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UNIT I GENE EXPRESSION

Basics of Gene expression- definition , gene expression studies, gene expression patterns-

Applications of gene expression studies

Microarrays — definition , discovery, technique, making microarrays, spotted microarrays, In-situ
synthesized oligonucleotide arrays, inkjet array synthesis, Affymetrix techniques, DNA CHIP technology,
photolithography, spot quality, sample preparation and labelling, washing, image acquisition Sequencing
by Hybridization Arrays- DNA MassArray™ Technology- Printing DNA Microarrays-Types of

microarrays - Designing a microarray experiment.

*  Gene, unit of hereditary information that occupies a fixed position (locus) on a chromosome. Genes

achieve their effects by directing the synthesis of proteins.

»  Gene, unit of hereditary information that occupies a fixed position (locus) on a chromosome. Genes

achieve their effects by directing the synthesis of proteins.
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In eukaryotes (such as animals, plants, and fungi), genes are contained within the cell nucleus.



The mitochondria (in animals) and the chloroplasts (in plants) also contain small subsets of genes

distinct from the genes found in the nucleus.

In prokaryotes (organisms lacking a distinct nucleus, such as bacteria), genes are contained in a

single chromosome that is free-floating in the cell cytoplasm.

Many bacteria also contain plasmids—extrachromosomal genetic elements with a small number of

genes.

The number of genes in an organism’s genome (the entire set of chromosomes) varies significantly

between species.

For example, whereas the human genome contains an estimated 20,000 to 25,000 genes, the

genome of the bacterium Escherichia coli O157:H7 houses precisely 5,416 genes.

Arabidopsis thaliana—the first plant for which a complete genomic sequence was recovered—has

roughly 25,500 genes; its genome is one of the smallest known to plants.

Among extant independently replicating organisms, the bacterium Mycoplasma genitalium has the
fewest number of genes, just 517.

Basics of Gene expression:
Gene expression

the phenotypic manifestation of a gene or genes by the processes of genetic transcription and

genetic translation.
Gene expression analysis

the determination of the pattern of genes expressed at the level of genetic transcription, under

specific circumstances or in a specific cell.

When genes are expressed, the genetic information (base sequence) on DNA is first copied to a

molecule of MRNA (transcription).

The mRNA molecules then leave the cell nucleus and enter the cytoplasm, where they participate
in protein synthesis by specifying the particular amino acids that make up individual proteins

(translation).

At any given time, the amount of a particular protein in a cell reflects the balance between that

protein's synthetic and degradative biochemical pathways.



*  On the synthetic side of this balance, recall that protein production starts at transcription (DNA to
RNA) and continues with translation (RNA to protein).

» Thus, control of these processes plays a critical role in determining what proteins are present in a

cell and in what amounts.

* In addition, the way in which a cell processes its RNA transcripts and newly made proteins also

greatly influences protein levels.

How Is Gene Expression Regulated?

* The amounts and types of mMRNA molecules in a cell reflect the function of that cell. In fact,
thousands of transcripts are produced every second in every cell. Given this statistic, it is not
surprising that the primary control point for gene expression is usually at the very beginning of the
protein production process — the initiation of transcription. RNA transcription makes an efficient

control point because many proteins can be made from a single mRNA molecule.
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Transcript processing provides an additional level of regulation for eukaryotes, and the

presence of a nucleus makes this possible.

* In prokaryotes, translation of a transcript begins before the transcript is complete, due to
the proximity of ribosomes to the new mRNA molecules.
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In eukaryotes, however, transcripts are modified in the nucleus before they are exported to the

cytoplasm for translation.
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Eukaryotic transcripts are also more complex than prokaryotic transcripts.



For instance, the primary transcripts synthesized by RNA polymerase contain sequences that will

not be part of the mature RNA.

These intervening sequences are called introns, and they are removed before the mature mMRNA

leaves the nucleus.

The remaining regions of the transcript, which include the protein-coding regions, are called

exons, and they are spliced together to produce the mature mRNA.
Eukaryotic transcripts are also modified at their ends, which affects their stability and translation.

Of course, there are many cases in which cells must respond quickly to changing environmental
conditions.

In these situations, the regulatory control point may come well after transcription.

For example, early development in most animals relies on translational control because very little
transcription occurs during the first few cell divisions after fertilization. Eggs therefore contain

many maternally originated mRNA transcripts as a ready reserve for translation after fertilization.

On the degradative side of the balance, cells can rapidly adjust their protein levels through the

enzymatic breakdown of RNA transcripts and existing protein molecules.

Both of these actions result in decreased amounts of certain proteins. Often, this breakdown is

linked to specific events in the cell.

The eukaryotic cell cycle provides a good example of how protein breakdown is linked to cellular
events. This cycle is divided into several phases, each of which is characterized by distinct cyclin

proteins that act as key regulators for that phase.

Before a cell can progress from one phase of the cell cycle to the next, it must degrade the cyclin
that characterizes that particular phase of the cycle. Failure to degrade a cyclin stops the cycle

from continuing.
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How Do Different Cells Express the Genes They Need?
* Only a fraction of the genes in a cell are expressed at any one time.

» The variety of gene expression profiles characteristic of different cell types arise because these cells

have distinct sets of transcription regulators.
» Some of these regulators work to increase transcription, whereas others prevent or suppress it.

* Normally, transcription begins when an RNA polymerase binds to a so-called promoter
sequence on the DNA molecule.

» This sequence is almost always located just upstream from the starting point for transcription (the
5'end of the DNA), though it can be located downstream of the mRNA (3' end).

* In recent vyears, researchers have discovered that other DNA sequences, known
as enhancer sequences, also play an important part in transcription by providing binding sites for

regulatory proteins that affect RNA polymerase activity.

* Binding of regulatory proteins to an enhancer sequence causes a shift in chromatin structure that
either promotes or inhibits RNA polymerase and transcription factor binding. A more open

chromatin structure is associated with active gene transcription.

* In contrast, a more compact chromatin structure is associated with transcriptional inactivity
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Transcription

* Some regulatory proteins affect the transcription of multiple genes.

« This occurs because multiple copies of the regulatory protein binding sites exist within the
genome of a cell.

»  Consequently, regulatory proteins can have different roles for different genes, and this is one

mechanism by which cells can coordinate the regulation of many genes at once.
How Is Gene Expression Increased or Decreased in Response to Environmental Change?
» In prokaryotes, regulatory proteins are often controlled by nutrient availability.

» This allows organisms such as bacteria to rapidly adjust their transcription patterns in response to

environmental conditions.

* In addition, regulatory sites on prokaryotic DNA are typically located close to transcription

promoter sites — and this plays an important part in gene expression.

*  For an example of how this works, imagine a bacterium with a surplus of amino acids that signal

the turning "on" of some genes and the turning "off" of others.

* Inthis particular example, cells might want to turn "on" genes for proteins that metabolize amino

acids and turn "off" genes for proteins that synthesize amino acids.

»  Some of these amino acids would bind to positive regulatory proteins called activators.



Activator proteins bind to regulatory sites on DNA nearby to promoter regions that act as on/off

switches. This binding facilitates RNA polymerase activity and transcription of nearby genes.
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At the same time, however, other amino acids would bind to negative regulatory proteins
called repressors, which in turn bind to regulatory sites in the DNA that effectively block RNA
polymerase binding

The control of gene expression in eukaryotes is more complex than that in prokaryotes. In general,
a greater number of regulatory proteins are involved, and regulatory binding sites may be located
quite far from transcription promoter sites. Also, eukaryotic gene expression is usually regulated
by a combination of several regulatory proteins acting together, which allows for greater flexibility

in the control of gene expression.

Different cell types express characteristic sets of transcriptional regulators. In fact, as multicellular
organisms develop, different sets of cells within these organisms turn specific combinations of
regulators on and off. Such developmental patterns are responsible for the variety of cell types

present in the mature organism
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Transcriptional regulators can determine cell types



The wide variety of cell types in a single organism can depend on different transcription factor
activity in each cell type. Different transcription factors can turn on at different times during
successive generations of cells. As cells mature and go through different stages (arrows),
transcription factors (colored balls) can act on gene expression and change the cell in different
ways. This change affects the next generation of cells derived from that cell. In subsequent
generations, it is the combination of different transcription factors that can ultimately determine

cell type.

Technologies

Real Time guantitative RT-PCR

In situ hybridization

Microarrays

Massively Parallel Signature Sequencing (MPSS)

Gene expression analysis is most simply described as the study of the way genes are transcribed
to synthesize functional gene products — functional RNA species or protein products.

The study of gene regulation provides insights into normal cellular processes, such as

differentiation, and abnormal or pathological processes.

In 1941, Beadle and Tatum published experiments that would explain the basis of the central
dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA,

results proteins that perform the functions in cells.

Currently, biomedical research attempts to explain the mechanisms by which develops a

particular disease, for this reason, gene expression studies have proven to be a great resource.

Strictly, the term “gene expression” comprises from the gene activation until the mature protein is
located in its corresponding compartment to perform its function and contribute to the expression

of the phenotype of cell.

The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of

a specific gene.

The development of the RNA-based gene expression studies began with the Northern Blot
by Alwine et al. in 1977.



In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization,
but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of
the techniques for quantification of RNA are deprecated because other new techniques provide
more information. Currently the most widely used techniques are gPCR, expression microarrays,

and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed.
Gene expression workflow.

Researchers may perform gene expression analysis at any one of several different levels at which
gene expression is regulated: transcriptional, post-transcriptional, translational, and post-

translational
protein modification.

Transcription, the process of creating a complementary RNA copy of a DNA sequence, can be
regulated in a variety of ways. Transcriptional regulation processes are the most commonly

studied and manipulated in typical gene expression analysis experiments.
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As previously mentioned, enhancer sequences are DNA sequences that are bound by an activator
protein, and they can be located thousands of base pairs away from a promoter, either upstream or
downstream from a gene. Activator protein binding is thought to cause DNA to loop out, bringing
the activator protein into physical proximity with RNA polymerase and the other proteins in the

complex that promote the initiation of transcription



The binding of regulatory proteins to DNA binding sites is the most direct method by which
transcription is naturally modulated. Alternatively, regulatory processes can also interact with the
transcriptional machinery of a cell. More recently, the influence of epigenetic regulation, such as
the effect of variable DNA methylation on gene expression, has been uncovered as a powerful tool
for gene expression profiling. Varying degrees of methylation are known to affect chromatin

folding and strongly affect accessibility of genes to active transcription.

Following transcription, eukaryotic RNA is typically spliced to remove noncoding intron sequences
and capped with a poly(A) tail. At this post-transcriptional level, RNA stability has a significant
effect on functional gene expression, that is, the production of functional protein. Small interfering
RNA (siRNA) consists of double-stranded nucleic acid molecules that are participants in the RNA
interference pathway, in which the expression of specific genes is modulated (typically by
decreasing activity). Precisely how this modulation is accomplished is not yet fully understood. A
growing field of gene expression analysis is in the area of microRNAs (miRNAS), short RNA

molecules that also act as eukaryotic post-transcriptional regulators and gene silencing agents

Researchers studying gene expression employ a wide variety of molecular biology techniques and

experimental methods.

Gene expression analysis studies can be broadly divided into four areas:

1.

RNA expression,
promoter analysis,
protein expression, and

post-translational modification.
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RNA Expression

* Northern blotting — steady-state levels of MRNA are directly quantitated by electrophoresis and

transfer to a membrane followed by incubation with specific probes.

» The RNA-probe complexes can be detected using a variety of different chemistries or radionuclide
labeling.

» This relatively laborious technique was the first tool used to measure RNA levels
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The reverse northern blot is a method by which gene expression patterns may be analyzed by
comparing isolated RNA molecules from a tester sample to samples in a control cDNA library.

It is a variant of the northern blot in which the nucleic acid immobilized on a membrane is a
collection of isolated DNA fragments rather than RNA, and the probe is RNA extracted from a

tissue and radioactively labelled.



«  Areverse northern blot can be used to profile expression levels of particular sets of RNA sequences

in a tissue or to determine presence of a particular RNA sequence in a sample.

» Although DNA Microarrays and newer next-generation techniques have generally supplanted
reverse northern blotting, it is still utilized today and provides a relatively cheap and easy means of

defining expression of large sets of genes.
Procedure

» In order to prepare the reverse northern membrane, cDNA sequences for transcripts of interest are
immobilized on nylon membranes, which can be accomplished by use of dot blots or bidirectional

agarose gel blotting and UV fixation of the DNA to the membranes.

* In many cases, CDNA probes may be preferred over RNA probes in order to mitigate problems of

RNA degradation by RNAses or tissue metabolites.

* Prepared reverse northern blot membranes are pre-hybridized in Denhardt's solution with SSC
buffer and labeled cDNA probes are denatured at 100 °C and added to the pre-hybridization

solution.
*  The membrane is incubated with the probes for at least 15 hours at 65 °C, then washed and exposed.
DNA microarrays:

» an array of oligonucleotide probes bound to a chip surface enables gene expression profiling of

many genes in response to a condition.

» Labeled cDNA from a sample is hybridized to complementary probe sequences on the chip, and

strongly associated complexes are identified optically.

»  Gene expression profiling is often a first step in a gene expression analysis workflow, investigating
changes in the expression profile of a whole system or examining the effects of mutations in

biological systems
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Real-Time PCR

o Steady-state levels of mMRNA are quantitated by reverse transcription of the RNA to cDNA
followed by quantitative PCR (qPCR) on the cDNA.

»  The amount of each specific target is determined by measuring the increase in fluorescence signal

from DNA-binding dyes or probes during successive rounds of enzyme-mediated amplification.

* This precise, versatile tool is used to investigate mutations (including insertions, deletions, and
single-nucleotide polymorphisms (SNPs)), identify DNA modifications (such as methylation),

confirm results from northern blotting or microarrays, and conduct gene expression profiling.



» Expression levels can be measured relative to other genes (relative quantification) or against a
standard (absolute quantification). Real-time PCR is the gold standard in nucleic acid quantification

because of its accuracy and sensitivity.

» Real-time PCR can be used to quantitate mMRNA or miRNA expression following conversion to

cDNA or to quantitate genomic DNA directly to investigate transcriptional activity

Promoter Analysis

»  Expression of reporter genes/promoter fusions in host cells — promoter activity (transcription rate)
is measured in vivo by introducing fusions of various promoter sequences with a gene encoding a

product that can be readily measured to monitor activity levels
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Most commonly used reporter gene that fits the definition, widely available and commonly used are:

*  PB-galactosidase [B-Galactosidase Assay (CPRG), Fluorescent B-Galactosidase Assay (MUG)]
*  B-glucuronidase (GUS assay used mostly for expression in plants)

*  Luciferase (Lumino™ Firefly Luciferase Assay)



Green fluorescent protein (GFP)

Secreted Placental Alkaline Phosphatase

In vitro transcription (nuclear run-on assays) — transcription rates are measured by

incubating isolated cell nuclei with labeled nucleotides, hybridizing the resultant product to a

membrane (slot blot), and then exposing this to film or other imaging media
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Gel shift assays — also called electrophoretic mobility shift assays, these are used to study

protein-DNA or protein-RNA interactions.

DNA or RNA fragments that are tightly associated with proteins (such as transcription factors)

migrate more slowly in an agarose or polyacrylamide gel (showing a positional shift). Identifying

the associated sequences provides insight into gene regulation
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* Chromatin immunoprecipitation (ChIP) —

+ protein-binding regions of DNA can be identified in vivo. In living cells, DNA and protein are
chemically cross-linked, and the resulting complex is precipitated by antibody-coated beads
(immunoprecipitation). Following protein digestion and DNA purification, the sequences of the

precipitated DNA are determined
Protein Expression

» Western blotting — quantification of relative expression levels for specific proteins is
accomplished by electrophoretically separating extracted cell proteins, transferring them to a
membrane, and then probing the bound proteins with antibodies (targeted to antigens of interest)

that are subsequently detected using various chemistries or radiolabelling

» 2-D Gel Electrophoresis — protein expression profiling is achieved by separating a complex
mixture of proteins in two dimensions and then staining to detect differences at the whole-proteome

level

* Immunoassays — proteins are quantitated in solution using antibodies that are bound to color-

coded beads (as in the Bio-Plex supension array system) or immobilized to a surface (ELISA),



which is subsequently probed with an antibody suspension and is typically detected using a

chromogenic or fluorogenic reporter
Posttranslational Modification Analysis

* Immunoassays — levels of protein phosphorylation and other post-translational modifications are

detected using antibodies that are specific for these adducts
» Mass spectrometry — proteins and their modifications are identified based on their mass
*  What is RNA-seq?

*  RNA-seq (RNA-sequencing) is a technique that can examine the quantity and sequences of RNA
in a sample using next generation sequencing (NGS). It analyzes the transcriptome of gene
expression patterns encoded within our RNA. Here, we look at why RNA-seq is useful, how the

technique works, and the basic protocol which is commonly used today?.
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What are the applications of RNA-seq?

* RNA-seq lets us investigate and discover the transcriptome, the total cellular content of RNAs
including mRNA, rRNA and tRNA. Understanding the transcriptome is key if we are to connect

the information on our genome with its functional protein expression.




* RNA-seq can tell us which genes are turned on in a cell, what their level of expression is, and at
what times they are activated or shut off. This allows scientists to more deeply understand the

biology of a cell and assess changes that may indicate disease.

» Some of the most popular techniques that use RNA-seq are transcriptional profiling, SNP

identification, RNA editing and differential gene expression analysis.

This can give researchers vital information about the function of genes. For example, the
transcriptome can highlight all the tissues in which a gene of unknown function is expressed, which

might indicate what its role is.

« It also captures information about alternative splicing events (Figure 1), which produce different
transcripts from one single gene sequence. These events would not be picked up by DNA
sequencing. It can also identify post-transcriptional modifications that occur during mRNA

processing such as polyadenylation and 5 capping.
How does RNA-seq work?

+ Early RNA-seq techniques used Sanger sequencing technology, a technique that although
innovative at the time, was also low-throughput, costly, and inaccurate. It is only recently, with the
advent and proliferation of NGS technology, have we been able to fully take advantage of RNA-

seq’s potential®,

The first step in the technique involves converting the population of RNA to be sequenced into
cDNA fragments (a cDNA library). This allows the RNA to be put into an NGS workflow. Adapters
are then added to each end of the fragments. These adapters contain functional elements which
permit sequencing; for example, the amplification element and the primary sequencing site. The
cDNA library is then analyzed by NGS, producing short sequences which correspond to either one
or both ends of the fragment. The depth to which the library is sequenced varies depending on
techniques which the output data will be used for. The sequencing often follows either single-read
or paired-end sequencing methods. Single-read sequencing is a cheaper and faster technique (for
reference, about 1% of the cost of Sanger sequencing) that sequences the cDNA from just one end,
whilst paired-end methods sequence from both ends, and are therefore more expensive and time-

consuming®®.



A further choice must be made between strand-specific and non-strand-specific protocols. The
former method means the information about which DNA strand was transcribed is retained. The

value of extra information obtained from strand-specific protocols make them the favorable option.

These reads, of which there will be many millions by the end of the workflow, can then be aligned
to a genome of reference and assembled to produce an RNA sequence map that spans the

transcriptome’.
RNA-seq vs microarrays: Why RNA-seq is considered superior

RNA-seq is widely regarded as superior to other technologies, such as microarray hybridization.

There are several reasons for RNA-seq’s well-regarded status

Not limited to genomic sequences — unlike hybridization-based approaches, which may require
species-specific probes, RNA-seq can detect transcripts from organisms with previously
undetermined genomic sequences. This makes it fundamentally superior for the detection of novel

transcripts, SNPs or other alterations.

Low background signal — the cDNA sequences used in RNA-seq can be mapped to targeted regions
on the genome, which makes it easy to remove experimental noise. Furthermore, issues with cross-
hybridization or sub-standard hybridization, which can plague microarray experiments, are not an

issue in RNA-seq experiments.

More quantifiable - Microarray data is only ever displayed as values relative to other signals
detected on the array, whilst RNA-seq data is quantifiable. RNA-seq also avoids the issues

microarrays have in detecting very high or very low expression levels.

Applications of gene expression studies
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Microarrays — definition , discovery, technique, making microarrays

» Microarray technology is a developing technology used to study the expression of many genes at

once.

» Itinvolves placing thousands of gene sequences in known locations on a glass slide called a gene

chip.

» A sample containing DNA or RNA is placed in contact with the gene chip. Complementary base

pairing between the sample and the gene sequences on the chip produces light that is measured.

* Areas on the chip producing light identify genes that are expressed in the sample.
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Differentual expression analysis

Steps

Tools

Bioinformatics tools commonly used in RNA-seq data analysis. These tools are primarily used in the
four main processes of RNA-seq data analysis, including quality control, read alignment and
transcript assembly, expression quantification and differential expression analysis



Examples of gene expression in
therapeutic development

Rapidly accelerating the identification of candidate therapeutic targets
® Genentech identified candidate therapeutic targets for invasive prostate cancer (PNAS, March
2002)3

Improving the ability to prioritise potential therapeutic targets
@ Stanford validates new targets in autoimmune encephalomyelitis (Nature Medicine, May 2002)27

Understanding mechanism of drug action
® UCB Pharma determined mechanism of action of effective anti-epileptic drug. levetiracetam
(European Journal of Neuroscience, 2004)2

Predicting the human toxicity of novel compounds
@ Identification of gene profiles that predict human specific toxicity using rat gene expression data
Toxicology Science, 2002)3!

Understanding the mechanism of toxicity of compounds
@ Mechanism of canine-specific hepatic sclerosis determined for novel compound (Mattes, Gene
Logic. submitted for publication)

Identifying biomarkers used to assess therapeutic response
@ Blood biomarkers identified to follow response to anti-depressants in treating patients with major
depression syndrome (American Journal of Medical Genetics, 2005! and unpublished communication)

Improving clinical trial outcomes by selecting appropriate patients for investigational new drugs
@ Clinical stratification of tomoxifen-treated, node negative breast cancer (NEJM, December 2004)!3

Improving disease classification for developing targeted therapeutics
® Diffuse large B-cell lymphoma redefined based on expressions profile {Nature Medicine, January
2002)5

Predicting biological response to novel chemical structures
® NIH correlates molecular chemical substructure with biological response predicted from gene
expression data (The Pharmacogenomics Journal, 2002)28
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Microarrays — definition , discovery
Early DNA arrays

»  After the first description of the double helix DNA structure by Watson and Crick in 1953, the
process of separating the two strands was soon reversed with methods of DNA molecular

hybridization quickly explored.

* Molecular hybridization is the occurrence of single-stranded DNA binding to complimentary DNA.
The complimentary base pairs that form the structure of the opposite strands of DNA are the

foundation for all analysis methods involving DNA sequences.

* In 1975, Grunstein and Hogness applied the process of molecular hybridization to DNA released
from blotted microbial colonies, a useful process for screening bacteria clones.



The colony hybridization method was formed by randomly cloning Escherichia coli (E. coli) DNA onto
agar petri plates covered with nitrocellulose filters. A radioactively labeled probe was then added which

would bind to complimentary DNA within the sample.

Detection of recombinant clones by
colony hybridization.
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The aforementioned method formed a random orientation of sample DNA spots representing the cloned
fragments of DNA. This is an early example of a labeled probe being utilized in order to identify
complimentary base pair binding. It can therefore be considered as one of the first examples of a DNA

array.

» Gergan et al. adapted this methodology to produce arrays in 1979. Multiple plates on agar were
replicated to produce arrays through the use of a mechanical 144 pin device for placing samples in
the corresponding amount of well microplates. This allowed for the production of arrays for over a
thousand different bacterial colonies.



The colonies could then be easily transferred to paper filters for the necessary lysis, denaturation
and fixing steps for producing hybridized DNA. The technology of filter based arrays was used in
research that led to the identification of single nucleotide polymorphisms (SNPs) and the ability to

clone specific genes of interest.

The ability to analyze multiple hybridization targets was automated in the late 1980s and early
1990s. Robotic technology was used to quickly array clones from microtiter plates onto filters. The

arrays created a defined pattern allowing parallel hybridizations to be produced.

Efficiency was increased with the errors that occur during repetitive procedures being reduced
through the automated placing of samples on the array. The increased speed and accuracy from

automation was an important step in the development towards microarrays.

A further development of complimentary DNA (cDNA) cloning was also an important foundation
for the microarray, as it led to the creation of reference sets of cDNA and corresponding filter arrays

for whole genomes.

In 1995, the first study that used the word 'microarray’ was published which explained how the
expression of many genes could be monitored in parallel through the use of this new technology.

The sample array was constructed through high-speed robotic printing of cDNA on glass.

The small size of spots on the array and high density of the arrays produced hybridization volumes
of two microliters, which was the volume that enabled the detection of rare transcripts within the

probe samples.

The microarray was a technical advancement that meant a broader examination of gene expression
could be accomplished. In 1997, the researchers from Stanford University published the first whole-

genome microarray study of gene expression by placing the whole yeast genome on a microarray.

History
Earliest form of microarray is the Southern blot, developed in 1975 by Dr. Edward Southern of

Edinburgh University

In this technique, fragmented DNA is bound to a substrate (often a nitrocellulose or nylon
membrane), denatured, dried and then exposed to a labeled hybridization probe in an appropriate
buffer

Blot is then extensively washed and analyzed by Xray film, autoradiography or membrane

chromogen detection, depending on the type of probe label employed



Southern blotting has been largely replaced by newer molecular techniques but it has value in
analyzing several trinucleotides repeat syndromes (Fragile X syndrome, Huntington chorea), where

the length of the expanded DNA is greater than the usual amplification ability of PCR

Array technology was used by Augenlicht et al. in 1984 to analyze retroviral long terminal repeat

(LTR element expression in murine colon tumors (J Biol Chem 1984; 259:1842)

In 1987, Kulesh et al. used arrays to analyze the expression of more than 2,000 different genes
constructed from a human fibrosarcoma cell line, with and without interferon treatment (Proc Natl
Acad Sci USA 1987;84:8453)

» Different mRNA derived cDNAs were spotted onto filter paper and analyzed
» 29 sequences were induced by interferon treatment
Miniaturized microarrays were introduced in 1995 (Science 1995; 270:467)

First complete eukaryotic genome was placed on microarray in 1997, when Lashkari et al. placed
a maximum of 2,470 open reading frames on a glass slide and analyzed total mMRNA expression
(cDNA) in S. cerevisia, examining the effects of heat and cold shock and culture in glucose vs
galactose on global gene expression profiles (Proc Natl Acad Sci USA 1997;94:13057)

Since its first research use in the 1980s, the development of better surface technologies, more
powerful robots for arraying, better nucleic acid dye labeling techniques and improved
computational power and automated analyzers have vastly improved the power and efficiency of

microarray, while also lowering the cost of these analyses

Microarray is currently used to analyze many different systems, including the classification of
microbes and human microbial pathogens, cellular responses to pathogens, drug and toxic
exposures, tumor classification, single nucleotide polymorphism detection, the detection of gene
fusions, comparative genomic hybridization, alternative splicing detection (exon junction array /

exon arrays) and gene expression profiling via analyzing global mMRNA levels

Most microarray protocols use reverse transcriptase to convert mRNA into cDNA, as DNA is more
stable with RNA

DNA microarrays, also called DNA chips, gene chips, DNA arrays, gene arrays and biochips, are
microscopic slides of glass or silicon printed with thousands of small spots in grid fashion with

each containing known DNA or gene.


https://www.ncbi.nlm.nih.gov/pubmed/9371799

» Each slide acts as probe to detect gene expression.

* Basically, it ‘s been evolved from southern blotting .It is different from Southern blotting as here

the probe is fixed/attached and sample DNA is labeled rather than probe.

PRINCIPLE

*  DNA mICROARRAY

* The basic principle behind DNA microarray lies on Nucleic acid hybridization.

»  During this method, two complementary strands of DNA are joined together by hydrogen bond to

make a double stranded molecule by hydrogen bond.

* Restriction endonuclease is employed to cut the unknown DNA molecules into small fragments.

Fluorescent markers are attached to the fragments and these get react with probes in DNA chips.

* DNA probes are then binds with the target DNA with complementary sequences and unbounded

DNA fragments are washed away.

» ldentification of the target pieces of DNA is done by their fluorescene emission passing through a

laser beam and computer recorded the pattern of emission as well as DNA identification.
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There are four types of DNA microarray:

1.

4.

Oligo DNA microarray: It uses oligonucleotides of 20-50 nucleotides long. Oligonucleotides are
synthesized directly on the slide. Single color hybridization used for each probe. It has good

specifcity but poor sensitivity.

cDNA microarray: It is usually referred to as spotted microarray in within which DNA
fragments of any length (500bp-1kb) or oligos of 20-100 nts are stuck to the glassslides. It uses

two colors hybridization for every probe.

BAC Microarray: It uses the template which is amplified by polymerase chain reaction as the

probe.

SNA Microarray: It is used to detect polymorphisms within a population.

REQUIREMENTS:

1. DNA Chip

2

3

. Target sample

. Sample

4. Enzymes

5

6

. Fluorescent dyes

. Probes

DNA microarrays are solid supports, usually of glass or silicon, upon which DNA is attached in an

organized pre-determined grid fashion.
Each spot of DNA, called a probe, represents a single gene.
DNA microarrays can analyze the expression of tens of thousands of genes simultaneously.

There are several synonyms of DNA microarrays such as DNA chips, gene chips, DNA arrays,

gene arrays, and biochips.
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Principle of DNA Microarray Technique

O The principle of DNA microarrays lies on the hybridization between the nucleic acid strands.

U The property of complementary nucleic acid sequences is to specifically pair with each other by

forming hydrogen bonds between complementary nucleotide base pairs.
O For this, samples are labeled using fluorescent dyes.
O At least two samples are hybridized to chip.

O Complementary nucleic acid sequences between the sample and the probe attached on the chip

get paired via hydrogen bonds.

O The non-specific bonding sequences while remain unattached and washed out during the washing

step of the process.

O Fluorescently labeled target sequences that bind to a probe sequence generate a signal.

U The signal depends on the hybridization conditions (ex: temperature), washing after hybridization

etc while the total strength of the signal, depends upon the amount of target sample present.

O Using this technology, the presence of one genomic or cDNA sequence in 1,00,000 or more

sequences can be screened in a single hybridization.



There are 2 types of DNA Chips/Microarrays:
1. cDNA based microarray
2. Oligonucleotide based microarray
Spotted DNA arrays (“cDNA arrays”)

»  Chips are prepared by using cDNA.

Called cDNA chips or cDONA microarray or probe DNA.
* The cDNAs are amplified by using PCR.

*  Then these immobilized on a solid support made up of nylon filtre of glass slide (1 x 3 inches).

The probe DNA are loaded into a a spotting spin by capillary action.

«  Small volume of this DNA preparation is spotted on solid surface making physical contact
between these two.

* DNA is delivered mechanically or in a robotic manner.

Two Main Technologies for
Makmq Microarrays ~
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Oligonucleotide arrays (Gene Chips)

In oligonucleotide microarrays, short DNA oligonucleotides are spotted onto the array.
Small number of 20-25mers/gene.

The main feature of oligonucleotide microarray is that each gene is normally represented by more
than one probe.

Enabled by photolithography from the computer industry

Off the shelf

Some key issues involved in microarray analysis

Parameter Issue

[ I R I E =

Experimental design

Consider the biological question(s) and the ability to achieve statistical significance

Seek expert statistical advice during the early planning stages

Microarray experiments have multiple sources of variation and must be carefully controlled
Biological and technical replication are essential

Sample pooling should be avoided if accurate sample synchronisation is not possible

Microarray analysis of purified cells will only reveal genes expressed by these cells, but removal

from the in vivo microenvironment may alter gene expression

There are limitations in the use of both whole tissue and purified cells, which may necessitate the

use of microdissection and RNA amplification techniques

When using clinical samples, detailed patient history and tissue histopathology are critical to the

interpretation of gene expression profiles

Target RNA preparation

Q

The quality of the target RNA is one of the most important factors in the success or failure of a

microarray experiment

Data analysis



O While critical to the outcome of a microarray experiment, statistical analysis of microarray data is

not well understood by many biologists and expert advice should be sought
Data validation

O The biomedical research community does not yet accept that microarray data can stand alone

without independent validation

O The investigator must decide which genes to examine further, and those with larger fold changes
and statistical significance are often the best candidates

O To describe a biological event or system, gene expression data obtained by microarray analysis

must be extended to the study of protein products
Spotted DNA Microarrays

» The first DNA microarrays were spotted with probes that were made by oligonucleotide chemical

synthesis and then attached to the array.

* These probes have to be “spotted” or “printed” using a robot onto a very fine grid by a sort of
specialized inkjet-like printer, which uses the same technology as computer printers to expel

nanoliter to picoliter volume droplets of probe solution, instead of ink, onto the slide.

* Alternatively, these probes can be applied with a pin directly onto a specific location on the surface.
The number of spots (aka features) applied onto the DNA microarray is limited to prevent cross-
contamination problems.
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Affymetrix platform include Agilent arrays that use an inkjet spotting process for in-situ
oligonucleotide synthesis, using five “ink™ printing of the 4 nucleotide precursors plus catalyst,

combined with coupling and deprotection steps that do not require use of photolithographic masks.



This technology relies on printing picoliter volumes of nucleotides on the array surface in repeated

rounds of base-by-base printing that extends the length of specific oligonucleotide probes.

This approach therefore allows synthesis of longer molecules (60-mer length oligos) for their probes.
Increased length improves specificity of probes but at increased complexity of design, which reduces the
number of features (Affymetrix chips usually feature >10°spots per microarray, compared to
0.24x10%eatures for Agilent). In Situ-Synthesized DNA Microarrays

* In situ-synthesized arrays are high-density oligonucleotide probe DNA microarrays, with
Affymetrix GeneChip arrays being the most common.

*  These are made using photolithography, which literally means to use light to create a pattern.

* The method relies on UV masking and light-directed combinatorial chemical synthesis on a solid
support to selectively synthesize probes directly on the surface of the array, one nucleotide at a time
per spot, for many spots simultaneously.

»  This process works in the following way: a solid support contains covalent linker molecules that
have a protecting group on the free end that can be removed by light.
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Affymetrix’s proprietary photolithography process for creating DNA microarrays uses a series of
photolithographic masks, light deprotection reactions and nucleotide coupling. During each
deprotection step, a specific mask is used with particular transparent “windows” to allow the light from

a single UV source to deprotect spots, or features on the array to receive a nucleotide.



* UV light is directed through a photolithographic mask to deprotect and activate selected sites with
hydroxyl groups that initiate coupling with incoming protected nucleotides that attach to the
activated sites.

» The mask is designed in such a way that you can choose the exposure sites, and thus specify the
coordinates on the array where each nucleotide will be attached. The process is repeated, a new
mask is applied activating different sets of sites and coupling different bases, allowing arbitrary
DNA probes to be constructed at each site. This process is used to synthesize hundreds of thousands

of different oligonucleotides.

*  However, it is the length of oligos, not their number, that determines the number of steps required,

since many different sites could be synthesized simultaneously.

» Each probe on the chip requires four masks per round of synthesis: one mask to allow addition of
the required base and three other masks to prevent light from deprotecting the same spot while the
other three nucleotides are being added. On average, each probe is 25 nucleotides long, requiring
about 100 masks per chip!!! These microarrays generally employ multiple probes for each gene to
improve specificity and feature a match/mismatch probe pair that enable the discrimination of

single mismatched base pairs.
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High-Density Bead DNA microarrays
*  Another type of high-density DNA microarray are the BeadArrays manufactured by Illumina.

* Tllumina’s Bead Array Technology is based on color-coded 3-micron silica beads that randomly
self assemble in either a fiber-optic bundle substrate that then themselves assemble into arrays, or

a silica slide substrate.



When randomly assembled on one of these two substrates, the beads have a uniform spacing of
approximately 5.7 microns, with a packing density of about 40,000 array elements per square

millimeter.

This gives the Bead Array platform about 400 times the information density of a typical spotted

array.

Each bead is covered with hundreds of thousands of copies of a specific oligonucleotide that act
as the capture sequences in one of Illumina’s assays. Each bead has a 23-mer oligo “address”

attached to it, which then anchors a 50-mer sequence-specific oligo probe.

Biotin labeled cRNA

Address

29nt 50nt

The beads are randomly scattered across etched substrates during the array production process,

with each array bundle containing about 50,000 beads.

With this platform design, a specific oligonucleotide sequence is assigned to each bead type, but
is replicated about 30 times on the array at random positions.

Each gene is represented by two probe sequences. A series of decoding hybridizations are used to

determine which oligos are present at each matrix coordinate for every array.



Why use microarrays?

Parmits expression profiling of thousands of genes
in parallel

Why use Affymetrix microarrays?

- Well established platform

= Arrays for various species

Enables combination of different applications
Support from the bioinformatic community

«  Well annoted probesets
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Affymetrix GeneChip® System for Gene Expression Analysis

The Affymetrix GeneChip system is a commercial microarray platform that allows whole genome gene
expression analysis for a wide variety of experimental organisms

(http://www.affymetrix.com/products/arrays/index.affx).




This system has three major advantages over other array systems: it is easy to get rapid results; it has the
capability to monitor the expression of every gene in the genome; and it is the most widely used

commercial microarray platform.

Affymetrix GeneChip® miRNA Array

The GeneChip® miRNA Array is a powerful and cost effective tool for studying the role of microRNAs
(miRNAS). The array provides comprehensive miRNA coverage (Sanger miRNA database V20 content
and additional human small nuclear RNAs (snoRNAs and scaRNAs)) with multiple organisms (Human,

mouse, rat, canine, and monkey) on a single array.

Input amounts: 0.13 — 3ug of total RNA or low molecular weight RNA enriched from 0.1-3 ug of total
RNA (for new users we recommend to start with 1 ug of total RNA or LMW RNA enriched from 1 ug of
total RNA).

Affymetrix microarray solutions are now branded Applied Biosystems and include all necessary
components for a microarray experiment, from arrays and reagents to instruments and software. Our
solutions enable scientists and clinicians to understand underlying disease mechanisms, identify
biomarkers for personalized medicine, create novel molecular diagnostic tests, and improve genetic
marker-assisted breeding programs in agriculture, thereby translating research results into biology for a
better world.

Popular products
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Research Array
Key applications
Transcriptome Analysis

Phenotypic abnormalities are rarely a result of expression changes in single genes, so generating a
comprehensive expression profile is critical when studying normal biology and disease processes. Profile

all known coding and non-coding splice variants.



Human Genotyping for Precision Medicine Research

Large-scale genotyping studies aimed at improving understanding disease risk and drug response are
helping to pave the way toward precision medicine. To be successful, these studies require affordable,
high-density genotyping arrays with accurate imputation and assurance that every marker will be on every

array, every time.
Cytogenetics Analysis

Microarray-based assays provide a genome-wide approach that enables high-solution DNA copy number
analysis to detect gains, losses, loss/absence of heterozygosity (LOH/AOH), copy-neutral LOH (cnLOH),

regions identical-by-descent, and mosaicism in a single assay.
miRNA Profiling

Perform comprehensive miRNA profiling from as little as 130 ng and start exploring the role of miRNA

in.24 hours—no bioinformatics resources required.
Large-scale Biobank Genotyping

Our Axiom Biobank Genotyping Arrays feature imputation-aware modular designs that enable scientists
to conduct large-scale, state-of-the-art traits and population studies that help us understand how complex

interactions between genes, environment, and lifestyle relate to health.
Plant and Animal Genotyping

Agrigenomics research is growing as climate change, population growth, and urbanization threaten
farmers’ ability to meet the world’s food demands. To address these needs, breeders and farmers are

employing new genomic strategies. Our powerful, flexible array-based genotyping solutions can help.

The goal of microarray image analysis is to extract intensity descriptors from each spot that represent
gene expression levels and input features for further analysis. Biological conclusions are then drawn

based on the results from data mining and statistical analysis of all extracted features.

Components of DNA Microarray image analysis are (1) Grid Alignment Problem, (2) Foreground
Separation, (3) Quality Assurance, (4) Quantification and (5) Normalization. Additionally, the data
management must conform with the Minimal Information About Microarray Experiments (MIAME)

standard.

Input: Laser image scans (data) and underlying experiment hypotheses or experiment designs (prior

knowledge).



Output: Conclusions about statistical behavior of measurements and thus the the test of the hypotheses or
knowledge. The results are derived automatically from data (machine learning perspective) for

subsequent model fitting.
Applications of Microarrays

* Gene Discovery: DNA Microarray technology helps in the identification of new genes, know about

their functioning and expression levels under different conditions.

» Disease Diagnosis: DNA Microarray technology helps researchers learn more about different
diseases such as heart diseases, mental illness, infectious disease and especially the study of cancer.
Until recently, different types of cancer have been classified on the basis of the organs in which the
tumors develop. Now, with the evolution of microarray technology, it will be possible for the
researchers to further classify the types of cancer on the basis of the patterns of gene activity in the
tumor cells. This will tremendously help the pharmaceutical community to develop more effective

drugs as the treatment strategies will be targeted directly to the specific type of cancer.

» Drug Discovery: Microarray technology has extensive application in Pharmacogenomics.
Pharmacogenomics is the study of correlations between therapeutic responses to drugs and the
genetic profiles of the patients. Comparative analysis of the genes from a diseased and a normal
cell will help the identification of the biochemical constitution of the proteins synthesized by the
diseased genes. The researchers can use this information to synthesize drugs which combat with

these proteins and reduce their effect.

» Toxicological Research: Microarray technology provides a robust platform for the research of the
impact of toxins on the cells and their passing on to the progeny. Toxicogenomics establishes
correlation between responses to toxicants and the changes in the genetic profiles of the cells

exposed to such toxicants.
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UNIT Il IMAGE PROCESSING

Image processing, feature extraction, identifying positions of features- Normalization — data cleaning and
transformation, within array normalization, between array normalization, measuring and quantifying
microarray variability —variability between replicate features on an array-, variability between
hybridizations to different arrays. Analysis of differentially expressed genes- significance analysis of

microarrays.
Microarray Image Analysis

» Microarray image processing leads to the characterization of gene expression levels

simultaneously, for all cellular transcripts (MRNAS) in a single experiment.

» The calculation of expression levels for each microarray spot/gene is a crucial step to extract

valuable information.

* By measuring the mRNA levels for the whole genome, the microarray experiments are capable to
study functionality, pathological phenotype, and response of cells to a pharmaceutical treatment.
The processing of the extensive number of non-homogeneous data contained in microarray

images is still a challenge.

INTRODUCTION

Image analysis is an important aspect of
microarray experiments. It can have a
potentially large impact on subsequent
analysis such as clustering or the
identification of differentially expressed
genes. In microarray experiments,
hybridised arrays are imaged in a

MICToOArrav scanner to produce red and L4 S(ZQIH(’H!(HIIOH allows the classification of
pixels either as foreground — that is,

microarray images can generally be
separated into three tasks.

e Addressing or gridding 1s the process of
assigning coordinates to each of the
spots. Automating this part of the
procedure permits high-throughput
analysis.

green fluorescence intensity

- Wi 1 Tl > ) S — Or as
measurements at each of a large collection ithia prited DNA spot.—of 3

- - background.
of pixels which together cover the array. ‘

These fluorescence intensities correspond é

to the levels of hybridisation of the two
samples to the DINA sequences spotted on
the slide. Fluorescence intensities are
usually stored as 16-bit images which we
view as ‘raw’ data.

The intensity extraction step includes
calculating, for each spot on the array,
red and green foreground fluorescence
intensity pairs (R,G), background
intensities and, possibly, quality
measures.




« Typically, the microarray images are stored in the Tagged Image File Format (TIFF) as a two-

dimensional array of intensities.

* Inatwo colour microarray experiment, two microarray images are available, each image being

recorded from a specific cyanine dye.

» The images are denoted by ICy3 and ICy5, corresponding to Cy3 and Cy5 dyes, respectively.

MICROARRAY IMAGE PROCESSING
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* Microarray grid alignment and foreground separation are the basic processing steps of DNA
microarray images that affect the quality of gene expression information, and hence impact our

confidence in any data-derived biological conclusions.

*  Thus, understanding microarray data processing steps becomes critical for performing optimal

microarray data analysis.

»  The workflow of microarray data processing starts with raw image data acquired with laser

scanners and ends with the results of data mining that have to be interpreted by biologists.
* The microarray data processing workflow includes issues related to
» data management (e.g., MIAME compliant database,

* (2) image processing (grid alignment, foreground separation, spot quality assessment, data

guantification and normalization,



(3) data analysis (identification of differentially expressed genes, data mining, integration with

other knowledge sources, and quality and repeatability assessments of results, and
(4) biological interpretation (visualization).

The main objective of this project is related to image processing, namely grid alignment,

foreground separation, spot quality assessment, data quantification, normalization and

visualization.

Visualization

. Grid - Quality .. Feature -. Classincaﬂon

Alignment l Assurance Extraction

Laser Scan

X

X

Image Channels Grid Invalid Grid Cells Features Labels

} ! i

Single
Grid

! }
Multiple
Grid

Microarray data processing workflow: Fluorescent DNA microarray images obtained from laser

scanners containing a 2D array of dots with two channels of 532nm (red) and 632nm (green)

wavelengths.

The grid alignment is performed producing a set of lines intersecting at each dot.

Dots define a valid foreground.

Quality assurance screening eliminates grid cells with unreliable microarray information.

Finally, image of sample mean values extracted at each grid cell using particular mask is

extracted and colored in a red-green-blue space with color assigned to each cluster/pixel.



Statistics of each cluster can be viewed in the text area

Microarray images represent a collection of microarray spots arranged in one or more sub-grids,

each grid representing a two dimensional array of spots.

Image processing technique are used further on in order to determine spot location within each
subgrid, spot sizes, spot intensities and background intensities values which are typically delivered

as raw data parameters for microarray image analysis and interpretation

A typical microarray image is generated from an array of cONA probes which is hybridized
to two samples, one being red fluor-tagged and the other green fluor-tagged. The composite
color image is constructed by placing each monochrome image into the appropriate color

channel.

The tasks of microarray image analysis can be further-divided into following tasks:
Array target segmentation

Background intensity extraction

Target detection

Target intensity extraction

Normalization and Ratio analysis

Measurement quality assessment

software package based interpretation
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Intensity extraction

Segmentation is the method of segregating a spitting an image into multiple fundamental fragments. The



segmentation phase of the image study shows a key role in the statistical analysis, a step where the data is

produced.
Four categories of methods for microarray image segmentation are
(a) fixed /adaptive circle segmentation
(b) Histogram based techniques
(c) adaptive shape segmentation
(d) Machine learning techniques.

Thus the integration of machine learning in Image processing will contribute a better analysis of medical

and biological data
» The fourth category is based on machine learning techniques.
» There are two categories in this method.
e Theyare
»  (a) supervised segmentation techniques
* (b) unsupervised segmentation technique.

»  More specifically, methods in unsupervised category employ clustering algorithms, such as k-
means, hybrid k-means, fuzzy c-means,expectation-maximization and partitioning method for

segmentation of microarray images.
* Animportant first step of any microarray experiment is the normalization of the samples.

»  Although the relative impacts differ from platform to platform and sample preparation, non-
biological differences in microarray signals can stem from a variety of factors, such as: global
constant background noise, non-specific binding signal, non-linear signal response between
samples, bad spots on the chip due to dust or bubbles or rare manufacturing defects, labeling

efficiency, hybridization efficiency, and RNA quality.

+ Statistical analysis of microarray data is started through software programs using CEL files

defined as raw data.

»  Prior to the start of the analysis, quality assessment of raw data is performed as the first step.



* In order to evaluate the homogeneity of the arrays and to compare the density distribution
between the arrays, box graphs are plotted for each array using the densities of the logarithm2

base of the raw data.

» Images of the CEL files are obtained to observe the dimensional distributions of the densities on

each array and to detect dimensional artifacts.

» CEL file: Cell intensity file, probe level PM and MM values.

Platforms (1) GPL570 [HG-U133_Plus_2JjAffymetrix Human Genome U133 Plus 2.0 Array

Samples (12) GSM415386 Lung-normal-repl

= GSM415387 Lung-normal-rep2
GSM415388 Lung-normal-rep3
Download family Format
SOFT formatted family file(s) SOFT 2
MINIML formatted family file(s) MINIML (2
Series Matrix File(s) ™T @
Supplementary file Size | Download | File type/resource

GSE16538_RAW.tar 61.8 Mb |(ftp)(nttp) [TAR (of CEL)

Raw data provided as supplementary file
Processed data included within Sample table

Each gene or portion of a gene is represented by 1 to 20 oligonucleotides of 25 base-pairs.
Probe: an oligonucleotide of 25 base-pairs, i.e., a 25-mer

»  Perfect match (PM): A 25-mer complementary to a reference sequence of interest (e.g., part of a

gene).

»  Mismatch (MM): same as PM but with a single base change for the middle (13th) base
(transversion purine <-> pyrimidine, G <->C, A <->T). Used to measure non-specific binding and

background noise.

*  Probe-pair: a (PM,MM) pair. Probe-pair set: a collection of probe-pairs (1 to 20) related to a

common gene or fraction of a gene.

+ Affy ID: an identifier for a probe-pair set.



MA-plots are used to compare the expression values for all possible pair of arrays with a

probeset-wise median array.

The MA plots are generated by plotting M values which are obtained by logarithmic ratios versus

A values which are average logarithmic intensity values.

The pre-normalization quality control step can be complemented by histograms drawn to assess

the density distributions of each array

Log ratio

Log intensity Log intensity

After quality control of raw data, background correction and normalization should be applied to
the data using background correction methods such as RMA (Robust Multiple-Array Average)
method.

With the RMA method, the probe-level signal is removed from the background signal.

Quantile normalization is performed by the RMA method and it is ensured that all the arrays have

the same quantile.

Using the RMA method, the expression set to be used in the analysis is generated by normalized

and the background corrected intensities.

After the background correction and the normalization methods are performed, box charts related

to each array are drawn to re-evaluate the quality control.



* Following normalization and background correction, a list of genes that differ between two
different conditions can be obtained by applying various statistical tests to the expression dataset

to be used for analysis
Preprocessing of microarray data

* Measurement values may have undergone various adjustments in the device system, such as

calibration.

» Thus, in the presentation of gene expression data, it must be explained how the values are

generated by the device system.
*  These expression measures always contain a component called “background noise.”

» Local background noise levels are measured from the areas of the glass slide that do not contain

probes.

» The background correction tries to remove non-specific background noise and local variations of

the overall signal level on each chip.

*  The most common method to remove the background effect is to remove the measured

fluorescence intensity around the spots.



Microarray gene expression data sets consist of mgn gene
expression values, with g=1,....G genes and n=1,..., N
samples. @ values are arranged in a Gx N data matrix,
where each gene corresponds to one row and each sample to
one column. The readout gene expression value ®  can be

statistically defined as the sum of the true gene expression value

x and the background noise B components [6];
gn gn

= +B 1
“a Tm m (1)

The structure and correction of the background noise depend
on the microarray technology used. Spot array data provides an
estimate of background noise B, with uncorrected expression

Egn
intensities @ values. If the background estimate is expressed as

- g c
B, . background corrected expression value, méﬂ) is given as
follows[6];
(c) . .
oy =@ B = (xq+Bgy)-B_ (2)

The most common methods used for background correction in microarray analysis are; The “Robust
Multi-Array Average (RMA) Background Correction” method and the “MAS 5.0 Background

Extraction” methods



RMA background correction: RMA background correction is a
method that uses only Perfect Match (PM) intensities. PM values
are corrected using a global model for the distribution of probe
intensities [7].

The model is based on the experimental distribution of probe
intensities. Observed PM probes are modeled as a Gaussian noise
component with x average and ¢~ variance [7].

To avoid negative expression values, the normal distribution is
truncated at zero. If the observed density is assumed to be Y, the
correction will be as follows;

)
(et

2 . .
a=s—u—oc a and b =oc where S is an averaged exponential

E(S|r=y)=a+b

signal component with @ mean. ¢ and @ are the standard
normal density and distribution functions, respectively [7].



MAS 5.0 background correction: In the MAS 5.0 background
correction method, the chip is divided into a rectangular grid
with k rectangular regions. At each region, at least 2% of the
probe intensities are used to calculate a background value for this
grid. Then, each probe intensity is corrected based on a weighted
average of the background values. The weights depend on the
distance between the probes and the center of gravity of the grid

[7].

Weights are calculated as follows;

1
o (xy)=—— (4)
¢ dkz(xr.}r.)-l_'gl]

Where d L (x, y)is a Euclidean distance from (x,y) position to the
center of gravity of region k and 5, 1s correction coefficient.

In MAS 5.0 Background Correction method, both Perfect Match
(PM) and Mismatch (MM) probes are corrected [7].

RMA background correction has been one of the most commonly used pre-processing method in
the recent literature.

Performed assessments of the measure’s precision, consistency of fold change, and specificity
and sensitivity of the measure’s ability to detect differential expression and demonstrated the

substantial benefits of using the RMA measure to users of the Gene Chip technology.

They used data from spike-in and dilution experiments to conduct various assessments on the
MAS 5.0, dChip and RMA expression measures.

Irizarry have demonstrated that RMA has similar accuracy but better precision than the other two

summaries and RMA provides more consistent estimates of fold change
Quality assessment:

* Itis necessary to evaluate the quality of the data before the normalization of the arrays. Quality
control assessment should be carried out to determine whether the quality of experimental data is

acceptable and whether any hybridization should be repeated.



Various descriptive data plots are drawn to identify potential problems with hybridization or other

experimental structures in the quality control evaluation process.
Quality control plots are basically divided into diagnostic and spot statistics .

Diagnostic Plots: The diagnostic plots include various plots such as MA-plots for evaluating

intensity bias and histograms for examining signal-to-noise ratios for each channel.

Diagnostic plots are usually used to observe non-linear trends between two channels

a. MA plots: M and A are commonly used variables in the
analysis of two-color arrays. 4 is defined as follows:
1
A=log JO5 O3 -3 [log, (CyS)Hiog,(Cy3) ] (5)

Cy5 and Cy3 denote green and red dye intensities for a given spot.
respectively. A variable is a measure of the total intensity of the
logarithmic transformation of a spot. Thus, if the combined red
and green intensities are high for a particular spot. the 4 value will
also be high [7.9].

M variable is defined as follows:;

M —log, 3= — log, (C¥S) —log, (¥3)  (6)

The M variable is the logarithmic transformation of the intensity
ratio. The M walue shows which of the red and green dyes are
more binding to a particular spot array [7].

MA plots are used to investigate density bias. 4 disproportionate
amount of spot above or below the x-axis on the graph indicates
a problem in the array. MA plots are an indication of whether
normalization within the array is required [6.7].

Alvord et al. demonstrated the use of some of the exploratory plots
including boxplots, volcano plots and MA plots for the expression
level data on the soybean genome [14]. Lu et al.'s study. can be
cited as an example of MA-plot application in method comparison
studies, in which MA-plots were created on the raw data and
normalized data to compare normalization methods [15].
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Histograms:

* In microarray designs, it is very important to obtain the histograms of the p-values of tests

conducted to identify different gene expression.
» Histograms are graphs that are easy to interpret and contain considerable information.

» Ahistogram is an indication of whether there is a signal in the gene and whether the genes are
differently expressed. Histograms also allow for estimation of how many genes are differentially
expressed in reality.

Histograms of t-test Results
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Spot statistics plots:

»  Spot Statistics help to predict the structures of spot and hybridizations.



» The main plots that can be obtained with spot statistics are spatial plots, box plots, scatter

diagrams and volcanic plots .
Spatial plots:
» Spatial plots are used to reveal irregular spot and hybridization structures.

+ Spatial plots are used to observe the spatial distributions of the intensities on each array and to

detect the artifacts.

» Spatial plots play a fundamental role in determining the background correction, depending on

whether there are any dimensional artifacts on the arrays

Raw data

z-range -7.9 1o 4.1 (saturation -0.8, 2.1) A

Normalised data

2-range -89 to 3.8 (saturation -0 9, 1.2) A



Box plots:

Box plots are one of the most commonly used plots for displaying spot and hybridization structures. At the
same time, box plots can be drawn to understand the scale differences between different arrays. It is
necessary to evaluate the box plots to see if between-array normalization is required. The homogeneity of

the arrays can be observed quite clearly from the box plots .

A Before normalization B After normalization
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Scatter diagrams:




Scatter diagrams used to compare the expression values of two samples are the most commonly

used plots for visualizing microarray data.

In the first step of the microarray data analysis, a scatter diagram is drawn between the two

intensity channels to view the general structures and variability.

Scatter diagrams are also commonly used to find out slides lying away from the center, which

have abnormal expression structures .
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Volcano plots:
Volcano Plots are used to summarize fold change and t-test criteria.

A volcano plot is constructed by plotting the negative log of the p-value on the y-axis and log of

the fold change between the two conditions on the x-axis.

For each gene, there is a point on the graph that represents the t-statistic and the fold change
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A volcano plot of the genes in microarray. The Log 2 fold changes and their corresponding-log 10

p-value of all genes were taken for construction of the volcano plot in the microarray. The genes



with p < 0.05 are depicted in blue dots. All other genes that were not found to be significant

altered are in black dots in this array
* Normalization

» The aim of normalization methods for large scale expression data, including microarray and
RNA-seq, is to eliminate systematic experimental bias and technical variation while preserving

biological variation.

» Dozens of normalization methods for correcting non-linear experimental differences between
arrays have been developed during the last two decades. Among them, quantile and lowess are

well-adopted for analyzing microarray expression data.
*  Expression ratios: the primary comparison
* Most microarray experiments investigate relationships between
» related biological samples based on patterns of expression, and
+ the simplest approach looks for genes that are differentially
e expressed.

» If we have an array that has N array distinct elements,and compare a query and a reference
sample, which for convenience we will call R and G, respectively (for the red and green colors
commonly used to represent array data), then the ratio (T) for the ith gene (where i is an index

running over all the arrayed genes from 1 to Narray) can be written as

— i
T,— G

I
Normalization:

» The purpose of the normalization phase is to adjust the data according to the technical variation.
Variations can cause measurement differences between general fluorescence intensity levels of
various arrays. The normalization process is necessary to make the measured values obtained

from different arrays comparable.



Normalization methods depend on which microarray technology is used. Generally,

logarithmically transformed data are used for further analysis.

The most commonly used methods of normalization are as follows
Scaling Normalization Method

Nonlinear Normalization Methods

Quantile Normalization

Cyclic Loess Normalization

Contrast Normalization

Normalization

Typically, the first transformation applied to expression data,referred to as normalization, adjusts

the individual hybridization.

(Note that this definition does not limit us to any particular array technology: the measures Ri and
Gi can be made on either a single array or on two replicate arrays. Furthermore, all the

transformations described below can be applied to data from any microarray platform.)

Although ratios provide an intuitive measure of expression changes, they have the disadvantage
of treating up- and downregulated genes differently. Genes upregulated by a factor of 2 have an
expression ratio of 2, whereas those downregulated by the same factor have an expression ratio of
(-0.5).

The most widely used alternative transformation of the ratio is the logarithm base 2, which has
the advantage of producing a continuous spectrum of values and treating up- and downregulated

genes in a similar fashion.

Recall that logarithms treat numbers and their reciprocals symmetrically: log2(1) = 0, log2(2) = 1,
log2(l/2) =—1, log2(4) = 2, log2(l/ 4) = -2, and so on.

The logarithms of the expression ratios are also treated symmetrically, so that a gene upregulated
by a factor of 2 has a log2(ratio) of 1, a gene downregulated by a factor of 2 has a log2(ratio) of

—1, and a gene expressed at a constant level (with a ratio of 1) has a log2(ratio) equal to zero.
For the remainder of this discussion, log2(ratio) will be used to represent expression levels

There are three major normalization methods that are commonly employed:



linear scaling (MASS5), quantile normalization (RMA), and pair-wise rank-invariant
normalization (dChip).

Linear normalization is the simplest of the methods, which applies a global scaling factor to each
chip (at the probeset level in MAS5) in order to scale all chips to the same trimmed mean

intensity.

Quantile normalization ranks the intensities for each chip, then replaces the intensities at each
rank with the mean intensity for all probes of that rank across all chips, effecting a non-linear

rank-dependent normalization.

Pair-wise rank-invariant normalization normalizes all chips against a single reference chip by
identifying a different subset of rank-invariant genes for each sample/reference chip pair, fitting a
curve through the training set, then adjusting the intensities of the target chip in an intensity-
dependent manner so that the fit curve will lie on the sample vs. reference diagonal of the

scatterplot.

Linear normalization is unable to correct for non-linear, intensity-dependent differences in gene

expression between chips, but can be applied to a single chip, independently of other chips.

Quantile normalization assumes that differential gene expression is symmetric, in that there will
be a roughly equal number of up and down regulated genes with equal magnitude distributions.
Due to its population-based signal, it requires a moderately large number of chips in order to
work well, and may introduce unexpected artifacts, particularly in outlier samples, in small

experiments, or experiments in which different cell/tissue types are represented.

Rank-invariant normalization makes similar assumptions to those of quantile normalization,

since both are rank based, but can be applied to as few as two chips.

The three most commonly used software packages for processing Affymetrix microarrays, as
evidenced by recently querying the GEO and ArrayExpress microarray repositories, are: RMA,
MASS , and dChip

Each of these employs different methods for background subtraction, signal normalization, and
probeset summarization (an issue unique to Affymetrix arrays, where multiple probes for the

same transcript are condensed into a single representative signal).

MASS.0



A significant challenge with Affymetrix expression data is to provide an algorithm that combines
the signals from the multiple Perfect-Match (PM) and Mismatch (MM) probes that target

each transcript into a single value that sensitively and accurately represents its concentration.

MAS5.0 does this by calculating a robust average of the (logged) PM-MM values; increased
variation is observed at low signal strengths and is at least in part due to the extra noise generated

by subtracting the MM values from their PM partners.
Many gene expression normalization algorithms exist for Affymetrix GeneChip microarrays.

The most popular of these is RMA, primarily due to the precision and low noise produced during
the process.

A significant strength of this and similar approaches is the use of the entire set of arrays during

both normalization and model-based estimation of signal.

MASS RMA dChip IRON

Background Subtract regional Deconvolve PM - Deconvolve PM
R average of bottom bg from signal { omit > bg from signal
Subtraction 2% as background distribution el distribution
Probe FET T . Pair-wise rank Pair-wise
2 . «_ omit Quantile : 2
Normalization S=r-- invariant IRON

MM subtraction | PM - scaled MM | i: E’;‘:‘;_:\' EE i: E’}“_‘_:\/

Probqset_ l Tukey’s Biweight ] [ Median Polish I r MBEI model ] I Tukey's Biweight ]
summarization

Prob.ese-t Linear scaling :’ ’om; = % ¢ = _0,:1; k= p lelg-(\jlqgse
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Comparison of MAS5. RMA, dChip, and IRON microarray post-processing pipelines. IRON combines components of both MASs and RMA,
substituting a novel pair-wise iterative rank-order normalization method for normalization steps.

Quantile normalization is an important normalization technique commonly used in high-

dimensional data analysis.

However, it is susceptible to class-effect proportion effects (the proportion of class-correlated
variables in a dataset) and batch effects (the presence of potentially confounding technical
variation) when applied blindly on whole data sets, resulting in higher false-positive and false-
negative rates.



Pair-wise rank-invariant normalization (dchip)

Pair-wise rank-invariant normalization normalizes all chips against a single reference chip by
identifying a different subset of rank-invariant genes for each sample/reference chip pair, fitting a
curve through the training set, then adjusting the intensities of the target chip in an intensity-
dependent manner so that the fit curve will lie on the sample vs. reference diagonal of the

scatterplot.
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Three Major Approaches to
Between Array Normalization

1. Values are exactly the same between
* Quantile Normalization —P arrays (though different genes may be
assigned different values in each array).

2. Values are normally distributed with

« Scale Factor Normalization —p the same mean and variance across
arrays.

3. Some of the genes do not change
» |Invariant Set Normalization =% between arrays and thus should have
relatively similar values (rank invariant).

Differential gene expression analysis



Differential expression analysis means taking the normalised read count data and performing
statistical analysis to discover quantitative changes in expression levels between experimental

groups.

For example, we use statistical testing to decide whether, for a given gene, an observed difference
in read counts is significant, that is, whether it is greater than what would be expected just due to

natural random variation.
Methods for differential expression analysis

There are different methods for differential expression analysis such as edgeR and DESeq based
on negative binomial (NB) distributions or baySeq and EBSeq which are Bayesian approaches

based on a negative binomial model.
It is important to consider the experimental design when choosing an analysis method.

While some of the differential expression tools can only perform pair-wise comparison, others

such as edgeR,
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limma-voom, DESeq and maSigPro can perform multiple comparisons.
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GEOZ2R performs comparisons on original submitter-supplied processed data tables using
the GEOquery and limma R packages from the Bioconductor project.

Bioconductor is an open source software project based on the R programming language that
provides tools for the analysis of high-throughput genomic data.


http://www.bioconductor.org/packages/2.8/bioc/html/GEOquery.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/

The GEOquery R package parses GEO data into R data structures that can be used by other R
packages. The limma (Linear Models for Microarray Analysis) R package has emerged as one of

the most widely used statistical tests for identifying differentially expressed genes.

It handles a wide range of experimental designs and data types and applies multiple-testing
corrections on P-values to help correct for the occurrence of false positives. Thus, GEO2R
provides a simple interface that allows users to perform R statistical analysis without command
line expertise.
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UNIT 111 PREDICTION

Prediction of cross hybridization to related genes,

*  Thermodynamics of nucleic acid duplexes,

*  Prediction of Tm- probe

» Dimensionality reduction, principal component analysis,

»  Machine learning methods for cluster analysis; Hierarchical clustering

* Analysis of relationships between genes, tissues or treatments- similarity of gene or sample

profiles —Classification of tissues and samples — validation.

» Cross-hybridization is the tendency for chains of nucleic acids to bind to other chains of nucleic

acids that have similar but not identical sequences.

« This has the potential to make the interpretation of microarray experiments difficult since
intensity at a spot on the array does not simply depend on the quantity of target in the sample.
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The trouble with cross-
hybridization



e With cross-hybridization, each probe will
signal the presence of multiple sequences
other than that it was designed for;

e This skews the observed data from the

expected data.

Expociod axprossion QObnarvod oxXprossion
profile voctor profile vector

(no hybirichization) (Cross-hybridizod)

Detectina cross-hvybridization

e To test for whether cross-hybridization is
impacting the gene expression data, we
perform a BLAST sequence match on all
oligonucleotide probe sequences used on the
microarray;

e Many probes will be matched with sequences
for which it wasn’t specifically designed.
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seauence expression profiles
and between the profiles of
randomly-paired probes;

e Approximately 33% of the
BLAST-matched probes have
p > 0.95, whereas only 2% of
randomly-matched probes
have p >0.95;

e [his difference in the 2
distributions indicates that
cross-hybridization indeed has
a significant impact on the
gbtserved gene expression TR TR Y, S R T T YR TR T
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CrossHybDetector: detection of cross-hybridization events in DNA microarray experiments
* DNA microarrays contain thousands of different probe sequences represented on their surface.

* These are designed in such a way that potential cross-hybridization reactions with non-target

sequences are minimized.

»  However, given the large number of probes, the occurrence of cross hybridization events cannot

be excluded.

» This problem can dramatically affect the data quality and cause false positive/false negative

results.

»  CrossHybDetector is a software package aimed at the identification of cross-hybridization events
occurred during individual array hybridization, by using the probe sequences and the array

intensity values.

» As output, the software provides the user with a list of array spots potentially ‘corrupted' and their

associated p-values calculated by Monte Carlo simulations.

» Graphical plots are also generated, which provide a visual and global overview of the quality of

the microarray experiment with respect to cross-hybridization issues.

»  CrossHybDetector is a software package aimed at the identification of cross-hybridization events
occurred during individual array hybridization, by using the probe sequences and the array

intensity values.

» As output, the software provides the user with a list of array spots potentially ‘corrupted' and their

associated p-values calculated by Monte Carlo simulations.

» Graphical plots are also generated, which provide a visual and global overview of the quality of

the microarray experiment with respect to cross-hybridization issues.
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R is ‘GNU S’, a freely available language and environment for statistical computing and graphics which
provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical

tests, time series analysis, classification, clustering, etc.

CRAN is a network of ftp and web servers around the world that store identical, up-to-date, versions of

code and documentation for R.
CrossHybDetector is implemented as a package within the statistical computing environment R.

Functions of marray and methods R packages are internally utilized and are required

by CrossHybDetector to work.
Data formats
CrossHybDetector algorithm uses as input data

i)  the array probe sequences, ii) the spot intensities and array layout, iii) the spot type information

(i.e. for each spot, whether it is "standard probe™, "negative control”, "spike-in").
This information is respectively contained into three separated text files.
Thermodynamics of nucleic acid duplexes

* Nucleic acid thermodynamics is the study of how temperature affects the nucleic acid structure of
double-stranded DNA (dsDNA).

*  The melting temperature (Tm) is defined as the temperature at which half of the DNA strands are

in the random coil or single-stranded (ssDNA) state.



*  Tm depends on the length of the DNA molecule and its specific nucleotide sequence.

* DNA, when in a state where its two strands are dissociated (i.e., the dSDNA molecule exists as

two independent strands), is referred to as having been denatured by the high temperature.
DNA hybridization

* DNA s anucleic acid that contains the genetic instructions monitoring the biological

development of all cellular forms of life, and many viruses.

* DNA is along polymer of nucleotides and encodes the sequence of the amino-acid residues in
proteins using the genetic code, a triplet code of nucleotides. DNA it is organized as two

complementary strands, head-to-toe, with the hydrogen bonds between them.

* Each strand of DNA is a chain of chemical “building blocks”, called nucleotides, of which there

are four types: adenine (A), cytosine (C), guanine (G) and thymine (T).

»  Between the two strands, each base can only bond with one single predetermined other base: A

with T, T with A, C with G, and G with C, being the only possible combination.
* Hybridization refers to the annealing of two nucleic acid strands following the base pairing rule.

* Asshown in Fig at high temperatures approximately 90°C to 100°C the complementary strands

of DNA separate, denature, yielding single-stranded molecules.

»  Two single strands under appropriate conditions of time and temperature e.g. 65°C, will re-

naturate to form the double stranded molecule.

* Nucleic acid hybrids can be formed between two strands of DNA, two strands of RNA or one
strand of DNA and one of RNA.

* Nucleic acids hybridization is useful in detecting DNA or RNA sequences that are

complementary to any isolated nucleic acid.
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Nucleic Acid Hybridization

The nucleic acid duplex stability can be endangered by the interaction between the nucleotide bases.
Thermodynamics for double helix formation of DNA/DNA, RNA/RNA or DNA/RNA can be

estimated with nearest neighbour parameters.

Enthalpy change, AHo, entropy change, ASo, free energy change, AGe, and melting temperature,

Tm, were obtained on the basis of the nearest-neighbour model.

The nearest-neighbour model for nucleic acids, known as the NN model, assumes that the stability

of a given base pair depends on the identity and orientation of neighbouring base pairs

In the NN model, sequence dependent stability is considered in terms of nearest-neighbour
doublets.

In duplex DNA there are 10 such unique internal nearest-neighbour doublets.

Listed in the 5°-3” direction, these are AT/AT TA/ITA AA/TT AC/GT CA/TG TC/GA CT/AG
CG/CG GC/GC and GG/CC.

Dimmer duplexes are represented with a slash separating strands in antiparallel orientation e.g.
AC/TG means 5°-AC-3’ Watson—Crick base-paired with 3°-TG-5".

The total difference in the free energy of the folded and unfolded states of a DNA duplex can be

approximated at 370, with a nearest-neighbour model:



AG® (total) = Zs ni AG® (i) + AG® (init w/term G - C)
+ AG® (init w/term A - T) + AG® (sym)

E3

where AG” (i) are the standard free-energy changes for 10 possible Watson-
Crick nearest neighbours, e.g. AG? (1) = AG%; (AA/TT).,

AG’ (2) = AGS; (TA/AT) ., n; is the number of occurrences of each
nearest neighbour, i, and AG? (sym) equals +0.43 kcal/mol if the duplex is

self complementary and zero if it is not self-complementary. The total
difference in the free energy at 37°, AG%;, can be computed from AH °and

AS° parameters using the equation:

AGY;, = AH® — TAS”

E4

For a specific temperature one can compute the total free energy using the

values from Table 1. As described in [19] the melting temperature T, is

defined as the temperature at which half of the strands are in double helical
and half are in the random-coil state. A random-coil state is a polymer
conformation where the monomer subunits are oriented randomly while still

being bonded to adjacent units.

For self-complementary oligonucleotides, the T, for individual melting

curves was calculated from the fitted parameters using the following

equation:

T,, — AH°/(AS° + RInCy)

Es

where R is the general gas constant, i.c. 1.987cal/K mol, the Cr is the total
strand concentration, and T, is given in K. For non-self-complementary

molecules, Ctin equation (5) was replaced by C7/4.
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Comparison of computed NIV free energy parameters at 37°C
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Table 1.
Unified oligonuclectide AH "and AS“nearest neighbour parameters in 1M NaCl. The table
shows the values of the total enthalpy and entropy for the dimmer duplexes as used in [3].



* The nearest-neighbour parameters of Delcourt et al., SantaLucia et al., Sugimoto et al. and
Allawi et al.were evaluated from the analysis of optical melting curves of a variety of short
synthetic DNA duplexes in 1 M Na+.

»  The observed trend in nearest-neighbor stabilities at 37°C is GC/CG = CG/GC > GG/CC >
CA/GT =GT/CA=GAICT =CT/GA > AA/TT > ATITA > TA/AT, as in Table 2.

» This trend suggests that both sequence and base composition are important determinants of DNA
duplex stability. It has long been recognized that DNA stability depends of the percent G-C

content.

Prediction of Tm- probe

Tm for Oligos Calculator

Note: When entening decimal vaiues in concentration figlds, please use a decimal point rather than °” as these calculators use decimal points fo

input/output of calculations
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Dimensionality reduction in microarray
*  The number of input variables or features for a dataset is referred to as its dimensionality.

» Dimensionality reduction refers to techniques that reduce the number of input variables in a

dataset.

»  More input features often make a predictive modeling task more challenging to model, more

generally referred to as the curse of dimensionality.

* High-dimensionality statistics and dimensionality reduction techniques are often used for data
visualization. Nevertheless these techniques can be used in applied machine learning to simplify a
classification or regression dataset in order to better fit a predictive model.



Dimensionality Reduction

Dimensionality reduction refers to technigues for reducing the number of input variables in
training data.

When dealing with high dimensional data, it is often useful to reduce the
dimensionality by projecting the data to a lower dimensional subspace which
captures the “essence” of the data. This is called dimensionality reduction.

Traditionally manual management of the high dimensional data set is more challenging.

With the advent of data mining and machine learning techniques, knowledge discovery and
recognition of patterns from these data can be done automatically.

However, the data in the database is filled with a high level of noise and redundancy.

One of the reasons causing noise in these data is an imperfection in the technologies that collected

the data and the source of the data itself is another reason.

Dimensionality reduction is one of the famous techniques to remove noisy (i.e. irrelevant) and

redundant features.

For data mining techniques such as classification and clustering dimensionality reduction is

treated as preprocessing task for better performance of the model.

Dimensionality reduction techniques can be classified mainly into feature extraction and

feature selection.

Feature extraction approaches set features into a new feature space with lower dimensionality and

the newly constructed features are usually combinations of original features.

On the other hand, the objective of feature selection approaches is to select a subset of features
that minimize redundancy and maximize relevance to the target such as the class labels in

classification.

Therefore, both feature extraction and feature selection are capable of improving learning
performance, lowering computational complexity, building better-generalized models, and

decreasing required storage.

Fig shows the classification of dimension reduction process and the data set in which these are

generally applied in the literature.



Feature selection selects a group of features from the original feature set without any changeover

and maintains the physical meanings of the original features.
Therefore, feature selection is superior in terms of better readability and interpretability.
One of the applications would be in gene microarray data analysis.

Feature selection has its significance in many real-world applications such as finding relevant
genes to a specific disease in Microarray data, analysis of written text, and analysis of medical

images, analysis of the image for face recognition and for weather forecasting.
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There are four basic stages in feature selection method:

Generation Procedure (GP), to select candidate feature subset



Evaluation Procedure (EP), to evaluate the generated candidate feature subset and output, a

relevancy value
Stopping Criteria (SC): To determine when to stop
Validation Procedure (VP): To determine whether it is the optimal feature subset or not.
Generation Procedure (GP)
This procedure generates a subset of features that is relevant to the target concept.
GP are of two types
Individual Ranking

Measures the relevance of each feature. The feature relevance is measured based on some

evaluation function. In this case, each individual feature is evaluated by assigning some weight or score.
Subset Selection

A subset of features is selected based on some search strategy. If the size of the data set is NxM,
then a total number of features in the data set is N. The possible number of subsets of features is 2". This
is even very large for a medium sized feature set. Therefore suitable search strategy is applied to this

process.
The search is classified as:

A. Complete: It traverses all the feasible solutions. This procedure does an exhaustive search for
the best possible subset pertaining to the evaluation function. Example of complete search is a branch and

bound best first search.

B Heuristic Deterministic: uses a greedy strategy to select features according to local change.
There are many alternatives to this straightforward method, but the creation of subset is basically
incremental. Examples of this procedure are sequential forward selection, sequential backward selection,

sequential floating forward selection, and sequential floating backward selection.

C. Nondeterministic (Random): It attempts to find an optimal solution in a random fashion. This
procedure is new in the field of feature selection methods compared to the above two categories.

Optimality of the selected subset depends on the resources available.

Evaluation Procedure (EP)



An optimal subset is always relative to a certain evaluation function. An evaluation function tries

to measure the discriminating ability of a feature or a subset to distinguish the different class labels.

The evaluation function is categorized as distance, information (or uncertainty), dependence,

consistency, and classifier error rate.
Distance Measures

For a two-class problem say A and B are two features, then A and B are selected on the basis of
their distance (e.g. Euclidian distance). If the distance is zero then the features are said to be redundant

and ignored. The higher the distance the more the features are discriminating.
Information Measures

This determines the information gain for the feature. Feature A is preferred over feature B if the
information gain of A is more than B (e.g. entropy measure).

Dependence Measures

Dependence or correlations of the ability to predict the value of one variable from the value of
another. If the correlation of feature A with class C is higher than the correlation of feature B with class C
then feature A is preferred to B. This measure finds the minimally sized subset that satisfies the

acceptable inconsistency rate that is usually set by the user.
Consistency Measure

This measure finds the minimally sized subset that satisfies the acceptable inconsistency rate that

is usually set by the user.
Classifier Error Rate

The evaluation function is the classifier itself. It measures the accuracy of the classifier for
different subsets of feature set and measures the error rate for the different subset. We have classified the
feature selection method as non-soft computing based and soft computing based. Based on the generation
procedure and evaluation function, the feature selection methods are classified, where the generation

procedure and evaluation functions are two dimensions.
Stopping Criteria
It indicates the end of the process. Commonly used stopping criteria are:

(i)  When the search completes



(i)  When some given bound (minimum number of features or a maximum number of iterations) is
reached.
(iii)  When a subsequent addition (or deletion) of any feature does not produce a better subset and
(iv)  When a sufficiently good subset (e.g. a subset if its classification error rate is less than the
allowable error rate for a given task) is selected.
Feature selection approaches are primarily categorized as a filter, wrapper, and embedded
method.
Recently other feature selection methods are gaining popularity i.e., hybrid and ensemble
methods (Fig).
Table 1. Classification of feature selection methods based on combination of GP and EF,
Generation Procedure Evaloation Function(EF)
(GP) Distance ] Information l Correlation I Consistency Classifier error rate
Heunisue
Complete Filter approach Wrapper approach
Random
Embedded approach (filter = wrapper)

Feature Sclection
Methods
1 l :
.2 Wrapper Embeaedded
Filter Method PF
( ) Method Method

Classitication ot feature selection methods

Filter method deals with individual ranking as well as subset selection.

The individual ranking is based on the evaluation functions such as distance, information,

dependence, and consistency excluding the classifier (Fig).

Filter techniques judge the relevance of genes by looking only at the intrinsic properties of the
data. In microarray data, a gene relevance score is calculated, and low-scoring genes are removed.

Afterward, this subset of genes is presented as input to the classification algorithm.

The filtering technigue can be used as a pre-processing step to reduce space dimensionality and

overcome overfitting.
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The filter approach is commonly divided into two different sub-classes:
Individual evaluation and subset evaluation.

In individual evaluation method, the gene expression dataset is given as input. The method has an
inbuilt evaluation process according to which a rank is provided to each individual gene based on

which the selection is done.

Different criteria can be adopted, like setting a threshold for the scores and selecting the genes
which satisfy the threshold criteria, or sometimes the threshold can be chosen in such a way that a

maximum number of genes can be selected.

Then, the subset selected can be the final subset which is used as the input to the classifiers. In
subset selection, all GP and evaluation function excluding the classifier can be taken for the

combination

However, methods in this framework may suffer from an inevitable problem, which is caused by

searching through
the possible feature subsets.

The subset generation process usually increases the computational time but gives more relevant

feature subset.
In literature, it is found that the subset evaluation approach outperformed the ranking methods
The filter method is again classified into the ranking method and space search method.

Fig.describes the taxonomy of filter feature selection method.
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Taxonomy of filter FS methods: Pros of Filter Feature Selection Method.

The method is simple and fast.

It scales well to high dimensional data.
It is independent of classifiers.

Cons of Filter Feature Selection Method

The method is generally univariate or low variate.

Wrapper Method

In the wrapper approach, all GP can be taken in combination with the classifier as evaluation

function and generates the relevant feature subset.

Wrappers are feedback methods, which incorporate the machine-learning algorithm in the feature
selection process, i.e., they rely on the performance of a specific classifier to evaluate the quality

of a set of features.

Wrapper methods search through the space of feature subsets and calculate the estimated
accuracy of a single learning algorithm for each feature that can be added to or removed from the

feature subset.

The search may be a GP and the evaluation function is a classifier.
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Wrapper Method
1. How to find all possible feature subsets for evaluation?

2. How to satisfy oneself with the classification performance of the chosen classifier in order to

guide the search and what should be the stopping criteria?

Which predictor to use?

The wrapper approach applies a blind search to find a subset of features. It searches randomly for the best subset
which cannot be made sure without getting all possible subsets. Therefore, feature selection in this approach is NP-hard
and the search with each iteration tends to become intractable for the user. This is not a preferred approach for feature
selection, as it is a crude force method and requires higher computational time for feature subset selection.

The feature space in case of wrapper approach can be searched with various strategies, e.g., forward (i.e., by adding
attributes to an initially empty set of attributes) or backward (i e., by starting with the full set and deleting attributes one
at a time). The correctness of a specific subset of features/genes based on our classifier is obtained by training and
testing the subset against that specific classification model.

The advantage of wrapper approach is that it selects a near perfect subset and error rate in this method is less as
compared to other methods. The major disadvantage of the method is that it is computationally very intensive and it is
intended for the particular leaming machine on which it has been tested. Therefore, there is a high risk of overfitting
than filter techniques.

The wrapper approach of feature selection is classified as sequential search based and Heuristic
search based.

The taxonomy of the wrapper model is given in Fig
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Usually, an exhaustive search is too expensive, and thus non-exhaustive, heuristic search

techniques like genetic algorithms, greedy stepwise, best first or random search are often used.

Here, feature selection occurs externally to the induction method using the method as a

subroutine rather than as a post-processor.

In this process, the induction algorithm is called for every subset of feature consequently inducing
high computational cost

Embedded Method

Despite the lower time consumption of the filter method, a major limitation of the filter approach
is that it is independent of the classifier, usually resulting in worse performance than the

Wrappers.

However, the wrapper model comes with an expensive computational cost, which is particularly

aggravated by the high dimensionality of microarray data.

An intermediate solution for researchers is the use of hybrid or embedded methods, which use the

core of the classifier to establish criteria to rank features.
Embedded methods are more tractable and efficient in comparison to wrapper approach.

This method has a lower risk of overfitting compared to wrapper approach. Probably the most
famous embedded method is Support Vector Machine based on Recursive Feature Elimination
(SVM-RFE).
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The embedded method is classified into three different categories.

The taxonomy of embedded method is shown in Fig.

Embedded Method

v

' ' '

Pruning Model Model with Built-in Regularization
Mechanism Model

Hybrid Method

» Itis the combination of any number of same or different classical methods of feature selection

such as filter and wrapper methods.

»  The combination can be a filter-filter, filter-wrapper, and filter-filter-wrapper where the gene

subset obtained from one method is served as the input to another selection algorithm.

*  Generally, filter is used to select the initial gene subset or help to remove redundant genes.



Any combination of several filter techniques can be applied vertically to select the preliminary
feature subset.

In the next phase, the selected features are given to the wrapper method for the optimal feature

selection. This method uses different evaluation criteria.

Therefore, it manages to improve the efficiency and prediction accuracy with the better

computational cost for high dimensional data.
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Clustering Techniques Analysis for Microarray Data

There are two major types of microarray experiments: cDNA microarray and oligonucleotide
arrays .



* Both the experiments consist of basic three steps: first is chip manufacturing, second are target

preparation, labelling and hybridization and third is the scanning process.

* Gene expression data is expressed in form of expression matrix having real values showing the

protein level of a particular gene.
»  Gene expression data contains thousands of genes but less number of samples.
*  There are various problems with microarray data such as:

(&) Microarray data is high dimensional data characterized by thousands of genes for small sample
size, which grounds significant problems such as irrelevant and noise genes, complexity in
constructing classifiers, and multiple gene-expression values are missing due to inappropriate

scanning.
(b) Another drawback is mislabeled sample data or doubtful sample results by experts.

(c) Biological relevancy result is another integral criterion that should be taken into account in analyzing

microarray data rather than only focusing on accuracy of cancer classification.
Clustering techniques:

* In gene expression data, it is worth to cluster both genes and samples. There are three types of
clustering that can be applied on microarray data: gene based clustering, sample based clustering

and subspace clustering where genes and samples are treated in same manner.
* In case of gene clustering, the clustering is used to reduce the search dimension of the dataset.

» In case of sample based clustering, the clustering is used to group the samples of same kind

whereas in subspace based clustering both the tasks are performed.

» Gene based clustering can be applied on the supervised dataset where the samples are already

classified.

» The distinctive characteristic of gene expression data allows clustering both gene and samples.
The clustering analysis of sampled data is to find new biological classes or to refine the existing

ones
Hierarchical Clustering:

(a) Agglomerative hierarchical clustering —In this each object initially represents a cluster of its own.

Then clusters are recursively merged until the desired cluster formation is obtained.



(b) Divisive hierarchical clustering - All objects initially belong to one cluster. Then the cluster is
divided into sub-clusters which are successively divided into sub clusters. This process continues until the

desired cluster structure is obtained.

Some commonly used metrics for hierarchical clustering are: Euclidean distance, Squared Euclidean

distance, Manhattan distance, Maximum distance, Mahalanobis distance and cosine similarity
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- The root represents the whole data set

- A leaf represents a single object in the data set

- An internal node represent the union of all objects in its sub-
tree

- The height of an internal node represents the distance between
its two child nodes



Two main types of hierarchical clustering.

— Agglomerative:
» Start with the points as individual clusters
» Ateach step, merge the closest pair of clusters.
* Until only one cluster (or k clusters) left
» This requires defining the notion of cluster proximity.

— Divisive:
«  Start with one, all-inclusive cluster
» Ateach step, split a cluster

» Until each cluster contains a point (or there are k clusters)
» Need to decide which cluster to split at each step.

Basic Agglomerative Hierarchical
Clustering Algorithm

1. Initially, each object forms its own cluster
2. Compute all pairwise distances between the initial clusters (objects)
repeat

3. Merge the closest pair (A, B) in the set of the current

clusters into a new cluster C=A U B

4. Remove A and B from the set of current clusters; insert C

into the set of current clusters

5. Determine the distance between the new cluster C and all other
clusters in the set of current clusters

until only a single cluster remains



Agglomerative Hierarchical Clustering:
Starting Situation

+ For agglomerative hierarchical clustering we start with
clusters of individual points and a proximity matrix.

p1 | p2 | p3 | pa|ps
O o o et
O] O :
O
o = SlEE
&6 5" :

Proximity Matrix

Agglomerative Hierarchical Clustering:
Intermediate Situation

* After some merging steps, we have some clusters.

‘ :

C1|C2 | C3| Ca C5
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. ‘ Proximity Matrix

Agglomerative Hierarchical Clustering:
Intermediate Situation

*  We want to merge the two closest clusters (C2 and C5) and
update the proximity matrix.

' ‘ Proximity Matrix



Inter-cluster distances

Four widely used ways of defining the inter-cluster
distance, i.e., the distance between two separate
clusters €', and ', are
o single linkage method (nearest neighbor):
d(C,,C,) = min ¢ yucs { di(x,) }
o complete linkage method (furthest neighbor):
d(C,,C,) = max, . ue, { d(x,3) }

o average linkage method (unweighted pair-group

average): d(C,.C)) = avg, ... e 1 d (X, 1) }

o centroid linkage method (distance between

cluster centroids ¢; and ¢)): d(C,.C,)=d(c,.e,)

Single linkage
(minimum distance) method

« Distance (dissimilarity) of two clusters is based on the
two most similar (closest) points in the different clusters
Cand C;:

d(CuC)=mhin o {d(x )}

—Determined by one pair of points, i.e., by one link in the proximity
graph.
—Can handle non-elliptical shapes.

—Sensitive to noise and outliers.
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Single linkage

d(Cx > C/) = minxeCi,yeCj { d(x:» y) }

Hierarchical Clustering: minimum distance

Nestod Clusters Dendrogram



Complete Linkage
(maximum distance) method

« Distance of two clusters is based on the two least
similar (most distant) points in the different clusters €
and C;:

d(C;;C,) =maX, i e {d(x,y)}

—Determined by all pairs of points in the two clusters.
—Tends to break large clusters.
~Less susceptible to noise and outliers.
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Complete linkage

d(CLC;)=maX . o { d(x,y) }

Cluster Similarity: maximum distance
or Complete Linkage

Similarity of two clusters is based on the two
most distant points in the different clusters.

Tends to break large clusters.

Less susceptible to noise and outliers.

Biased towards globular clusters.



Hierarchical Clustering: maximum distance
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Average linkage (average distance) method
Average linkage

* Distance of two clusters is the average of pairwise
distances between points in the two clusters € and C):

“Tc, nc 2 LA

» Compromuse between Simgle and Complete Link.

* Need to use av connectivity for scalability since total
connectivity fa\-::%:nzc clusters.

* Less susceptible to noise and outliers
* Biased towards globular clusters.

d(C,.C,)
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Centroid linkage
(centroid distance) method

» Distance of two clusters is distance of the two centroids
¢; and ¢; of the two clusters C; and C;:

d(C,,C,)=d(c,;,c;)

I o
=g X

Ci =— X
I C,- | xeC; j | xeC

» Compromise between Single and Complete Link.

* Less computationally intensive with respect to average
linkage.

Centroid linkage

d(C,,C,)=d(c,,c;)
: ;== ox

G =g X
IC;' |.\'EC ' J |"'€C;



Cluster Similarity: Ward’s Method

Similarity of two clusters is based on the increase
in squared error when two clusters are merged.

— Similar to group average if distance between points is distance
squared.

Less susceptible to noise and outliers.

Biased towards globular clusters.

Hierarchical analogue of K-means
— But Ward’s method does not correspond to a local minimum
— Can be used to initialize K-means

Hierarchical Clustering: Ward’s method
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Comparison of minimum, maximum, average
and centroid distance

Minimum distance

*  When d min 1s used to measure distance between clusters, the algorithm is called the nearest-
neighbor or single- linkage clustering algorithm

« Ifthe algorithm is allowed to run until only one cluster remains, the result is a minimum spanning
tree (MST)

»  This algorithm favors elongated classes

Maximum distance

*  When d max is used to measure distance between clusters, the algorithm is called the farthest-
neighbor or complete- linkage clustering algorithm

»  From a graph- theoretic point of view, each cluster constitutes a complete sub- graph

= This algorithm favors compact classes

Average and centroid distance

*  The minimum and maximum distance are extremely sensitive to outliers since their measurement
of between- cluster distance involves minima or maxima

«  The average and centroid distance approaches are more robust to outliers

«  Of'the two, the centroid distance is computationally more attractive

+  Notice that the average distance approach involves the computation of |C||C,| distances for each

pair of clusters
Advantages and disadvantages of
Hierarchical clustering

Advantages Disadvantages

* Does not require the * May not scale well: runtime
number of clusters to be for the standard methods:
known in advance O(n? log n)

* No input parameters » No explicit clusters: a “flat”
(besides the choice of the partition can be derived
(dis)similarity) afterwards (e.g. via a cut

+ Computes a complete through the dendrogram or
hierarchy of clusters termination condition in the

* Good result visualizations constructlon.) ) _
integrated into the » No automatic discovering of
methods “optimal clusters”
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Partitioning Algorithms:
They are iterative relocation algorithm.
They are non hierarchical or flat methods.

This method divides the data objects into non overlapping clusters such that each data object is in exactly

one subset.

There are several methods which are used to implement partitioning clustering such as:
(@) K-medoids,
(b) K-means,
(c) Probabilistic

(d) K-means is one of the simplest unsupervised learning algorithms that solve the well known
clustering problem. It performs the division of objects into clusters which are similar between

them and dissimilar to the objects belonging to another cluster.

(e) The procedure follows a simple and easy way to classify a given data set through a certain
number of clusters (assume k clusters) fixed a priority. The main idea is to define k centroids, one
for each cluster. These centroids should be placed in a cunning way because of different location

causes different result.

(F) So, the better choice is to place them as much as possible far away from each other. The next step

is to take each point belonging to a given data set and associate it to the nearest centroid.

(9) When no point is pending, the first step is completed and an early groupage is done. At this
point we need to re-calculate k new centroids as barycenters of the clusters resulting from the

previous step.



(h) After we have these k new centroids, a new binding has to be done between the same data set
points and the nearest new centroid. A loop has been generated. As a result of this loop we may

notice that the k centroids change their location step by step until no more changes are done.

The Euclidean distance between an object and all the nearby centroid is calculated as per the formula given below

g . k n /) 2
/ _Z/ IZJ l"'x’ _CJ"

Where ||Xi-Cj||? is the nearest distance measure between a data point xij and the Centroid Cj, and it indicates the distance
between data points from their Centroid. The time complexity of the K-means algorithm is subjected to the formula; 0 (ndk+1),

Working of K-medoid Algorithm
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K-Medoids Method:

* Itis one of the important method of partitioning. K-medoid is based on medoids calculating by

minimizing the absolute

« distance between the points and the selected centroid, rather than minimizing the square distance.
As a result, it's more robust to noise and outliers than k-means. In k-medoids clustering, each

cluster is represented by one of the data point in the cluster.

» These points are named cluster medoids. Here, k data objects are selected randomly as medoids to
represent k cluster and remaining all data objects are placed in a cluster having medoid nearest (or
most similar) to that data object. After processing all data objects, new medoid is determined

which can represent cluster in a better way and the entire process is repeated.



* Again all data objects are bound to the clusters based on the new medoids. In each iteration,
medoids change their location step by step. This process is continued until no any medoid move.

As a result, k clusters are found representing a set of n data objects

The Distance is calculated as per formula given below (figure):

= an Z,,Iu, HP_O/”

The time complexity for the K-medoids algorithm is subjected to the formula; O(k(n-2)?). The efficiency and performance of
the results in the cluster are directly dependent on clustering centre chosen. Hence all efforts to improve this algorithm depend
on the which k cluster points are chosen as reference.

. Density based clustering:

The clusters in this are dense regions of objects in space that are separated by low density regions where
cluster density is defined as each point must have a minimum number of points in its neighborhood.

(i) Based on density based connectivity e.g. DBSCAN
(ii) Based on density distribution functions e.g. DENCLUE
4. Constraint based clustering:
» Constraints are strong background information that should be satisfied.
» Constraints also reduce the search space and all the data in dataset has common property.
* e.g. in gene expression data set we have a constraint of low and high expressed genes.
5. Evolutionary Clustering:
* Itisused to process time stamped data to produce a series of clustering.

» The similarity among existing data points varies along with time. Present clusters mainly depend

on the current data features.
+ Datais likely to change not too rapidly.

» Evolutionary clustering is useful for the following reasons: (i) consistency, (ii) noise removal (iii)

smoothing (iv) cluster correspondence.

Mostly used for online document clustering



Graph Partitioning based Algorithms:

It depends on finding the minimum cut or minimum cliques in the proximity graph

Many other graph partitioning algorithms depends on eigen vectors and eigen values also.

It consists of three steps:
(i)  preprocessing i.e. to covert data into graph and finding similarity between the nodes.
(i) partitioning of the graph.

(iii)  performing clustering until required number of clusters are not obtained.

Each clustering algorithms belongs to one of the clustering types listed above.

So that, Partitioning method is exclusive clustering, Fuzzy C-means is an overlapping clustering
algorithm, Hierarchical clustering is obvious and lastly Mixture of Gaussian is a probabilistic clustering
algorithm.

» Once gene expression data is obtained, one typically wishes to compare one experimental group
versus a second one (or more) in order to find out which genes/transcripts change significantly

between conditions.
» The process is called differential expression analysis.

* The goal of differential expression analysis is to perform statistical analysis to discover changes
in expression levels of defined features (genes, transcripts, exons) between experimental groups

with replicated samples.

» Essentially, it aims at comparing the average expression of a gene in group A with the average

expression of this gene in group B.



Expression value

Significant
difference

6 Group A sample
I Group A mean

G Group B sample

l Group B mean

No significant
difference

[] Global mean

Many tools exist that will perform differential expression analysis. The output of such tools is similar, and

essentially revolves around interpreting:

* Fold change:
For a given comparison, a positive fold change value indicates an increase of expression, while a
negative fold change indicates a decrease in expression.
This value is typically reported in logarithmic scale (base 2). For example, log2 fold change of
1.5 for a specific gene in the “WT vs KO comparison” means that the expression of that gene is

increased in WT relative to KO by a multiplicative factor of 2°1.5 = 2.82.

« P-value: Indicates whether the gene analysed is likely to be differentially expressed in that
comparison.
This applies to each gene individually, assuming that the gene was tested on its own without
consideration that all other genes were also tested. More on P-value will follow!

» Adjusted (or, corrected for multiple genes testing) p-value: The p-value obtained for each
gene above is re-calculated to correct for running many statistical tests (as many as the number of
genes). In the result, we can say that all genes with adjusted p-value < 0.05 are significantly

differentially expressed in these two samples.



How to interpret P-value ?

First, we need to talk about statistical hypothesis testing.

Two hypotheses should be described upon designing an experiment.

* The NULL hypothesis HO: that there is NO difference, for example, of means of weight between

two populations of subjects.

» The alternative hypothesis H1: there is difference.

NuLL HYPOTHESIS exameies

THE NULL HYPOTHESIS ASSUMES THERE IS NO RELATIONSHIP BETWEEN TWO VARIABLES
AND THAT CONTROLLING ONE VARIABLE HAS NO EFFECT ON THE OTHER.

CATS SHOW PLANT GROWTH IS AGE HAS
NO PREFERENCE < NOT AFFECTED NO EFFECT ON
FOR FOOD v BY LIGHT COLOR. MUSICAL ABILITY.

BASED ON SHAPE. =

e Once the hypothesis are drawn and the significance level set, we perform a statistical test... and
we obtain a p-value.

o If the p-value is below the significance level (for example, 0.05), we can reject the null
hypothesis in favor of the alternative hypothesis, i.e. we conclude that the observed difference is
the result of a real effect.

e Once the hypothesis are drawn and the significance level set, we perform a statistical test... and

we obtain a p-value.



o If the p-value is below the significance level (for example, 0.05), we can reject the null
hypothesis in favor of the alternative hypothesis, i.e. we conclude that the observed difference is
the result of a real effect.

e Example: You study some bacteria and it appears to you that their colonies don’t live more than
65 days.

e But you want to check if it is true.

¢ And you want to test your hypothesis at the significance level of 0.05.

e So you take a sample of 157 colonies with known life span for each.

e You calculate the mean (65.12 days) and the standard deviation (9).

e HO: life spam mean = 65

o HA: life spam mean > 65

e Itis well known that to test such a hypothesis on the mean of a population there is the z-test.

e The test statistic for this z-test is calculated as (each test uses its own formula to calculate the test
statistic): z=(65.12-65) / (9 * sqrt(157)) = 0.167

Each test statistics has a known distribution:
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A p-value (shaded green area) is the probability of an observed
(or more extreme) result assuming that the null hypothesis is true,

which allows to calculate the p-value, that is, to find the probability of observing a test statistic at

least this extreme when assuming the null hypothesis.
In our case the p-value to obtain the values of z-test statistic greater than 0.167 is equal 0.3936.

Since this is greater than our significance level, 0.05, we fail to reject the null hypothesis (we are

NOT in the green zone of the distribution above).



This means that the data does not support the claim that the mean is greater than 65.

Errors can happen in hypothesis testing:

Null hypothesis is | Null hypothesis is
TRUE FALSE
Reject null Type | error Correct outcome
hypothesis (False positive) (True positive)

Fail to reject null
hypothesis

Correct outcome
(True negative)

Type Il error
(False negative)

Type Il errors (false negatives): you are missing some real changes!

Type | errors (false positives): some changes appear to be the result of a real effect while they are

not!

Type | errors (false positives) are the most dangerous as they can lead to wrong conclusions.
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UNIT IV CARBOHYDRATE MICROARRAYS

Carbohydrate microarrays- Carbohydrate sources- Synthesis of oligosaccharides - Isolation of
oligosaccharides from natural sources- Arrays of monosaccharides and disaccharides- Arrays of

polysaccharides- Arrays of oligosaccharides- immunological applications.
« Carbohydrate microarray technologies are new developments at the frontiers of glycomics.

* Results of ‘proof of concept’ experiments with carbohydrate-binding proteins of the immune
system — antibodies, selectins, a cytokine and a chemokine and several plant lectins indicate that
microarrays of carbohydrates (glycoconjugates, oligosaccharides and monosaccharides) will
greatly facilitate not only surveys of proteins for carbohydrate-binding activities but also

elucidation of their ligands.

» It is predicted that both naturally occurring and synthetic carbohydrates will be required for the
fabrication of microarrays that are sufficiently comprehensive and representative of entire

glycomes.

* New leads to biological pathways that involve carbohydrate—protein interactions and new
therapeutic targets are among biomedically important outcomes anticipated from applications of
carbohydrate microarrays.

» Unlike proteins and nucleic acids, oligosaccharides are difficult to synthesize chemically.

» This is because some oligosaccharide chains are linear, others are branched, the monosaccharide
building blocks are in alpha or beta anomeric configurations, and adjacent monosaccharides are

linked via different carbon atoms in their sugar rings.

* For these reasons, multiple selective protection and deprotection steps are required for the hydroxyl
groups of monosaccharides during chemical synthesis of oligosaccharides; the manual synthesis of

oligosaccharides is a major undertaking

» The solid-phase synthesis approach has the advantage of avoiding intermediate isolation and

purification steps.

* Anautomated solid-phase method that includes selective protection and deprotection steps has been
introduced and applied to the synthesis of several glucose- and mannose-containing

oligosaccharides



An alternative approach to the synthesis of oligosaccharides is a programmable ‘one-pot’
approach, in which an oligosaccharide of interest is generated by the sequential addition of
building blocks (thioglycosides) that are either fully protected or have one hydroxyl group
exposed.
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Schematic representation of a programmable one-pot approach to oligosacchande synthesis; a linear 1,4-linked tetrasaccharide is depicted as
an exampie. The constituent bullding blocks are classified into three species: the first sugar at the nonreducing end acts as the donor; the last sugar
at the reducing end is the acceptor; all other building blocks that form the inner part of a complex (linear or branched) oligosaccharide are
classified as donor/acceptor. Protecting groups (esters or ethers) determine the RRV of anomeric centers. Building blocks are added in the order 1 to
4 to obtain the tetrasaccharide.
It has been shown that the relative reactivity value (RRV) of a thioglycoside building block in the
glycosidation reaction can be tuned in the presence of protecting groups; more than 200 building

blocks, with RRVs ranging from 1 to 105 , have been designed and synthesized.

A computer programme called ‘Optimer’ has been developed to guide the selection of building
blocks for the one-pot synthesis of a given oligosaccharide.

If RRVs differ by more than 102 , the desired glycosidic bonds will be formed by the sequential
addition of building blocks in the order of the RRV values.



Once the required building blocks with protecting groups are prepared, oligosaccharides can be
synthesized in a short period of time (in minutes or hours, instead of days or months using
traditional methods) using this programmable one-pot approach

Glycans are one of the major biological polymers found in the mammalian body.
They play a vital role in a number of physiologic and pathologic conditions.

Glycan microarrays allow a plethora of information to be obtained on protein—glycan binding

interactions.

Overview of a typical glycan microarray workflow
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Glycans are chemically or enzymatically synthesized, or isolated and purified from either source

materials, and then conjugated with a linker which is appropriate for the printing surface.



The glycoconjugates are then printed upon appropriately functionalized slides, followed by

blocking; the printed slides are stored under ideal conditions prior to experiments.

Many arrays can be printed on a single slide, termed sub-arrays. The slides can then be used in
a glycan microarray experiment where they are incubated with a glycan binding protein (GBP),
such as lectin, antibody, or serum, virus, etc., Followed by addition of a detection reagent, if the
primary analyte was not fluorescently labeled, for example a fluorescent secondary antibody or

streptavidin.

After washing the slide to remove unbound material, the bound material is then identified and
measured by scanning using a fluorescence microarray scanner. The image produced can then be
analyzed using automated or manual methods to generate the array results. These results can in turn

be stored in a database, or interpreted either manually or by automatic algorithms.
Isolation of oligosaccharides from natural sources
Oligosaccharides with reducing termini are ideal for derivatization so that they can be immobilized.

Free reducing oligosaccharides may be isolated from human or animal milk and urine, or they may
be in the form of N-linked glycoprotein oligosaccharides released by the enzymes peptide-N-(N-
acetyl-b-glucosaminyl)asparagine amidase (PNGase F) and endo-b-N-acetylglucosaminidase F

(Endo F) or by hydrazinolysis.

O-linked glycoprotein oligosaccharides may be released by mild alkaline hydrolysis or

hydrazinolysis.
Oligosaccharides may, if desired, be released from glycolipids by endoceramidase .

Oligosaccharide fragments can be obtained from proteoglycans and glycosaminoglycans by lyase
digestion or nitrous acid degradation , and, in the case of hyaluronic acid, also by hydrolase

digestion .

Various chemical methods may be used to obtain oligosaccharide fragments from bacterial and

plant polysaccharides; these include acid or alkaline hydrolysis, acetolysis and Smith degradation.

Reduced oligosaccharides (oligosaccharide alditols) can be manipulated chemically at the reduced
end after mild periodate oxidation to cleave the terminal open chain monosaccharide residue and

create a reactive aldehyde for derivatization.



Reduced oligosaccharides are typically obtained when O-linked glycans are released from

glycoproteins by reductive alkaline hydrolysis.

Oligosaccharide alditols are also available when reduction is carried out, for example, before HPLC
separation, to eliminate double peaks resulting from the resolution of a and b anomers at their

reducing ends.

Multiple chromatographic steps are often necessary for the isolation/purification of

oligosaccharides.

These include gel filtration, weak and strong anion-exchange chromatography, thin-layer
chromatography (TLC),normal-phase HPLC with an amine or amide column, and reversed-phase
HPLC using a C18 or graphitized porous carbon column.

Arrays of monosaccharides and disaccharides

The monosaccharides were covalently immobilized by conjugation to self-assembling monolayers

of alkenethiols on the gold surface.

The first step was to prepare monolayers consisting of two alkenethiols, one of which has a

benzquinone group exposed.

The monosaccharides, in the form of diene conjugates, are then applied as 1 ml spots (2 mM in

water) and attached to the slides through the Diels—Alder cycloaddition reaction.

This is a very high yielding process, often reagent free, and moisture and solvent tolerant, and is

therefore ideal for the microarray format
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The covalently immobilized monosaccharides were evaluated by profiling the binding
specificities of five plant lectins, concanavalin A (Con A), Benderia simplicifolia, Erythrinia
cristalli, Ulex europeeus and Galanthus nivalis, that are known to bind to different

monosaccharides.

Specific monosaccharide binding was observed for the five lectins, which were labeled
fluorescently with rhodamine. Specific binding of Con A to arrayed mannose was also shown by

surface plasmon resonance spectroscopy.

In further experiments, the monosaccharide array was probed with the glycosyltransferase b-1,4-
galactosyltransferase; it was shown that enzyme-mediated glycosylation of immobilized N-

acetylglucosamine occurred in the presence of the donor substrate, UDP-galactose.



Shin’s group has reported another approach to carbohydrate microarray fabrication. They used

glass slides modified by thiol groups as solid supports.

One monosaccharide, N-acetylglucosamine, and three disaccharides, lactose, cellobiose and
maltose, in the form of glycosylamines, were converted into maleimide conjugates and then
covalently bound to the glass surface by hetero-Michael addition reaction between the thiol group

on the solid surface and the maleimide moiety of the sugar derivative .

The maleimide-conjugated carbohydrates (from 0.1 to 5.0 mM) were printed with a pin-type
microarrayer on the slides at a spot size of 100 mm and a pitch of 200 mm. Carbohydrate—protein

interaction studies were performed with fluoresce in labeled plant lectins.

The binding of the three plant lectins examined, Con A, Erythrina cristagalli and Triticum vulgaris,
to the monosaccharide and the disaccharides was in accord with their known specificities.

Arrays of polysaccharides

Wang et al. described microarrays of polysaccharides and glycoproteins on nitrocellulose-coated

glass slides.

They used a high-precision robotic arrayer that was developed for cDNA and the spots were

generated without derivatization.

The spot sizes were 150 mm with a pitch of 375 mm. These were air dried to allow adsorption

(noncovalent immobilization) onto the hydrophobic surface.
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UNIT V DATABASES AND TOOLS FOR MICROARRAYS

Bioinformatics in Arrays- Databases and tools for microarrays- Bioconductor, expression

profiler, EST databases- Assessing levels of gene expression using EST’s, TIGR gene
indices, STACK, SAGE, CGAP, Xprofiler, ARRAY DB, cluster, tree view, Scanalyze,
gene cluster, informatics aspects of microarray production- MGED and gene-ontology,

description of MIAME ((Minimum Information About a Microarray Experiment),

Business Aspects of Biochip Technologies- Microarray Technology in Treating Disease.

Bioconductor

About
Bioconductor

Bioconductor provides tools for the
analysis and comprehension of high-
throughput genomic data.
Bioconductor uses the R statistical
programming language, and is open
source and open development, It
has two releases each year, and an
active user community, Bioconductor
is also available as an AMI (Amazon
Machine Image) and Docker images.

What is Bioconductor used for?

Bioconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

News

Bioconductor Bioc 3.13 Released.
Bioconductor browsable code base now
avallable.

See our google calendar for events,
conferences, meetings, forums, etc, Add
your event with email to events at
bioconductor.org.

Bioconductor F1000 Research Channel is
avallable.

Orchestrating single-cell analysis with
Bioconductor (abstract; website) and other
recent literature.

Bioconductor 3.13 release schedule
announced. Please view for important
deadlines.

Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data.

Bioconductor uses the R statistical programming language, and is open source and open

development.



It has two releases each year, and an active user community.
limma powers differential expression analyses for RNA-sequencing and microarray studies

limma is an R/Bioconductor software package that provides an integrated solution for analysing
data from gene expression experiments. It contains rich features for handling complex experimental
designs and for information borrowing to overcome the problem of small sample sizes. Over the
past decade, limma has been a popular choice for gene discovery through differential expression
analyses of microarray and high-throughput PCR data. The package contains particularly strong
facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have
been significantly expanded in two important directions. First, the package can now perform both
differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All
the downstream analysis tools previously restricted to microarray data are now available for RNA-
seq as well. These capabilities allow users to analyze both RNA-seq and microarray data with very
similar pipelines. Second, the package is now able to go past the traditional gene-wise expression
analyses in a variety of ways, analyzing expression profiles in terms of co-regulated sets of genes
or in terms of higher-order expression signatures. This provides enhanced possibilities for

biological interpretation of gene expression differences.
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The limma package is a core component of Bioconductor, an R-based open-source software
development project in statistical genomics. It has proven a popular choice for the analysis of data
from experiments involving microarrays, high-throughput polymerase chain reaction (PCR),
protein arrays and other platforms. The package is designed in such a way that, after initial pre-
processing and normalization, the same analysis pipeline is used for data from all technologies.

Recently, the capabilities of limma have expanded significantly in two important directions. First,
the package can now perform both differential expression (DE) and differential splicing analyses
of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to
microarray data are now available for RNA-seq as well. These capabilities allow users to analyse
both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to
go past the traditional gene-wise expression analyses in a variety of ways, analysing expression
profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures.

This provides enhanced possibilities for biological interpretation of gene expression differences.
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algorithms in limma
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EST databases- Assessing levels of gene expression using EST’s

e EST expression profiling has by now become well-established high-throughput method for
acquiring quantitative information on a sample's transcriptome and for studying differential
gene expression, inferred from the differences in the relative numbers of EST tags between
two libraries.



e To facilitate gene discovery, the EST content of a library can be altered to reduce the
abundance of transcripts representing genes with high expression.

e To achieve this a library can be either normalised by removing the most abundant
transcripts in order to reduce or eliminate the differences in the relative transcript
abundances to a narrow range , or subtracted to enrich the library for rare novel transcripts

o |deally this should create a library containing the same or similar tag counts for the low
abundance sequences as before, but with vastly reduced counts for abundant or unwanted
cDNA:s.

o Neither normalised nor subtracted libraries are suitable for studying differential mMRNA
expression because of the significantly changed representation or removal of the original
transcripts

The TIGR Gene Indices

e The TIGR Gene Indices (http://www.tigr.org/tdb/tgi) are a collection of 77 species-
specific databases that use a highly refined protocol to analyze gene and EST
sequences in an attempt to identify and characterize expressed transcripts and to
present them on the Web in a user-friendly, consistent fashion.

e A Gene Index database is constructed for each selected organism by first clustering,
then assembling EST and annotated cDNA and gene sequences from GenBank.
This process produces a set of unique, high-fidelity virtual transcripts, or tentative
consensus (TC) sequences. The TC sequences can be used to provide putative genes
with functional annotation, to link the transcripts to genetic and physical maps, to
provide links to orthologous and paralogous genes, and as a resource for

comparative and functional genomic analysis.
Summary of the current release of TIGR Gene Indices (T'GI)

Species Species_name TGI TC sET sEST

Amimals (29)

Human Homo sapiens HGI 15.0 221 19 594

418 740 458
MMouse Adus musculus MGI 14.0 167 7459 602

694 312
Rat Raitus norvegicus RGI 13.0 56933 2131 87592
Cattle Bos Taurus BtGI 10.0 38 760 413 56 644
Pig Sus scrafa S5=GI 5.0 33963 519 50376
Dog Canis_familiaris DogGI 4.0 6613 684 113508
Chicken Gallus gallus GgGI 8.0 42 988 848 72941
Frog KXenopus laevis XGIo.0 39724 626 37249
Zebrafish Dario rerio ZGI 150 32 889 395 53940
Catfish Tetalurus punctatus Cfm 5.0 3234 156 16 694

R_trout Oncorhvnchus mykiss RtGI 4.0 23135 190 27448



Construction of the Gene Indices

The process used to assemble each Gene Index is similar to that described previously, although
some modifications have been made to improve the efficiency and accuracy of the process.
mgBLAST, a modified version of the Megablast program, is now used for the pairwise sequence
comparisons that are the basis for defining the sequence clusters which form the basis for assembly.
For large clusters containing hundreds or thousands of sequences (e.g. highly expressed genes such
as actin), sequence representation is reduced prior to assembly using a variety of multilayer
approaches, including transitive clustering, containment clustering and seeded clustering with
known genes. Following clustering, the Paracel Transcript Assembler (PTA), a modified version
of CAP3 assembly program, is used to assemble each TC. An open source set of software tools
that embody this process, TGICL, is available (http://www.tigr.org/tdb/tgi/software) with other

open-source utilities for users interested in performing a similar analysis on their own datasets.

SAGE

Serial Analysis of Gene Expression (SAGE) is a transcriptomic technique used by molecular
biologists to produce a snapshot of the messenger RNA population in a sample of interest in the
form of small tags that correspond to fragments of those transcripts.

Serial analysis of gene expression (SAGE) uses mMRNA from a particular sample to create complementary
DNA (cDNA) fragments which are then amplified and sequenced using high-throughput sequencing
technology.

The mechanism behind SAGE is based on tags which can identify the original transcript, and rapid
sequencing of chains of tags linked together. The procedure essentially simplifies sequencing by linking

the cDNA segments together in a long chain.

The resulting analysis gives a snapshot of the transcriptome of the sample, including the identity and
abundance of each mRNA.

Steps of SAGE

SAGE is a complex protocol with many steps.

Step 1: mRNA is isolated from the sample and reverse transcribed using biotinylated primers to generate

cDNA

Step 2: cDNA is bound via biotin to streptavidin microbeads



Step 3: cDNA is cleaved with restriction enzymes freeing it from the beads
Step 4: Cleaved DNA is washed out, leaving truncated cDNA bound to the beads

Step 5: Two oligonucleotides with sticky ends are added to the remaining truncated cDNA, in separate

samples
Step 6: Cleaved DNA is “tagged” enzymatically, removing it from the beads
Step 7: Sticky ends are repaired with DNA polymerase

Step 8: Blunt ended tags from the two separate samples are ligated together, generating ditags with two

different oligonucleotide adapter ends

Step 9: Ditags are cleaved to remove the oligonucleotides. Ditags will form long cDNA chains, or

concatemers
Step 10: Transform concatemers into bacteria for replication
Step 11: Isolate concatemers from bacteria and sequence

Challenges when using SAGE

One challenge is that the tags are only about 13 or 14 base pairs. It can be difficult to identify such a short

tag if it’s from an unknown gene.

The flip side of that problem is that SAGE can be used to find unknown genes, and in some studies it’s an

advantage to be able to measure gene expression quantitatively without prior sequence information.

Tags may also have issues with specificity; multiple genes could share the same tag if there is an overlap
in sequence. There also can be inconsistencies with the restriction enzymes, and incompatibilities for certain
species.

SAGE and DNA microarray

SAGE is similar in many ways to a DNA microarray; however, in a DNA microarray, the mRNASs hybridize
to cDNA probes on the array. In SAGE, the data output is based on sequencing. That means SAGE analysis

is more quantitative and it does not depend on the use of known genes.
Microarray experiments are generally less costly, and so are used more often in larger-scale studies.

Application



A study of new markers in cancer illustrates how SAGE can be used in biomedical
research.

Researchers compared gene expression levels in cancerous tissues with those in non-
cancerous tissues to search for markers that could diagnose the pancreatic cancer at an
early stage.

Because the results of a SAGE analysis of many representative tissues had already been
published online, the scientists were able to search the database for genes preferentially
expressed in pancreatic cancer.

From this, they were able to identify a gene calledprostate stem cell antigen (PCSA), that
had previously not been associated with pancreatic cancer.

CGAP- Cancer Genome Anatomy Project
What you can do:

Find the information and technological tools needed to decipher the molecular anatomy of

the cancer cell from a annotated index of the genes that are important in cancer.
Highlights:

The goal of the NCI's Cancer Genome Anatomy Project is to determine the gene expression
profiles of normal, precancer, and cancer cells, leading eventually to improved detection,

diagnosis, and treatment for the patient.

CGAP offers technological, informational (data and analysis tools), resource (clones and

libraries) and methodological infrastructure for the cancer research community.

The current CGAP program has expanded to include in addition to the Tumor Gene Index
(TGI), a Genetic Annotation Initiative (GAI) and the Cancer Chromosome Aberration
Project (cCAP).

The TGI and GAI are focused towards building a catalog of annotated genes.



