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SBIA5304- MICROARRAY   DATA   ANALYSIS 

UNIT I  GENE EXPRESSION        

Basics of Gene expression- definition , gene expression studies, gene expression patterns- 

Applications of gene expression studies 

Microarrays – definition , discovery, technique, making microarrays, spotted microarrays, In-situ 

synthesized oligonucleotide arrays, inkjet array synthesis, Affymetrix techniques, DNA CHIP technology, 

photolithography, spot quality, sample preparation and labelling, washing, image acquisition Sequencing 

by Hybridization Arrays- DNA MassArray™ Technology- Printing DNA Microarrays-Types of 

microarrays - Designing a microarray experiment.  

• Gene, unit of hereditary information that occupies a fixed position (locus) on a chromosome. Genes 

achieve their effects by directing the synthesis of proteins. 

• Gene, unit of hereditary information that occupies a fixed position (locus) on a chromosome. Genes 

achieve their effects by directing the synthesis of proteins. 

• 

In eukaryotes (such as animals, plants, and fungi), genes are contained within the cell nucleus.  



• The mitochondria (in animals) and the chloroplasts (in plants) also contain small subsets of genes 

distinct from the genes found in the nucleus.  

• In prokaryotes (organisms lacking a distinct nucleus, such as bacteria), genes are contained in a 

single chromosome that is free-floating in the cell cytoplasm.  

• Many bacteria also contain plasmids—extrachromosomal genetic elements with a small number of 

genes. 

• The number of genes in an organism’s genome (the entire set of chromosomes) varies significantly 

between species.  

• For example, whereas the human genome contains an estimated 20,000 to 25,000 genes, the 

genome of the bacterium Escherichia coli O157:H7 houses precisely 5,416 genes.  

• Arabidopsis thaliana—the first plant for which a complete genomic sequence was recovered—has 

roughly 25,500 genes; its genome is one of the smallest known to plants.  

• Among extant independently replicating organisms, the bacterium Mycoplasma genitalium has the 

fewest number of genes, just 517. 

• Basics of Gene expression: 

• Gene expression 

• the phenotypic manifestation of a gene or genes by the processes of genetic transcription and 

genetic translation. 

• Gene expression analysis 

• the determination of the pattern of genes expressed at the level of genetic transcription, under 

specific circumstances or in a specific cell. 

• When genes are expressed, the genetic information (base sequence) on DNA is first copied to a 

molecule of mRNA (transcription).  

• The mRNA molecules then leave the cell nucleus and enter the cytoplasm, where they participate 

in protein synthesis by specifying the particular amino acids that make up individual proteins 

(translation). 

• At any given time, the amount of a particular protein in a cell reflects the balance between that 

protein's synthetic and degradative biochemical pathways.  



• On the synthetic side of this balance, recall that protein production starts at transcription (DNA to 

RNA) and continues with translation (RNA to protein).  

• Thus, control of these processes plays a critical role in determining what proteins are present in a 

cell and in what amounts.  

• In addition, the way in which a cell processes its RNA transcripts and newly made proteins also 

greatly influences protein levels. 

How Is Gene Expression Regulated? 

• The amounts and types of mRNA molecules in a cell reflect the function of that cell. In fact, 

thousands of transcripts are produced every second in every cell. Given this statistic, it is not 

surprising that the primary control point for gene expression is usually at the very beginning of the 

protein production process — the initiation of transcription. RNA transcription makes an efficient 

control point because many proteins can be made from a single mRNA molecule. 

Transcript processing provides an additional level of regulation for eukaryotes, and the 

presence of a nucleus makes this possible.  

• In prokaryotes, translation of a transcript begins before the transcript is complete, due to 

the proximity of ribosomes to the new mRNA molecules.  



• 

In eukaryotes, however, transcripts are modified in the nucleus before they are exported to the 

cytoplasm for translation. 

• 

Eukaryotic transcripts are also more complex than prokaryotic transcripts.  



• For instance, the primary transcripts synthesized by RNA polymerase contain sequences that will 

not be part of the mature RNA.  

• These intervening sequences are called introns, and they are removed before the mature mRNA 

leaves the nucleus.  

• The remaining regions of the transcript, which include the protein-coding regions, are called 

exons, and they are spliced together to produce the mature mRNA.  

• Eukaryotic transcripts are also modified at their ends, which affects their stability and translation. 

• Of course, there are many cases in which cells must respond quickly to changing environmental 

conditions.  

• In these situations, the regulatory control point may come well after transcription.  

• For example, early development in most animals relies on translational control because very little 

transcription occurs during the first few cell divisions after fertilization. Eggs therefore contain 

many maternally originated mRNA transcripts as a ready reserve for translation after fertilization. 

• On the degradative side of the balance, cells can rapidly adjust their protein levels through the 

enzymatic breakdown of RNA transcripts and existing protein molecules.  

• Both of these actions result in decreased amounts of certain proteins. Often, this breakdown is 

linked to specific events in the cell.  

• The eukaryotic cell cycle provides a good example of how protein breakdown is linked to cellular 

events. This cycle is divided into several phases, each of which is characterized by distinct cyclin 

proteins that act as key regulators for that phase.  

• Before a cell can progress from one phase of the cell cycle to the next, it must degrade the cyclin 

that characterizes that particular phase of the cycle. Failure to degrade a cyclin stops the cycle 

from continuing. 



 

How Do Different Cells Express the Genes They Need? 

• Only a fraction of the genes in a cell are expressed at any one time.  

• The variety of gene expression profiles characteristic of different cell types arise because these cells 

have distinct sets of transcription regulators.  

• Some of these regulators work to increase transcription, whereas others prevent or suppress it. 

• Normally, transcription begins when an RNA polymerase binds to a so-called promoter 

sequence on the DNA molecule.  

• This sequence is almost always located just upstream from the starting point for transcription (the 

5' end of the DNA), though it can be located downstream of the mRNA (3' end).  

• In recent years, researchers have discovered that other DNA sequences, known 

as enhancer sequences, also play an important part in transcription by providing binding sites for 

regulatory proteins that affect RNA polymerase activity.  

• Binding of regulatory proteins to an enhancer sequence causes a shift in chromatin structure that 

either promotes or inhibits RNA polymerase and transcription factor binding. A more open 

chromatin structure is associated with active gene transcription.  

• In contrast, a more compact chromatin structure is associated with transcriptional inactivity 



 

• Some regulatory proteins affect the transcription of multiple genes.  

• This occurs because multiple copies of the regulatory protein binding sites exist within the 

genome of a cell.  

• Consequently, regulatory proteins can have different roles for different genes, and this is one 

mechanism by which cells can coordinate the regulation of many genes at once. 

How Is Gene Expression Increased or Decreased in Response to Environmental Change? 

• In prokaryotes, regulatory proteins are often controlled by nutrient availability.  

• This allows organisms such as bacteria to rapidly adjust their transcription patterns in response to 

environmental conditions.  

• In addition, regulatory sites on prokaryotic DNA are typically located close to transcription 

promoter sites — and this plays an important part in gene expression. 

• For an example of how this works, imagine a bacterium with a surplus of amino acids that signal 

the turning "on" of some genes and the turning "off" of others.  

• In this particular example, cells might want to turn "on" genes for proteins that metabolize amino 

acids and turn "off" genes for proteins that synthesize amino acids.  

• Some of these amino acids would bind to positive regulatory proteins called activators.  



• Activator proteins bind to regulatory sites on DNA nearby to promoter regions that act as on/off 

switches. This binding facilitates RNA polymerase activity and transcription of nearby genes. 

 

• At the same time, however, other amino acids would bind to negative regulatory proteins 

called repressors, which in turn bind to regulatory sites in the DNA that effectively block RNA 

polymerase binding 

• The control of gene expression in eukaryotes is more complex than that in prokaryotes. In general, 

a greater number of regulatory proteins are involved, and regulatory binding sites may be located 

quite far from transcription promoter sites. Also, eukaryotic gene expression is usually regulated 

by a combination of several regulatory proteins acting together, which allows for greater flexibility 

in the control of gene expression. 

• Different cell types express characteristic sets of transcriptional regulators. In fact, as multicellular 

organisms develop, different sets of cells within these organisms turn specific combinations of 

regulators on and off. Such developmental patterns are responsible for the variety of cell types 

present in the mature organism 

 

• Transcriptional regulators can determine cell types 



• The wide variety of cell types in a single organism can depend on different transcription factor 

activity in each cell type. Different transcription factors can turn on at different times during 

successive generations of cells. As cells mature and go through different stages (arrows), 

transcription factors (colored balls) can act on gene expression and change the cell in different 

ways. This change affects the next generation of cells derived from that cell. In subsequent 

generations, it is the combination of different transcription factors that can ultimately determine 

cell type. 

• Technologies 

• Real Time quantitative RT-PCR 

• In situ hybridization 

• Microarrays 

• Massively Parallel Signature Sequencing (MPSS) 

• Gene expression analysis is most simply described as the study of the way genes are transcribed 

to synthesize functional gene products — functional RNA species or protein products.  

• The study of gene regulation provides insights into normal cellular processes, such as 

differentiation, and abnormal or pathological processes. 

• In 1941, Beadle and Tatum published experiments that would explain the basis of the central 

dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA, 

results proteins that perform the functions in cells.  

• Currently, biomedical research attempts to explain the mechanisms by which develops a 

particular disease, for this reason, gene expression studies have proven to be a great resource.  

• Strictly, the term “gene expression” comprises from the gene activation until the mature protein is 

located in its corresponding compartment to perform its function and contribute to the expression 

of the phenotype of cell.  

• The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of 

a specific gene.  

• The development of the RNA-based gene expression studies began with the Northern Blot 

by Alwine et al. in 1977.  



• In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization, 

but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of 

the techniques for quantification of RNA are deprecated because other new techniques provide 

more information. Currently the most widely used techniques are qPCR, expression microarrays, 

and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed. 

• Gene expression workflow. 

• Researchers may perform gene expression analysis at any one of several different levels at which 

gene expression is regulated: transcriptional, post-transcriptional, translational, and post-

translational 

• protein modification. 

• Transcription, the process of creating a complementary RNA copy of a DNA sequence, can be 

regulated in a variety of ways. Transcriptional regulation processes are the most commonly 

studied and manipulated in typical gene expression analysis experiments. 

•  

• 

As previously mentioned, enhancer sequences are DNA sequences that are bound by an activator 

protein, and they can be located thousands of base pairs away from a promoter, either upstream or 

downstream from a gene. Activator protein binding is thought to cause DNA to loop out, bringing 

the activator protein into physical proximity with RNA polymerase and the other proteins in the 

complex that promote the initiation of transcription 



• 

The binding of regulatory proteins to DNA binding sites is the most direct method by which 

transcription is naturally modulated. Alternatively, regulatory processes can also interact with the 

transcriptional machinery of a cell. More recently, the influence of epigenetic regulation, such as 

the effect of variable DNA methylation on gene expression, has been uncovered as a powerful tool 

for gene expression profiling. Varying degrees of methylation are known to affect chromatin 

folding and strongly affect accessibility of genes to active transcription. 

• Following transcription, eukaryotic RNA is typically spliced to remove noncoding intron sequences 

and capped with a poly(A) tail. At this post-transcriptional level, RNA stability has a significant 

effect on functional gene expression, that is, the production of functional protein. Small interfering 

RNA (siRNA) consists of double-stranded nucleic acid molecules that are participants in the RNA 

interference pathway, in which the expression of specific genes is modulated (typically by 

decreasing activity). Precisely how this modulation is accomplished is not yet fully understood. A 

growing field of gene expression analysis is in the area of microRNAs (miRNAs), short RNA 

molecules that also act as eukaryotic post-transcriptional regulators and gene silencing agents 

Researchers studying gene expression employ a wide variety of molecular biology techniques and 

experimental methods.  

Gene expression analysis studies can be broadly divided into four areas:  

1. RNA expression,  

2. promoter analysis,  

3. protein expression, and  

4. post-translational modification. 



 

 

RNA Expression 

• Northern blotting — steady-state levels of mRNA are directly quantitated by electrophoresis and 

transfer to a membrane followed by incubation with specific probes.  

• The RNA-probe complexes can be detected using a variety of different chemistries or radionuclide 

labeling.  

• This relatively laborious technique was the first tool used to measure RNA levels 



• 



The reverse northern blot is a method by which gene expression patterns may be analyzed by 

comparing isolated RNA molecules from a tester sample to samples in a control cDNA library.  

• It is a variant of the northern blot in which the nucleic acid immobilized on a membrane is a 

collection of isolated DNA fragments rather than RNA, and the probe is RNA extracted from a 

tissue and radioactively labelled.  



• A reverse northern blot can be used to profile expression levels of particular sets of RNA sequences 

in a tissue or to determine presence of a particular RNA sequence in a sample.  

• Although DNA Microarrays and newer next-generation techniques have generally supplanted 

reverse northern blotting, it is still utilized today and provides a relatively cheap and easy means of 

defining expression of large sets of genes. 

Procedure 

• In order to prepare the reverse northern membrane, cDNA sequences for transcripts of interest are 

immobilized on nylon membranes, which can be accomplished by use of dot blots or bidirectional 

agarose gel blotting and UV fixation of the DNA to the membranes.  

• In many cases, cDNA probes may be preferred over RNA probes in order to mitigate problems of 

RNA degradation by RNAses or tissue metabolites.  

• Prepared reverse northern blot membranes are pre-hybridized in Denhardt's solution with SSC 

buffer and labeled cDNA probes are denatured at 100 °C and added to the pre-hybridization 

solution.  

• The membrane is incubated with the probes for at least 15 hours at 65 °C, then washed and exposed. 

DNA microarrays: 

• an array of oligonucleotide probes bound to a chip surface enables gene expression profiling of 

many genes in response to a condition.  

• Labeled cDNA from a sample is hybridized to complementary probe sequences on the chip, and 

strongly associated complexes are identified optically.  

• Gene expression profiling is often a first step in a gene expression analysis workflow, investigating 

changes in the expression profile of a whole system or examining the effects of mutations in 

biological systems 



 

Real-Time PCR 

• Steady-state levels of mRNA are quantitated by reverse transcription of the RNA to cDNA 

followed by quantitative PCR (qPCR) on the cDNA.  

• The amount of each specific target is determined by measuring the increase in fluorescence signal 

from DNA-binding dyes or probes during successive rounds of enzyme-mediated amplification.  

• This precise, versatile tool is used to investigate mutations (including insertions, deletions, and 

single-nucleotide polymorphisms (SNPs)), identify DNA modifications (such as methylation), 

confirm results from northern blotting or microarrays, and conduct gene expression profiling.  



• Expression levels can be measured relative to other genes (relative quantification) or against a 

standard (absolute quantification). Real-time PCR is the gold standard in nucleic acid quantification 

because of its accuracy and sensitivity.  

• Real-time PCR can be used to quantitate mRNA or miRNA expression following conversion to 

cDNA or to quantitate genomic DNA directly to investigate transcriptional activity 

Promoter Analysis 

• Expression of reporter genes/promoter fusions in host cells — promoter activity (transcription rate) 

is measured in vivo by introducing fusions of various promoter sequences with a gene encoding a 

product that can be readily measured to monitor activity levels 

 

Most commonly used reporter gene that fits the definition, widely available and commonly used are: 

• β-galactosidase [β-Galactosidase Assay (CPRG), Fluorescent β-Galactosidase Assay (MUG)] 

• β-glucuronidase (GUS assay used mostly for expression in plants) 

• Luciferase (Lumino™ Firefly Luciferase Assay) 



• Green fluorescent protein (GFP) 

• Secreted Placental Alkaline Phosphatase 

• In vitro transcription (nuclear run-on assays) — transcription rates are measured by 

incubating isolated cell nuclei with labeled nucleotides, hybridizing the resultant product to a 

membrane (slot blot), and then exposing this to film or other imaging media 

• 

Gel shift assays — also called electrophoretic mobility shift assays, these are used to study 

protein-DNA or protein-RNA interactions.  

• DNA or RNA fragments that are tightly associated with proteins (such as transcription factors) 

migrate more slowly in an agarose or polyacrylamide gel (showing a positional shift). Identifying 

the associated sequences provides insight into gene regulation 



 

• Chromatin immunoprecipitation (ChIP) —  

• protein-binding regions of DNA can be identified in vivo. In living cells, DNA and protein are 

chemically cross-linked, and the resulting complex is precipitated by antibody-coated beads 

(immunoprecipitation). Following protein digestion and DNA purification, the sequences of the 

precipitated DNA are determined 

Protein Expression 

• Western blotting — quantification of relative expression levels for specific proteins is 

accomplished by electrophoretically separating extracted cell proteins, transferring them to a 

membrane, and then probing the bound proteins with antibodies (targeted to antigens of interest) 

that are subsequently detected using various chemistries or radiolabelling 

• 2-D Gel Electrophoresis — protein expression profiling is achieved by separating a complex 

mixture of proteins in two dimensions and then staining to detect differences at the whole-proteome 

level 

• Immunoassays — proteins are quantitated in solution using antibodies that are bound to color-

coded beads (as in the Bio-Plex supension array system) or immobilized to a surface (ELISA), 



which is subsequently probed with an antibody suspension and is typically detected using a 

chromogenic or fluorogenic reporter 

Posttranslational Modification Analysis 

• Immunoassays — levels of protein phosphorylation and other post-translational modifications are 

detected using antibodies that are specific for these adducts 

• Mass spectrometry — proteins and their modifications are identified based on their mass 

• What is RNA-seq? 

• RNA-seq (RNA-sequencing) is a technique that can examine the quantity and sequences of RNA 

in a sample using next generation sequencing (NGS). It analyzes the transcriptome of gene 

expression patterns encoded within our RNA. Here, we look at why RNA-seq is useful, how the 

technique works, and the basic protocol which is commonly used today1. 

• 

What are the applications of RNA-seq? 

• RNA-seq lets us investigate and discover the transcriptome, the total cellular content of RNAs 

including mRNA, rRNA and tRNA. Understanding the transcriptome is key if we are to connect 

the information on our genome with its functional protein expression.  



• RNA-seq can tell us which genes are turned on in a cell, what their level of expression is, and at 

what times they are activated or shut off. This allows scientists to more deeply understand the 

biology of a cell and assess changes that may indicate disease.  

• Some of the most popular techniques that use RNA-seq are transcriptional profiling, SNP 

identification, RNA editing and differential gene expression analysis. 

 

 

This can give researchers vital information about the function of genes. For example, the 

transcriptome can highlight all the tissues in which a gene of unknown function is expressed, which 

might indicate what its role is.  

• It also captures information about alternative splicing events (Figure 1), which produce different 

transcripts from one single gene sequence. These events would not be picked up by DNA 

sequencing. It can also identify post-transcriptional modifications that occur during mRNA 

processing such as polyadenylation and 5’ capping. 

How does RNA-seq work? 

• Early RNA-seq techniques used Sanger sequencing technology, a technique that although 

innovative at the time, was also low-throughput, costly, and inaccurate. It is only recently, with the 

advent and proliferation of NGS technology, have we been able to fully take advantage of RNA-

seq’s potential4. 

 

The first step in the technique involves converting the population of RNA to be sequenced into 

cDNA fragments (a cDNA library). This allows the RNA to be put into an NGS workflow. Adapters 

are then added to each end of the fragments. These adapters contain functional elements which 

permit sequencing; for example, the amplification element and the primary sequencing site. The 

cDNA library is then analyzed by NGS, producing short sequences which correspond to either one 

or both ends of the fragment. The depth to which the library is sequenced varies depending on 

techniques which the output data will be used for. The sequencing often follows either single-read 

or paired-end sequencing methods. Single-read sequencing is a cheaper and faster technique (for 

reference, about 1% of the cost of Sanger sequencing) that sequences the cDNA from just one end, 

whilst paired-end methods sequence from both ends, and are therefore more expensive and time-

consuming5,6.                          



•  

A further choice must be made between strand-specific and non-strand-specific protocols. The 

former method means the information about which DNA strand was transcribed is retained. The 

value of extra information obtained from strand-specific protocols make them the favorable option. 

 

These reads, of which there will be many millions by the end of the workflow, can then be aligned 

to a genome of reference and assembled to produce an RNA sequence map that spans the 

transcriptome7. 

• RNA-seq vs microarrays: Why RNA-seq is considered superior  

• RNA-seq is widely regarded as superior to other technologies, such as microarray hybridization. 

There are several reasons for RNA-seq’s well-regarded status 

• Not limited to genomic sequences – unlike hybridization-based approaches, which may require 

species-specific probes, RNA-seq can detect transcripts from organisms with previously 

undetermined genomic sequences. This makes it fundamentally superior for the detection of novel 

transcripts, SNPs or other alterations. 

• Low background signal – the cDNA sequences used in RNA-seq can be mapped to targeted regions 

on the genome, which makes it easy to remove experimental noise. Furthermore, issues with cross-

hybridization or sub-standard hybridization, which can plague microarray experiments, are not an 

issue in RNA-seq experiments. 

• More quantifiable - Microarray data is only ever displayed as values relative to other signals 

detected on the array, whilst RNA-seq data is quantifiable. RNA-seq also avoids the issues 

microarrays have in detecting very high or very low expression levels. 

• Applications of gene expression studies 



 

 

Microarrays – definition , discovery, technique, making microarrays 

• Microarray technology is a developing technology used to study the expression of many genes at 

once.  

• It involves placing thousands of gene sequences in known locations on a glass slide called a gene 

chip.  

• A sample containing DNA or RNA is placed in contact with the gene chip. Complementary base 

pairing between the sample and the gene sequences on the chip produces light that is measured.  

• Areas on the chip producing light identify genes that are expressed in the sample. 

 



 

 



 

 



 

Microarrays – definition , discovery  

Early DNA arrays 

• After the first description of the double helix DNA structure by Watson and Crick in 1953, the 

process of separating the two strands was soon reversed with methods of DNA molecular 

hybridization quickly explored. 

• Molecular hybridization is the occurrence of single-stranded DNA binding to complimentary DNA. 

The complimentary base pairs that form the structure of the opposite strands of DNA are the 

foundation for all analysis methods involving DNA sequences. 

 

• In 1975, Grunstein and Hogness applied the process of molecular hybridization to DNA released 

from blotted microbial colonies, a useful process for screening bacteria clones.  



 

The colony hybridization method was formed by randomly cloning Escherichia coli (E. coli) DNA onto 

agar petri plates covered with nitrocellulose filters. A radioactively labeled probe was then added which 

would bind to complimentary DNA within the sample. 

 

The aforementioned method formed a random orientation of sample DNA spots representing the cloned 

fragments of DNA. This is an early example of a labeled probe being utilized in order to identify 

complimentary base pair binding. It can therefore be considered as one of the first examples of a DNA 

array. 

• Gergan et al. adapted this methodology to produce arrays in 1979. Multiple plates on agar were 

replicated to produce arrays through the use of a mechanical 144 pin device for placing samples in 

the corresponding amount of well microplates. This allowed for the production of arrays for over a 

thousand different bacterial colonies.  



• The colonies could then be easily transferred to paper filters for the necessary lysis, denaturation 

and fixing steps for producing hybridized DNA. The technology of filter based arrays was used in 

research that led to the identification of single nucleotide polymorphisms (SNPs) and the ability to 

clone specific genes of interest. 

• The ability to analyze multiple hybridization targets was automated in the late 1980s and early 

1990s. Robotic technology was used to quickly array clones from microtiter plates onto filters. The 

arrays created a defined pattern allowing parallel hybridizations to be produced. 

• Efficiency was increased with the errors that occur during repetitive procedures being reduced 

through the automated placing of samples on the array. The increased speed and accuracy from 

automation was an important step in the development towards microarrays. 

• A further development of complimentary DNA (cDNA) cloning was also an important foundation 

for the microarray, as it led to the creation of reference sets of cDNA and corresponding filter arrays 

for whole genomes. 

• In 1995, the first study that used the word 'microarray' was published which explained how the 

expression of many genes could be monitored in parallel through the use of this new technology. 

The sample array was constructed through high-speed robotic printing of cDNA on glass. 

• The small size of spots on the array and high density of the arrays produced hybridization volumes 

of two microliters, which was the volume that enabled the detection of rare transcripts within the 

probe samples. 

• The microarray was a technical advancement that meant a broader examination of gene expression 

could be accomplished. In 1997, the researchers from Stanford University published the first whole-

genome microarray study of gene expression by placing the whole yeast genome on a microarray. 

• History 

Earliest form of microarray is the Southern blot, developed in 1975 by Dr. Edward Southern of 

Edinburgh University 

• In this technique, fragmented DNA is bound to a substrate (often a nitrocellulose or nylon 

membrane), denatured, dried and then exposed to a labeled hybridization probe in an appropriate 

buffer 

• Blot is then extensively washed and analyzed by Xray film, autoradiography or membrane 

chromogen detection, depending on the type of probe label employed 



• Southern blotting has been largely replaced by newer molecular techniques but it has value in 

analyzing several trinucleotides repeat syndromes (Fragile X syndrome, Huntington chorea), where 

the length of the expanded DNA is greater than the usual amplification ability of PCR 

• Array technology was used by Augenlicht et al. in 1984 to analyze retroviral long terminal repeat 

(LTR element expression in murine colon tumors (J Biol Chem 1984; 259:1842) 

• In 1987, Kulesh et al. used arrays to analyze the expression of more than 2,000 different genes 

constructed from a human fibrosarcoma cell line, with and without interferon treatment (Proc Natl 

Acad Sci USA 1987;84:8453) 

• Different mRNA derived cDNAs were spotted onto filter paper and analyzed 

• 29 sequences were induced by interferon treatment 

• Miniaturized microarrays were introduced in 1995 (Science 1995; 270:467) 

• First complete eukaryotic genome was placed on microarray in 1997, when Lashkari et al. placed 

a maximum of 2,470 open reading frames on a glass slide and analyzed total mRNA expression 

(cDNA) in S. cerevisia, examining the effects of heat and cold shock and culture in glucose vs 

galactose on global gene expression profiles (Proc Natl Acad Sci USA 1997;94:13057) 

• Since its first research use in the 1980s, the development of better surface technologies, more 

powerful robots for arraying, better nucleic acid dye labeling techniques and improved 

computational power and automated analyzers have vastly improved the power and efficiency of 

microarray, while also lowering the cost of these analyses 

• Microarray is currently used to analyze many different systems, including the classification of 

microbes and human microbial pathogens, cellular responses to pathogens, drug and toxic 

exposures, tumor classification, single nucleotide polymorphism detection, the detection of gene 

fusions, comparative genomic hybridization, alternative splicing detection (exon junction array / 

exon arrays) and gene expression profiling via analyzing global mRNA levels 

• Most microarray protocols use reverse transcriptase to convert mRNA into cDNA, as DNA is more 

stable with RNA 

• DNA microarrays, also called DNA chips, gene chips, DNA arrays, gene arrays and biochips, are 

microscopic slides of glass or silicon printed with thousands of small spots in grid fashion with 

each containing known DNA or gene.  

https://www.ncbi.nlm.nih.gov/pubmed/9371799


• Each slide acts as probe to detect gene expression.  

• Basically, it ‘s been evolved from southern blotting .It is different from Southern blotting as here 

the probe is fixed/attached  and sample DNA is labeled rather than probe. 

PRINCIPLE 

• DNA mICROARRAY 

• The basic principle behind DNA microarray lies on Nucleic acid hybridization.  

• During this method, two complementary strands of DNA are joined together by hydrogen bond to 

make a double stranded molecule by hydrogen bond.  

• Restriction endonuclease is employed to cut the unknown DNA molecules into small fragments. 

Fluorescent markers are attached to the fragments and these get react with probes in DNA chips.  

• DNA probes are then binds with the target DNA with complementary sequences and unbounded 

DNA fragments are washed away.  

• Identification of the target pieces of DNA is done by their fluorescene emission passing through a 

laser beam and computer recorded the pattern of emission as well as DNA identification. 

TYPES OF DNA MICROARRAY 



There are four types of DNA microarray: 

1. Oligo DNA microarray: It uses oligonucleotides of 20-50 nucleotides long. Oligonucleotides are 

synthesized directly on the slide. Single color hybridization used for each probe. It has good 

specifcity but poor sensitivity. 

2. cDNA microarray: It is usually referred to as spotted microarray in within which  DNA  

fragments of any length (500bp-1kb) or oligos of 20-100 nts are stuck to the glassslides. It uses 

two colors hybridization for every probe. 

3. BAC Microarray: It uses the template which is amplified by polymerase chain reaction as the 

probe. 

4. SNA Microarray: It is used to detect polymorphisms within a population. 

REQUIREMENTS: 

1. DNA Chip                            

2. Target sample                        

3. Sample   

4. Enzymes 

5. Fluorescent dyes 

6. Probes  

• DNA microarrays are solid supports, usually of glass or silicon, upon which DNA is attached in an 

organized pre-determined grid fashion. 

• Each spot of DNA, called a probe, represents a single gene. 

• DNA microarrays can analyze the expression of tens of thousands of genes simultaneously. 

• There are several synonyms of DNA microarrays such as DNA chips, gene chips, DNA arrays, 

gene arrays, and biochips. 



 

Principle of DNA Microarray Technique 

❑ The principle of DNA microarrays lies on the hybridization between the nucleic acid strands. 

❑ The property of complementary nucleic acid sequences is to specifically pair with each other by 

forming hydrogen bonds between complementary nucleotide base pairs. 

❑ For this, samples are labeled using fluorescent dyes. 

❑ At least two samples are hybridized to chip. 

❑ Complementary nucleic acid sequences between the sample and the probe attached on the chip 

get paired via hydrogen bonds. 

❑ The non-specific bonding sequences while remain unattached and washed out during the washing 

step of the process.  

❑ Fluorescently labeled target sequences that bind to a probe sequence generate a signal. 

❑ The signal depends on the hybridization conditions (ex: temperature), washing after hybridization 

etc while the total strength of the signal, depends upon the amount of target sample present. 

❑ Using this technology, the presence of one genomic or cDNA sequence in 1,00,000 or more 

sequences can be screened in a single hybridization. 



There are 2 types of DNA Chips/Microarrays: 

1. cDNA based microarray 

2. Oligonucleotide based microarray 

Spotted DNA arrays (“cDNA arrays”) 

• Chips are prepared by using cDNA. 

• Called cDNA chips or cDNA microarray or probe DNA. 

• The cDNAs are amplified by using PCR. 

• Then these immobilized on a solid support made up of nylon filtre of glass slide (1 x 3 inches). 

The probe DNA are loaded into a a spotting spin by capillary action. 

• Small volume of this DNA preparation is spotted on solid surface making physical contact 

between these two. 

• DNA is delivered mechanically or in a robotic manner. 

 



 

 

 



 

Oligonucleotide arrays (Gene Chips) 

• In oligonucleotide microarrays, short DNA oligonucleotides are spotted onto the array. 

• Small number of 20-25mers/gene. 

• The main feature of oligonucleotide microarray is that each gene is normally represented by more 

than one probe. 

• Enabled by photolithography from the computer industry 

• Off the shelf 

Some key issues involved in microarray analysis 

Parameter Issue 

• Experimental design  

❑ Consider the biological question(s) and the ability to achieve statistical significance  

❑ Seek expert statistical advice during the early planning stages 

❑ Microarray experiments have multiple sources of variation and must be carefully controlled 

❑ Biological and technical replication are essential 

❑ Sample pooling should be avoided if accurate sample synchronisation is not possible 

❑ Microarray analysis of purified cells will only reveal genes expressed by these cells, but removal 

from the in vivo microenvironment may alter gene expression 

❑ There are limitations in the use of both whole tissue and purified cells, which may necessitate the 

use of microdissection and RNA amplification techniques 

❑ When using clinical samples, detailed patient history and tissue histopathology are critical to the 

interpretation of gene expression profiles 

Target RNA preparation  

❑ The quality of the target RNA is one of the most important factors in the success or failure of a 

microarray experiment 

Data analysis  



❑ While critical to the outcome of a microarray experiment, statistical analysis of microarray data is 

not well understood by many biologists and expert advice should be sought 

Data validation  

❑ The biomedical research community does not yet accept that microarray data can stand alone 

without independent validation 

❑ The investigator must decide which genes to examine further, and those with larger fold changes 

and statistical significance are often the best candidates 

❑ To describe a biological event or system, gene expression data obtained by microarray analysis 

must be extended to the study of protein products 

Spotted DNA Microarrays 

• The first DNA microarrays were spotted with probes that were made by oligonucleotide chemical 

synthesis and then attached to the array.  

• These probes have to be “spotted” or “printed” using a robot onto a very fine grid by a sort of 

specialized inkjet-like printer, which uses the same technology as computer printers to expel 

nanoliter to picoliter volume droplets of probe solution, instead of ink, onto the slide.  

• Alternatively, these probes can be applied with a pin directly onto a specific location on the surface. 

The number of spots (aka features) applied onto the DNA microarray is limited to prevent cross-

contamination problems. 

• 

Affymetrix platform include Agilent arrays that use an inkjet spotting process for in-situ 

oligonucleotide synthesis, using five “ink” printing of the 4 nucleotide precursors plus catalyst, 

combined with coupling and deprotection steps that do not require use of photolithographic masks. 



This technology relies on printing picoliter volumes of nucleotides on the array surface in repeated 

rounds of base-by-base printing that extends the length of specific oligonucleotide probes.  

This approach therefore allows synthesis of longer molecules (60-mer length oligos) for their probes. 

Increased length improves specificity of probes but at increased complexity of design, which reduces the 

number of features (Affymetrix chips usually feature >106 spots per microarray, compared to 

0.24×106features for Agilent). In Situ-Synthesized DNA Microarrays 

• In situ-synthesized arrays are high-density oligonucleotide probe DNA microarrays, with 

Affymetrix GeneChip arrays being the most common. 

•  These are made using photolithography, which literally means to use light to create a pattern.  

• The method relies on UV masking and light-directed combinatorial chemical synthesis on a solid 

support to selectively synthesize probes directly on the surface of the array, one nucleotide at a time 

per spot, for many spots simultaneously.  

• This process works in the following way: a solid support contains covalent linker molecules that 

have a protecting group on the free end that can be removed by light.  

 

Affymetrix’s proprietary photolithography process for creating DNA microarrays uses a series of 

photolithographic masks, light deprotection reactions and nucleotide coupling. During each 

deprotection step, a specific mask is used with particular transparent “windows” to allow the light from 

a single UV source to deprotect spots, or features on the array to receive a nucleotide. 



• UV light is directed through a photolithographic mask to deprotect and activate selected sites with 

hydroxyl groups that initiate coupling with incoming protected nucleotides that attach to the 

activated sites.  

• The mask is designed in such a way that you can choose the exposure sites, and thus specify the 

coordinates on the array where each nucleotide will be attached. The process is repeated, a new 

mask is applied activating different sets of sites and coupling different bases, allowing arbitrary 

DNA probes to be constructed at each site. This process is used to synthesize hundreds of thousands 

of different oligonucleotides.  

• However, it is the length of oligos, not their number, that determines the number of steps required, 

since many different sites could be synthesized simultaneously.  

• Each probe on the chip requires four masks per round of synthesis: one mask to allow addition of 

the required base and three other masks to prevent light from deprotecting the same spot while the 

other three nucleotides are being added. On average, each probe is 25 nucleotides long, requiring 

about 100 masks per chip!!! These microarrays generally employ multiple probes for each gene to 

improve specificity and feature a match/mismatch probe pair that enable the discrimination of 

single mismatched base pairs. 

 

 

High-Density Bead DNA microarrays 

• Another type of high-density DNA microarray are the BeadArrays manufactured by Illumina.  

• Illumina’s Bead Array Technology is based on color-coded 3-micron silica beads that randomly 

self assemble in either a fiber-optic bundle substrate that then themselves assemble into arrays, or 

a silica slide substrate.  



• When randomly assembled on one of these two substrates, the beads have a uniform spacing of 

approximately 5.7 microns, with a packing density of about 40,000 array elements per square 

millimeter.  

• This gives the Bead Array platform about 400 times the information density of a typical spotted 

array.  

• Each bead is covered with hundreds of thousands of copies of a specific oligonucleotide that act 

as the capture sequences in one of Illumina’s assays. Each bead has a 23-mer oligo “address” 

attached to it, which then anchors a 50-mer sequence-specific oligo probe. 

 

• The beads are randomly scattered across etched substrates during the array production process, 

with each array bundle containing about 50,000 beads.  

• With this platform design, a specific oligonucleotide sequence is assigned to each bead type, but 

is replicated about 30 times on the array at random positions.  

• Each gene is represented by two probe sequences. A series of decoding hybridizations are used to 

determine which oligos are present at each matrix coordinate for every array. 
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Affymetrix GeneChip® System for Gene Expression Analysis 

The Affymetrix GeneChip system is a commercial microarray platform that allows whole genome gene 

expression analysis for a wide variety of experimental organisms 

(http://www.affymetrix.com/products/arrays/index.affx).  



This system has three major advantages over other array systems: it is easy to get rapid results; it has the 

capability to monitor the expression of every gene in the genome; and it is the most widely used 

commercial microarray platform. 

Affymetrix GeneChip® miRNA Array 

The GeneChip® miRNA Array is a powerful and cost effective tool for studying the role of microRNAs 

(miRNAs). The array provides comprehensive miRNA coverage (Sanger miRNA database V20 content 

and additional human small nuclear RNAs (snoRNAs and scaRNAs)) with multiple organisms (Human, 

mouse, rat, canine, and monkey) on a single array.  

Input amounts: 0.13 – 3µg of total RNA or low molecular weight RNA enriched from 0.1-3 ug of total 

RNA (for new users we recommend to start with 1 ug of total RNA or LMW RNA enriched from 1 ug of 

total RNA). 

Affymetrix microarray solutions are now branded Applied Biosystems and include all necessary 

components for a microarray experiment, from arrays and reagents to instruments and software. Our 

solutions enable scientists and clinicians to understand underlying disease mechanisms, identify 

biomarkers for personalized medicine, create novel molecular diagnostic tests, and improve genetic 

marker-assisted breeding programs in agriculture, thereby translating research results into biology for a 

better world. 

Key applications 

Transcriptome Analysis 

Phenotypic abnormalities are rarely a result of expression changes in single genes, so generating a 

comprehensive expression profile is critical when studying normal biology and disease processes. Profile 

all known coding and non-coding splice variants. 



Human Genotyping for Precision Medicine Research 

Large-scale genotyping studies aimed at improving understanding disease risk and drug response are 

helping to pave the way toward precision medicine. To be successful, these studies require affordable, 

high-density genotyping arrays with accurate imputation and assurance that every marker will be on every 

array, every time. 

Cytogenetics Analysis 

Microarray-based assays provide a genome-wide approach that enables high-solution DNA copy number 

analysis to detect gains, losses, loss/absence of heterozygosity (LOH/AOH), copy-neutral LOH (cnLOH), 

regions identical-by-descent, and mosaicism in a single assay. 

miRNA Profiling 

Perform comprehensive miRNA profiling from as little as 130 ng and start exploring the role of miRNA 

in.24 hours—no bioinformatics resources required. 

Large-scale Biobank Genotyping 

Our Axiom Biobank Genotyping Arrays feature imputation-aware modular designs that enable scientists 

to conduct large-scale, state-of-the-art traits and population studies that help us understand how complex 

interactions between genes, environment, and lifestyle relate to health. 

Plant and Animal Genotyping 

Agrigenomics research is growing as climate change, population growth, and urbanization threaten 

farmers’ ability to meet the world’s food demands. To address these needs, breeders and farmers are 

employing new genomic strategies. Our powerful, flexible array-based genotyping solutions can help. 

The goal of microarray image analysis is to extract intensity descriptors from each spot that represent 

gene expression levels and input features for further analysis. Biological conclusions are then drawn 

based on the results from data mining and statistical analysis of all extracted features. 

Components of DNA Microarray image analysis are (1) Grid Alignment Problem, (2) Foreground 

Separation, (3) Quality Assurance, (4) Quantification and (5) Normalization. Additionally, the data 

management must conform with the Minimal Information About Microarray Experiments (MIAME) 

standard. 

Input: Laser image scans (data) and underlying experiment hypotheses or experiment designs (prior 

knowledge). 



Output: Conclusions about statistical behavior of measurements and thus the the test of the hypotheses or 

knowledge. The results are derived automatically from data (machine learning perspective) for 

subsequent model fitting. 

Applications of Microarrays 

• Gene Discovery: DNA Microarray technology helps in the identification of new genes, know about 

their functioning and expression levels under different conditions. 

• Disease Diagnosis: DNA Microarray technology helps researchers learn more about different 

diseases such as heart diseases, mental illness, infectious disease and especially the study of cancer. 

Until recently, different types of cancer have been classified on the basis of the organs in which the 

tumors develop. Now, with the evolution of microarray technology, it will be possible for the 

researchers to further classify the types of cancer on the basis of the patterns of gene activity in the 

tumor cells. This will tremendously help the pharmaceutical community to develop more effective 

drugs as the treatment strategies will be targeted directly to the specific type of cancer. 

• Drug Discovery: Microarray technology has extensive application in Pharmacogenomics. 

Pharmacogenomics is the study of correlations between therapeutic responses to drugs and the 

genetic profiles of the patients. Comparative analysis of the genes from a diseased and a normal 

cell will help the identification of the biochemical constitution of the proteins synthesized by the 

diseased genes. The researchers can use this information to synthesize drugs which combat with 

these proteins and reduce their effect. 

• Toxicological Research: Microarray technology provides a robust platform for the research of the 

impact of toxins on the cells and their passing on to the progeny. Toxicogenomics establishes 

correlation between responses to toxicants and the changes in the genetic profiles of the cells 

exposed to such toxicants. 

 



 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – 2- SBIA5304-MICROARRAY   DATAANALYSIS 

 

 

 

 



 

UNIT II IMAGE PROCESSING        

Image processing, feature extraction, identifying positions of features- Normalization – data cleaning and 

transformation, within array normalization, between array normalization, measuring and quantifying 

microarray variability –variability between replicate features on an array-, variability between 

hybridizations to different arrays. Analysis of differentially expressed genes- significance analysis of 

microarrays.   

Microarray Image Analysis 

• Microarray image processing leads to the characterization of gene expression levels 

simultaneously, for all cellular transcripts (mRNAs) in a single experiment.  

• The calculation of expression levels for each microarray spot/gene is a crucial step to extract 

valuable information.  

• By measuring the mRNA levels for the whole genome, the microarray experiments are capable to 

study functionality, pathological phenotype, and response of cells to a pharmaceutical treatment. 

The processing of the extensive number of non-homogeneous data contained in microarray 

images is still a challenge.  

 

 



• Typically, the microarray images are stored in the Tagged Image File Format (TIFF) as a two-

dimensional array of intensities.  

• In a two colour microarray experiment, two microarray images are available, each image being 

recorded from a specific cyanine dye.  

• The images are denoted by ICy3 and ICy5, corresponding to Cy3 and Cy5 dyes, respectively. 

 

• Microarray grid alignment and foreground separation are the basic processing steps of DNA 

microarray images that affect the quality of gene expression information, and hence impact our 

confidence in any data-derived biological conclusions.  

• Thus, understanding microarray data processing steps becomes critical for performing optimal 

microarray data analysis. 

• The workflow of microarray data processing starts with raw image data acquired with laser 

scanners and ends with the results of data mining that have to be interpreted by biologists.  

• The microarray data processing workflow includes issues related to  

• data management (e.g., MIAME compliant database,  

• (2) image processing (grid alignment, foreground separation, spot quality assessment, data 

quantification and normalization,  



• (3) data analysis (identification of differentially expressed genes, data mining, integration with 

other knowledge sources, and quality and repeatability assessments of results, and  

• (4) biological interpretation (visualization).  

• The main objective of this project is related to image processing, namely grid alignment, 

foreground separation, spot quality assessment, data quantification, normalization and 

visualization. 

 

• Microarray data processing workflow: Fluorescent DNA microarray images obtained from laser 

scanners containing a 2D array of dots with two channels of 532nm (red) and 632nm (green) 

wavelengths.  

• The grid alignment is performed producing a set of lines intersecting at each dot.  

• Dots define a valid foreground.  

• Quality assurance screening eliminates grid cells with unreliable microarray information.  

• Finally, image of sample mean values extracted at each grid cell using particular mask is 

extracted and colored in a red-green-blue space with color assigned to each cluster/pixel.  



• Statistics of each cluster can be viewed in the text area 

• Microarray images represent a collection of microarray spots arranged in one or more sub-grids, 

each grid representing a two dimensional array of spots.  

• Image processing technique are used further on in order to determine spot location within each 

subgrid, spot sizes, spot intensities and background intensities values which are typically delivered 

as raw data parameters for microarray image analysis and interpretation 

• A typical microarray image is generated from an array of cDNA probes which is hybridized 

to two samples, one being red fluor-tagged and the other green fluor-tagged. The composite 

color image is constructed by placing each monochrome image into the appropriate color 

channel.  

• The tasks of microarray image analysis can be further-divided into following tasks: 

1. Array target segmentation 

2. Background intensity extraction 

3. Target detection 

4. Target intensity extraction 

5. Normalization and Ratio analysis 

6. Measurement quality assessment 

7. software package based interpretation 



 

Segmentation is the method of segregating a spitting an image into multiple fundamental fragments. The 



segmentation phase of the image study shows a key role in the statistical analysis, a step where the data is 

produced. 

Four categories of methods for microarray image segmentation are  

(a) fixed /adaptive circle segmentation 

(b) Histogram based techniques  

(c) adaptive shape segmentation  

(d) Machine learning techniques.  

Thus the integration of machine learning in Image processing will contribute a better analysis of medical 

and biological data 

• The fourth category is based on machine learning techniques.  

• There are two categories in this method.  

• They are 

•  (a) supervised segmentation techniques 

• (b) unsupervised segmentation technique.  

• More specifically, methods in unsupervised category employ clustering algorithms, such as k-

means, hybrid k-means, fuzzy c-means,expectation-maximization and partitioning method for 

segmentation of microarray images. 

• An important first step of any microarray experiment is the normalization of the samples.  

• Although the relative impacts differ from platform to platform and sample preparation, non-

biological differences in microarray signals can stem from a variety of factors, such as: global 

constant background noise, non-specific binding signal, non-linear signal response between 

samples, bad spots on the chip due to dust or bubbles or rare manufacturing defects, labeling 

efficiency, hybridization efficiency, and RNA quality. 

• Statistical analysis of microarray data is started through software programs using CEL files 

defined as raw data.  

• Prior to the start of the analysis, quality assessment of raw data is performed as the first step.  



• In order to evaluate the homogeneity of the arrays and to compare the density distribution 

between the arrays, box graphs are plotted for each array using the densities of the logarithm2 

base of the raw data.  

• Images of the CEL files are obtained to observe the dimensional distributions of the densities on 

each array and to detect dimensional artifacts.  

• CEL file: Cell intensity file, probe level PM and MM values. 

 

Each gene or portion of a gene is represented by 1 to 20 oligonucleotides of 25 base-pairs. 

Probe: an oligonucleotide of 25 base-pairs, i.e., a 25-mer 

• Perfect match (PM): A 25-mer complementary to a reference sequence of interest (e.g., part of a 

gene).  

• Mismatch (MM): same as PM but with a single base change for the middle (13th) base 

(transversion purine <-> pyrimidine, G <->C, A <->T). Used to measure non-specific binding and 

background noise.  

• Probe-pair: a (PM,MM) pair. Probe-pair set: a collection of probe-pairs (1 to 20) related to a 

common gene or fraction of a gene.  

• Affy ID: an identifier for a probe-pair set. 



• MA-plots are used to compare the expression values for all possible pair of arrays with a 

probeset-wise median array.  

• The MA plots are generated by plotting M values which are obtained by logarithmic ratios versus 

A values which are average logarithmic intensity values.  

• The pre-normalization quality control step can be complemented by histograms drawn to assess 

the density distributions of each array  

 

 

• After quality control of raw data, background correction and normalization should be applied to 

the data using background correction methods such as RMA (Robust Multiple-Array Average) 

method.  

• With the RMA method, the probe-level signal is removed from the background signal.  

• Quantile normalization is performed by the RMA method and it is ensured that all the arrays have 

the same quantile.  

• Using the RMA method, the expression set to be used in the analysis is generated by normalized 

and the background corrected intensities.  

• After the background correction and the normalization methods are performed, box charts related 

to each array are drawn to re-evaluate the quality control.  



• Following normalization and background correction, a list of genes that differ between two 

different conditions can be obtained by applying various statistical tests to the expression dataset 

to be used for analysis  

Preprocessing of microarray data 

• Measurement values may have undergone various adjustments in the device system, such as 

calibration.  

• Thus, in the presentation of gene expression data, it must be explained how the values are 

generated by the device system. 

•  These expression measures always contain a component called “background noise.”  

• Local background noise levels are measured from the areas of the glass slide that do not contain 

probes.  

• The background correction tries to remove non-specific background noise and local variations of 

the overall signal level on each chip.  

• The most common method to remove the background effect is to remove the measured 

fluorescence intensity around the spots. 



 

The most common methods used for background correction in microarray analysis are; The “Robust 

Multi-Array Average (RMA) Background Correction” method and the “MAS 5.0 Background 

Extraction” methods  



 



 

• RMA background correction has been one of the most commonly used pre-processing method in 

the recent literature.  

• Performed assessments of the measure’s precision, consistency of fold change, and specificity 

and sensitivity of the measure’s ability to detect differential expression and demonstrated the 

substantial benefits of using the RMA measure to users of the Gene Chip technology.  

• They used data from spike-in and dilution experiments to conduct various assessments on the 

MAS 5.0, dChip and RMA expression measures.  

• Irizarry have demonstrated that RMA has similar accuracy but better precision than the other two 

summaries and RMA provides more consistent estimates of fold change  

Quality assessment:  

• It is necessary to evaluate the quality of the data before the normalization of the arrays. Quality 

control assessment should be carried out to determine whether the quality of experimental data is 

acceptable and whether any hybridization should be repeated. 



• Various descriptive data plots are drawn to identify potential problems with hybridization or other 

experimental structures in the quality control evaluation process.  

• Quality control plots are basically divided into diagnostic and spot statistics . 

• Diagnostic Plots: The diagnostic plots include various plots such as MA-plots for evaluating 

intensity bias and histograms for examining signal-to-noise ratios for each channel.  

• Diagnostic plots are usually used to observe non-linear trends between two channels 

 

 



 

 

Histograms:  

• In microarray designs, it is very important to obtain the histograms of the p-values of tests 

conducted to identify different gene expression.  

• Histograms are graphs that are easy to interpret and contain considerable information.  

• A histogram is an indication of whether there is a signal in the gene and whether the genes are 

differently expressed. Histograms also allow for estimation of how many genes are differentially 

expressed in reality. 

 

Spot statistics plots:  

• Spot Statistics help to predict the structures of spot and hybridizations.  



• The main plots that can be obtained with spot statistics are spatial plots, box plots, scatter 

diagrams and volcanic plots . 

Spatial plots:  

• Spatial plots are used to reveal irregular spot and hybridization structures.  

• Spatial plots are used to observe the spatial distributions of the intensities on each array and to 

detect the artifacts.  

• Spatial plots play a fundamental role in determining the background correction, depending on 

whether there are any dimensional artifacts on the arrays  

 



 

Box plots:  

Box plots are one of the most commonly used plots for displaying spot and hybridization structures. At the 

same time, box plots can be drawn to understand the scale differences between different arrays. It is 

necessary to evaluate the box plots to see if between-array normalization is required. The homogeneity of 

the arrays can be observed quite clearly from the box plots . 

 

 

Scatter diagrams:  



• Scatter diagrams used to compare the expression values of two samples are the most commonly 

used plots for visualizing microarray data.  

• In the first step of the microarray data analysis, a scatter diagram is drawn between the two 

intensity channels to view the general structures and variability.  

• Scatter diagrams are also commonly used to find out slides lying away from the center, which 

have abnormal expression structures . 

Volcano plots:  

• Volcano Plots are used to summarize fold change and t-test criteria.  

• A volcano plot is constructed by plotting the negative log of the p-value on the y-axis and log of 

the fold change between the two conditions on the x-axis.  

• For each gene, there is a point on the graph that represents the t-statistic and the fold change  

 

• A volcano plot of the genes in microarray. The Log 2 fold changes and their corresponding-log 10 

p-value of all genes were taken for construction of the volcano plot in the microarray. The genes 



with p < 0.05 are depicted in blue dots. All other genes that were not found to be significant 

altered are in black dots in this array 

• Normalization 

• The aim of normalization methods for large scale expression data, including microarray and 

RNA-seq, is to eliminate systematic experimental bias and technical variation while preserving 

biological variation. 

• Dozens of normalization methods for correcting non-linear experimental differences between 

arrays have been developed during the last two decades. Among them, quantile and lowess are 

well-adopted for analyzing microarray expression data. 

• Expression ratios: the primary comparison 

• Most microarray experiments investigate relationships between 

• related biological samples based on patterns of expression, and 

• the simplest approach looks for genes that are differentially 

• expressed.  

• If we have an array that has N array distinct elements,and compare a query and a reference 

sample, which for convenience we will call R and G, respectively (for the red and green colors 

commonly used to represent array data), then the ratio (T) for the ith gene (where i is an index 

running over all the arrayed genes from 1 to Narray) can be written as 

 

Normalization:  

• The purpose of the normalization phase is to adjust the data according to the technical variation. 

Variations can cause measurement differences between general fluorescence intensity levels of 

various arrays. The normalization process is necessary to make the measured values obtained 

from different arrays comparable.  



• Normalization methods depend on which microarray technology is used. Generally, 

logarithmically transformed data are used for further analysis. 

• The most commonly used methods of normalization are as follows  

1.  Scaling Normalization Method 

2.  Nonlinear Normalization Methods 

3.  Quantile Normalization  

4.  Cyclic Loess Normalization 

5. Contrast Normalization 

• Normalization 

• Typically, the first transformation applied to expression data,referred to as normalization, adjusts 

the individual hybridization. 

• (Note that this definition does not limit us to any particular array technology: the measures Ri and 

Gi can be made on either a single array or on two replicate arrays. Furthermore, all the 

transformations described below can be applied to data from any microarray platform.)  

• Although ratios provide an intuitive measure of expression changes, they have the disadvantage 

of treating up- and downregulated genes differently. Genes upregulated by a factor of 2 have an 

expression ratio of 2, whereas those downregulated by the same factor have an expression ratio of 

(–0.5).  

• The most widely used alternative transformation of the ratio is the logarithm base 2, which has 

the advantage of producing a continuous spectrum of values and treating up- and downregulated 

genes in a similar fashion.  

• Recall that logarithms treat numbers and their reciprocals symmetrically: log2(1) = 0, log2(2) = 1, 

log2(1⁄ 2) = −1, log2(4) = 2, log2(1⁄ 4) = −2, and so on.  

• The logarithms of the expression ratios are also treated symmetrically, so that a gene upregulated 

by a factor of 2 has a log2(ratio) of 1, a gene downregulated by a factor of 2 has a log2(ratio) of 

−1, and a gene expressed at a constant level (with a ratio of 1) has a log2(ratio) equal to zero.  

• For the remainder of this discussion, log2(ratio) will be used to represent expression levels 

• There are three major normalization methods that are commonly employed:  



• linear scaling (MAS5), quantile normalization (RMA), and pair-wise rank-invariant 

normalization (dChip).  

• Linear normalization is the simplest of the methods, which applies a global scaling factor to each 

chip (at the probeset level in MAS5) in order to scale all chips to the same trimmed mean 

intensity.  

• Quantile normalization ranks the intensities for each chip, then replaces the intensities at each 

rank with the mean intensity for all probes of that rank across all chips, effecting a non-linear 

rank-dependent normalization.  

• Pair-wise rank-invariant normalization normalizes all chips against a single reference chip by 

identifying a different subset of rank-invariant genes for each sample/reference chip pair, fitting a 

curve through the training set, then adjusting the intensities of the target chip in an intensity-

dependent manner so that the fit curve will lie on the sample vs. reference diagonal of the 

scatterplot. 

• Linear normalization is unable to correct for non-linear, intensity-dependent differences in gene 

expression between chips, but can be applied to a single chip, independently of other chips.  

• Quantile normalization assumes that differential gene expression is symmetric, in that there will 

be a roughly equal number of up and down regulated genes with equal magnitude distributions. 

Due to its population-based signal, it requires a moderately large number of chips in order to 

work well, and may introduce unexpected artifacts, particularly in outlier samples, in small 

experiments, or experiments in which different cell/tissue types are represented.  

• Rank-invariant normalization makes similar assumptions to those of quantile normalization, 

since both are rank based, but can be applied to as few as two chips. 

• The three most commonly used software packages for processing Affymetrix microarrays, as 

evidenced by recently querying the GEO and ArrayExpress microarray repositories, are: RMA, 

MAS5 , and dChip 

• Each of these employs different methods for background subtraction, signal normalization, and 

probeset summarization (an issue unique to Affymetrix arrays, where multiple probes for the 

same transcript are condensed into a single representative signal). 

• MAS5.0 



• A significant challenge with Affymetrix expression data is to provide an algorithm that combines 

the signals from the multiple Perfect-Match (PM) and Mismatch (MM) probes that target 

each transcript into a single value that sensitively and accurately represents its concentration.  

• MAS5.0 does this by calculating a robust average of the (logged) PM-MM values; increased 

variation is observed at low signal strengths and is at least in part due to the extra noise generated 

by subtracting the MM values from their PM partners. 

• Many gene expression normalization algorithms exist for Affymetrix GeneChip microarrays.  

• The most popular of these is RMA, primarily due to the precision and low noise produced during 

the process.  

• A significant strength of this and similar approaches is the use of the entire set of arrays during 

both normalization and model-based estimation of signal.  

• 

Quantile normalization is an important normalization technique commonly used in high-

dimensional data analysis.  

• However, it is susceptible to class-effect proportion effects (the proportion of class-correlated 

variables in a dataset) and batch effects (the presence of potentially confounding technical 

variation) when applied blindly on whole data sets, resulting in higher false-positive and false-

negative rates. 



• Pair-wise rank-invariant normalization (dchip) 

• Pair-wise rank-invariant normalization normalizes all chips against a single reference chip by 

identifying a different subset of rank-invariant genes for each sample/reference chip pair, fitting a 

curve through the training set, then adjusting the intensities of the target chip in an intensity-

dependent manner so that the fit curve will lie on the sample vs. reference diagonal of the 

scatterplot. 

• 

Differential gene expression analysis 



• Differential expression analysis means taking the normalised read count data and performing 

statistical analysis to discover quantitative changes in expression levels between experimental 

groups.  

• For example, we use statistical testing to decide whether, for a given gene, an observed difference 

in read counts is significant, that is, whether it is greater than what would be expected just due to 

natural random variation. 

• Methods for differential expression analysis 

• There are different methods for differential expression analysis such as edgeR and DESeq based 

on negative binomial (NB) distributions or baySeq and EBSeq which are Bayesian approaches 

based on a negative binomial model.  

• It is important to consider the experimental design when choosing an analysis method.  

• While some of the differential expression tools can only perform pair-wise comparison, others 

such as edgeR, 

limma-voom, DESeq and maSigPro can perform multiple comparisons. 



• 

GEO2R performs comparisons on original submitter-supplied processed data tables using 

the GEOquery and limma R packages from the Bioconductor project.  

• Bioconductor is an open source software project based on the R programming language that 

provides tools for the analysis of high-throughput genomic data.  

http://www.bioconductor.org/packages/2.8/bioc/html/GEOquery.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/


• The GEOquery R package parses GEO data into R data structures that can be used by other R 

packages. The limma (Linear Models for Microarray Analysis) R package has emerged as one of 

the most widely used statistical tests for identifying differentially expressed genes.  

• It handles a wide range of experimental designs and data types and applies multiple-testing 

corrections on P-values to help correct for the occurrence of false positives. Thus, GEO2R 

provides a simple interface that allows users to perform R statistical analysis without command 

line expertise. 
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UNIT III PREDICTION         

• Prediction of cross hybridization to related genes,  

• Thermodynamics of nucleic acid duplexes,  

• Prediction of Tm- probe  

• Dimensionality reduction, principal component analysis,  

• Machine learning methods for cluster analysis; Hierarchical clustering 

• Analysis of relationships between genes, tissues or treatments- similarity of gene or sample 

profiles –Classification of tissues and samples – validation.  

 

• Cross-hybridization is the tendency for chains of nucleic acids to bind to other chains of nucleic 

acids that have similar but not identical sequences.  

• This has the potential to make the interpretation of microarray experiments difficult since 

intensity at a spot on the array does not simply depend on the quantity of target in the sample.  

 

 



 

 

  

 



CrossHybDetector: detection of cross-hybridization events in DNA microarray experiments 

• DNA microarrays contain thousands of different probe sequences represented on their surface.  

• These are designed in such a way that potential cross-hybridization reactions with non-target 

sequences are minimized.  

• However, given the large number of probes, the occurrence of cross hybridization events cannot 

be excluded.  

• This problem can dramatically affect the data quality and cause false positive/false negative 

results. 

• CrossHybDetector is a software package aimed at the identification of cross-hybridization events 

occurred during individual array hybridization, by using the probe sequences and the array 

intensity values.  

• As output, the software provides the user with a list of array spots potentially 'corrupted' and their 

associated p-values calculated by Monte Carlo simulations.  

• Graphical plots are also generated, which provide a visual and global overview of the quality of 

the microarray experiment with respect to cross-hybridization issues. 

• CrossHybDetector is a software package aimed at the identification of cross-hybridization events 

occurred during individual array hybridization, by using the probe sequences and the array 

intensity values.  

• As output, the software provides the user with a list of array spots potentially 'corrupted' and their 

associated p-values calculated by Monte Carlo simulations.  

• Graphical plots are also generated, which provide a visual and global overview of the quality of 

the microarray experiment with respect to cross-hybridization issues. 



 

R is ‘GNU S’, a freely available language and environment for statistical computing and graphics which 

provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical 

tests, time series analysis, classification, clustering, etc. 

  

CRAN is a network of ftp and web servers around the world that store identical, up-to-date, versions of 

code and documentation for R. 

CrossHybDetector is implemented as a package within the statistical computing environment R. 

Functions of marray and methods R packages are internally utilized and are required 

by CrossHybDetector to work. 

Data formats 

CrossHybDetector algorithm uses as input data  

i) the array probe sequences, ii) the spot intensities and array layout, iii) the spot type information 

(i.e. for each spot, whether it is "standard probe", "negative control", "spike-in").  

This information is respectively contained into three separated text files. 

Thermodynamics of nucleic acid duplexes 

• Nucleic acid thermodynamics is the study of how temperature affects the nucleic acid structure of 

double-stranded DNA (dsDNA).  

• The melting temperature (Tm) is defined as the temperature at which half of the DNA strands are 

in the random coil or single-stranded (ssDNA) state.  



• Tm depends on the length of the DNA molecule and its specific nucleotide sequence.  

• DNA, when in a state where its two strands are dissociated (i.e., the dsDNA molecule exists as 

two independent strands), is referred to as having been denatured by the high temperature. 

DNA hybridization 

• DNA is a nucleic acid that contains the genetic instructions monitoring the biological 

development of all cellular forms of life, and many viruses.  

• DNA is a long polymer of nucleotides and encodes the sequence of the amino-acid residues in 

proteins using the genetic code, a triplet code of nucleotides. DNA it is organized as two 

complementary strands, head-to-toe, with the hydrogen bonds between them.  

• Each strand of DNA is a chain of chemical “building blocks”, called nucleotides, of which there 

are four types: adenine (A), cytosine (C), guanine (G) and thymine (T).  

• Between the two strands, each base can only bond with one single predetermined other base: A 

with T, T with A, C with G, and G with C, being the only possible combination. 

• Hybridization refers to the annealing of two nucleic acid strands following the base pairing rule.  

• As shown in Fig at high temperatures approximately 90°C to 100°C the complementary strands 

of DNA separate, denature, yielding single-stranded molecules.  

• Two single strands under appropriate conditions of time and temperature e.g. 65°C, will re-

naturate to form the double stranded molecule.  

• Nucleic acid hybrids can be formed between two strands of DNA, two strands of RNA or one 

strand of DNA and one of RNA.  

• Nucleic acids hybridization is useful in detecting DNA or RNA sequences that are 

complementary to any isolated nucleic acid. 



 

• The nucleic acid duplex stability can be endangered by the interaction between the nucleotide bases. 

Thermodynamics for double helix formation of DNA/DNA, RNA/RNA or DNA/RNA can be 

estimated with nearest neighbour parameters. 

• Enthalpy change, ΔH∘, entropy change, ΔS∘, free energy change, ΔG∘, and melting temperature, 

Tm, were obtained on the basis of the nearest-neighbour model. 

• The nearest-neighbour model for nucleic acids, known as the NN model, assumes that the stability 

of a given base pair depends on the identity and orientation of neighbouring base pairs  

• In the NN model, sequence dependent stability is considered in terms of nearest-neighbour 

doublets.  

• In duplex DNA there are 10 such unique internal nearest-neighbour doublets.  

• Listed in the 5’-3’ direction, these are AT/AT TA/TA AA/TT AC/GT CA/TG TC/GA CT/AG 

CG/CG GC/GC and GG/CC.  

• Dimmer duplexes are represented with a slash separating strands in antiparallel orientation e.g. 

AC/TG means 5’-AC-3’ Watson–Crick base-paired with 3’-TG-5’. 

• The total difference in the free energy of the folded and unfolded states of a DNA duplex can be 

approximated at 37o, with a nearest-neighbour model: 



 

•  



 



• The nearest-neighbour parameters of Delcourt et al., SantaLucia et al., Sugimoto et al. and 

Allawi et al.were evaluated from the analysis of optical melting curves of a variety of short 

synthetic DNA duplexes in 1 M Na+. 

• The observed trend in nearest-neighbor stabilities at 37°C is GC/CG = CG/GC > GG/CC > 

CA/GT = GT/CA = GA/CT = CT/GA > AA/TT > AT/TA > TA/AT, as in Table 2.  

• This trend suggests that both sequence and base composition are important determinants of DNA 

duplex stability. It has long been recognized that DNA stability depends of the percent G-C 

content. 

Prediction of Tm- probe 

 



 

Dimensionality reduction in microarray 

• The number of input variables or features for a dataset is referred to as its dimensionality. 

• Dimensionality reduction refers to techniques that reduce the number of input variables in a 

dataset. 

• More input features often make a predictive modeling task more challenging to model, more 

generally referred to as the curse of dimensionality. 

• High-dimensionality statistics and dimensionality reduction techniques are often used for data 

visualization. Nevertheless these techniques can be used in applied machine learning to simplify a 

classification or regression dataset in order to better fit a predictive model. 



 

• Traditionally manual management of the high dimensional data set is more challenging.  

• With the advent of data mining and machine learning techniques, knowledge discovery and 

recognition of patterns from these data can be done automatically.  

• However, the data in the database is filled with a high level of noise and redundancy.  

• One of the reasons causing noise in these data is an imperfection in the technologies that collected 

the data and the source of the data itself is another reason.  

• Dimensionality reduction is one of the famous techniques to remove noisy (i.e. irrelevant) and 

redundant features.  

• For data mining techniques such as classification and clustering dimensionality reduction is 

treated as preprocessing task for better performance of the model.  

• Dimensionality reduction techniques can be classified mainly into feature extraction and 

feature selection. 

• Feature extraction approaches set features into a new feature space with lower dimensionality and 

the newly constructed features are usually combinations of original features.  

• On the other hand, the objective of feature selection approaches is to select a subset of features 

that minimize redundancy and maximize relevance to the target such as the class labels in 

classification.  

• Therefore, both feature extraction and feature selection are capable of improving learning 

performance, lowering computational complexity, building better-generalized models, and 

decreasing required storage. 

• Fig shows the classification of dimension reduction process and the data set in which these are 

generally applied in the literature.  



• Feature selection selects a group of features from the original feature set without any changeover 

and maintains the physical meanings of the original features.  

• Therefore, feature selection is superior in terms of better readability and interpretability.  

• One of the applications would be in gene microarray data analysis.  

• Feature selection has its significance in many real-world applications such as finding relevant 

genes to a specific disease in Microarray data, analysis of written text, and analysis of medical 

images, analysis of the image for face recognition and for weather forecasting. 

•  

 

 

 

There are four basic stages in feature selection method:  

Generation Procedure (GP), to select candidate feature subset  



Evaluation Procedure (EP), to evaluate the generated candidate feature subset and output, a 

relevancy value  

Stopping Criteria (SC): To determine when to stop  

Validation Procedure (VP): To determine whether it is the optimal feature subset or not. 

Generation Procedure (GP) 

This procedure generates a subset of features that is relevant to the target concept. 

 GP are of two types 

Individual Ranking 

Measures the relevance of each feature. The feature relevance is measured based on some 

evaluation function. In this case, each individual feature is evaluated by assigning some weight or score. 

Subset Selection 

A subset of features is selected based on some search strategy. If the size of the data set is N×M, 

then a total number of features in the data set is N. The possible number of subsets of features is 2N. This 

is even very large for a medium sized feature set. Therefore suitable search strategy is applied to this 

process.  

The search is classified as: 

A. Complete: It traverses all the feasible solutions. This procedure does an exhaustive search for 

the best possible subset pertaining to the evaluation function. Example of complete search is a branch and 

bound best first search. 

B Heuristic Deterministic: uses a greedy strategy to select features according to local change. 

There are many alternatives to this straightforward method, but the creation of subset is basically 

incremental. Examples of this procedure are sequential forward selection, sequential backward selection, 

sequential floating forward selection, and sequential floating backward selection. 

C. Nondeterministic (Random): It attempts to find an optimal solution in a random fashion. This 

procedure is new in the field of feature selection methods compared to the above two categories. 

Optimality of the selected subset depends on the resources available. 

Evaluation Procedure (EP) 



 An optimal subset is always relative to a certain evaluation function. An evaluation function tries 

to measure the discriminating ability of a feature or a subset to distinguish the different class labels.  

The evaluation function is categorized as distance, information (or uncertainty), dependence, 

consistency, and classifier error rate.  

Distance Measures  

For a two-class problem say A and B are two features, then A and B are selected on the basis of 

their distance (e.g. Euclidian distance). If the distance is zero then the features are said to be redundant 

and ignored. The higher the distance the more the features are discriminating.  

Information Measures  

This determines the information gain for the feature. Feature A is preferred over feature B if the 

information gain of A is more than B (e.g. entropy measure).  

Dependence Measures  

Dependence or correlations of the ability to predict the value of one variable from the value of 

another. If the correlation of feature A with class C is higher than the correlation of feature B with class C 

then feature A is preferred to B. This measure finds the minimally sized subset that satisfies the 

acceptable inconsistency rate that is usually set by the user.  

Consistency Measure  

This measure finds the minimally sized subset that satisfies the acceptable inconsistency rate that 

is usually set by the user. 

Classifier Error Rate  

The evaluation function is the classifier itself. It measures the accuracy of the classifier for 

different subsets of feature set and measures the error rate for the different subset. We have classified the 

feature selection method as non-soft computing based and soft computing based. Based on the generation 

procedure and evaluation function, the feature selection methods are classified, where the generation 

procedure and evaluation functions are two dimensions. 

Stopping Criteria  

It indicates the end of the process. Commonly used stopping criteria are:  

(i) When the search completes  



(ii) When some given bound (minimum number of features or a maximum number of iterations) is 

reached. 

(iii) When a subsequent addition (or deletion) of any feature does not produce a better subset and  

(iv) When a sufficiently good subset (e.g. a subset if its classification error rate is less than the 

allowable error rate for a given task) is selected.  

Feature selection approaches are primarily categorized as a filter, wrapper, and embedded 

method.  

Recently other feature selection methods are gaining popularity i.e., hybrid and ensemble 

methods (Fig). 

 

• 

Filter method deals with individual ranking as well as subset selection.  

• The individual ranking is based on the evaluation functions such as distance, information, 

dependence, and consistency excluding the classifier (Fig).  

• Filter techniques judge the relevance of genes by looking only at the intrinsic properties of the 

data. In microarray data, a gene relevance score is calculated, and low-scoring genes are removed. 

Afterward, this subset of genes is presented as input to the classification algorithm.  

• The filtering technique can be used as a pre-processing step to reduce space dimensionality and 

overcome overfitting.  



 

• The filter approach is commonly divided into two different sub-classes: 

• Individual evaluation and subset evaluation. 

• In individual evaluation method, the gene expression dataset is given as input. The method has an 

inbuilt evaluation process according to which a rank is provided to each individual gene based on 

which the selection is done.  

• Different criteria can be adopted, like setting a threshold for the scores and selecting the genes 

which satisfy the threshold criteria, or sometimes the threshold can be chosen in such a way that a 

maximum number of genes can be selected.  

• Then, the subset selected can be the final subset which is used as the input to the classifiers. In 

subset selection, all GP and evaluation function excluding the classifier can be taken for the 

combination 

• However, methods in this framework may suffer from an inevitable problem, which is caused by 

searching through 

• the possible feature subsets.  

• The subset generation process usually increases the computational time but gives more relevant 

feature subset.  

• In literature, it is found that the subset evaluation approach outperformed the ranking methods 

• The filter method is again classified into the ranking method and space search method.  

• Fig.describes the taxonomy of filter feature selection method. 



 

• Taxonomy of filter FS methods: Pros of Filter Feature Selection Method. 

• The method is simple and fast. 

• It scales well to high dimensional data. 

• It is independent of classifiers. 

• Cons of Filter Feature Selection Method 

• The method is generally univariate or low variate. 

 

Wrapper Method 

• In the wrapper approach, all GP can be taken in combination with the classifier as evaluation 

function and generates the relevant feature subset.  

• Wrappers are feedback methods, which incorporate the machine-learning algorithm in the feature 

selection process, i.e., they rely on the performance of a specific classifier to evaluate the quality 

of a set of features.  

• Wrapper methods search through the space of feature subsets and calculate the estimated 

accuracy of a single learning algorithm for each feature that can be added to or removed from the 

feature subset.  

• The search may be a GP and the evaluation function is a classifier. 



 

Wrapper Method 

1. How to find all possible feature subsets for evaluation? 

2. How to satisfy oneself with the classification performance of the chosen classifier in order to 

guide the search and what should be the stopping criteria? 

Which predictor to use? 

 

The wrapper approach of feature selection is classified as sequential search based and Heuristic 

search based.  

The taxonomy of the wrapper model is given in Fig 



 

• Usually, an exhaustive search is too expensive, and thus non-exhaustive, heuristic search 

techniques like genetic algorithms, greedy stepwise, best first or random search are often used.  

• Here, feature selection occurs externally to the induction method using the method as a 

subroutine rather than as a post-processor.  

• In this process, the induction algorithm is called for every subset of feature consequently inducing 

high computational cost 

• Embedded Method 

• Despite the lower time consumption of the filter method, a major limitation of the filter approach 

is that it is independent of the classifier, usually resulting in worse performance than the 

wrappers.  

• However, the wrapper model comes with an expensive computational cost, which is particularly 

aggravated by the high dimensionality of microarray data.  

• An intermediate solution for researchers is the use of hybrid or embedded methods, which use the 

core of the classifier to establish criteria to rank features.  

• Embedded methods are more tractable and efficient in comparison to wrapper approach.  

• This method has a lower risk of overfitting compared to wrapper approach. Probably the most 

famous embedded method is Support Vector Machine based on Recursive Feature Elimination 

(SVM-RFE).  



 

 

 

The embedded method is classified into three different categories.  
The taxonomy of embedded method is shown in Fig.  

 

Hybrid Method 

• It is the combination of any number of same or different classical methods of feature selection 

such as filter and wrapper methods.  

• The combination can be a filter-filter, filter-wrapper, and filter-filter-wrapper where the gene 

subset obtained from one method is served as the input to another selection algorithm.  

• Generally, filter is used to select the initial gene subset or help to remove redundant genes.  



• Any combination of several filter techniques can be applied vertically to select the preliminary 

feature subset.  

• In the next phase, the selected features are given to the wrapper method for the optimal feature 

selection. This method uses different evaluation criteria.  

• Therefore, it manages to improve the efficiency and prediction accuracy with the better 

computational cost for high dimensional data. 

 

 

Clustering Techniques Analysis for Microarray Data 

• There are two major types of microarray experiments: cDNA microarray and oligonucleotide 

arrays .  



• Both the experiments consist of basic three steps: first is chip manufacturing, second are target 

preparation, labelling and hybridization and third is the scanning process.  

• Gene expression data is expressed in form of expression matrix having real values showing the 

protein level of a particular gene.  

• Gene expression data contains thousands of genes but less number of samples.  

• There are various problems with microarray data such as:  

(a) Microarray data is high dimensional data characterized by thousands of genes for small sample 

size, which grounds significant problems such as irrelevant and noise genes, complexity in 

constructing classifiers, and multiple gene-expression values are missing due to inappropriate 

scanning.  

(b) Another drawback is mislabeled sample data or doubtful sample results by experts.  

(c) Biological relevancy result is another integral criterion that should be taken into account in analyzing 

microarray data rather than only focusing on accuracy of cancer classification. 

Clustering techniques: 

• In gene expression data, it is worth to cluster both genes and samples. There are three types of 

clustering that can be applied on microarray data: gene based clustering, sample based clustering 

and subspace clustering where genes and samples are treated in same manner.  

• In case of gene clustering, the clustering is used to reduce the search dimension of the dataset.  

• In case of sample based clustering, the clustering is used to group the samples of same kind 

whereas in subspace based clustering both the tasks are performed.  

• Gene based clustering can be applied on the supervised dataset where the samples are already 

classified. 

• The distinctive characteristic of gene expression data allows clustering both gene and samples. 

The clustering analysis of sampled data is to find new biological classes or to refine the existing 

ones 

Hierarchical Clustering:  

(a) Agglomerative hierarchical clustering –In this each object initially represents a cluster of its own. 

Then clusters are recursively merged until the desired cluster formation is obtained.  



(b) Divisive hierarchical clustering - All objects initially belong to one cluster. Then the cluster is 

divided into sub-clusters which are successively divided into sub clusters. This process continues until the 

desired cluster structure is obtained.  

Some commonly used metrics for hierarchical clustering are: Euclidean distance, Squared Euclidean 

distance, Manhattan distance, Maximum distance, Mahalanobis distance and cosine similarity 

 

 



  

 

 



 

 

 



 

 

 



 

 



 



 

 









Partitioning Algorithms: 

They are iterative relocation algorithm.  

They are non hierarchical or flat methods.  

This method divides the data objects into non overlapping clusters such that each data object is in exactly 

one subset.  

There are several methods which are used to implement partitioning clustering such as:  

(a) K-medoids,  

(b) K-means,  

(c) Probabilistic 

(d) K-means is one of the simplest unsupervised learning algorithms that solve the well known 

clustering problem. It performs the division of objects into clusters which are similar between 

them and dissimilar to the objects belonging to another cluster.  

(e) The procedure follows a simple and easy way to classify a given data set through a certain 

number of clusters (assume k clusters) fixed a priority. The main idea is to define k centroids, one 

for each cluster. These centroids should be placed in a cunning way because of different location 

causes different result.  

(f) So, the better choice is to place them as much as possible far away from each other. The next step 

is to take each point belonging to a given data set and associate it to the nearest centroid.  

(g) When no point is pending, the first step is completed and an early groupage is done. At this 

point we need to re-calculate k new centroids as barycenters of the clusters resulting from the 

previous step.  



(h) After we have these k new centroids, a new binding has to be done between the same data set 

points and the nearest new centroid. A loop has been generated. As a result of this loop we may 

notice that the k centroids change their location step by step until no more changes are done. 

Working of K-medoid Algorithm 

 

K-Medoids Method: 

• It is one of the important method of partitioning. K-medoid is based on medoids calculating by 

minimizing the absolute 

• distance between the points and the selected centroid, rather than minimizing the square distance. 

As a result, it's more robust to noise and outliers than k-means. In k-medoids clustering, each 

cluster is represented by one of the data point in the cluster. 

• These points are named cluster medoids. Here, k data objects are selected randomly as medoids to 

represent k cluster and remaining all data objects are placed in a cluster having medoid nearest (or 

most similar) to that data object. After processing all data objects, new medoid is determined 

which can represent cluster in a better way and the entire process is repeated.  



• Again all data objects are bound to the clusters based on the new medoids. In each iteration, 

medoids change their location step by step. This process is continued until no any medoid move. 

As a result, k clusters are found representing a set of n data objects  

. Density based clustering:  

The clusters in this are dense regions of objects in space that are separated by low density regions where 

cluster density is defined as each point must have a minimum number of points in its neighborhood. 

(i) Based on density based connectivity e.g. DBSCAN 

(ii) Based on density distribution functions e.g. DENCLUE 

4. Constraint based clustering:  

• Constraints are strong background information that should be satisfied.  

• Constraints also reduce the search space and all the data in dataset has common property.  

• e.g. in gene expression data set we have a constraint of low and high expressed genes. 

5. Evolutionary Clustering:  

• It is used to process time stamped data to produce a series of clustering.  

• The similarity among existing data points varies along with time. Present clusters mainly depend 

on the current data features.  

• Data is likely to change not too rapidly.  

• Evolutionary clustering is useful for the following reasons: (i) consistency, (ii) noise removal (iii) 

smoothing (iv) cluster correspondence. 

 Mostly used for online document clustering 

 



Graph Partitioning based Algorithms:  

It depends on finding the minimum cut or minimum cliques in the proximity graph 

Many other graph partitioning algorithms depends on eigen vectors and eigen values also.  

It consists of three steps:  

(i) preprocessing i.e. to covert data into graph and finding similarity between the nodes.  

(ii) partitioning of the graph.  

(iii) performing clustering until required number of clusters are not obtained. 

Each clustering algorithms belongs to one of the clustering types listed above.  

So that, Partitioning method is exclusive clustering, Fuzzy C-means is an overlapping clustering 

algorithm, Hierarchical clustering is obvious and lastly Mixture of Gaussian is a probabilistic clustering 

algorithm. 

• Once gene expression data is obtained, one typically wishes to compare one experimental group 

versus a second one (or more) in order to find out which genes/transcripts change significantly 

between conditions. 

• The process is called differential expression analysis. 

• The goal of differential expression analysis is to perform statistical analysis to discover changes 

in expression levels of defined features (genes, transcripts, exons) between experimental groups 

with replicated samples. 

• Essentially, it aims at comparing the average expression of a gene in group A with the average 

expression of this gene in group B. 



 

Many tools exist that will perform differential expression analysis. The output of such tools is similar, and 

essentially revolves around interpreting: 

• Fold change: 

For a given comparison, a positive fold change value indicates an increase of expression, while a 

negative fold change indicates a decrease in expression. 

This value is typically reported in logarithmic scale (base 2). For example, log2 fold change of 

1.5 for a specific gene in the “WT vs KO comparison” means that the expression of that gene is 

increased in WT relative to KO by a multiplicative factor of 2^1.5 ≈ 2.82. 

• P-value: Indicates whether the gene analysed is likely to be differentially expressed in that 

comparison. 

This applies to each gene individually, assuming that the gene was tested on its own without 

consideration that all other genes were also tested. More on P-value will follow! 

• Adjusted (or, corrected for multiple genes testing) p-value: The p-value obtained for each 

gene above is re-calculated to correct for running many statistical tests (as many as the number of 

genes). In the result, we can say that all genes with adjusted p-value < 0.05 are significantly 

differentially expressed in these two samples. 



How to interpret P-value ? 

First, we need to talk about statistical hypothesis testing. 

 

Two hypotheses should be described upon designing an experiment. 

• The NULL hypothesis H0: that there is NO difference, for example, of means of weight between 

two populations of subjects. 

• The alternative hypothesis H1: there is difference. 

 

• Once the hypothesis are drawn and the significance level set, we perform a statistical test… and 

we obtain a p-value. 

• If the p-value is below the significance level (for example, 0.05), we can reject the null 

hypothesis in favor of the alternative hypothesis, i.e. we conclude that the observed difference is 

the result of a real effect. 

• Once the hypothesis are drawn and the significance level set, we perform a statistical test… and 

we obtain a p-value. 



• If the p-value is below the significance level (for example, 0.05), we can reject the null 

hypothesis in favor of the alternative hypothesis, i.e. we conclude that the observed difference is 

the result of a real effect. 

• Example: You study some bacteria and it appears to you that their colonies don’t live more than 

65 days. 

• But you want to check if it is true. 

• And you want to test your hypothesis at the significance level of 0.05. 

• So you take a sample of 157 colonies with known life span for each. 

• You calculate the mean (65.12 days) and the standard deviation (9). 

• H0: life spam mean = 65 

• HA: life spam mean > 65 

• It is well known that to test such a hypothesis on the mean of a population there is the z-test. 

• The test statistic for this z-test is calculated as (each test uses its own formula to calculate the test 

statistic): z = (65.12 - 65) / (9 * sqrt(157)) = 0.167 

Each test statistics has a known distribution:  

 

which allows to calculate the p-value, that is, to find the probability of observing a test statistic at 

least this extreme when assuming the null hypothesis. 

In our case the p-value to obtain the values of z-test statistic greater than 0.167 is equal 0.3936. 

Since this is greater than our significance level, 0.05, we fail to reject the null hypothesis (we are 

NOT in the green zone of the distribution above). 



This means that the data does not support the claim that the mean is greater than 65. 

Errors can happen in hypothesis testing: 

 

Type II errors (false negatives): you are missing some real changes! 

Type I errors (false positives): some changes appear to be the result of a real effect while they are 

not! 

Type I errors (false positives) are the most dangerous as they can lead to wrong conclusions. 
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UNIT IV CARBOHYDRATE MICROARRAYS  

Carbohydrate microarrays- Carbohydrate sources- Synthesis of oligosaccharides - Isolation of 

oligosaccharides from natural sources- Arrays of monosaccharides and disaccharides- Arrays of 

polysaccharides- Arrays of oligosaccharides- immunological applications. 

• Carbohydrate microarray technologies are new developments at the frontiers of glycomics.  

• Results of ‘proof of concept’ experiments with carbohydrate-binding proteins of the immune 

system — antibodies, selectins, a cytokine and a chemokine and several plant lectins indicate that 

microarrays of carbohydrates (glycoconjugates, oligosaccharides and monosaccharides) will 

greatly facilitate not only surveys of proteins for carbohydrate-binding activities but also 

elucidation of their ligands.  

• It is predicted that both naturally occurring and synthetic carbohydrates will be required for the 

fabrication of microarrays that are sufficiently comprehensive and representative of entire 

glycomes.  

• New leads to biological pathways that involve carbohydrate–protein interactions and new 

therapeutic targets are among biomedically important outcomes anticipated from applications of 

carbohydrate microarrays. 

• Unlike proteins and nucleic acids, oligosaccharides are difficult to synthesize chemically. 

• This is because some oligosaccharide chains are linear, others are branched, the monosaccharide 

building blocks are in alpha or beta anomeric configurations, and adjacent monosaccharides are 

linked via different carbon atoms in their sugar rings.  

• For these reasons, multiple selective protection and deprotection steps are required for the hydroxyl 

groups of monosaccharides during chemical synthesis of oligosaccharides; the manual synthesis of 

oligosaccharides is a major undertaking 

• The solid-phase synthesis approach has the advantage of avoiding intermediate isolation and 

purification steps.  

• An automated solid-phase method that includes selective protection and deprotection steps has been 

introduced and applied to the synthesis of several glucose- and mannose-containing 

oligosaccharides 



• An alternative approach to the synthesis of oligosaccharides is a programmable ‘one-pot’ 

approach, in which an oligosaccharide of interest is generated by the sequential addition of 

building blocks (thioglycosides) that are either fully protected or have one hydroxyl group 

exposed.  

• 

It has been shown that the relative reactivity value (RRV) of a thioglycoside building block in the 

glycosidation reaction can be tuned in the presence of protecting groups; more than 200 building 

blocks, with RRVs ranging from 1 to 105 , have been designed and synthesized.  

• A computer programme called ‘Optimer’ has been developed to guide the selection of building 

blocks for the one-pot synthesis of a given oligosaccharide.  

• If RRVs differ by more than 102 , the desired glycosidic bonds will be formed by the sequential 

addition of building blocks in the order of the RRV values.  



• Once the required building blocks with protecting groups are prepared, oligosaccharides can be 

synthesized in a short period of time (in minutes or hours, instead of days or months using 

traditional methods) using this programmable one-pot approach 

• Glycans are one of the major biological polymers found in the mammalian body.  

• They play a vital role in a number of physiologic and pathologic conditions.  

• Glycan microarrays allow a plethora of information to be obtained on protein–glycan binding 

interactions. 

• Overview of a typical glycan microarray workflow 

• 

Glycans are chemically or enzymatically synthesized, or isolated and purified from either source 

materials, and then conjugated with a linker which is appropriate for the printing surface.  



• The glycoconjugates are then printed upon appropriately functionalized slides, followed by 

blocking; the printed slides are stored under ideal conditions prior to experiments.  

• Many arrays can be printed on a single slide, termed sub-arrays. The slides can then be used in 

a glycan microarray experiment where they are incubated with a glycan binding protein (GBP), 

such as lectin, antibody, or serum, virus, etc., Followed by addition of a detection reagent, if the 

primary analyte was not fluorescently labeled, for example a fluorescent secondary antibody or 

streptavidin.  

• After washing the slide to remove unbound material, the bound material is then identified and 

measured by scanning using a fluorescence microarray scanner. The image produced can then be 

analyzed using automated or manual methods to generate the array results. These results can in turn 

be stored in a database, or interpreted either manually or by automatic algorithms. 

• Isolation of oligosaccharides from natural sources  

• Oligosaccharides with reducing termini are ideal for derivatization so that they can be immobilized.  

• Free reducing oligosaccharides may be isolated from human or animal milk and urine, or they may 

be in the form of N-linked glycoprotein oligosaccharides released by the enzymes peptide-N-(N-

acetyl-b-glucosaminyl)asparagine amidase (PNGase F) and endo-b-N-acetylglucosaminidase F 

(Endo F)  or by hydrazinolysis.  

• O-linked glycoprotein oligosaccharides may be released by mild alkaline hydrolysis  or 

hydrazinolysis.  

• Oligosaccharides may, if desired, be released from glycolipids by endoceramidase .  

• Oligosaccharide fragments can be obtained from proteoglycans and glycosaminoglycans by lyase 

digestion or nitrous acid degradation , and, in the case of hyaluronic acid, also by hydrolase 

digestion .  

• Various chemical methods may be used to obtain oligosaccharide fragments from bacterial and 

plant polysaccharides; these include acid or alkaline hydrolysis, acetolysis and Smith degradation. 

• Reduced oligosaccharides (oligosaccharide alditols) can be manipulated chemically at the reduced 

end after mild periodate oxidation to cleave the terminal open chain monosaccharide residue and 

create a reactive aldehyde for derivatization.  



• Reduced oligosaccharides are typically obtained when O-linked glycans are released from 

glycoproteins by reductive alkaline hydrolysis.  

• Oligosaccharide alditols are also available when reduction is carried out, for example, before HPLC 

separation, to eliminate double peaks resulting from the resolution of a and b anomers at their 

reducing ends. 

• Multiple chromatographic steps are often necessary for the isolation/purification of 

oligosaccharides.  

• These include gel filtration, weak and strong anion-exchange chromatography, thin-layer 

chromatography (TLC),normal-phase HPLC with an amine or amide column, and reversed-phase 

HPLC using a C18 or graphitized porous carbon column. 

• Arrays of monosaccharides and disaccharides 

• The monosaccharides were covalently immobilized by conjugation to self-assembling monolayers 

of alkenethiols on the gold surface.  

• The first step was to prepare monolayers consisting of two alkenethiols, one of which has a 

benzquinone group exposed.  

• The monosaccharides, in the form of diene conjugates, are then applied as 1 ml spots (2 mM in 

water) and attached to the slides through the Diels–Alder cycloaddition reaction.  

• This is a very high yielding process, often reagent free, and moisture and solvent tolerant, and is 

therefore ideal for the microarray format 





 

• The covalently immobilized monosaccharides were evaluated by profiling the binding 

specificities of five plant lectins, concanavalin A (Con A), Benderia simplicifolia, Erythrinia 

cristalli, Ulex europeeus and Galanthus nivalis, that are known to bind to different 

monosaccharides.  

• Specific monosaccharide binding was observed for the five lectins, which were labeled 

fluorescently with rhodamine. Specific binding of Con A to arrayed mannose was also shown by 

surface plasmon resonance spectroscopy.  

• In further experiments, the monosaccharide array was probed with the glycosyltransferase b-1,4-

galactosyltransferase; it was shown that enzyme-mediated glycosylation of immobilized N-

acetylglucosamine occurred in the presence of the donor substrate, UDP-galactose. 



• Shin’s group has reported another approach to carbohydrate microarray fabrication. They used 

glass slides modified by thiol groups as solid supports.  

• One monosaccharide, N-acetylglucosamine, and three disaccharides, lactose, cellobiose and 

maltose, in the form of glycosylamines, were converted into maleimide conjugates and then 

covalently bound to the glass surface by hetero-Michael addition reaction between the thiol group 

on the solid surface and the maleimide moiety of the sugar derivative .  

• The maleimide-conjugated carbohydrates (from 0.1 to 5.0 mM) were printed with a pin-type 

microarrayer on the slides at a spot size of 100 mm and a pitch of 200 mm. Carbohydrate–protein 

interaction studies were performed with fluoresce in labeled plant lectins.  

• The binding of the three plant lectins examined, Con A, Erythrina cristagalli and Triticum vulgaris, 

to the monosaccharide and the disaccharides was in accord with their known specificities. 

• Arrays of polysaccharides 

• Wang et al. described microarrays of polysaccharides and glycoproteins on nitrocellulose-coated 

glass slides.  

• They used a high-precision robotic arrayer that was developed for cDNA and the spots were 

generated without derivatization.  

• The spot sizes were 150 mm with a pitch of 375 mm. These were air dried to allow adsorption 

(noncovalent immobilization) onto the hydrophobic surface. 
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UNIT V DATABASES AND TOOLS FOR MICROARRAYS 

• Bioinformatics in Arrays- Databases and tools for microarrays- Bioconductor, expression 

profiler, EST databases- Assessing levels of gene expression using EST’s, TIGR gene 

indices, STACK, SAGE, CGAP, Xprofiler, ARRAY DB, cluster, tree view, Scanalyze, 

gene cluster, informatics aspects of microarray production- MGED and gene-ontology, 

description of MIAME ((Minimum Information About a Microarray Experiment), 

Business Aspects of Biochip Technologies- Microarray Technology in Treating Disease. 

Bioconductor 

 

What is Bioconductor used for? 

• Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data.  

• Bioconductor uses the R statistical programming language, and is open source and open 

development.  



• It has two releases each year, and an active user community. 

limma powers differential expression analyses for RNA-sequencing and microarray studies 

limma is an R/Bioconductor software package that provides an integrated solution for analysing 

data from gene expression experiments. It contains rich features for handling complex experimental 

designs and for information borrowing to overcome the problem of small sample sizes. Over the 

past decade, limma has been a popular choice for gene discovery through differential expression 

analyses of microarray and high-throughput PCR data. The package contains particularly strong 

facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have 

been significantly expanded in two important directions. First, the package can now perform both 

differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All 

the downstream analysis tools previously restricted to microarray data are now available for RNA-

seq as well. These capabilities allow users to analyze both RNA-seq and microarray data with very 

similar pipelines. Second, the package is now able to go past the traditional gene-wise expression 

analyses in a variety of ways, analyzing expression profiles in terms of co-regulated sets of genes 

or in terms of higher-order expression signatures. This provides enhanced possibilities for 

biological interpretation of gene expression differences. 

ne  



The limma package is a core component of Bioconductor, an R-based open-source software 

development project in statistical genomics. It has proven a popular choice for the analysis of data 

from experiments involving microarrays, high-throughput polymerase chain reaction (PCR), 

protein arrays and other platforms. The package is designed in such a way that, after initial pre-

processing and normalization, the same analysis pipeline is used for data from all technologies. 

Recently, the capabilities of limma have expanded significantly in two important directions. First, 

the package can now perform both differential expression (DE) and differential splicing analyses 

of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to 

microarray data are now available for RNA-seq as well. These capabilities allow users to analyse 

both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to 

go past the traditional gene-wise expression analyses in a variety of ways, analysing expression 

profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. 

This provides enhanced possibilities for biological interpretation of gene expression differences. 

 

 

EST databases- Assessing levels of gene expression using EST’s 

• EST expression profiling has by now become well-established high-throughput method for 

acquiring quantitative information on a sample's transcriptome and for studying differential 

gene expression, inferred from the differences in the relative numbers of EST tags between 

two libraries.  



• To facilitate gene discovery, the EST content of a library can be altered to reduce the 

abundance of transcripts representing genes with high expression.  

• To achieve this a library can be either normalised by removing the most abundant 

transcripts in order to reduce or eliminate the differences in the relative transcript 

abundances to a narrow range , or subtracted to enrich the library for rare novel transcripts 

.  

• Ideally this should create a library containing the same or similar tag counts for the low 

abundance sequences as before, but with vastly reduced counts for abundant or unwanted 

cDNAs.  

• Neither normalised nor subtracted libraries are suitable for studying differential mRNA 

expression because of the significantly changed representation or removal of the original 

transcripts 

 

The TIGR Gene Indices 

• The TIGR Gene Indices (http://www.tigr.org/tdb/tgi) are a collection of 77 species-

specific databases that use a highly refined protocol to analyze gene and EST 

sequences in an attempt to identify and characterize expressed transcripts and to 

present them on the Web in a user-friendly, consistent fashion. 

• A Gene Index database is constructed for each selected organism by first clustering, 

then assembling EST and annotated cDNA and gene sequences from GenBank. 

This process produces a set of unique, high-fidelity virtual transcripts, or tentative 

consensus (TC) sequences. The TC sequences can be used to provide putative genes 

with functional annotation, to link the transcripts to genetic and physical maps, to 

provide links to orthologous and paralogous genes, and as a resource for 

comparative and functional genomic analysis. 

 

 



Construction of the Gene Indices 

The process used to assemble each Gene Index is similar to that described previously, although 

some modifications have been made to improve the efficiency and accuracy of the process. 

mgBLAST, a modified version of the Megablast program, is now used for the pairwise sequence 

comparisons that are the basis for defining the sequence clusters which form the basis for assembly. 

For large clusters containing hundreds or thousands of sequences (e.g. highly expressed genes such 

as actin), sequence representation is reduced prior to assembly using a variety of multilayer 

approaches, including transitive clustering, containment clustering and seeded clustering with 

known genes. Following clustering, the Paracel Transcript Assembler (PTA), a modified version 

of CAP3 assembly program, is used to assemble each TC. An open source set of software tools 

that embody this process, TGICL, is available (http://www.tigr.org/tdb/tgi/software) with other 

open-source utilities for users interested in performing a similar analysis on their own datasets. 

SAGE 

Serial Analysis of Gene Expression (SAGE) is a transcriptomic technique used by molecular 

biologists to produce a snapshot of the messenger RNA population in a sample of interest in the 

form of small tags that correspond to fragments of those transcripts. 

Serial analysis of gene expression (SAGE) uses mRNA from a particular sample to create complementary 

DNA (cDNA) fragments which are then amplified and sequenced using high-throughput sequencing 

technology. 

The mechanism behind SAGE is based on tags which can identify the original transcript, and rapid 

sequencing of chains of tags linked together. The procedure essentially simplifies sequencing by linking 

the cDNA segments together in a long chain. 

The resulting analysis gives a snapshot of the transcriptome of the sample, including the identity and 

abundance of each mRNA. 

Steps of SAGE 

SAGE is a complex protocol with many steps. 

Step 1: mRNA is isolated from the sample and reverse transcribed using biotinylated primers to generate 

cDNA 

Step 2: cDNA is bound via biotin to streptavidin microbeads 



Step 3: cDNA is cleaved with restriction enzymes freeing it from the beads 

Step 4: Cleaved DNA is washed out, leaving truncated cDNA bound to the beads 

Step 5: Two oligonucleotides with sticky ends are added to the remaining truncated cDNA, in separate 

samples 

Step 6: Cleaved DNA is “tagged” enzymatically, removing it from the beads 

Step 7: Sticky ends are repaired with DNA polymerase 

Step 8: Blunt ended tags from the two separate samples are ligated together, generating ditags with two 

different oligonucleotide adapter ends 

Step 9: Ditags are cleaved to remove the oligonucleotides. Ditags will form long cDNA chains, or 

concatemers 

Step 10: Transform concatemers into bacteria for replication 

Step 11: Isolate concatemers from bacteria and sequence 

Challenges when using SAGE 

One challenge is that the tags are only about 13 or 14 base pairs. It can be difficult to identify such a short 

tag if it’s from an unknown gene. 

The flip side of that problem is that SAGE can be used to find unknown genes, and in some studies it’s an 

advantage to be able to measure gene expression quantitatively without prior sequence information. 

Tags may also have issues with specificity; multiple genes could share the same tag if there is an overlap 

in sequence. There also can be inconsistencies with the restriction enzymes, and incompatibilities for certain 

species. 

SAGE and DNA microarray 

SAGE is similar in many ways to a DNA microarray; however, in a DNA microarray, the mRNAs hybridize 

to cDNA probes on the array. In SAGE, the data output is based on sequencing. That means SAGE analysis 

is more quantitative and it does not depend on the use of known genes. 

Microarray experiments are generally less costly, and so are used more often in larger-scale studies. 

Application 



• A study of new markers in cancer illustrates how SAGE can be used in biomedical 

research. 

• Researchers compared gene expression levels in cancerous tissues with those in non-

cancerous tissues to search for markers that could diagnose the pancreatic cancer at an 

early stage. 

• Because the results of a SAGE analysis of many representative tissues had already been 

published online, the scientists were able to search the database for genes preferentially 

expressed in pancreatic cancer. 

• From this, they were able to identify a gene calledprostate stem cell antigen (PCSA), that 

had previously not been associated with pancreatic cancer. 

• CGAP- Cancer Genome Anatomy Project 

• What you can do: 

• Find the information and technological tools needed to decipher the molecular anatomy of 

the cancer cell from a annotated index of the genes that are important in cancer. 

• Highlights: 

• The goal of the NCI's Cancer Genome Anatomy Project is to determine the gene expression 

profiles of normal, precancer, and cancer cells, leading eventually to improved detection, 

diagnosis, and treatment for the patient. 

• CGAP offers technological, informational (data and analysis tools), resource (clones and 

libraries) and methodological infrastructure for the cancer research community. 

• The current CGAP program has expanded to include in addition to the Tumor Gene Index 

(TGI), a Genetic Annotation Initiative (GAI) and the Cancer Chromosome Aberration 

Project (cCAP). 

• The TGI and GAI are focused towards building a catalog of annotated genes. 


