&)
SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF BIO AND CHEMICAL ENGINEERING
DEPARTMENT OF BIOINFORMATICS

UNIT -1- SBIAS303 - MACHINE LEARNING FOR BIOINFORMATICS

UNIT 1 MACHINE LEARNING Machine-Learning Foundations: The Probabilistic Framework -
Introduction: Bayesian modeling -The Cox Jaynes axioms Bayesian inference & induction -
Model structures: graphical models & other tricks - Probabilistic Modelling & Inference:
Examples -The simplest sequence models - Statistical mechanics - Machine Learning
Algorithms - Introduction -Dynamic programming -Gradient descent -EM/GEM algorithms —
Markov chain Monte- Carlo methods - Simulated annealing Evolutionary & genetic
algorithms. Learning algorithms: miscellaneous aspects.

Machine-Learning Foundations: The
Probabilistic Framework

Machine learning is by and large a direct descendant of an older discipline,
statistical model fitting. Like its predecessor, the goal in machine learning is
to extract useful information from a corpus of data D by building good prob-
abilistic models. The particular twist behind machine learning, however, is to
automate this process as much as possible, often by using very flexible models
characterized by large numbers of parameters, and to let the machine take care
of the rest. Silicon machine learning also finds much of its inspiration in the
learning abilities of its biological predecessor: the brain. Hence, a particular
vocabulary is required in which “learning” often replaces “fitting.”

Clearly, machine learning is driven by rapid technological progress in two
areas:

« Sensors and storage devices that lead to large databases and data sets
¢ Computing power that makes possible the use of more complex models.

As pointed out in [455], machine-learning approaches are best suited for areas
where there is a large amount of data but little theory. And this is exactly the
situation in computational molecular biology.

While available sequence data are rapidly increasing, our current knowl-
edge of biology constitutes only a small fraction of what remains to be dis-
covered. Thus, in computational biology in particular, and more generally in
biology and all other information-rich sciences, one must reason in the pres-
ence of a high degree of uncertainty: many facts are missing, and some of

the facts are wrong. Computational molecular biologists are, then, constantly
faced with induction and inference problems: building models from available
data. What are the right class of models and the right level of complexity?
Which details are important and which should be discarded? How can one
compare different models and select the best one, in light of available knowl-
edge and sometimes limited data? In short, how do we know if a model is
a good model? These questions are all the more acute in machine-learning
approaches, because complex models, with several thousand parameters and
more, are routinely used and sequence data, while often abundant, are inher-
ently “noisy.”

In situations where few data are available, the models used in machine-
learning approaches have sometimes been criticized on the ground that they
may be capable of accommodating almost any behavior for a certain setting
of their parameters, and that simpler models with fewer parameters should
be preferred to avoid overfitting. Machine-learning practitioners know that
many implicit constraints emerge from the structure of the models and, in fact,
render arbitrary behavior very difficult, if not impossible, to reproduce. More
important, as pointed out in [397], choosing simpler models because few data
are available does not make much sense. While it is a widespread practice and
occasionally a useful heuristic, itis clear that the amount of data collected and
the complexity of the underlying source are two completely different things. It
is not hard to imagine situations characterized by a very complex source and
relatively few data. Thus we contend that even in situations where data are
scarce, machine-learning approaches should not be ruled out a priori. But in
all cases, it is clear that questions of inference and induction are particularly
central to machine learning and to computational biology.

When reasoning in the presence of certainty, one uses deduction. This is
how the most advanced theories in information-poor sciences, such as physics
or mathematics, are presented in an axiomatic fashion. Deduction is not con-
troversial. The overwhelming majority of people agree on how to perform
deductions in specific way: if X implies Y, and X is true, then Y must be
true. This is the essence of Boole's algebra, and at the root of all our digital
computers. When reasoning in the presence of uncertainty, one uses induc-
tion and inference: if X implies Y, and Y is true, then X is more plausible.
An amazing and still poorly known fact is that there is a simple and unique
consistent set of rules for induction, model selection, and comparison. It is
called Bayesian inference. The Bayesian approach has been known for some
time, but only recently has it started to infiltrate different areas of science and
technology systematically, with useful results [229, 372, 373]. While machine
learning may appear to some as an eclectic collection of models and learning
algorithms, we believe the Bayesian framework provides a strong underlying
foundation that unifies the different techniques. We now review the Bayesian

framework in general. In the following chapters, we apply it to specific classes
of models and problems.

The Bayesian point of view has a simple intuitive description. The Bayesian
approach assigns a degree of plausibility to any proposition, hypothesis, or
model. (Throughout this book, hypothesis and model are essentially synony-
mous; models tend to be complex hypotheses with many parameters.) More
precisely, in order properly to carry out the induction process, one ought to
proceed in three steps:

1. Clearly state what the hypotheses or models are, along with all the back-
ground information and the data.

2. Use the language of probability theory to assign prior probabilities to the
hypotheses.

3. Use probability calculus for the inference process, in particular to eval-
uate posterior probabilities (or degrees of belief) for the hypotheses in
light of the available data, and to derive unique answers.

Such an approach certainly seems reasonable. Note that the Bayesian ap-
proach is not directly concerned with the creative process, how to generate
new hypotheses or models. It is concerned only with assessing the value of
models with respect to the available knowledge and data. This assessment
procedure, however, may be very helpful in generating new ideas.

But why should the Bayesian approach be so compelling? Why use the lan-
guage of probability theory, as opposed to any other method? The surprising
answer to this question is that it can be proved, in a strict mathematical sense,
that this is the only consistent way of reasoning in the presence of uncertainty.
Specifically, there is a small set of very simple commonsense axioms, the Cox
Jaynes axioms, under which it can be shown that the Bayesian approach is the
unique consistent approach to inference and induction. Under the Cox Jaynes
axioms, degrees of plausibility satisfy all the rules of probabilities exactly.
Probability calculus is, then, all the machinery that is required for inference,
model selection, and model comparison.

In the next section, we give a brief axiomatic presentation of the Bayesian
point of view using the Cox Jaynes axioms. For brevity, we do not present
any proofs or any historical background for the Bayesian approach, nor do we
discuss any controversial issues regarding the foundations of statistics. All of
these can be found in various books and articles, such as [51, 63, 122, 433,
284].

The Cox Jaynes Axioms

The objects we deal with in inference are propositions about the world. For
instance, a typical proposition X is “Letter A appears in position i of sequence
0.” A proposition is either true or false, and we denote by X the complement
of a proposition X. A hypothesis H about the world is a proposition, albeit a
possibly complex one composed of the conjunction of many more elementary
propositions. A model M can also be viewed as a hypothesis. The difference is
that models tend to be very complex hypotheses involving a large number of
parameters. In discussions where parameters are important, we will consider
that M = M (w), where w is the vector of all parameters. A complex model M
can easily be reduced to a binary proposition in the form “Model M accounts
for data D with an error level ¢” (this vague statement will be made more
precise in the following discussion). But for any purpose, in what follows
there is no real distinction between models and hypotheses.

Whereas propositions are either true or false, we wish to reason in the
presence of uncertainty. Therefore the next step is to consider that, given
a certain amount of information I, we can associate with each hypothesis a
degree of plausibility or confidence (also called degree or strength of belief).
Let us represent it by the symbol mr(X|I). While m(X|]) is just a symbol for
now, it is clear that in order to have a scientific discourse, one should be able
to compare degrees of confidence. That is, for any two propositions X and Y,
either we believe in X more than in Y, or we believe in Y more than in X, or we
believe in both equally. Let us use the symbol > to denote this relationship,
so that we write m(X|I) > (Y |I) if and only if X is more plausible than Y.
It would be very hard not to agree that in order for things to be sensible, the
relationship > should be transitive. That is, if X is more plausible than Y,
and Y is more plausible than Z, then X must be more plausible than Z. More
formally, this is the first axiom,

w(X|I)>m(Y|I) and m(Y|l)>m(Z[I) imply wm(X|I)>m(Z|I). (2.1)

This axiom is trivial; it has, however, an important consequence: > is an or-
dering relationship, and therefore degrees of belief can be expressed by real
numbers. That is, from now on, mr(X|I) represents a number. This of course
does not mean that such a number is easy to calculate, but merely that such a
number exists, and the ordering among hypotheses is reflected in the ordering
of real numbers. To proceed any further and stand a chance of calculating
degrees of belief we need additional axioms or rules for relating numbers rep-
resenting strengths of belief.

The amazing fact is that only two additional axioms are needed to con-
strain the theory entirely. This axiomatic presentation is usually attributed to

Cox and Jaynes [138, 283]. To better understand these two remaining axioms,
the reader may imagine a world of very simple switches, where at each instant
in time a given switch can be either on or off. Thus, all the elementary hypothe-
ses or propositions in this world, at a given time, have the simple form “switch
X is on” or “switch X is off.” (For sequence analysis purposes, the reader may
imagine that switch X is responsible for the presence or absence of the letter
X, but this is irrelevant for a general understanding.) Clearly, the more con-
fident we are that switch X is on (X), the less confident we are that switch X
is off (X). Thus, for any given proposition X, there should be a relationship
between 1 (X|I) and rr(X|I). Without assuming anything about this relation-
ship, it is sensible to consider that, all else equal, the relationship should be
the same for all switches and for all types of background information, that is,
for all propositions X and I. Thus, in mathematical terms, the second axiom
states that there exists a function F such that

m(X|I) = F[rr(X|I)]. (2.2)

The third axiom is only slightly more complicated. Consider this time two
switches X and Y and the corresponding four possible joint states. Then our
degree of belief that X is onand Y is off, for instance, naturally depends on our
degree of belief that switch X is on, and our degree of belief that switch Y is off,
knowing that X is on. Again, it is sensible that this relationship be independent
of the switch considered and the type of background information /. Thus, in
mathematical terms, the third axiom states that there exists a function G such
that

w(X,Y|I)=G[m(X|I),m(Y|X,I)]. (2.3)

So far, we have not said much about the information I. I is a proposition
corresponding to the conjunction of all the available pieces of information. [
can represent background knowledge, such as general structural or functional
information about biological macromolecules. I can also include specific ex-
perimental or other data. When it is necessary to focus on a particular corpus
of data D, we can write I = (I, D). In any case, I is not necessarily fixed and
can be augmented with, or replaced by, any number of symbols representing
propositions, as already seen in the right-hand side of (2.3). When data are
acquired sequentially, for instance, we may write I = (I,D,,...,D,). In a dis-
cussion where [is well defined and fixed, it can be dropped altogether from
the equations.

The three axioms above entirely determine, up to scaling, how to calculate
degrees of belief. In particular, one can prove that there is always a rescaling
Kk of degrees of belief such that P(X|I) = k(m(X|I)) is in [0, 1]. Furthermore,
P is unique and satisfies all the rules of probability. Specifically, if degrees of
belief are restricted to the [0, 1] interval, then the functions F and G must be

givenby F(x) = 1 - x and G(x,y) = xy. The corresponding proof will not be
given here and can be found in [138, 284]. As a result, the second axiom can
be rewritten as the sum rule of probability,

P(X|I) +P(X|]) =1, (2.4)
and the third axiom as the product rule,

P(X,Y[I)=P(X|)P(Y|X,I). (2.5)

Bayesian Inference and Induction

We can now turn to the type of inference we are most interested in: deriving a
parameterized model M = M(w) from a corpus of data D. For simplicity, we
will drop the background information I from the following equations. From
Bayes theorem we immediately have

pM|D) = DRIMPA) _ p \ PIDIM)
P(D) P(D)

(2.7)

The prior P(M) represents our estimate of the probability that model M is

correct before we have obtained any data. The posterior P(M|D) represents

our updated belief in the probability that model M is correct given that we have

observed the data set D. The term P(D|M) is referred to as the likelihood.
For data obtained sequentially, one has

P(D' M, D, ..., DY)

11D} ty — 11D} t-1 ‘
P(IM|D*,...,D") =P(M|D*,...,D" ") PODID!.... DY) (2.8)

In other words, the old posterior P(M|D*, ..., D! ') plays the role of the new
prior. For technical reasons, probabilities can be very small. It is often easier
to work with the corresponding logarithms, so that

logP(M|D) = log P(D|M) + logP(M) —log P(D). (2.9)

To apply (2.9) to any class of models, we will need to specify the prior P(M)
and the data likelihood P(D|M). Once the prior and data likelihood terms are
made explicit, the initial modeling effort is complete. All that is left is cranking
the engine of probability theory. But before we do that, let us briefly examine
some of the issues behind priors and likelihoods in general.

Model Structures: Graphical Models and Other Tricks

Clearly, the construction or selection of suitable models is dictated by the data
set, as well as by the modeler’s experience and ingenuity. It is, however, pos-
sible to highlight a small number of very general techniques or tricks that can
be used to shape the structure of the models. Most models in the literature
canbe described in terms of combinations of these simple techniques. Since in
machine learning the starting point of any Bayesian analysis is almost always a
high-dimensional probability distribution P(M, D) and the related conditional
and marginal distributions (the posterior P(M| D), the likelihood P(D|M), the
prior P(M), and the evidence P(D)); these rules can be seen as ways of decom-
posing, simplifying, and parameterizing such high-dimensional distributions.

Probabilistic Modeling and
Inference: Examples

What are the implications of a Bayesian approach for modeling? For any type
of model class, it is clear that the first step must be to make the likelihood
P(D|M) and the prior P(M) explicit. In this chapter, we look at a few simple
applications of the general probabilistic framework. The first is a very simple
sequence model based on die tosses. All other examples in the chapter, includ-
ing the basic derivation of statistical mechanics, are variations obtained either
by increasing the number of dice or by varying the observed data.

The Simplest Sequence Models

The simplest, but not entirely trivial, modeling situation is that of a single
coin flip. This model has a single parameter p and the data consist of a string,
containing a single letter, over the alphabet A = {H, T}, H for head and T for tail.
Since we are interested in DNA sequences, we shall move directly to a slightly
more complex version with four letters, rather than two, and the possibility of
observing longer strings.

Statistical Mechanics

There are at least five good reasons to understand the rudiments of statistical
mechanics in connection with machine learning and computational biology.
First, statistical mechanics can be viewed as one of the oldest and best exam-
ples of Bayesian reasoning [280, 281], although the presentation often given is
slightly flawed in our opinion because of the confusion between MaxEnt and
Bayes. Second, statistical mechanics has traditionally been concerned with
deriving the statistical macroscopic properties of large ensembles of simple
microscopically interacting units—the equilibrium behavior, the phase tran-
sitions, and so on. The results and techniques of statistical mechanics are
useful in understanding the properties and learning evolution of a number of
graphical models used in machine learning [252, 482, 50]. Statistical mechan-
ical models have also been applied directly to biological macromolecules—
for instance, in the protein-folding problem (see [151] for a review). Finally,
statistical mechanics is useful for understanding several algorithms that are
fundamental for machine learning, such as simulated annealing and the EM
algorithms described in chapter 4.

Here we give a Bayesian derivation of statistical mechanics from first princi-
ples, and develop the basic concepts, especially those of the Boltzmann-Gibbs
distribution and free energy, that will be needed in the next chapters. In the
basic statistical mechanics framework, one considers a stochastic system that
can be in a number of “microscopic” states: S = {sy,..., 55 |, with p; denoting
the probability of being in state s for a distribution P = (p;). This can be
viewed as a die model M(w), with parameters w = p,, although for the time
being it is not necessary to assume that the tosses are independent. The key
difference from the examples above is in the data. The faces of the die, the
microscopic states, are not observable but act as hidden variables. Instead, we
assume that there is a function f(s) of the states and that the only “macro-
scopic” observable quantity, the data, is the expectation or average of f. So,
with a slight abuse of notation, in this section we write D = E(f) = 3, p,f(s).

Very often in statistical mechanics the states have a microscopic structure
so that s = (xy,...,xy), where the x; are local variables. For instance, the x;
can be binary spin variables, in which case |§| = 2". Likewise, f is typically
the energy of the system and can be written as a quadratic function in the
local variables: f(s) = f(x1,...,Xn) = 2 wijXiXx; + 2; wix;. The interaction
parameters w;; can be local, as in the case of spins on a lattice, or long-range,
and are related to the underlying graphical model. While such assumptions are
important in modeling particular systems and developing a detailed theory,
they will not be needed in the following sections. The first question we can
ask is: Given the observation of the average of f, what can we say about the
state distribution P?

Machine Learning Algorithms
Dynamic Programming

Dynamic programming [66] is to a very general optimization technique that
can be applied any time a problem can be recursively subdivided into two sim-
ilar subproblems of smaller size, such that the solution to the larger problem
can be obtained by piecing together the solutions to the two subproblems. The
prototypical problem to which dynamic programming can be applied is that of
finding the shortest path between two nodes in a graph. Clearly the shortest
path from node A to node B, going through node C, is the concatenation of
the shortest path from A to C with the shortest path from C to B. This is also
called the “Bellman principle.” A general solution to the original problem is
then constructed by recursively piecing together shorter optimal paths.

Dynamic programming and its many variations are ubiquitous in sequence
analysis. The Needleman-Wunch and Smith-Waterman algorithms [401, 481,
492], as well as all other sequence-alignment algorithms such as the Viterbi
decoding algorithm of electrical engineers, are examples of dynamic program-
ming. Alignment algorithms can be visualized in terms of finding the shortest
path in the appropriate graph with the appropriate metric. Aligning two se-
quences of length of N requires finding a shortest path in a graph with N*
vertices. Since dynamic programming essentially requires visiting all such ver-
tices once, it is easy to see that its time complexity scales as O (N?).

In chapters 7 and 8, dynamic programming and the Viterbi algorithm are
heavily used to compute likelihoods and align sequences to HMMs during the
training and exploitation phases. Accordingly, we give there a detailed deriva-
tion of the corresponding algorithms. Other variations on dynamic program-
ming used in other chapters are sketched or left as an exercise. Because dy-
namic programming is very well known and is at the root of many conventional
algorithms for sequence analysis, we refer the reader to the abundant litera-
ture on the topic (in particular [550] and references therein). Reinforcement-
learning algorithms are also another important class of learning algorithms
that can be viewed as generalizations of dynamic programming ideas [298].

10

Gradient Descent

Often we are interested in parameter estimation, that is, in finding the best
possible model M(w) that minimizes the posterior f(w) = ~logP(w|D), or
possibly the likelihood ~ log P(D|w). Whenever a function f(w) is differen-
tiable, one can try to find its minima by using one of the oldest optimization
algorithms, gradient descent. As its name indicates, gradient descent is an
iterative procedure that can be expressed vectorially as

tel t _at_)
wtl = w R (4.1)
where n is the step size, or learning rate, which can be fixed or adjusted during
the learning process.

While the general gradient-descent principle is simple, in complex param-
eterized models it can give rise to different implementations, depending on
how the gradient is actually computed [26]. In graphical models, this often
requires the propagation of information “"backwards.” As we will see in the
next chapters, this is the case for gradient-descent learning applied to neural
networks (the backpropagation algorithm) and to hidden Markov models (the
forward-backward procedure). Obviously the outcome of a gradient-descent
procedure depends on the initial estimate. Furthermore, if the function being
optimized has a complex landscape, gradient descent in general will terminate
in a local minimum rather than a global one. Whenever feasible, therefore, it
is wise to run the procedure several times, with different starting points and
learning rates.

It is well known that there are situations where plain gradient descent can
be slow and inefficient. To overcome such problems, a number of variations
on gradient descent are possible, such as conjugate gradient descent, that use
second-order information or more complex directions of descent constructed
from the current gradient and the history of previous directions. Additional
details and references can be found in [434]. In spite of its relative crudeness,
gradient descent remains useful, easy to implement, and widely used.

EM/GEM Algorithms

Another important class of optimization algorithms is the expectation max-
imization (EM) and generalized expectation maximization (GEM) algorithms
[147, 387]. Such algorithms have been used in many different applications and
also in sequence analysis [352, 113]. In the case of HMMs, the EM algorithm
is also called the Baum-Welch algorithm [54]. Since the usefulness of these
algorithms goes beyond HMMs, we give here a general treatment of EM/GEM
algorithms, using the concept of free energy of chapter 3, along the lines sug-
gested in [400].

The EM algorithm is useful in models and situations with hidden variables.
Typical examples of hidden variables are missing or unobservable data, mix-
ture parameters in a mixture model, and hidden node states in graphical mod-
els (hidden units in NNs, hidden states in HMMs). If D denotes the data, we

11

assume that there is available a parameterized joint distribution on the hidden
and observed variables P(D, H|w), parameterized by w. In the case of main
interest to us, w denotes, as usual, the parameters of a model. Let us assume
that the objective is to maximize the likelihood logP(D|w). The same ideas
can easily be extended to the case of MAP estimation. Since in general it is
difficult to optimize logP(D|w) directly, the basic idea is to try to optimize
the expectation E(log P(D|w)):

E(logP(D|w)) = E(logP(D,H|w) - logP(H|D,w)). (4.2)

Markov-Chain Monte-Carlo Methods

Markov-chain Monte-Carlo (MCMC) methods belong to an important class of
stochastic methods that are related to statistical physics and are increasingly
used in Bayesian inference and machine learning [578, 202, 396, 520, 69]. Re-
call that one of the basic goals derived from the general Bayesian framework
is to compute expectations with respect to a high-dimensional probability dis-
tribution P(xy,..., xyn), where the x; can be the values of model parameters or
hidden variables, as well as observed data. The two basic ideas behind MCMC
are very simple. The first idea (Monte Carlo) is to approximate such expecta-
tions by

. . 1,
E(f): Z f(xll---|XN)P(XI|---|XN)z7Zf(x:|---|xft) (4-9)
X] you v Xn t=0

for large T, provided (x{,..., x!,) are sampled according to their distribution
P(xy,...,xyn). Inorder to sample from P, the second basic idea is to construct
a Markov chain having P as its equilibrium distribution, then simulate the
chain and try to sample from its equilibrium distribution.

Before we proceed with the rudiments of Markov chains, it is worth noting
a few points. The mean of the estimator on the right-hand side of (4.9) is E(f).
If the samples are independent, its variance is Var(f)/T. In this case, the
precision of the estimate does not depend on the dimension of the space be-
ing sampled. Importance sampling and rejection sampling are two well-known
Monte-Carlo algorithms for generating independent samples that will not be
reviewed here. Both algorithms tend to be inefficient in high-dimensional state
spaces. The samples created using Markov-chain methods are not indepen-
dent. But at equilibrium they are still representative of P. The dependence of
one sample on the previous one is the key to the better efficiency of MCMC
methods with higher-dimensional spaces. After all, if P is differentiable or

12

even just continuous, the probability P(x),...,x,) of a sample provides in-
formation about its neighborhood. This remains true even in cases where P
can be computed efficiently only up to a constant normalizing factor. Finally,
MCMC methods, like any other method based on a single estimator, are at best
an approximation to the ideal Bayesian inference process that would rely on
the calculation of P(E(f)|D) given any sample D.

13

)
SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF BIO AND CHEMICAL ENGINEERING
DEPARTMENT OF BIOINFORMATICS

UNIT - 11 - SBIAS303 - MACHINE LEARNING FOR BIOINFORMATICS

UNIT 2 SUPPORT VECTOR MACHINE (SVM) SVM: introduction — architecture — kernel - ROC —
feature selection — sensitivity — specificity — accuracy — implementation svm applications in
sequence analysis, structure prediction , drug design —svm light - libsvm — weka.

A Support Vector Machine (SVM) is a supervised machine learning algorithm that can be employed
for both classification and regression purposes.

Support Vector Machines (SVM) is a Machine Learning Algorithm which can be used for many
different tasks (Figure 1). In this article, | will explain the mathematical basis to demonstrate how
this algorithm works for binary classification purposes.

¥ 7 Digg Data

Application of SVM

Time Series
analysis

Te)‘<t) Classification
categorization ‘

>

Machine
Vision

Anomaly
detection

Regression

The main objective in SVM is to find the optimal hyperplane to correctly classify between data points
of different classes (Figure 2). The hyperplane dimensionality is equal to the number of input
features minus one (eg. when working with three feature the hyperplane will be a two-dimensional
plane).

A hyperplanein R?isaline A hyperplanein R3is a plane

r '
JUIPERESEE o i B

Figure 2: SVM Hyperplane [2]

Data points on one side of the hyperplane will be classified to a certain class while data points on the
other side of the hyperplane will be classified to a different class (eg. green and red as in Figure 2).
The distance between the hyperplane and the first point (for all the different classes) on either side
of the hyperplane is a measure of sure the algorithm is about its classification decision. The bigger
the distance and the more confident we can be SVM is making the right decision.

The data points closest to the hyperplane are called Support Vectors. Support Vectors determines
the orientation and position of the hyperplane, in order to maximise the classifier margin (and
therefore the classification score). The number of Support Vectors the SVM algorithm should use can
be arbitrarily chosen depending on the applications.

Basic SVM classification can be easily implemented using the Scikit-Learn Python library in a few
lines of code.

from sklearn import svm

trainedsvm = svm.SVC().fit(X_Train, Y_Train)
predictionsvm = trainedsvm.predict(X_Test)
print(confusion_matrix(Y_Test,predictionsvm))
print(classification_report(Y_Test,predictionsvm))

e Hard Margin: aims to find the best hyperplane without tolerating any form of
misclassification.

e Soft Margin: we add a degree of tolerance in SVM. In this way we allow the model to
voluntary misclassify a few data points if that can lead to identifying a hyperplane able to
generalise better to unseen data.

Soft Margin SVM can be implemented in Scikit-Learn by adding a C penalty term in svm.SVC. The
bigger C and the more penalty the algorithm gets when making a misclassification.

Kernel Trick

If the data we are working with is not linearly separable (therefore leading to poor linear SVM
classification results), it is possible to apply a technique known as the Kernel Trick. This method is
able to map our non-linear separable data into a higher dimensional space, making our data linearly
separable. Using this new dimensional space SVM can then be easily implemented (Figure 3).

Input Space Feature Space

Figure 3: Kernel Trick [3]

There are many different types of Kernels which can be used to create this higher dimensional

space, some examples are linear, polynomial, Sigmoid and Radial Basis Function (RBF). In Scikit-Learn
a Kernel function can be specified by adding a kernel parameter in svm.SVC. An additional parameter
called gamma can be included to specify the influence of the kernel on the model.

It is usually suggested to use linear kernels if the number of features is larger than the number of
observations in the dataset (otherwise RBF might be a better choice).

When working with a large amount of data using RBF, speed might become a constraint to take into
account.

Feature Selection

Once having fitted our linear SVM it is possible to access the classifier coefficients using .coef on
the trained model. These weights figure the orthogonal vector coordinates orthogonal to the
hyperplane. Their direction represents instead the predicted class.

Feature importance can, therefore, be determined by comparing the size of these coefficients to
each other. By looking at the SVM coefficients it is, therefore, possible to identify the main features
used in classification and get rid of the not important ones (which hold less variance).

Reducing the number of features in Machine Learning plays a really important role especially when
working with large datasets. This can in fact: speed up training, avoid overfitting and ultimately lead
to better classification results thanks to the reduced noise in the data.

In Figure 4 are shown the main features | identified using SVM on the Pima Indians Diabetes
Database. In green are shown all the features corresponding to the negative coefficients and in blue
the positive ones. If you want to find out more about it, all my code is freely available on

my Kaggle and GitHub profiles.

https://www.kaggle.com/pierpaolo28/pima-indians-diabetes-database
https://github.com/pierpaolo28/Companies-Data-set-Challenges/blob/master/Microsoft%20Workshop%20-%20Deep%20Learning%20Data%20Analysis%20in%20Azure.ipynb

)
SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF BIO AND CHEMICAL ENGINEERING
DEPARTMENT OF BIOINFORMATICS

UNIT - 11T - SBIAS303 - MACHINE LEARNING FOR BIOINFORMATICS

UNIT 3 NEURAL NETWORKS Neural Networks: The Theory -Introduction - Universal
approximation properties — Priors & likelihoods - Learning algorithms: backpropagation -
Neural Networks: Applications - Sequence encoding & output interpretation- Sequence
correlations & neural networks — Prediction of protein secondary structure - Prediction of
signal peptides & their cleavage sites Applications for DNA & RNA nucleotide sequences -
Prediction performance evaluation - Different performance measures Perceptrons and
Multilayer Perceptrons -Neural Networks in Drug Design.

Neural Networks: The Theory

Artificial neural networks (NNs) [456, 252, 70] were originally developed with
the goal of modeling information processing and learning in the brain. While
the brain metaphor remains a useful source of inspiration, it is clear today that
the artificial neurons used in most NNs are quite remote from biological neu-
rons [85]. The development of NNs, however, has led to a number of practical
applications in various fields, including computational molecular biology. NNs
have become an important tool in the arsenal of machine-learning techniques
that can be applied to sequence analysis and pattern recognition problems.

At the most basic level, NNs can be viewed as a broad class of param-
eterized graphical models consisting of networks with interconnected units
evolving in time. In this book we use only pairwise connections but, if desir-
able, one can use more elaborate connections associated with the interaction
of more than two units, leading to the “higher-order” or “sigma-pi” networks
[456]. The connection from unit j to unit i usually comes with a weight de-
noted by w;;. Thus we can represent an NN with a weight-directed graph or
“architecture.” For simplicity, we do not use any self-interactions, so that we
can assume that wy; = 0 for all the units.

[t is customary to distinguish a number of important architectures, such as
recurrent, feed-forward, and layered. A recurrent architecture is an architec-
ture that contains directed loops. An architecture devoid of directed loops is
said to be feed-forward. Recurrent architectures are more complex with richer
dynamics and will be considered in chapter 9. An architecture is layered if
the units are partitioned into classes, also called layers, and the connectivity
patterns are defined between the classes. A feed-forward architecture is not
necessarily layered.

Output layer

Hidden layers

Input Layer

Figure 5.1: Layered Feed-Forward Architecture or Multilayer Perceptron (MLP). Layers may con-
tain different numbers of units. Connectivity patterns between layers also may vary.

In most of this chapter and in many current applications of NNs to molecu-
lar biology, the architectures used are layered feed-forward architectures, as in
figure 5.1. The units are often partitioned into visible units and hidden units.
The visible units are those in contact with the external world, such as input
and output units. Most of the time, in simple architectures the input units
and the output units are grouped in layers, forming the input layer and the
output layer. A layer containing only hidden units is called a hidden layer. The
number of layers is often referred to as the “depth” of a network. Naturally
NNs can be assembled in modular and hierarchical fashion to create complex
overall architectures. The design of the visible part of an NN depends on the
input representation chosen to encode the sequence data and the output that
may typically represent structural or functional features.

The behavior of each unit in time can be described using either differen-
tial equations or discrete update equations (see [26] for a summary). Only the
discrete formalism will be used in this book. In a layered feed-forward ar-
chitecture, all the units in a layer are updated simultaneously, and layers are
updated sequentially in the obvious order. Sometimes it is also advantageous
to use stochastic units (see appendix C on graphical models and Bayesian net-
works). In the rest of this chapter, however, we focus on deterministic units.
Typically a unit i receives a total input x; from the units connected to it, and
then produces an output y; = fi(x;), where f; is the transfer function of the
unit. In general, all the units in the same layer have the same transfer function,

and the total input is a weighted sum of incoming outputs from the previous
layer, so that

Xi= Z wij v+ wi, (5.1)
JEN-(i)
vi= filxi) = fi (Z wijyj+ w,-) , (5.2)
JEN- (1)

where w; is called the bias, or threshold, of the unit. It can also be viewed as a
connection with weight w; to an additional unit, with constant activity clamped
to 1. The weights w;; and w; are the parameters of the NNs. In more general
NNs other parameters are possible, such as time constants, gains, and delays.
In the architectures to be considered here, the total number of parameters
is determined by the number of layers, the number of units per layer, and
the connectivity between layers. A standard form for the connectivity between
layers is the “fully connected” one, where each unit in one layer is connected to
every unit in the following layer. More local connectivity patterns are obviously
more economical. Note, however, that even full connectivity between layers is
sparse, compared with complete connectivity among all units. In situations
characterized by some kind of translation invariance, it can be useful for each
unit in a given layer to perform the same operation on the activity of translated
groups of units in the preceding layer. Thus a single pattern of connections
can be shared across units in a given layer. In NN jargon this is called “weight
sharing.” It is routinely used in image-processing problems and has also been
used with some success in sequence analysis situations where distinct features
are separated by variable distances. The shared pattern of weights defines a
filter or a convolution kernel that is used to uniformly process the incoming
activity. With weight sharing, the number of free parameters associated with
two layers can be small, even if the layers are very large. An example of this
technique is given below in section 6.3 on secondary structure prediction.

Universal Approximation Properties

Perhaps one reassuring property of NNs is that they can approximate any rea-
sonable function to any degree of required precision. The result is trivial' for
Boolean functions, in the sense that any Boolean function can be built using a
combination of threshold gates. This is because any Boolean function can be
synthesized using NOT and AND gates, and it is easy to see that AND and NOT
gates can be synthetized using threshold gates. For the general regression
case, it can be shown that any reasonable real function f(x) can be approxi-
mated to any degree of precision by a three-layer network with x in the input
layer, a hidden layer of sigmoidal units, and one layer of linear output units,

as long as the hidden layer can be arbitrarily large. There are a number of dif-
ferent mathematical variations and proofs of this result (see, e.g., [264, 265]).

Here we give a simple constructive proof of a special case, which can easily
be generalized, to illustrate some of the basic ideas. For simplicity, consider
a continuous function y = f(x) where both x and y are one-dimensional.
Assume without loss of generality that x varies in the interval [0, 1], and that
we want to compute the value of f(x) for any x within a precision €. Since f
is continuous over the compact interval [0, 1], f is uniformly continuous and
there exists an integer n such that

1 : .
[x> — x| s;=> |f(x2) = f(x1) =€ (5.8)
Priors and Likelihoods

We now apply the general theory of chapter 2. In particular, we show how
the theory can be used to determine the choice of an objective function and
of the transfer functions of the output units. In this section we shall assume
that the data consist of a set of independent input-output pairs D; = (d, t;).
The data are noisy in the sense that for a given d;, different outputs t; could
be observed. Noise at the level of the input d could also be modeled, but will
not be considered here. The operation of the NN itself is considered to be
deterministic. We have

P((dj t;)|w) = P(d;|w)P(t;ldi,w) = P(d)P(t;|d;, w), (5.9)

the last equality resulting from the fact that in general we can assume that the
inputs d are independent of the parameters w. Thus, for a given architecture

parameterized by w, we have, using (2.9),

K K
~logP(w|D) = - > logP(ti|di, w) - > logP(d;) —logP(w) +1og P(D), (5.10)

i=1 i=1

where we have used the fact that P((d;, t;)|w) = P(d;)P(t;ld;,w), and have
taken into account the independence of the different data points. In the first
level of Bayesian inference (MAP), we want to minimize the left-hand side. We
can ignore P(D) as well as P(d;), since these terms do not depend on w, and
concentrate on the prior term and the likelihood.

In order to calculate the likelihood, we shall have to distinguish different
cases, such as regression and classification, and further specify the probabilis-
tic model. In doing so, we follow the analysis in [455]. But the basic idea is to
consider that, for a given input d;, the network produces an estimated output
v(d;). The model is entirely defined when we specify how the observed data
t; = t(d;) can statistically deviate from the network output y; = v(d;). If the
output layer has many units, we need to write y;; for the output of the jth
unit on the ith example. For notational convenience, in what follows we will
drop the index that refers to the input. Thus we derive online equations for
a generic input-output pair (d, t). Offline equations can easily be derived by
summing over inputs, in accordance with (5.10).

Learning Algorithms: Backpropagation

In the majority of applications to be reviewed, MAP or ML estimation of NN
parameters is done by gradient descent (see [26] for a general review). The

calculations required to obtain the gradient can be organized in a nice fashion
that leverages the graphical structure of NN. Using the chain rule, weights are
updated sequentially, from the output layer back to the input layer, by prop-
agating an error signal backward along the NN connections (hence the name
“backpropagation”). More precisely, in the online version of the algorithm, and
for each training pattern, we have for any weight parameter w;;

0F OF ayi OF L. . N
dwij 0yjow;j Vi Ji)y (5.22)

Thus the gradient-descent learning equation is the product of three terms,
0E -
Awij = —nﬁ = —ne€iyj, (5.23)

where n is the learning rate, y; is the output of the unit from which the connec-
tion originates (also called the presynaptic activity), and €; = (3E/dvyi) f; (xi)
is a postsynaptic term called the backpropagated error. The backpropagated
error can be computed recursively by

oF oF , ,
o= 2 oofilaow (5.24)
Vi gen+(i) 9k

The propagation from the children of a node to the node itself is the signature
of backpropagation. While backpropagation is the most widely used algorithm
for MAP estimation of MLPs, EM and simulated annealing have also been used.
Algorithms for learning the architecture itself can also be envisioned, but they
remain inefficient on large problems.

We can now review some of the main applications of NNs to molecular
biology. Other general surveys of the topics can be found in [432, 571, 572].

Neural Networks: Applications

The application of neural network algorithms to problems within the field of
biological sequence analysis has a fairly long history, taking the age of the
whole field into consideration. In 1982 the perceptron was applied to the pre-
diction of ribosome binding sites based on amino acid sequence input [506].
Stormo and coworkers found that the perceptron algorithm was more success-
ful at finding E. coli translational initiation sites than a previously developed
set of rules [507]. A perceptron without hidden units was able to generalize
and could find translational initiation sites within sequences that were not
included in the training set.

This linear architecture is clearly insufficient for many sequence recogni-
tion tasks. The real boost in the application of neural network techniques first
came after the backpropagation training algorithm for the multilayer percep-
tron was brought into common use in 1986 [456], and especially after Qian and
Sejnowski published their seminal paper on prediction of protein secondary
structure in 1988 [437]. This and other papers that quickly followed [78, 262]
were based on an adaptation of the NetTalk multilayer perceptron architecture
[480], which from its input of letters in English text predicted the associated
phonemes needed for speech synthesis and for reading the text aloud. This
approach could immediately be adapted to tasks within the field of sequence
analysis just by changing the input alphabet into alphabets of the amino acids
or nucleotides. Likewise, the encoding of the phonemes could easily be trans-
formed into structural classes, like those commonly used for the assignment
of protein secondary structure (helices, sheets, and coil), or functional cate-
gories representing binding sites, cleavage sites, or residues being posttrans-
lationally modified.

In this chapter we review some of the early work within the application
areas of nucleic acids and proteins. We go into detail with some examples of

more recent work where the methodologies are advanced in terms of either
the training principles applied or the network architectures, especially when
networks are combined to produce more powerful prediction schemes. We do
not aim to mention and describe the complete spectrum of applications. For
recent reviews see, for example, [432, 61,77, 320, 571, 572].

Sequence Encoding and Output Interpretation

One important issue, before we can proceed with NN applications to molecu-
lar biology, is the encoding of the sequence input. In any type of prediction
approach, the input representation is of cardinal importance. If a very clever
input representation is chosen, one that reveals exactly the essentials for a
particular task, the problem may be more or less solved, or at least can be
solved by simple linear methods. In an MLP the activity patterns in the last
hidden layer preceding the output unit(s) should represent the transformed
input information in linearly separable form. This clearly is much easier if
the input representation has not been selected so as further to increase the
nonlinearity of the problem.

One would think that a very “realistic” encoding of the monomers in a se-
quence, using a set of physical-chemical features of potential relevance, should
always outperform a more abstract encoding taken from the principles and
practice of information theory [137]. However, in line with the contractive na-
ture of most prediction problems (see section 1.4), it does not always help just
to add extra information because the network has to discard most of it before
it reaches the output level.

During training of an MLP, the network tries to segregate the input space
into decision regions using hyperplanes. The numerical representation of the
monomers therefore has a large impact on the ease with which the hidden
units can position the planes in the space defined by the representation that
has been chosen.

In many sequence analysis problems, the input is often associated with
a window of size W covering the relevant sequence segment or segments.
Typically the window is positioned symmetrically so that the upstream and
downstream contexts are of the same size, but in some cases asymmetric win-
dows perform far better than symmetric ones. When the task is to predict
signal peptide cleavage sites (section 6.4) or intron splice sites in pre-mRNA
(section 6.5.2), asymmetric windows may outperform symmetric ones. Both
these sequence types (N-terminal protein sorting signals and noncoding in-
tronic DNA) are eventually removed, and it makes sense to have most of the
features needed for their processing in the regions themselves, leaving the
mature protein least constrained. Windows with holes where the sequence

appears nonconsecutively have been used especially for the prediction of pro-
moters and the exact position of transcriptional initiation in DNA, but also for
finding beta-sheet partners in proteins [268, 46] and for the prediction of dis-
tance constraints between two amino acids based on the sequence context of
both residues [368, 174].

Sequence Correlations and Neural Networks

Many structural or functional aspects of sequences are not conserved in terms
of sequence, not even when amino acid similarities are taken into account. It
is well known that protein structures, for example, can be highly conserved
despite a very low sequence similarity when assessed and quantified by the
amino acid identity position by position. What makes up a protein structure,
either locally or globally, is the cooperativity of the sequence, and not just
independent contributions from individual positions in it.

This holds true not only for the protein as a whole but also locally, say for a
phosphorylation site motif, which must be recognized by a given kinase. Even
for linear motifs that are known to interact with the same kinase, sequence pat-
terns can be very different [331]. When the local structures of such sequence
segments are inspected (in proteins for which the structure has been deter-
mined and deposited in the Protein Data Bank), they may indeed be conserved
structurally despite the high compositional diversity [74].

The neural network technique has the potential of sensing this coopera-
tivity through its ability to correlate the different input values to each other.
In fact, the cooperativity in the weights that result from training is supposed
to mirror the relevant correlations between the monomers in the input, which
again are correlated to the prediction task carried out by the network.

The ability of the artificial neural networks to sense correlations between
individual sequence positions is very similar to the ability of the human brain
when interpreting letters in natural language differently based on their lan-
guagenaturalcontext. This is well known from pronunciation where, for ex-
ample, the four a’s in the sentence Mary had a little lamb correspond to three
different phonemes [480]. Another illustration of this kind of ability is shown

in figure 6.1. Here the identical symbol will be interpreted differently pro-
vided the brain receiving the information that is projected onto the retina has
been trained to read the English language, that is, trained to understand the
sequential pattern in English language!Englishtext.

It is precisely this ability that has made the neural networks successful in
the sequence analysis area, in particular because they complement what one
can obtain by weight matrices and to some degree also by hidden Markov mod-
els. The power of the neural network technique is not limited to the analysis
of local correlations, as the sequence information being encoded in the in-
put layer can come from different parts of a given sequence [368]. However,
most applications have focused on local and linear sequence segments, such
as those presented in the following sections.

Prediction of Protein Secondary Structure

When one inspects graphical visualizations of protein backbones on a com-
puter screen, local folding regularities in the form of repeated structures are
immediately visible. Two such types of secondary structures, which are main-
tained by backbone hydrogen bonds, were actually suggested by theoretical
considerations before they were found in the first structures to be solved by
X-ray crystallography. There is no canonical definition of classes of secondary
structure, but Ramachandran plots representing pairs of dihedral angles for
each amino acid residue show that certain angular regions tend to be heav-
ily overrepresented in real proteins. One region corresponds to alpha-helices,
where backbone hydrogen bonds link residues i and i + 4; another, to beta-
sheets, where hydrogen bonds link two sequence segments in either a parallel
or antiparallel fashion.

The sequence preferences and correlations involved in these structures
have made secondary structure prediction one of the classic problems in com-
putational molecular biology [362, 128, 129, 196]. Many different neural net-
work architectures have been applied to this task, from early studies [437, 78,
262, 370, 323] to much more advanced approaches [453, 445].

The assignment of the secondary structure categories to the experimen-
tally determined 3D structure is nontrivial, and has in most of the work been
performed by the widely used DSSP program [297]. DSSP works by analysis of
the repetitive pattern of potential hydrogen bonds from the 3D coordinates of
the backbone atoms. An alternative to this assignment scheme is the program
STRIDE, which uses both hydrogen bond energy and backbone dihedral angles
rather than hydrogen bonds alone [192]. Yet another is the program DEFINE,
whose principal procedure uses difference distance matrices for evaluating
the match of interatomic distances in the protein to those from idealized sec-

ondary structures [442].

None of these programs can be said to be perfect. The ability to assign
what visually appears as a helix or a sheet, in a situation where the coordinate
data have limited precision, is not a trivial algorithmic task. Another factor
contributing to the difficulty is that quantum chemistry does not deliver a nice
analytical expression for the strength of a hydrogen bond. In the prediction
context it would be ideal not to focus solely on the visual, or topological, as-
pects of the assignment problem, but also to try to produce a more predictable
assignment scheme. A reduced assignment scheme, which would leave out
some of the helices and sheets and thereby make it possible to obtain close
to perfect prediction, could be very useful, for example in tertiary structure
prediction, which often uses a predicted secondary structure as starting point.

10

Prediction of Signal Peptides and Their Cleavage Sites

Signal peptides control the entry of virtually all proteins to the secretory path-
way in both eukaryotes and prokaryotes [542, 207, 440]. They comprise the
N-terminal part of the amino acid chain, and are cleaved off while the protein
is translocated through the membrane.

Strong interest in automated identification of signal peptides and predic-
tion of their cleavage sites has been evoked not only by the huge amount of
unprocessed data available but also by the commercial need for more effective
vehicles for production of proteins in recombinant systems. The mechanism
for targeting a protein to the secretory pathway is believed to be similar in
all organisms and for many different kinds of proteins [296]. But the iden-
tification problem is to some extent organism-specific, and NN-based predic-
tion methods have therefore been most successful when Gram-positive and
Gram-negative bacteria, and eukaryotes have been treated separately [404,
131]. Signal peptides from different proteins do not share a strict consen-
sus sequence—in fact, the sequence similarity between them is rather low.
However, they do share a common structure with a central stretch of 7-15
hydrophobic amino acids (the hydrophobic core), an often positively charged
region in the N-terminal of the preprotein, and three to seven polar, but mostly
uncharged, amino acids just before the cleavage site.

This (and many other sequence analysis problems involving “sites”) can be
tackled from two independent angles: either by prediction of the site itself or
by classifying the amino acids in the two types of regions into two different
categories. Here this would mean classifying all amino acids in the sequence

as cleavage sites or noncleavage sites; since most signal peptides are below 40
amino acids in length, it makes sense to include only the first 60-80 amino
acids in the analysis. Alternatively, the amino acids could be classified as
belonging to the signal sequence or the mature protein. In the approach de-
scribed below, the two strategies have been combined and found to contribute
complementary information. While the prediction of functional sites often is
fairly local and therefore works best using small windows, larger windows are

often needed to obtain good prediction of regional functional assignment.

Applications for DNA and RNA Nucleotide Sequences

Prediction Performance Evaluation

11

Over the years different means for evaluating the accuracy of a particular pre-
diction algorithm have been developed [31]. Some prediction methods are
optimized so as to produce very few false positives, others to produce very
few false negatives, and so on. Normally it is of prime interest to ensure, for
any type of prediction algorithm, that the method will be able to perform well
on novel data that have not been used in the process of constructing the algo-
rithm. That is, the method should be able to generalize to new examples from
the same data domain.

Itis often relevant to measure accuracy of prediction at different levels. In
signal peptide prediction, for example, accuracy may be measured by count-
ing how many sequences are correctly classified as signal peptides or non-
secretory proteins, instead of counting how many residues are correctly pre-
dicted to belong to a signal peptide. Similarly, protein secondary structure
may be evaluated at the mean per-chain level, or at the per-amino acid level.

At higher levels, however, the measures tend to be more complicated and
problem-specific. In the signal peptide example, it is also relevant to ask how
many signal peptide sequences have the position of the cleavage site correctly
predicted. In gene finding, a predicted exon can have have both ends correct,
or only overlap to some extent. Burset and Guigo [110] have defined four
simple measures of gene-finding accuracy at the exon level —sensitivity, speci-
ficity, “missing exons”, and “wrong exons"—counting only predictions that are
completely correct or completely wrong. For secondary structure prediction,
this approach would be too crude, since the borders of structure elements (he-
lices and sheets) are not precisely defined. Instead, the segment overlap mea-
sure (SOV) can be applied [454, 580]. This is a set of segment-based heuristic

evaluation measures in which a correctly predicted segment position can give
maximal score even though the prediction is not identical to the assigned seg-
ment. The score punishes broken predictions strongly, such as two predicted
helices where only one is observed compared to one too small unbroken helix.
In this manner the uncertainty of the assignment’s exact borders is reflected
in the evaluation measure. As this example illustrates, a high-level accuracy
measure can become rather ad hoc when the precise nature of the prediction
problem is taken into consideration.

12

For the sake of generality, we will therefore focus our attention on sin-
gle residue/nucleotide assessment measures. For the secondary structure
problem, consider an amino acid sequence of length N. The structural data
D available for the comparison is the secondary structure assignments D =
dy,...,dy. For simplicity, we will first consider the dichotomy problem of
two alternative classes, for instance «-helix versus non-o-helix. In this case,
the d;s are in general equal to 0 or 1. We can also consider the case where
d; has a value between 0 and 1, for example representing the surface expo-
sure of amino acids, or the probability or degree of confidence, reflecting the
uncertainty of our knowledge of the correct assignment at the corresponding
position. The analysis for the multiple-class case, corresponding for exam-
ple to three states, «-helices, B-sheets, and coil, is very similar. We now as-
sume that our prediction algorithm or model, outputs a prediction of the form
M= my,...,my. In general, m; is a probability between 0 and 1 reflecting our
degree of confidence in the prediction. Discrete 0/1 outputs, obtained for in-
stance by thresholding or “winner-take-all” approaches, are also possible and
fall within the theory considered here. The fundamental and general question
we address is: How do we assess the accuracy of M, or how do we compare M
to D?

A variety of approaches have been suggested in different contexts and at
different times and this may have created some confusion. The issue of predic-
tion accuracy is strongly related to the frequency of occurrence of each class.
In protein secondary structure prediction the non-helix class covers roughly
70% of the cases in natural proteins, while only 30% belong to the helix class.
Thus a constant prediction of “non-helix” is bound to be correct 70% of the
time, although it is highly non-informative and useless.

13

)
SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF BIO AND CHEMICAL ENGINEERING
DEPARTMENT OF BIOINFORMATICS

UNIT -1V - SBIAS303 - MACHINE LEARNING FOR BIOINFORMATICS

UNIT 4 HIDDEN MARKOV MODELS Hidden Markov Models: The Theory - Introduction -Prior
information & initialization -Likelihood & basic algorithms - Learning algorithms -
Applications of HMMs: general aspects -Protein applications - DNA & RNA applications -
Advantages & limitations of HMMs — tools.

Hidden Markov Models: The
Theory

In the 1990s, only roughly a third of the newly predicted protein sequences
show convincing similarity to other known sequences [80, 224, 155], using
pairwise comparisons [11, 418]. This situation is even more unfortunate in
the case of new, incomplete sequences or fragments. Large databases of frag-
ments are becoming available as a result of various genome, cDNA, and other
sequencing projects, especially those producing ESTs (expressed sequences
tags) [200]. At the beginning of 1997, approximately half of GenBank con-
sisted of fragment data. Such data cover a substantial fraction, if not all, of
the expressed human genome. It is of course of great interest to recognize and
classify such fragments, and recover any additional useful information.

A promising approach to improve the sensitivity and speed of current
database-searching techniques has been to use consensus models built from
multiple alignments of protein families [23, 52, 250, 334, 41, 38]. Unlike con-
ventional pairwise comparisons, a consensus model can in principle exploit
additional information, such as the position and identity of residues that are
more or less conserved throughout the family, as well as variable insertion and
deletion probabilities. All descriptions of sequence consensus, such as profiles
[226], flexible patterns [52], and blocks [250], can be seen as special cases of
the hidden Markov model (HMM) approach.

HMMs form another useful class of probabilistic graphical models used,
over the past few decades, to model a variety of time series, especially in
speech recognition [359, 439] but also in a number of other areas, such as

ion channel recordings [48] and optical character recognition [357]. HMMs
have also earlier been applied to problems in computational biology, including
the modeling of coding/noncoding regions in DNA [130], of protein binding
sites in DNA [352], and of protein superfamilies [553] (see also [351]). Only
since the mid-1990s [334, 41], though, have HMMs been applied systemati-
cally to model, align, and analyze entire protein families and DNA regions, in
combination with machine-learning techniques.

HMMs are closely related to, or special cases of, neural networks, stochastic
grammars, and Bayesian networks. In this chapter we introduce HMMs directly
and show how they can be viewed as a generalization of the multiple dice
model of chapter 3. We develop the theory of HMMs—in particular the main
propagation and machine-learning algorithms-—along the lines of chapter 4.
The algorithms are used in the following sections where we outline how to ap-
ply HMMs to biological sequences. Specific applications are treated in chapter
8, while relationships to other model classes are left for later chapters.

Prior Information and Initialization

There are a number of ways in which prior information can be incorporated
in the design of an HMM and its parameters. In the following sections we will
give examples of different architectures. Once the architecture is selected, one
can further restrain the freedom of the parameters in some of its portions, if
the corresponding information is available in advance. Examples of such situa-
tions could include highly conserved motifs and hydrophobic regions. Linking
the parameters of different portions is also possible, as in the weight-sharing
procedure of NNs. Because of the multinomial models associated with HMM
emissions and transitions, the natural probabilistic priors on HMM parameters
are Dirichlet distributions (see chapter 2).

Initialization

The transition parameters are typically initialized uniformly or at random. In
the standard architecture, uniform initialization without a prior that favors

transitions toward the main states is not, in general, a good idea. Since all
transitions have the same costs, emissions from main states and insert states

also have roughly the same cost. As a result, insert states may end up being

Figure 7.3: Vartation on the Standard HMM Architecture. S is the start state, E is the end state,
and dy, my, and {; denote delete, main, and insert states, respectively.,

used very frequently, obviously not a very desirable solution. In[41], this prob-
lem was circumvented by introducing a slightly different architecture (figure
7.3), where main states have a lower fan-out (3) than insert or delete states (4),
and therefore are less costly around the point where transitions out of each
state are uniformly distributed. In a similar way, emissions can be initialized
uniformly, at random, or sometimes even with the average composition. Any
initialization that significantly deviates from uniform can introduce undesir-
able biases if Viterbi learning (see 7.4.3) is used.

Hidden Markov Models:
Applications

Protein Applications

In the case of proteins, HMMs have been successfully applied to many fam-
ilies, such as globins, immunoglobulins, kinases, and G-protein-coupled re-
ceptors (see, e.g., [334, 41, 38]). HMMs have also been used to model sec-
ondary structure elements, such as alpha-helices, as well as secondary struc-
ture consensus patterns of protein superfamilies [187]. In fact, by the end
of 1997, HMM data bases of protein families (Pfam) [497] and protein family
secondary structures (FORESST) [187] became available. Multiple alignments
derived from such HMMs have been reported and discussed in the literature.
Large multiple alignments are typically too bulky to be reproduced here. But
in most cases, HMM alignments are found to be very good, within the limits of
variability found in multiple alignments produced by human experts resulting
from diverse degrees of emphasis on structural or phylogenetic information.
In the rest of this first half of the chapter, we concentrate on the application
of HMMs to a specific protein family, the G-protein-coupled receptors (GCRs
or GPCRs), along the lines of [38, 42]. Additional details can be found in these
references.

Advantages and Limitations of HMMs
Advantages of HMMs

The numerous advantages of HMMs in computational molecular biology
should be obvious by now. HMMs come with a solid statistical foundation
and with efficient learning algorithms. They allow a consistent treatment of
insertions and deletion penalties, in the form of locally learnable probabilities.
Learning can take place directly from raw sequence data. Unlike conventional
supervised NNs, HMMs can accommodate inputs of variable length and they
do not require a teacher. They are the most flexible generalization of sequence
profiles. They can be used efficiently in a number of tasks ranging from
multiple alignments, to data mining and classification, to structural analysis

and pattern discovery. HMMs are also easy to combine into libraries and in
modular and hierarchical ways.

Limitations of HMMs

In spite of their success, HMMs can suffer in particular from two weaknesses.
First, they often have a large number of unstructured parameters. In the case
of protein models, the architecture of figure 7.2 has a total of approximately
49N parameters (40N emission parameters and 9N transition parameters). For
a typical protein family, N is on the order of a few hundred, resulting imme-
diately in models with over 10,000 free parameters. This can be a problem
when only a few sequences are available in a family, not an uncommon situ-
ation in early stages of genome projects. It should be noted, however, that a
typical sequence provides on the order of 2N constraints, and 25 sequences
or so provide a number of examples in the same range as the number of HMM
parameters.

Second, first-order HMMs are limited by their first-order Markov property:
they cannot express dependencies between hidden states. Proteins fold into
complex 3D shapes determining their function. Subtle long-range correlations
in their polypeptide chains may exist that are not accessible to a single HMM.
For instance, assume that whenever X is found at position i, it is generally
followed by Y at position j, and whenever X' is found at position i, it tends
to be followed by Y at j. A single HMM typically has two fixed emission vec-
tors associated with the 1 and j positions. Therefore, it cannot capture such
correlations. Only a small fraction of distributions over the space of possible
sequences can be represented by a reasonably constrained HMM.! It must be
noted, however, that HMMs can easily capture long-range correlations that are
expressed in a constant way across a family of sequences, even when such
correlations are the result of 3D interactions. This is the case, for example,
for two linearly distant regions in a protein family that must share the same
hydropathy as a result of 3D closeness. The same hydropathy pattern will be
present in all the members of the family and is likely to be reflected in the
corresponding HMM emission parameters after training.

Chapters 9 to 11 can be viewed as attempts to go beyond HMMs by com-
bining them with NNs to form hybrid models (chapter 9), by modeling the evo-
lutionary process (chapter 10), and by enlarging the set of HMM production
rules (chapter 11).

)
SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF BIO AND CHEMICAL ENGINEERING
DEPARTMENT OF BIOINFORMATICS

UNIT - V- SBIAS303 - MACHINE LEARNING FOR BIOINFORMATICS

UNIT 5 PROBABILISTIC GRAPHICAL MODELS Probabilistic Graphical Models in Bioinformatics
- Markov models & DNA symmetries - Markov models & gene finders Hybrid models &
neural network parameterization of graphical models -The single-model case — Bi-directional
recurrent neural networks for protein secondary structure prediction

Probabilistic Graphical Models
in Bioinformatics

The Zoo of Graphical Models in Bioinformatics

High-dimensional probability distributions are one of the fist obstacles one en-
counters when applying the Bayesian framework to typical real-life problems.
This is because the data is high-dimensional, and so are the models we use, of-
ten with many thousand parameters and up. High-dimensionality comes also
with other so called hidden variables. In general, the resulting global distribu-
tion P(D,M,H) is mathematically intractable and this is where the theory of
graphical models comes into play. Using the fact that to a large extent the bulk
of the dependencies in the real world are usually local, the high-dimensional
distribution is approximated by a product of distributions over smaller clus-
ters of variables defined over smaller spaces and which are tractable [348, 292].
In standard Markovian models, for instance, phenomena at time t + 1 may be
linked to the past only through what happens in the present at time t. As a
result, the global probability distribution P(X,,..., Xy) can be factored as a
product of local probability distributions of the form P(X; .| X;).

To be more specific, let us concentrate on a particular class of graphical
models, namely Bayesian networks [416] (a more formal treatment of graphi-
cal models is given in appendix C). A Bayesian network consists of a directed
acyclic graph with N nodes. To each node i is associated a random variable X;.
The parameters of the model are the local conditional probabilities, or charac-
teristics, of each random variable given the random variables associated with
the parent nodes P(X;|X; : j € N (i)), where N (i) denotes all the parents
of vertex i. The*Markovian” independence assumptions of a Bayesian network

Markov 0 O
onedie

Markov 0 O
multiple

dice

Markov 1 O

O
O

O O
O
O

Markov 2

C
C

HMM1

C

Figure 9.1: Bayesian Network Representation of Markov Models of Increasing Complexity.
Markov models of order 0 correspond to a single die or a collection of independent dice. Markov
models of order 1 correspond to the standard notion of first order Markov chain. In Markov
models of order 2, the present depends on the two previous time steps. All HMMs of order 1
have the same Bayesian network representation given here.

Markov Models and DNA Symmetries

In a piece of double-helical DNA, the number of As is equal to the number of
Ts, and the number of Cs is equal to the number of Gs. What appears today
as a trivial property in fact was essential in guiding Watson and Crick towards
the discovery of the double-helix model in the early 1950s. This property is
also known as Chargaff’s first parity rule [119]. Chargaff’s second parity rule,
however, is less known and states that the same thing is approximately true
for a piece of single-stranded DNA of reasonable size. This rule, first stated
in the 1960s [303, 120], has received some recognition in the recent years
[430, 185, 231].

The validity of Chargaff’s second parity rule can be studied across different
organisms, across different kinds of DNA such as coding versus non-coding,
and across different length scales. For simplicity, here we look only at genomic
DNA in yeast. If we measure the DNA composition of the W and C strands of
each chromosome of yeast we find that this composition is remarkably stable
and follows Chargaff’s second parity rule with approximately 30% for A and T,
and 20% for C and G (table 9.1). Notably, the same symmetry is observed in
yeast mitochondrial DNA but with a different composition. Likewise, single-
stranded genomic DNA in other organisms has a different but still symmetric
average composition.

To study the symmetries of double-stranded DNA we count how often each
nucleotide occurs on each strand over a given length. These frequencies corre-
spond to a probabilistic Markov model of order 1. It is then natural also tolook
at Markov models of higher orders (order N) by looking at the statistics of the
corresponding N-mers. In particular, we can ask whether Chargaff’s second
parity rule holds for orders beyond the first, for instance for dinucleotides,
equivalent to second-order Markov models.

A DNA Markov model of order N has 4V parameters associated with the
transition probabilities P (Xy|Xy,...,Xn-1), also denoted P(X,,... , Xny-1 —
Xn), for all possible Xy, ..., Xy in the alphabet together with a starting distri-
bution of the form mr(X,,..., Xy 1). Because the number of parameters grows
exponentially, only models up to a certain order can be determined from a
finite data set. A DNA Markov model of order 5, for instance, has 1,024 pa-
rameters and a DNA Markov model of order 10 has slightly over one million
parameters. Conversely, the higher the order, the larger the data set needed
to properly fit the model.

Because of the complementarity between the strands, a Markov model of
order N of one strand immediately defines a Markov model of order N on the
reverse complement. We say that a Markov model of order N is symmetric
if it is identical to the Markov model of order N of the reverse complement.
Thus a Markov model is symmetric if and only if P(X;...Xx) = P(Xn...X)).

in figure 8.12. The whole model was trained using all types of sequences
(known signal peptides and known anchor sequences, as well as cytoplasmic
and nuclear sequences). The most likely path through the combined model
yields a prediction of which of the three classes the protein belongs to.

In terms of predictive performance in relation to discrimination between
signal peptide sequences and nonsignal peptide sequences, the combination
of C-score and S-score neural networks (see section 6.4.1) had a discrimination
level comparable to that of the HMM. For eukaryotes the networks were slightly
better, while for Gram-negative bacteria the HMM was slightly better [406]. For
discrimination between cleaved signal peptides and uncleaved signal anchors,
the HMM had a correlation coefficient of 0.74, corresponding to a sensitivity
of 71% and a specificity of 81%—while the S-score from the neural network
could be used to obtain a performance on this task not exceeding 0.4 for the
correlation coefficient. The HMM is much better at recognizing signal anchor
and therefore at detecting this type of membrane-associated protein.

However, these results should not be taken as a claim that the neural net-
work method is unable to solve the signal anchor problem, since the signal
anchors were not included as training data in the neural network model, as
was the case for the HMM [406].

A similar approach in the form of a structured HMM has been used to model
and predict transmembrane protein toplogy in the TMHMM method [335].
TMHMM can discriminate between soluble and membrane proteins with both
specificity and sensitivity better than 99%, although the accuracy drops when
signal peptides are present. Due to the high degree of accuracy the method
is excellent for scanning entire genomes for detection of integral membrane
proteins [335].

Markov Models and Gene Finders

One the most important applications of Markov and graphical models to se-
quence analysis has been the construction of various gene finders and gene
parsers such as GeneMark and GeneMark.hmm [81, 82, 367], GLUIMMER [461],
GRAIL [529], GenScan [107] and now GenomeScan, and Genie [441]. Our goal
here is not to give an exhaustive list of all gene finders, nor to describe each
one of them in detail, nor to compare their respective merits and drawbacks,

Figure 9.5: Graphical Representation of GeneMark for Prokaryotic Genomes. For prokaryotic
genomes, typical high-level modules include modules for coding region and non-coding regions.

but to provide a synthetic overview showing how they can be constructed and
understood in terms of probabilistic graphical models.

Integrated gene finders and gene parsers typically have a modular archi-
tecture and often share the same basic strategies. They comprise two basic
kinds of elementary modules aimed at detecting boundary elements or vari-
able length regions. Examples of boundary modules associated with local-
ized signals include splice sites, start and stop codons, various transcription
factor and other protein binding sites (such as the TATA-box), transcription
start points, branch points, terminators of transcription, polyadenylation sites,
ribosomal binding sites, topoisomerase | cleavage sites, and topoisomerase
II binding sites. Region modules instead are usually associated with exons,
introns, and intergenic regions. Exon models in turn are often subdivided
into initial, internal, and terminal exons due to the well-known statistical dif-

Hybrid Models and Neural Network Parameterization of
Graphical Models

The General Framework

In order to overcome the limitations of HMMs, we shall look here at the pos-
sibility of combining HMMs and NNs to form hybrid models that contain the
expressive power of artificial NNs with the sequential time series aspect of
HMMs. In this section we largely follow the derivation in [40]. There are a

number of ways in which HMMs and NNs can be combined. Hybrid archi-
tectures have been used in both speech and cursive handwriting recognition
[84, 126]. In many of these applications, NNs are used as front-end proces-
sors to extract features, such as strokes, characters, and phonemes. HMMs
are then used in higher processing stages for word and language modeling’.
The HMM and NN components are often trained separately, although there are
some exceptions [57]. In a different type of hybrid architecture, described in
[126], the NN component is used to classify the pattern of likelihoods pro-
duced by several HMMs. Here, in contrast, we will cover hybrid architectures
[40] where the HMM and NN components are inseparable. In these architec-
tures, the NN component is used to reparameterize and modulate the HMM
component. Both components are trained using unified algorithms in which
the HMM dynamic programming and the NN backpropagation blend together.
But before we proceed with the architectural details, it is useful to view the
hybrid approach from the general probabilistic standpoint of chapter 2 and of
graphical models.

The Single-Model Case

Basic Idea

In a general HMM, an emission or transition vector € is a function of the state
ionly: @ = f(i). The first basic idea is to have a NN on top of the HMM for the
computation of the HMM parameters, that is, for the computation of the func-
tion f. NNs are universal approximators, and therefore can represent any f.
More important perhaps, NN representations of the parameters make possible
the flexible introduction of many possible constraints. For simplicity, we dis-
cuss emission parameters only in a protein context, but the approach extends
immediately to transition parameters as well, and to all other alphabets.

In the reparameterization of (7.33), we can consider that each of the HMM
emission parameters is calculated by a small NN, with one input set to 1 (bias),
no hidden layers, and 20 softmax output units (figure 9.9A). The connections

between the input and the outputs are the w; parameters. This can be gen-
eralized immediately by having arbitrarily complex NNs for the computation
of the HMM parameters. The NNs associated with different states can also
be linked with one or several common hidden layers, the overall architecture
being dictated by the problem at hand (figure 9.9B). In the case of a discrete
alphabet, however, such as for proteins, the emission of each state is a multi-
nomial distribution, and therefore the output of the corresponding network
should consist of | A| normalized exponential units.

Bidirectional Recurrent Neural Networks for Protein Sec-
ondary Structure Prediction

Protein secondary structure prediction (see also section 6.3) can be formulated
as the problem of learning a synchronous sequential translation from strings
in the amino acid alphabet to strings written in the alphabet of structural cate-
gories. Because biological sequences are spatial rather than temporal, we have
seen that BIOHMMs are an interesting new class of graphical models for this
problem. In particular, they offer a sensible alternative to methods based on a
fixed-width input window. The expressive power of these models enables them
to capture distant information in the form of contextual knowledge stored into
hidden state variables. In this way, they can potentially overcome the main dis-
advantage of feedforward networks, namely the linear growth of the number
of parameters with the window size. Intuitively, these models are parsimo-
nious because of the implicit weight sharing resulting from their stationarity;
i.e., parameters do not vary over time,

We have used BIOHMMs directly to predict protein secondary structure
with some success [36]. As graphical models, however, BIOHMMs contain
undirected loops and therefore require a computationally intensive evidence-
propagation algorithm (the junction tree algorithm [287]), rather than the sim-
pler Pearl’s algorithm for loopless graphs such as HMMs (see also appendix
C). Thus to speed up the algorithm, we can use the technique of the previous
section and use neural networks, both feedforward and recurrent, to reparams-
eterize the graphical model.

