratio metric version of the MAX1459 circuit. The voltage

regulator can be any low-cost device whose quiescent current is sufficiently low for the 4mA

budget.

Advantages of 4–20mA Current Loop

Current loops offer four major advantages such as:

– Long-distance transmission without amplitude loss

– Detection of offline sensors, broken transmission lines, and other failures

– Inexpensive 2-wire cables

– Lower EMI sensitivity

4.2 RS 232C/RS 485

The RS-232/485 port sequentially sends and receives bytes of information one bit at a time.

Although this method is slower than parallel communication, which allows the transmission of an

entire byte at once, it is simpler and can be used over longer distances because of lower power

consumption. For example, the IEEE 488 standard for parallel communication states that the cable

length between the equipments should not exceed 20m total, with a maximum distance of 2m

4

between any two devices. RS-232/485 cabling, however, can extend 1,200m or greater. Typically,

 RS-232/485 is used to transmit American Standard Code for Information Interchange

(ASCII) data. Although National Instruments serial hardware can transmit 7-bit as well as 8-bit

data, most applications use only 7-bit data. Seven-bit ASCII can represent the English alphabet,

decimal numbers, and common punctuation marks. It is a standard protocol that virtually all

hardware and software understand. Serial communication is mainly using the three transmission

lines: (1) ground, (2) transmit, and (3) receive. Because RS-232/485 communication is

asynchronous, the serial port can transmit data on one line while receiving data on another. Other

lines such as the handshaking lines are not required. The important serial characteristics are baud

rate, data bits, stop bits, and parity. To communicate between a serial instrument and a serial port on

computer, these parameters must match. The RS-232 port, or ANSI/EIA-232 port, is the serial

connection found on IBM-compatible PCs. It is used for many purposes, such as connecting a

mouse, printer, or modem, as well as industrial instrumentation. The RS-232protocol can have only

one device connected to each port. The RS-485 (EIA-485 Standard) protocol can have 32 devices

connected to each port. With this enhanced multidrop capability the user can create networks of

devices connected to a single RS-485 serial port. Noise immunity and multi drop capability make

RS-485, the choice in industrial applications requiring many distributed devices networked to a PC

or other controller for data collection.USB was designed primarily to connect peripheral devices to

PCs, including keyboards, scanners, and disk drives.RS-232 (Recommended standard-232) is a

standard interface approved by the Electronic Industries Association (EIA) for connecting serial

devices. In other words, RS-232 is a long established standard that describes the physical interface

and protocol for relatively low- speed serial data

Fig 3: Pin diagram

Table: pin description

5

Fig 4: RS232c DB 25 pinout

Signal Descriptions

• TxD – This pin carries data from the computer to the serial device]

• RXD – This pin carries data from the serial device to the computer

• DTR signals – DTR is used by the computer to signal that it is ready to communicate with

the serial device like modem. In other words, DTR indicates the modem that the DTE

(computer) is ON.

• DSR – Similarly to DTR, Data set ready (DSR) is an indication from the modem that it is

ON.

• DCD – Data carrier detect (DCD) indicates that carrier for the transmit data is ON.

• RTS – This pin is used to request clearance to send data to a modem.

• CTS – This pin is used by the serial device to acknowledge the computers RTS signal. In

most situations, RTS and CTS are constantly on throughout the communication session.

• Clock signals (TC, RC, and XTC) – The clock signals are only used for synchronous

communications. The modem or DSU extracts the clock from the data stream and

provides a steady clock signal to the DTE. The transmit and receive clock signals need

not have to be the same, or even at the same baud rate.

• CD – CD stands for Carrier detect. Carrier detect is used by a modem to signal that it has

a made a connection with another modem, or has detected a carrier tone. In other words,

this is used by the modem to signal that a carrier signal has been received from a remote

modem.

RI – RI stands for ring indicator. A modem toggles (keystroke) the state of this line when an

incoming call rings in the phone. In other words, this is used by an auto answer modem to signal the

receipt of a telephone ring signal. The carrier detect (CD) and the ring indicator (RI) lines are only

available in connections to a modem. Because most modems transmit status information to a PC

when either a carrier signal is detected

RS485 Serial Communication

RS485 is an EIA standard for multipoint communications. It supports several types of

connectors, including DB-9 and DB-37. RS-485 is similar to RS-422 but can support more nodes

6

per line. RS485 meets the requirements for a truly multipoint communications network, and the

standard specifies up to32 drivers and 32 receivers on a single (2-wire) bus. With the introduction of

“automatic” repeaters and high-impedance drivers/receivers this “limitation” can be extended to

hundreds or even thousands of nodes on a network. The RS-485 and RS-422 standards have much

in common, and are often confused for that reason. RS-485, which specifies bi-directional, half-

duplex data transmission, is the only EIA standard that allows multiple receivers and drivers in

“bus” configurations. RS-422, on the other hand, specifies a single, unidirectional driver with

multiple receivers.

4.3 GPIB

The purpose of this section is to provide guidance and understanding of the General Purpose

Interface Bus (GPIB) bus to new GPIB bus users or to provide more information on using the GPIB

bus’s features. GPIB Data Acquisition and Control Module provides analog and digital signals for

controlling virtually any kind of a device and the capability to read back analog voltages, digital

signals, and temperatures. The 4867 Data Acquisition and Control module is an IEEE-488.2

compatible device and has a Standard Commands for Programmable Instruments (SCPI) command

parser that accepts SCPI and short form commands for ease of programming. Applications include

device control, GPIB interfacing and data logging. The 4867is housed in a small 7 in.×7 in.

Fig 5: Block Diagram

Controllers have the ability to send commands, to talk data onto the bus and to listen to data

from devices. Devices can have talk and listen capability. Control can be passed from the active

controller (Controller-in-charge) to any device with controller capability. One controller in the

system is defined as the System Controller and it is the initial controller-in-charge (CIC). Devices

are normally addressable and have a way to set their address. Each device has a primary address

between 0 and 30. Address 31 is the unlisten or untalk address.

Types of GPIB Messages

GPIB devices communicate with other GPIB devices by sending device dependent messages

and interface messages through the interface system. Device-dependent messages, often called data

or data messages, contain device-specific information, such as programming instructions,

measurement results, machine status, and data files. Interface messages manage the bus. Usually

called commands or command messages, interface messages perform such functions as initializing

thebus, addressing and unaddressing devices, and setting device modes for remoteor local

programming.The term “command” as used here should not be confused with somedevice

instructions that are also called commands. Such device-specific commandsare actually data

messages as far as the GPIB interface system itselfis concerned.

7

Physical Bus Structure

GPIB is a 24 conductor as shown in Fig 6Physically, the GPIB interface system consists of 16 low-

true signal lines and eight ground-return or shield drain lines. The 16 signal lines, discussed later,

are grouped into data lines(eight), handshake lines (three), and interface management lines (five).

Data Lines

The eight data lines, DIO1 through DIO8, carry both data and command messages. The state of the

Attention (ATN) line determines whether the information is data or commands. All commands and

most data use the 7-bitASCII or ISO code set, in which case the eighth bit, DIO8, is either unused

or used for parity.

Handshake Lines

Three lines asynchronously control the transfer of message bytes between devices. The process is

called a 3-wire interlocked handshake. It guarantees that message bytes on the data lines are sent

and received without transmission error.

NRFD (not ready for data) – Indicates when a device is ready or not ready to receive a

message byte. The line is driven by all devices when receiving commands by listeners when

receiving data messages, and by the talker when enabling the HS488 protocol.

 NDAC (not data accepted) – Indicates when a device has or has not accepted a message

byte. The line is driven by all devices when receiving commands, and by Listeners when

receiving data messages.

 DAV (data valid) – Tells when the signals on the data lines are stable (valid) and can be

accepted safely by devices. The Controller drives DAV when sending commands, and the

Talker drives DAV when sending data messages. Three of the lines are handshake lines,

NRFD, NDAC, and DAV, which transfer data from the talker to all devices who are

addressed to listen. The talker drives the DAV line; the listeners drive the NDAC and

NRFD lines. The remaining five lines are used to control the bus’s operation.

• ATN (attention) is set true by the controller-in-charge while it is sending interface

messages or device addresses. ATN is false when the bus is transmitting data.

• EOI (end or identify) can be asserted to mark the last character of a message or asserted

with the ATN signal to conduct a parallel poll.

8

Fig :6 Bus structure of GPIB

4.4 USB

The USB is a medium-speed serial data bus designed to carry relatively large amounts of data

over relatively short cables: up to about 5m long. It can support data rates of up to 12Mbs−1

(megabits per second), which is fast enough for most PC peripherals such as scanners, printers,

keyboards, mice, joysticks, graphics tablets, low-res digital cameras, modems, digital speakers, low

speed CD- ROM and CD-writer drives, external Zip disk drives, and soon. The USB is an

addressable bus system, with a 7-bit address code so it can support up to 127 different devices or

nodes. However, it can have only one host. So a PC with its peripherals connected through the USB

forms a star Local Area Network (LAN).On the other hand any device connected to the USB can

have a number of other nodes connected to it in daisy-chain fashion, so it can also form the

Fig 7: USB Structure

Most hubs provide either four or seven downstream ports, or less. Another important feature

of the USB is that it is designed to allow hot swapping. Devices can be plugged into and unplugged

from the bus without having to turn the power off and on again, re-boot the PC or even, manually

start a driver program. A new device can simply be connected to the USB, and the PCs operating

system should recognize it and automatically set up the necessary driver to service it.

9

Need for USB

The USB is host controlled. There can only be one host per bus. The specification in itself

does not support any form of multi master arrangement. This is aimed at and limited to single point

to point connections such as a mobile phone and personal organizer and not multiple hub, multiple

device desktop configurations. The USB host is responsible for undertaking all transactions and

scheduling bandwidth. Data can be sent by various transaction methods using a token-based

protocol. One of the original intentions of USB was to reduce the amount of cabling at the back of

PC. The idea came from the Apple Desktop Bus, where the keyboard, mouse and some other

peripherals could be connected together (daisy chained) using the one cable. However, USB uses a

tiered star topology, similar to that of 10BaseTEthernet. This imposes the use of a hub somewhere,

which adds to greater expense, more boxes on desktop and more cables. However it is not as bad as

it may seem. Many devices have USB hubs integrated into them. For example, keyboard may

contain a hub which is connected to computer. Mouse and other devices such as digital camera can

be plugged easily into the back of keyboard. Monitors are just another peripheral on a long list

which commonly has in- built hubs. This tiered star topology, rather than simply daisy chaining

devices together has some benefits. First power to each device can be monitored and even switched-

off if an over current condition occurs without disrupting other USB devices. High, full and low

speed devices can be supported, with the hub filtering out high speed and full speed transactions so

lower speed devices do not receive them. Up to 127 devices can be connected to any one USB bus

at any one given time. To extent devices simply add another port/host. While earlier USB hosts had

two ports, most manufacturers have seen this as limiting and are starting to introduce 4 and 5 port

host cards with an internal port for hard disks etc. The early hosts had one USB controller and thus

both ports shared the same available USB bandwidth. As bandwidth requirements have increased,

multiport cards with two or more controllers allowing individual channels are used.

Table: Pin connections

USB cables use two different types of connectors:

– Type A. Plugs for the upstream end.

– Type B. Plugs for the downstream end.

10

4.5 PCMCIA

Personal Computer Memory Card International Association (PCMCIA) is an international

standards body and trade association founded in 1989developed a standard for small, credit card-

sized devices, called PC Cards. Originally designed for adding memory to portable computers, the

PCMCIA standard has been expanded several times and is now suitable for many types of devices.

The inclusion of PCMCIA technology in PCs delivers a variety of benefits. Besides providing an

industry standard interface for third-party cards (PC Cards), PCMCIA allows users to easily swap

cards in and out of a PC as needed, without having to deal with the allocation of system resources

for those devices. These useful features hot swapping and automatic configuration, as well as card

slot power management and other PCMCIA capabilities –are supported by a variety of software

components on the PCMCIA-based PC. In most cases, the software aspect of PCMCIA remains

relatively transparent to the user. As the demand for notebook and laptop computers began

skyrocketing in the late 1980s, users realized that their expansion options were fairly limited.

Mobile machines were not designed to accept the wide array of available expansion cards that their

desktop counterparts could enjoy

Fig 8: Triggering Architecture

Features of PCMCIA

– One rear slot, access from rear of PC

– Accept Type I/II/III Cards

– Comply with PCI Local Bus Specification Rev.2.2

– Comply with 1995 PC Card Standard

– Extra compatible registers are mapped in memory

– Use T/I 1410 PCMCIA controller

– Support PC Card with Hot Insertion and Removal

– Support 5V or 5/3.3V 16-bit PC Cards

– Support Burst Transfers to Maximize Data Throughput on both PCIBuses

– Supports Distributed DMA and PC/PCI DMA

11

Utilities of PCMCIA Card in the Networking Category

Under the networking category, typically PCMCIA slot supports 4 types of cards such as:

– LAN card

– Wireless LAN card

– Modem card

– ATA flash disk card

4.6 VISA

Virtual Instrumentation Software Architecture (VISA) is a standard I/O language for

instrumentation programming. VISA by itself does not provide instrumentation programming

capability. VISA is a high-level API that calls into lower level drivers. VISA is capable of

controlling VXI, GPIB, or Serial instruments and makes the appropriate driver calls depending on

the type of instrument being used. When debugging VISA problems, it is important to keep in mind

that this hierarchy exists.

Fig9: VISA Architecture

The terminology related with VISA are explained as follows:

Resources. The most important objects in the VISA language are known as resources. Operations.

In object-oriented terminology, the functions that can be used with an object are known as

operations Attributes. In addition to the operations that can be used with an object, the object has

variables associated with it that contain information related to the object. In VISA, these variables

are known as attributes. There is a default resource manager at the top of the VISA hierarchy that

can search for available resources or open sessions to them. Resources can be GPIB, serial message

based VXI, or register-based VXI. The most common operations for message based instruments are

read and write.

4.7 Waveform generator

Stand-alone traditional instruments such as oscilloscopes and waveform generators are very

powerful, expensive, and designed to perform one or more specific tasks defined by the vendor.

However, the user generally cannot extend or customize them. The knobs and buttons on the

instrument, the built-in circuitry, and the functions available to the user, are all specific to the nature

of the instrument. In addition, special technology and costly components must be developed to build

these instruments, making them very expensive and slow to adapt.

12

References:

1. Jerome, Virtual Instrumentation Using LabView, PHI, 2010

2. Lisa K. Wells and Jeffrey Travis, LABVIEW for Everyone, PHI, 1997.

3. Skolkoff, Basic concepts of LABVIEW 4, PHI, 1998

1

SCHOOL OF BIO AND CHEMICAL

DEPARTMENT OF BIOMEDICAL ENGINEERING

UNIT – V-VIRTUAL BIOINSTRUMENTATION – SBM1402

2

IV Application of VI

 Fourier Transforms, Power spectrum, Correlation methods, windowing & flittering.

Application in Process Control projects, Major equipments - Oscilloscope, Digital Multimeter,

Pentium Computers, temperature data acquisition system, motion control employing stepper

motor, Image acquisition and processing.

5.1 Fourier Transforms

LabVIEW and its analysis VI library provide a complete set of tools to perform Fourier and

spectral analysis. The Fast Fourier Transform (FFT) and Power Spectrum VIs are optimized, and

their outputs adhere to the standard DSP format.

FFT is a powerful signal analysis tool, applicable to a wide variety of fields including spectral

analysis, digital filtering, applied mechanics, acoustics, medical imaging, modal analysis, numerical

analysis, seismography, instrumentation, and communications.

The LabVIEW analysis VIs, located on the Signal Processing palette, maximize analysis

throughput in FFT-related applications. This document discusses FFT properties, how to interpret

and display FFT results, and how to manipulate FFT and power spectrum results to extract useful

frequency information.

FFT Properties

The fast Fourier transform maps time-domain functions into frequency-domain

representations. FFT is derived from the Fourier transform equation, which is

where x(t) is the time domain signal, X(f) is the FFT, and ft is the frequency to analyze. Similarly,

the discrete Fourier transform (DFT) maps discrete-time sequences into discrete-frequency

representations. DFT is given by the following equation

where x is the input sequence, X is the DFT, and n is the number of samples in both the discrete-

time and the discrete-frequency domains. Direct implementation of the DFT, as shown in equation

2, requires approximately n complex operations. However, computationally efficient algorithms can

require as little as n log2(n) operations.

3

An inherent DFT property is the following:

FFT Standard Output:

The output format of the FFT VI can now be described with Xn-i. If the total number of

samples, n, of the input sequence, x, is even, the format of the complex output sequence, X, and the

interpretation of the results are shown in the below table.

Table 1: Output Format for Even n, k = n ÷ 2

Array Element Interpretation

X[0] DC component

X[1] 1st harmonic or fundamental

X[2] 2nd harmonic

. .

. .

. .

X[k-2] (k-2)th harmonic

X[k-1] (k-1)th harmonic

X[k] = X[-k] Nyquist harmonic

X[k+1]= X[n-(k-1)] = X[-(k-1)] (k-1)th harmonic

.

.

.

X[n-3] -3rd harmonic

X[n-2] -2nd harmonic

X[n-1] -1st harmonic

4

Fig 1 : Graph of table

If the total number of samples, n, of the input sequence, x, is odd, the format of the complex output

sequence, X, and the interpretation of the results are shown in the below tableTable:2Output Format

for Odd n, k = (n-1) ÷ 2

Array Element Interpretation

X[0] DC component

X[1] 1st harmonic or fundamental

X[2] 2nd harmonic

. .

. .

. .

X[k-1] kth -1harmonic

X[k] kth harmonic

X[k+1]= X[n-k] = X[-k] kth kth harmonic

. X[k+2]= X[n-(k-1)] = X[-(k-1)] - (k-1)th harmonic

.

.

X[n-3] -3rd harmonic

X[n-2] -2nd harmonic

X[n-1] -1st harmonic

Fig 2 : Graph of table 2

Standard Output

Standard output is the format for even and odd-sized discrete-time sequences, described in Tables 1

and 2 of this document. This format is convenient because it does not require any further data

5

manipulation.To graphically display the results of the FFT, wire the output arrays to the waveform

graph Fig : 2 Graph of table2. The FFT output is complex and requires two graphs to display all

the information.

Fig 3 : Standard output by using VI

5.2 Power spectrum and Correlation:

The power spectrum reveals the existence, or the absence, of repetitive patterns and correlation

structures in a signal process. These structural patterns are important in a wide range of applications

such as data forecasting, signal coding, signal detection, radar, pattern ecognition, and decision-

making systems. The most common method of spectral estimation is based on the fast Fourier

transform (FFT).

In particular, the total power is given by

One can show that Px(w) is real, even and positive. The auto-correlation can be recovered with the

inverse Fourier transform

Power spectrum – properties:

In particular, the total power is given by

The power spectrum is sometimes called spectral density because it is positive and the signal

power can always benormalized to r(0) =(2p)-1 .

Example: Uncorrelated noise has a constant power spectrum

6

Hence it is also called white noise.

Effect of Filtering on Power Spectrum

A linear system with impulse response h[k]

Transforms the power spectrum as

Spectral Content

The power spectrum gives the spectral content of the data. To see that consider the power of a

signal after filtering with a narrow bandpass filter around w 0.

Power spectrum - properties

The power spectrum captures the spectral content of the sequence. It can be estimate

directly from the Fourier transform of the data.

7

5.3 Correlation methods

Correlation is a statistical technique that can show whether and how strongly pairs of

variables are related.

Correlation Coefficient

The main result of a correlation is called the correlation coefficient (or "r"). It ranges from -1.0 to

+1.0. The closer r is to +1 or -1, the more closely the two variables are related.

Cross and Auto-correlation

The cross-correlation is defined as

Note that correlation is a convolution with opposite sign. It can be computed with the Fourier

transform.

The auto-correlation is defined as

For a sample of finite length N this is typically normalized. We call this the sample auto-correlation

Use xcorr() to compute cross of auto-correlation.

Auto-correlation properties

8

The auto-correlation is symmetric.

The zero lag gives the total power of the signal

The auto-correlation has the power as an upper-bound

5.4 Windowing & flittering

Windowing is the process of taking a small subset of a larger dataset, for processing and

analysis. A naive approach, the rectangular window, involves simply truncating the dataset before

and after the window, while not modifying the contents of the window at all. However this is a poor

method of windowing and causes power leakage.

Windowing of a simple waveform like cos ωt causes its Fourier transform to develop non-

zero values (commonly called spectral leakage) at frequencies other than ω. The leakage tends to be

worst (highest) near ω and least at frequencies farthest from ω.

If the waveform under analysis comprises two sinusoids of different frequencies, leakage can

interfere with the ability to distinguish them spectrally. If their frequencies are dissimilar and one

component is weaker, then leakage from the stronger component can obscure the weaker one’s

presence. But if the frequencies are similar, leakage can render them unresolvable even when the

sinusoids are of equal strength. The rectangular window has excellent resolution characteristics for

sinusoids of comparable strength, but it is a poor choice for sinusoids of disparate amplitudes. This

characteristic is sometimes described as low-dynamic-range.

At the other extreme of dynamic range are the windows with the poorest resolution and

sensitivity, which is the ability to reveal relatively weak sinusoids in the presence of additive

random noise. That is because the noise produces a stronger response with high-dynamic-range

windows than with high-resolution windows. Therefore, high-dynamic-range windows are most

often justified in wideband applications, where the spectrum being analyzed is expected to contain

many different components of various amplitudes.

In between the extremes are moderate windows, such as Hamming and Hann. They are

commonly used in narrowband applications, such as the spectrum of a telephone channel. In

summary, spectral analysis involves a tradeoff between resolving comparable strength components

with similar frequencies and resolving disparate strength components with dissimilar frequencies.

9

That tradeoff occurs when the window function is chosen.

5.5 Application in Process Control projects

Software for Remote ON/OFF Control Experiment

The software for the Remote ON/OFF controller lab experiment is developed using LabVIEW.

There are two distinct parts in the software:

1. ON/OFF controller server program and logic

2. Internet communication using DataSocket protocol

These parts will be explained in the following sections

Fig 4: ON-OFF Temperature Control

ON/OFF Controller Server Program and Logic

The LabVIEW program on the server first reads the voltage from the analog input channel of the

DAQ board and converts it to a temperature using the equation

Tout = 6 Vin + 60

where Tout is the process temperature, and Vin is the input voltage from the DAQ board. The

desired Set-point temperature value of the process is obtained from the client computer, and the

Error is determined using the equation

Error = Set-point . Tout.

Based on the error and neutral zone High Limit and Low Limit, an ON/OFF controller logic is

implemented using LabVIEW. In this logic, Digital Output Channel is the output logic value sent to

the DAQ board which controls the fan through the SSR, Cooling Fan Indicators are the LED ON/

OFF indicators on the front panel of the LabVIEW VI that show the state of the fan, and Within

Limits Indicator shows if the process is operating within the neutral zone. The Cooling Fan ON

Indicator is also defined as a local read only variable which is used in the logic implementation.

The LabVIEW front panel of the server program VI

10

Fig 5: Server front panel Temperature data acquisition system

The hardware for server workstation consists of a PC with Pentium III, 550 MHz processor,

128 Mb RAM, Network Interface Card (NIC), National Instruments DAQ board. The server

software includes Windows 98, NI-DAQ driver, LabVIEW 5.1 and NI-DataSocket Manager. The

designed experiment is connected to the DAQ board. The server is assigned static IP address. The

clients could be any PC.s with NIC that can run a LabVIEW program. The objective of the

experiment is to maintain the temperature inside a wooden box at some desired set-point value,

within neutral zone limits, using a two-state-controller mode. The wooden box is heated with a light

bulb. The temperature is measured using LM335 solid-state The hardware for server workstation

consists of a PC with Pentium III, 550 MHz processor, 128 Mb RAM, Network Interface Card

(NIC), National Instruments DAQ board. The server software includes Windows 98, NI-DAQ

driver, LabVIEW 5.1 and NI-DataSocket Manager. The designed experiment is connected to the

DAQ board. The server is assigned static IP address. The clients could be any PC.s with NIC that

can run a LabVIEW program. The objective of the experiment is to maintain the temperature inside

a wooden box at some desired set-point value, within neutral zone limits, using a two-state-

controller mode. The wooden box is heated with a light bulb. The temperature is measured using

LM335 solid-state

11

Fig 6: Temperature data Acquisition

Oscilloscope

Open Windows oscilloscopes from the 5000, 6000, 7000, and 8000 series are Windows-based

and contain scope-specific software for acquisition, connectivity, and control. By default, the scope

user interface runs Windows-based application software that performs the following

scope-specific tasks:

• Presents the scope user interface

• Configures scope hardware based on commands from the user and signal content

• Displays acquired signals and derivations of acquired signals

It can use LabVIEW to extend the feature list of your scope to include the following tasks:

• Custom analysis and signal processing of acquired signals

• Automation of scope-related tasks and sequences of tasks

• A unique and customizable user interface

• Custom reports, including reports that you can publish live over the Internet

• Remote, Internet-based control and monitoring

Example:

Connect the function generator to the scope and put up the sample waveform. Increase the

amplitude to 2v and pull down the VISA box and click on GPIB for the oscilloscope. The display of

the wave is shown in the fig 7.

12

Fig 7: waveform acquired by oscilloscope

Digital Multimeter

Digital Multimeters (DMMs) are specialized in taking flexible, high resolution measurements

• Low to medium acquisition speeds

• High resolution

• Measures current or resistance in addition to voltage.

• Different form factors: PXI, PCIe, PCI, USB Software Support in NI LabVIEW and Signal

Express The NI 407x series of DMMs offer unique capabilities

− Isolated Digitizer Mode at up to 1.8 MS/s

− Industry Leading Accuracy

− 2-year Calibration Cycle

• USB-4065 & PCMCIA-4050 for portable measurements

Example:

Design a digital multimeter along with its front panel and block diagram

13

Fig 8 : Front Panel

Fig 9: Block diagram of multimeter

14

Motion control employing stepper motor

Fig 10: Components of motion control

Motion controller: The motion controller acts as brain of the system by taking the desired target

positions and motion profiles and creating the trajectories for the motors to follow, but outputting a

±10 V signal for servomotors, or a step and direction pulses for stepper motors.

Amplifier or drive: Amplifiers (also called drives) take the commands from the controller and

generate the current required to drive or turn the motor.

Motor: Motors turn electrical energy into mechanical energy and produce the torque required to

move to the desired target position.

Mechanical elements: Motors are designed to provide torque to some mechanics. These include

linear slides, robotic arms and special actuators.

Feedback device or position sensor: A position feedback device is not required for some motion

control applications (such as controlling stepper motors), but is vital for servomotors. The feedback

device, usually a quadrature encoder, senses the motor position and reports the result to the

controller.

5.6 Image Acquisition and Processing

Image analysis combines techniques that compute statistics and measurements based on the gray

level intensities of the image pixels. Image processing contains information about lookup tables,

convolution kernels, spatial filters and grayscale morphology. The lookup table (LUT)

transformations are basic image-processing functions that highlight details in areas containing

significant information at the expense of other areas. These functions include histogram

equalization, gamma corrections logarithmic corrections, and exponential corrections. NI-IMAQ is

a complete and robust API for image acquisition. Whether you are using LabVIEW,

Measurement Studio, Visual Basic, or Visual C++, NI-IMAQ gives you high-level control of

National Instruments image acquisition devices. NI-IMAQ performs all of the computer- and board-

specific tasks, allowing straightforward image acquisition without register-level programming. NI-

IMAQ is compatible with NI-DAQ and all other National Instruments driver software for easily

integrating an imaging application into any National Instruments solution. NI-IMAQ is included

15

with your hardware at no charge that you can call from your application programming environment.

These functions include routines for video configuration, image acquisition (continuous and single-

shot), and memory buffer allocation, trigger control and board configuration. NI-IMAQ

performs all functionality required to acquire and save images. For image analysis functionality,

refer to the IMAQ Vision software analysis libraries which are discussed later in this course. NI-

IMAQ resolves many of the complex issues between the computer and IMAQ hardware internally,

such as programming interrupts and DMA controllers.

Fig 11: NI IMAQ functions

NI-IMAQ and IMAQ Vision use five categories of functions to acquire and display images:

● Utility functions—Allocate and free memory used for storing images; begin and end image

acquisition sessions

● Single buffer acquisition functions—Acquire images into a single buffer using the snap and

grab functions

● Multiple buffer acquisition functions—Acquire continuous images into multiple buffers using

the ring and sequence functions

● Display controls—Display images for processing

● Trigger functions—Link a vision function to an event external to the computer, such as receiving

a pulse to indicate the position of an item on an assembly line

Snaps and grabs are the most basic types of acquisitions. A snap is simply a snapshot, in which you

acquire a single image from the camera. A grab is more like a video, in which acquire every image

that comes from the camera. The images in a grab are displayed successively, producing a full-

motion video, consisting of around 25 to 30 frames per second. IMAQ Snap, IMAQ Grab Setup and

IMAQ Grab Acquire are used to snap and grab images.

16

IMAGE PROCESSING TOOLS AND FUNCTIONS IN IMAQ VISION

Utility functions include VIs for image management and manipulation, file management,

calibration and region of interest processing. Image processing functions include VIs for analysis,

color processing, frequency processing, filtering, morphology, operations, and processing, including

IMAQ Histogram, IMAQ Threshold and IMAQ Morphology. Machine vision VIs are used for

common inspection tasks such as checking for the presence or absence of parts in an image or

measuring dimensions in comparison to specifications. Some examples of the machine vision VIs

are the caliper and coordinate system VIs.

Image processing is a time-consuming process, both in computer processor time and development

time. National Instruments has developed an application to accelerate the design time of a machine

vision application.. IMAQ Vision Assistant allows even the first-time vision developer to learn

image processing techniques and test inspection strategies. In addition, more experienced

developers can develop and explore vision algorithms faster with less programming.

Fig 12: IMAQ Assistant

References:

1. Jerome, Virtual Instrumentation Using LabView, PHI, 2010

2. Lisa K. Wells and Jeffrey Travis, LABVIEW for Everyone, PHI, 1997.

3. Skolkoff, Basic concepts of LABVIEW 4, PHI, 1998

