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MULTISCALE COMPUTATIONAL MODELING

In the postgenomic era, researchers seek to focus their attention to studying and
analyzing biological networks and pathways by the use of multiscale computational
modeling techniques. A model can be viewed as a representation of a biological
system, where the representation can comprise a set of differential equations [8], a set
of first-order logic clauses [9], and so on. Biological models that incorporate multiple
scales such as time and space or multiple timescales may be viewed as multiscale
models [10]. Chapter 2 gives an in-depth account of mathematical and computational
models in systems biology.

Development of efficient and effective computational methodologies to perform
modeling, simulation, and analysis of complex biological processes is a challenging
task. Traditionally, mathematical and computational models have been developed by
considering a single scale. However, it is now feasible to incorporate multiple scales
in the process of model building due to recent advances in computational power and
technology. Generally, multiscale models are constructed by using sophisticated tech-
niques including numerical methods and integration approaches. Multiscale model
of the heart [11, 12] is a well-known example of an application of these modeling
techniques.

Multiscale computational modeling and simulation methods are showing
promising results in the field of oncology. The development of three-dimensional
multiscale brain tumor model by Zhang et al. [13] is an attempt in this direction.
The dynamics of tumor growth were simulated by using an agent-based multiscale
model where microscopic scale, macroscopic scale, and molecular scale were incor-
porated in the in silico model. In micro-macroscopic environment, a virtual brain
tissue block was represented by points in three-dimensional lattice. The lattice was

divided into four cubes that illustrated the behavior of chemotactically acting tumor
cells. The chemotaxis distribution of transforming growth factor alpha (TGFa), glu-
cose, and oxygen tension were illustrated in a set of mathematical equations. It was
observed that the amount of TGFa and glucose was chemoattractant, and diffu-
sion of glucose occurred at a constant rate. In order to incorporate molecular scale,
epidermal growth factor receptor (EGFR) gene—protein interaction network model
[14] was used in conjunction with cell cycle module. The authors used a simplified
EGFR network that comprised of EGFR and TGFa genes. The mathematical model
of EGFR gene-protein network was represented as a set of differential equations.



The authors utilized the cell cycle model presented in Tyson and Novak [15] and
Alacron et al. [16]. The implementation of the software systems was carried out
by combining in-house code with an agent-based software tool, namely, MASON
(http://cs.gmu.edu/ eclab/projects/mason/). In order to study and ana-
lyze tumor growth and spread, 10 simulations were performed. The results demon-
strated an increase in tumor volume with respect to time, where the relationship
between tumor volume and time was not linear. There was a sharp increase in volume
growth at later time intervals. The study found that migrating and proliferating cells
exhibited a dynamic behavior with respect to time. Furthermore, the cells caused spa-
tiotemporal tumor growth. The results showed that the number of migrating cells was
greater than the number of proliferating cells over time, where the high conceniration
of phospholipase C gamma (PLC+y) might be the key factor behind the phenomenon.
In summary, the study demonstrated a successful construction of multiscale computa-
tional model of the complex multifaceted biological process. However, the approach
is not free from shortcomings as described below:

¢ A simple EGFR network was used.
¢ (Clonal heterogeneity within tumor was not examined.

It has been found that the distribution of tumor cells is not homogeneous, and the
cells exhibit heterogeneous patterns. Techniques that account for clonal heterogene-
ity of tumor cell populations can be vital to analyze and study the development of
cancerous diseases. Furthermore, clonal heterogeneity can strongly impact the design
of effective therapeutic strategies. Therefore, many studies examined heterogeneity
in tumors [17, 18]. Zhang et al. [19] extended their multiscale computational mod-
eling technique [13] to investigate the clonal heterogeneity by incorporating genetic
instability. The extended model included doubling time of cell and cell cycle. Other
parameters such as cell-cell adhesion were also considered so that the strength of
the chemoattractants’ (TGFa, oxygen tension, and glucose) impact on cancer cells
adhesion and rate of cell migration could be investigated. The authors used Shannon’s
entropy for the quantification of tumor heterogeneity. Shannon entropy in this context
can be calculated as follows: Let ¢; denote the occurrence of clone i in the tumor,
the entropy is given by > .¢; In(¢;), where the higher values of Shannon’s entropy
represent more clonal heterogeneity.

The results of the study showed an increase in tumor total volume over time, where
the tumor was categorized into three regions on the basis of the distance between it



and the nutrient source. It was observed that there was a general increase in the values
of Shannon’s entropy for all the three regions. However, there was highest clonal
heterogeneity in the region closest to the nutrient source at early time stages where
the region exhibited a homogeneous pattern at later stages. The study inferred that
cancer could spread faster due to clonal heterogeneity as compared to homogeneous
cell populations in tumor.

The complexity of the mechanisms of development and morphogenesis establishes
a need to design effective and efficient computational techniques to investigate and
analyze the biological process. In a recent study, Robertson et al. [20] presented a
multiscale computational framework to investigate morphogenesis mechanisms in
Xenopus laevis. Mammalian cells share similarities with X. laevis in terms of signal-
ing network and cell behavior. A multiscale model was constructed by integrating
an intercellular signaling pathway model with the multicellular model of mesendo-
derm migration. The authors implemented Wnt/3-catenin signaling pathway model
that was presented by Lee et al. [21], whereas an agent-based approach was applied
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of Shannon’s entropy for all the three regions. However, there was highest clonal
heterogeneity in the region closest to the nutrient source at early time stages where
the region exhibited a homogeneous pattern at later stages. The study inferred that
cancer could spread faster due to clonal heterogeneity as compared to homogeneous
cell populations in tumor.

The complexity of the mechanisms of development and morphogenesis establishes
a need to design effective and efficient computational techniques to investigate and
analyze the biological process. In a recent study, Robertson et al. [20] presented a
multiscale computational framework to investigate morphogenesis mechanisms in
Xenopus laevis. Mammalian cells share similarities with X. laevis in terms of signal-
ing network and cell behavior. A multiscale model was constructed by integrating
an intercellular signaling pathway model with the multicellular model of mesendo-
derm migration. The authors implemented Wnt/(3-catenin signaling pathway model
that was presented by Lee et al. [21], whereas an agent-based approach was applied
to build mesendoderm migration model. In order to simulate mesendoderm cells’
migration, it was viewed that each cell comprised of nine sections, where each sec-
tion was modeled as an agent. Mesendoderm migration was facilitated by the use of

fibronectin extracellular matrix substrate. The study found that fibronectin gradient
was a key factor behind the cellular movement. It was also observed that polar-
ity signals [22] might be important for mesendoderm migration and morphogene-
sis. The simulations also demonstrated the importance to keep the cadherin binding
strength in balance with the integrin binding strength. Although the study estab-
lishes the efficacy of multiscale computational methodologies to studying morpho-
genesis, the proposed approach may not be computationally attractive for large-scale
simulations.



Physiome project [12] is well known for the development of multiscale mod-
eling infrastructures. Given that standard modeling languages are useful for
sharing biological data and models, three markup languages, namely, CelIML
(http://www.cellml.org/), FieldML, and ModelML, have been developed in
the project. CelIML [23] is characterized by its ability to capture three-dimensional
information regarding cellular structures. It can also incorporate mathematical knowl-
edge and metadata. FieldML, a related language, is known for its incorporation of
spatial information. The third systems biology modeling language, namely, Mod-
elML, is characterized by its ability to encode physical equations that illustrate com-
plex biological processes. The efficacy of the languages was established by building
multiscale heart models [12].

It has been found that same input, to constituent parts of a system, can produce
different outputs. Such variations may be produced by factors including alterations
in the concentration of system’s components. It is desirable to design techniques and
methods that can provide robustness to variations. Shinar et al. [24] presented a robust
method by exploiting molecular details. The authors coined the term “input—output
relation” for the association between input signal strength and output. The study
investigated the input—output relation in bacterial signaling systems.

PROTEOMICS

Proteomics, the study of proteins, is viewed crucial to analyze and understand biolog-
ical systems, as protein is the building block of life. Mass spectrometry (for details see
Chapter 17) is a well-known proteomics technology that is showing a huge impact on
the development of the field of computational systems biology. Several recent stud-
ies have identified the significant role of proteomics techniques in solving complex
biological problems [25-27].

Proteomics methods and data can be useful for the reconstruction of biological
networks. Recently, Rho et al. [28] presented a computational framework to recon-
struct biological networks. The framework is based on the use of proteomics data and
technologies to build and analyze computational models of biological networks. It is
termed as integrative proteomic data analysis pipeline (IPDAP). IPDAP incorporates
anumber of network modeling and analysis tools. The component tools of IPDAP can
be applied to reconstruct biological networks by fusing different types of proteomics
data. The successful application of IPDAP to different cellular and tissue systems
demonstrated the efficacy and functionality of the framework.

In another study, Zhao et al. [29] investigated signal transduction by applying
techniques from optimization theory and exploiting proteomics and genomics data.
They formulated the network identification problem as an integer linear programm-
ing problem. The proteomics (protein—protein interaction) data were represented as
weighted undirected graph, where the nodes and the edges represented proteins and
interaction between pair of proteins, respectively. The results of the study confirmed
the efficacy of the approach in searching optimal signal transduction networks from
the data.



Cell cycle comprises a series of ordered events by which cell replication and
division take place. Studying cell cycle regulation provides useful insights in cancer
growth and spread. The relationship between cell cycle and cancer has been a focus
of many studies [30, 31]. In Sigal et al. [32], a proteomics approach was applied to
investigate cell cycle mechanisms. The approach is based on the use of time-lapse
microscopy to study protein dynamics. The study identified cell cycle-dependent
changes in protein localization, where 40 percent of the investigated nuclear proteins
demonstrated cell cycle dependence. Another challenging problem is to find patterns
of polarized growth in cells where such growth is viewed as an important process
in organisms. In order to investigate the biological problem, Narayanaswamy et al.
[33] conducted a study by using budding yeast as the model system. The proposed
computational method is based on the use of microarray image analysis and a machine
learning technique, namely, naive Bayes algorithm. The study found 74 localized
proteins including previously uncharacterized proteins and observed novel patterns
of cell polarization in budding yeast.

Inarecent study [34], a computational technique is presented for predicting peptide
retention times. The method is at the intersection of two machine learning approaches,
namely, neural networks and genetic algorithms. In order to predict the retention times,
an artificial neural network is trained and the predicted values are further optimized

by using a genetic algorithm. The method was successfully applied to Arabidopsis
proteomics data.

COMPUTATIONAL SYSTEMS BIOLOGY AND AGING

Aging is a complex phenomenon that has not been well understood. In aging, we
witness gradual diminishing/decreasing functions at different levels, including or-
gans and tissues. Cell division has been viewed as a key process in aging since long
[35, 36]. Recently, de Magalhaes and Faragher [37] have elucidated that aging might
be affected by variations in cell division. Hazard rates and nutrition may be the key
factors that influence the longevity of cellular organisms [38]. There are a number of
theories that describe how aging occurs. Kirkwood [38] listed five different theories
that are as follows:

Somatic mutation theory
Telomere loss theory

Mitochondrial theory

Altered proteins and waste accumulation theory

Network theory



Aging has been extensively studied in Caenorhabditis elegans (nematode), mice,
humans, and fruit flies. A number of genes that extend organisms’ life span have been
discovered. Several studies on aging found that genetic mutations could increase
longevity [39—41]. Furthermore, aging genes with their associated pathways may
influence the variations in aging between different species but may not have any
affect on the differences in aging within a particular specie [42]. Gene expression
and pathway analysis can provide useful means to identify aging-related similarities
and differences between various species [43], where the efficacy of DNA microarray
technology, in studying aging, is significant [44]. In a recent study on aging, DNA
microarray experiments were utilized to show that aging in C. elegans is influenced
by GATA transcriptional circuit [45].

Advances in computational systems biology have led to the development of tools
and methods for solving highly complex problem of aging. For example, Xue et al. [46]
addressed the key issue regarding aging by applying an analytic method to human/fruit
fly protein—proteininteraction network, namely, NP analysis [47]. The method is based
on the identification of active modules in network, where the chosen module com-
prised of protein—protein interaction subnetwork between genes that show (positive
or negative) correlation during aging. The application of the method to human brain
aging identified four modules. Among these modules, the two showed transcription-
ally anticorrelation with each other. The other two modules comprised of immunity
genes and translational genes, respectively. In order to study correlation between genes
in other species during aging, the method was applied to fruit fly interactome. The
results of the study showed that in addition to two transcriptionally anticorrelated

genes modules, there were two other modules that demonstrated such anticorrelation.
On the basis of these findings, the authors suggest that only a few modules are associ-
ated with aging. The other key result of the study is the identification of the influence
of module connecting genes on aging.

In another study, Garan et al. [48] presented a computational systems biology
framework for studying neuroendocrine aging. The framework allows fusion of het-
erogeneous data from different disciplines such as endocrinology, cell biology, ge-
netics, and so on. The method can be effective in identifying underlying relationship
between the components that define aging.

Machine learning provides useful approaches and techniques to conduct studies
on aging. In Swindell et al. [49], a number of machine learning methods were used
to predict mouse life span. Twenty-two learning algorithms were applied to the prob-
lem, where the results demonstrated usefulness of support vector machines (SVMs),
stabilized linear discriminant analysis, and nearest shrunken centroid in solving the
problem, hence establishing the efficacy of machine learning technique for aging
research. Agent-based modeling techniques have also been used to understand the
biological processes of aging. The study published by Krivenko and Burtsev [50] is
indicative of the success of such approaches for aging related studies. The authors
applied their technique to simulate evolution and studied important factors including
kin recognition and aggression.



Analysis of pathways for aging can also facilitate the understanding of complex
diseases such as cancer. The probability of the occurrence of a cancer can be sub-
stantially lowered by downregulating the aging pathways [39]. Recently, Bergman
et al. [51] investigated longevity genes. They conducted an extensive study by using
more than 1200 subjects. On the basis of system-based analysis, the authors rec-
ommend that the investigation of genetic pathways can lead to the development of
strategies that may regulate age-related diseases and disorders.

COMPUTATIONAL SYSTEMS BIOLOGY IN DRUG DESIGN

Millions of people are suffering from fatal diseases such as cancer, AIDS, and many
other bacterial and viral illnesses. Computational systems biology approaches can
provide a solution to the key issue that is how to design lifesaving and cost-effective
drugs so that the diseases can be cured and prevented. Pharmaceutical companies
view that systems-based computational techniques will be highly useful in designing
effective therapeutic drugs [52-54]. Furthermore, advanced and sophisticated meth-
ods will accelerate drug discovery and development. In 2007, FDA approved only 17
new drugs [55] and approximately 50 drugs in 2008 (http: //www.fda.gov/).

It is believed that the association between systems-based biological methods and
drug designis age-old. Herbal drugs were developed by observing the diseases; hence,
today’s drug design has been (directly/indirectly) influenced by such early attempts
[56]. Computational systems biology approaches may revolutionize therapeutic inter-
vention in clinical medicine [2]. Effective systems-based drug design techniques can
bedeveloped by exploiting the knowledge of the robustness of biological systems [57].

An overview of a number of computational methods’ (Petri nets, cellular automata
techniques, hybrid methods, pi calculus, agent systems, and differential equations-
based methods) application to the task of drug design can be found in Materi and
Wishart [52].

Identification of novel drug targets in diseases is a key problem. In order to solve
such problems, Chu and Chen [58] recently presented a systems-based approach for
the identification of apoptosis drug targets. The selection of the drug targets by utiliz-
ing the approach can be viewed as a multistage discovery process. In the first stage,
a protein—protein interaction network is constructed by a number of datasets and on-
line interactome databases. In the second stage, a stochastic model of protein—protein
interactions is constructed. In order to refine the model, false protein interactions are
removed by utilizing an information theoretic measure, namely, Akaike’s informa-
tion criterion to microarray data. Finally, drug targets are identified by conducting a
network-level comparison between normal and cancer cells.



Transcription factors-based methods can play an important role in devising an
effective therapeutic and preventive interventions strategy for diseases. In Rosen-
berger et al. [59], the role of activating transcription factor 3 (ATF3) was inves-
tigated for murine cytomegalovirus (MCMV) infection. Mouse was used as the
model system. The study demonstrated negative regulation of interferon-gamma
(IFN-vy) expression caused by ATF3 in natural killer cells. The mice that had zero
ATF3 exhibited high resistance to MCMYV infection.

In another study, Nelander et al. [60] introduced a computational systems biology
methodology for the prediction of pathway responses to combinatorial drug pertur-
bations or drug combinations. The method is based on the use of multiple input—
output model. Given that the linear models are not able to capture crucial information
required for the task at hand, the authors presented nonlinear multiple input—output
model. The approach was applied to analyze perturbations in MCF7 human breast
carcinoma cells, where a number of compounds including rottlerin, rapamycin, and
and so on were selected as perturbants. The leave-one-out cross-validation results
showed the efficacy of the method.

Genetic causes of diseases can provide information that is crucial to design effective
therapeutic approaches. A network that illustrates the association between diseases
and their related genes can be highly informative. The human disease network pre-
sented in Goh et al. [61] is an attempt in this direction. The graph theoretic framework
is based on the construction of a network to analyze and investigate the association
between phenotypes and disease genes. In the constructed bipartite graph, one set of
nodes represents genetic disorders and the second set denotes known disease genes
in human genome. The edge between the disease and a gene represents the mutation
in gene caused by the disease. The network provides a means to study novel patterns
of gene disease associations.

Screening toxic compounds is a key issue in drug design and development. In
Amini et al. [62], a novel computational methodology was introduced as an accurate
means of predicting toxicity of compounds. The technique integrates two machine
learning approaches, namely, SVMs [63] and inductive logic programming (ILP), and
is termed support vector inductive logic programming (SVILP). The method works

by obtaining a set of rules from an ILP system, hence mapping the compounds into
relational ILP space. The induced rules are then applied to compute the similarity
between two compounds by the use of a novel kernel function. The function, given
by an inner product in relational ILP space, is a weighted sum over all the common
hypothesized rules. The ILP kernel is used in conjunction with SVMs to compute tox-
icity. The authors applied their method to a diverse and broad ranging toxicity dataset,
namely, DSSTox [64]. The effectiveness of the method was established by using a
cross-validation experimental methodology to predict the toxicity of the compounds.
The results of the study confirmed the efficacy of the method for drug design and
development. In Lodhi et al. [65], the method is extended to classify mutagens and
recognize protein folds. The extended method learns a multiclass classifier by using
a divide-and-conquer reduction strategy that divides multiclasses into binary groups
and solves each individual problem by inducing an SVILP. The extended multiclass
SVILP was successfully applied to classify compounds.



The database storing detailed kinetic knowledge can be a useful resource as it
can provide information that is required to build models of biological processes.
In order to provide such a knowledge base, a database of kinetic data, namely,
KDBI, has been developed [66]. The database contains various types of data, in-
cluding protein—protein interactions and protein—small molecule interactions. It in-
cludes 19,263 records, where 2635 entries belong to protein—protein interactions
and 11,873 records contain information regarding protein—small molecule interac-
tions. The database also comprises ordinary differential equations-based pathways
models.

SOFTWARE TOOLS FOR SYSTEMS BIOLOGY

In this section, we will very briefly describe software tools that are designed for
modeling, simulating, and analyzing complex biological processes. Bioconductor is
a project that provided a number of useful tools for conducting systems biology-
based studies. The design of effective infrastructure is crucial for the development of
efficient and user-friendly tools. Software infrastructures may be developed by using
only a basic computer language and generator (a software tool) [67]. Chapter 15
provides an in-depth description of a text mining tool for systems biology. Table 1.1
summarizes a number of software packages for studying and investigating biological
systems.

SQUAD [68] is an example of modeling tools for systems biology. It constructs
dynamic models of signaling networks, where the unavailability of kinetic data do
not hinder its performance. The underlying methodology of the systems is based on
the integration of Boolean and continuous modeling techniques. The implementation
is written in Java, whereas C++ has been used to code algorithms for the computa-
tion of steady states. SQUAD supports a number of input formats, including NET
(text file), MML (xml file), and SMBL (systems biology markup language). The
system performs simulations as follows: It takes as input a directed graph represent-
ing the structure of the network. The steady states of the graph are identified by

Table 1.1 Software tools for systems biology

Tools Biological systems Input format Platform
Modeling

SQUAD Signaling and regulatory XML, MML, and Windows and
networks NET Linux

CellNetAnalyzer ~ Metabolic, signaling, and ~ Network Composer  All platforms
regulatory networks and ASCII (approximately)

BioTapestry Signaling and CSV and tabular Linux, Mac, and
regulatory networks Windows

Sensitivity Analysis

SBML-SAT Signaling, regulatory SBML Linux, Mac, and

and metabolic network Windows
Visualization

Cytoscape Molecular interaction MS Excel, SIF, All platforms
networks and so on (approximately)

CellProfiler Cell images DIB Linux, Mac, and

Windows
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using a Boolean algorithm. Then, a dynamic model is constructed. Finally, a user
can perform simulations. SQUAD has a user-friendly graphical interface and can be
downloaded from http://www.enfin.org/dokuwiki /doku.php?id=squad:
start.

CellNetAnalyzer [69] is a related software tool for modeling and analyzing bio-
logical process. It can be applied to analyze signaling, regulatory, and metabolic
networks. The software tool is implemented in MATLAB, and C has been used to
code some underlying techniques. The input data can be provided to CellNetAnalyzer
by using Network Composer or ASCII file. It is available at http://www.mpi-
magdeburg.mpg.de/projects/cna/cna.html.

BioTapestry [70] is another biological modeling tool. It can perform analysis and
modeling of large biological networks. Linux, Windows, and Mac are supported
platforms. BioTapestry is available at http: //www.biotapestry.org/.

Sensitivity analysis is an important aspect of computational modeling for sys-
tems biology. SBML-SAT [71] performs sensitivity analysis of biological systems,
and the systems are represented in the form of ordinary differential equations. It in-
corporates and implements a number of well-known sensitivity analysis techniques.
Windows, Mac, and Linux are supported platforms. SBML-SAT is implemented in
MATLAB, where the input data need to be coded in SBML format. It is available at
http://sysbio.molgen.mpg.de/SBML-SAT/.

We now briefly describe Cytoscape [72] that facilitates the visualization and analy-
sis of biological networks. It also allows data integration. The supported input formats
are delimited text files, MS Excel, SIF (simple interaction format), SMBL, GO (gene

association), and so on. It enables the identification of active modules in biological
networks. Cytoscape also allows export of network structures as images in different
formats. Cytoscape is available at http: //www.cytoscape.org/.

The development of CellProfiler [73, 74] is an attempt to study complex bio-
logical processes by using image analysis software packages. The tool comprises
two components, namely, CellProfiler and CellProfiler Analyst. The images are pro-
cessed by using CellProfiler. CellProfiler Analyst is applied to analyze the processed
data produced by CellProfiler. The tool can analyze hundreds and thousands of im-
ages. It is characterized by its capability of recognizing nonmammalian cells and
quantification of phenotypes. It supports processing and analysis of multidimen-
sional images and can perform illumination correction and cell identification by
using standard and advanced methods. The tool is implemented in MATLLAB and
is available for Windows, Unix, and Mac platforms. The software tool is available at
http://www.cellprofiler.org/.

11



)
SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF BIO AND CHEMICAL ENGINEERING
DEPARTMENT OF BIOINFORMATICS

UNIT - I1I- SBIA5301 - SYSTEMS BIOLOGY




UNIT Il MODELS IN SYSTEMS BIOLOGY The Parameter Problem and the Meanings of
Robustness - Models as Dynamical Systems - Continuous Models - Discrete Models - The
Parameter Problem — Parameter phobia - Measuring and Calculating - Counter Fitting -
Beyond Fitting - The Landscapes of Dynamics - Qualitative Dynamics - Steady State Attractors
of ODE Models - The Meanings of Robustness Parameter Biology - Robustness to Initial
Conditions - Robustness in Reality - Structural Stability - Classifying Robustness Rule-Based
Modelling and Model Refinement -A Simple Cascade - A (Natural) Computing Perspective on
Cellular Processes - Cell Cycle and Breast Tumor Growth Control

MODELS AS DYNAMICAL SYSTEMS

Two broad directions have emerged in systems biology. The first, “omics,” initiated
by new technologies such as the microarray [17], relies on inferring causality from
correlation in large datasets (see. for instance. Sieberts and Schadt [18]). To the extent
that models are used, they are statistical in character. The second direction, which
might be called “mechanistic” systems biology, has been less visible but has deeper
historical roots [7-11]. The resulting models specify molecules, cells, and tissues and
their interactions based on what is known or believed to be true. It is with the latter
type of model that we will be concerned here. The subtleties of causal analysis are
well discussed elsewhere [19].

Most mechanistic models in systems biology can be regarded as some form of
dynamical system. A dynamical system describes the stares of a biological system
and how these states change in time. [t can be abstractly visualized as in Figure 2.1 as
a stare space, upon which is imposed a temporal dynamics: Given a particular state
as an initial condition, the dynamics define the frajectory taken over time from that
starting point. Not all models take this form. For instance, constraint-based models
represent systems at steady state and have no explicit representation of time [20]. We
focus here on models that do.

Parameter space

Faramefer values

State space

L]
Initial condition



Figure 2.1 Dynamical system. A point in parameter space, given by a set of parameter values,
defines the dynamics on the state space. If the system is prepared in an initial condition, then
the dynamics typically lead to an attractor, pictured here as a star. Common attractors are steady
states or periodic orbits but they can be much more complex [46]. Note that some trajectories
leave the attractor, indicating that it is unstable, as discussed in Section 2.4.1. The parameter
and state spaces are pictured as abstract sets. For ODE models, they usually correspond to
Euclidean spaces, k*, of some dimension k but for other kinds of models the state space can
be infinite dimensional (PDEs or stochastic models) or not have any linear structure (discrete
models).

THE PARAMETER PROBLEM

Biological systems have many “moving parts,” whose collective interactions produce
the physiology or phenotype of interest. Two general strategies have emerged to
model this complexity. One seeks to bring the model’s assumptions close to reality by
embracing the details of components and interactions. The resulting models are thick,
with many states and more parameters. The other strategy moves in the opposite
direction and seeks to abstract the essentials from the details, giving rise to thin
models with fewer parameters. Despite parochial assertions to the contrary, both
strategies have provided biological insight; their pros and cons are discussed in the
companion paper to this [2]. In both cases, but most especially with thicker models,
the problem arises of determining parameter values in a way that maintains credibility
in a model’s conclusions. The importance of this problem has tended to be obscured in
the literature for several reasons. On the one hand, it is easier to assert (particularly to
an experimental audience) “This model accounts for the data™ than “This model, with
these parameter values, accounts for the data.” The latter formulation invites awkward

questions as to why those parameter values were chosen and not others. (One might
have included “initial conditions” along with parameter values but since the initial
conditions are values of state variables, they share the same level of measurability
and are, therefore, usually easier to determine than parameter values.) Even if editors
and reviewers are aware of the problem—and it seems they are mostly not—they
are generally disinclined to ferret about in the Supplementary Information, to which
graveyard such technical details are usually consigned. Finally, such a variety of
approaches have something to say about the problem that it is hardly surprising to
find confusion as to best practice. Here, we emphasize the significance and centrality
of the parameter problem by contrasting different disciplinary perspectives of it.

Parameterphobia



Parameters are anathema to physicists, who take the view expressed in the quotation
from von Neumann that, with enough parameters, any behavior can be modeled.
Of course, von Neumann was joking: a weighted sum of increasing functions with
positive weights (parameters) can never fit a decreasing function, no matter how many
parameters are used. (See Section 2.4.2.1 for a more relevant example.) However, the
truth behind the joke distills a long tradition of modeling the inanimate world on
the basis of the fundamental laws of physics. Biology, while founded entirely upon
these laws, is not modeled in terms of them. Molecular or cellular behavior is not
deduced from Schridinger’s equation. At best, a model may be based on chemical
principles such as the law of mass action. At worst, it may rely on some ad hoc
guess that is only tenuously related to specific biological knowledge, let alone an
underlying molecular mechanism. We have, insuch cases, no systematic methodology
for avoiding parameters.

While physicists are familiar with parameters and keep them firmly in their place,
computer scientists (at least those of atheoretical disposition) are less acquainted with
them. The discrete models used in theoretical computer science, like finite automata
or Turing machines, have no parameters [34]. (They may have labels but these are
passive adornments that do not effect the rate of state transitions.) When discrete
models are parameterized, they transmogrify into Markov chains, whose properties
are more commonly studied elsewhere than in computer science. In consequence,
computer science has had little to say about the parameter problem.

Measuring and Calculating

[deally, parameter values should be independently measured. In practice, our limited
ability to make quantitative measurements of molecular states makes this difficult
if not impossible for many parameters. Even when parameters have been measured,
the conditions may have been sufficiently different as to raise doubts as to the rel-
evance of the measurements. In vitro values, for instance, may differ substantially
from those in vivo, while in vivo measurements themselves may require very careful
interpretation [41]. Nevertheless, such measurements as do exist are often useful for
initial analysis. Molecular dynamics (MD) calculations—arising from atomic-scale

models—can now provide illuminating explanations of intramolecular behavior [42].
Certain kinds of parameters, such as binding constants, might be calculated from such
MD models. Since these calculations are limited largely by computational power, it
would be unwise to bet against them in the long run, but it seems unlikely that they
will yield a systematic approach anytime soon. They will, in any case, be limited to
only certain kinds of parameters and to molecules whose atomic structures are well
understood.



Counter Fitting

Engineers are accustomed to building thick models with many parameters—of
chemical reactors or combustion chambers, for instance—and determining parameter
values by fitting to quantitative data [ 16]. This is the strategy most widely adopted in
systems biology when sufficient data of the right kind are available. The development
of nonlinear optimization algorithms has made parameter fitting easy to undertake
but has also concealed its dangers. These take several forms. The structure of a model
may render it nonidentifiable a priori: [t may not be possible, even in principle prior to
any data fitting, to determine certain parameter values. Even if a model is identifiable,
the fitting process itself may need to be carefully examined. The reported optimum
may be only local. Even if a global optimum is found, there may be several parameter
sets that yield roughly similar optimal values. In other words, the energy landscape
underlying the optimization may be undulating with many optimal valleys rather than
a broad funnel leading to a single optimum. A classic example is that of fitting a sum
of two exponentials; see, for instance, Figure 4.6 of Lakowicz [43].

The second and more serious danger in model fitting brings us back to the broader
significance of von Neumann’s quip. How is amodel to be rejected? The answer “when
there are no parameter values that fit the data” would not have satisfied von Neumann
because, in his view, a model that is complex enough may fit all manner of data. In
other words, the rejection criterion is inadequate. As we will seein Section 2.4.2.1, the
behavior of biochemical models is more subtle than this: models with arbitrary many
parameters may sometimes have the simple qualitative behavior shown by Eq. (2.2).
The core issue may be restated in terms of explanatory power. A model does not
explain the data to which it is fitted; the process of fitting already incorporates the
data into the model.

Of course, parameter fitting is widely used in other areas of science. An X-ray
crystal structure, for instance, is obtained by fitting an atomic model to diffraction
data, with many free parameters (bond angles, bond lengths, etc.). In such cases,
independent cross-validation is used [44]. The data are partitioned into two sets:
“test” data and “working” data. Parameters are determined by fitting on the working
data. Having been fitted, they are used to account for the test data. If they do, the model
is accepted; if not, it is rejected. Hodgkin and Huxley used a similar strategy for their
famous model of the action potential in the squid giant axon [8]. The parameters were
fitted in independent experiments on each of the three ion channels. Once fitted, the
model, with those parameter values, was shown to numerically reproduce the time
course of the action potential. Another strategy is to use wild-type data as working



data and mutant data to test it by computationally mimicking the effect of the mutation
[45]. As these examples make clear, a model’s explanatory power comes from being
able to account for data to which it has not been fitted.

Merely showing that quantitative data can be accounted for with some choice of
parameter values can be such an effort, particularly with thick models, that it is often
regarded as sufficient in itself. While this is easy to get away with, at least at present,
it is not a good foundation for a new discipline.

Beyond Fitting

Determining a specific set of parameter values and accounting for novel data is only
part of the parameter problem. We have a general suspicion of models that are fine-
tuned, for which some parameters require precise values. They are not “robust.”
(Much the same argument is made about unstable steady states; see Section 2.4.1.)
Robustness is a good feature, so the argument goes, because there are always errors,
often substantial errors, in measuring and fitting data. Related systems might also be
expected to show qualitatively similar behavior but not have quite the same parameter
values. If a model can be shown to be robust to changes in parameter values, then
one can be more confident in drawing conclusions from it despite such uncertainties.
There may also be properties of a model that are robust to variation in certain param-
eter values, like temperature compensation in circadian oscillators. Identifying such
properties may yield biological insight; see Section 2.5.3. Aside from such robust-
ness, which we will discuss further in Section 2.5, there may not always be sufficient
quantitative data, or data of the right type, to fit all parameter values. The available
data may, for instance, not be numerical but qualitative, as in developmental patterns.
Finally, models can also be used in an exploratory way to understand how to think
about a system in the first place, prior to any determination of parameter values. In
all these cases, it becomes important to know how the model’s behavior varies as a
function of parameter values. This is the broader aspect of the parameter problem. To
address it, a more qualitative view of dynamical systems becomes necessary.

THE LANDSCAPES OF DYNAMICS

Qualitative Dynamics

Although the general ideas outlined in this section apply to most forms of dynamical
system, they are best understood for ODE models [23, 46]. Figure 2.2 illustrates, in a
simple case, the kind of behavior to be expected of a model similar to example (2.1),
in which

dx

— = f(x:a). 23

ar f(x,a) (2.3)
where x € R" is a vector of state variables, a € R™ is a vector of parameters, and
f i+ R" — " is the vector rate function expressing the balance between production



and consumption of each x;. Biological state variables are frequently non-negative
(concentrations, for instance) and the state space may then be taken to be the non-
negative orthant of R". For any given set of parameter values, the trajectory starting
from a given initial condition will typically converge upon an attractor: a limited
region of the state space within which trajectones become confined. For instance,

the trajectory may reach a steady state, as in example (2.1), or a periodic orbit, as in
models of the cell cycle [23], circadian rhythms [47]. or developmental clocks [48].
Chemical systems can also have more complex attractors and exhibit behaviors like
bursting and chaos [49], which may have some biological role in the excitable tissues
found in cardiac and neural systems [50]. A dynamical system may have several
different attractors for a given set of parameter values. A familiar instance in systems
biology is bistability [23, 51, 52]. in which a dynamical system has three attractors,
consisting of two stable steady states and one unstable steady state (Figure 2.2(c)). In
this case, different initial conditions may reach different attractors and each attractor
will have its own basin of attraction consisting of those initial conditions that lead to
it. The state space breaks up into multiple disjoint basins of attraction, each leading
to a unique attractor.

The geometry of a basin of attraction reveals something of the dynamics leading to
the corresponding attractor. For instance, a steady state is stable if its basin of attraction
has the same dimension as that of the ambient state space (dimension 2 for the two
stable states in Figure 2.2(c)). If its dimension is lower, then moving away from the
attractor along one of the missing dimensions leads outside the basin of attraction and
toward some other attractor. This is the case for the saddle point in Figure 2.2(c) for
which the basin of attraction has dimension 1. The argument is made that an unstable
steady state is never found experimentally because random perturbations (“noise™)
would destabilize it. Stable states are “robust” to such perturbation. Consequently, a
steady state of a model that is claimed to represent some observed behavior should
always be checked to be stable. However, if only a few dimensions among hundreds are
missing from abasin of attraction, then it may be possible forthe systemto linger in the
corresponding steady state for an appreciable time, relative to the noise timescales
in the system. before becoming destabilized. Our experience of high-dimensional
systems is still too limited to know how significant this might be.

Steady State Attractors of ODE Models

Chemical Reaction Network Theory



2.4.2.1 Chemical Reaction Network Theory Example (2.1) has only a sin-
gle parameter region and only a single attractor—a stable steady state—for all param-
eter values in that region. Remarkably, more complex models may still exhibit similar
behavior. This emerges from Feinberg’s chemical reaction network theory (CRNT)
[61]: see Gunawardena [62] for an overview and other references. CRNT applies to
the ODE model coming from a network of chemical reactions by applying the prin-
ciple of mass action. It associates with such a network a nonnegative integer called
the “deficiency”, which does not depend on the values of the parameters but only on
the underlying network of reactions. The deficiency is the dimension of a certain lin-
ear subspace, reflecting one of the key insights of CRNT: Behind the nonlinearity of
mass-action kinetics, there exists a remarkable degree of hidden lineanty [62]. Under
reasonable conditions, deficiency zero networks behave like example (2.1): Provided
constraints are respected (see Section 2.5.2 for an explanation of constraints), there
is a single parameter region and only a single stable steady state for all parameter
values in that region [61, 62]. This theorem is important because it shows that thick
models, with many parameters, may nevertheless have simple qualitative dynamics.
One cannot always fit an elephant! Having said that, the “deficiency zero theorem™
is too restricted to be widely used in systems biology, where parameter values have
typically been found to influence the qualitative dynamics. Recent developments in
CRNT may be more relevant [63] and the full implications of CRNT for systems
biology remain to be worked out.

THE MEANINGS OF ROBUSTNESS

Robustness is one of the themes to have emerged in systems biology [72-75] and it is
particularly relevant to the parameter problem. Unfortunately, it is also one of those
concepts whose wide usage has not been matched by precise definition. Robustness
means, broadly, that some property of the system remains the same under perturbation.
Tomake this precise, it is necessary to say what the property is, in what sense it remains
the same, and what kinds of perturbations are being considered. The property might
be the overall qualitative dynamics of a system, in which case “remaining the same”
could mean that the number and type of attractors and the connectivity and shape of
the trajectories remain the same under perturbation. Alternatively, the property could
be a quantitative function evaluated on an attractor, like the period of a periodic orbit.
In this case, “remaining the same” could mean that the property remains quantitatively
unchanged under perturbation (“exact robustness™) or that it only changes by a limited
amount (“approximate robustmess’). As for perturbations, at least three different kinds
can be distinguished: changes to parameter values, changes to initial conditions, and
changes to the functional form that describes the dynamics (i.e., the f in Eq. (2.3)
for an ODE model). These perturbations have distinct mathematical and biological
implications. We will discuss the first two as preparation forreviewing some influential
studies of robustness and then return to the third.



Parameter Biology

Consider an ODE model derived by the principle of mass action from a network
of biochemical reactions. In this case, the parameters are rate constants of various
kinds: association rates, disassociation rates, catalytic rates, and so on. Such rates are,
hopefully (see the next paragraph), intrinsic features of the corresponding proteins
and would not be expected to change except through alterations to their amino acid
sequences. This could happen on an evolutionary timescale, so that different species
may have different parameter values, but this would not be expected to happen in

different cells of the same organism or tissue or clonal population of cells in cell
culture. The situation could be different in a polyclonal population, such as a tumor
or a natural population of outbred organisms, in which there could be substantial
genetic polymorphism. Depending on which loci exhibit polymorphism and how it
affects protein function, this genetic variation could give rise to rate constant variation
between different cells or different organisms.

(A caveat is essential here. Rate constants are not solely determined by intrin-
sic features of a protein. They also depend on the ambient conditions in the cell—
temperature, pH, and other ionic strengths—as well as, potentially, posttranslational
modifications such as disulfide bridges or glycosylations, or the presence of accessory
molecules such as chaperones or scaffolds, none of which might have been included
in a model. The reductionist approach commonly used in systems biology, in which
the properties of a system are deduced from its components, is always at risk of the
system biting back: The properties of the components may depend on that of the sys-
tem [2]. To put it another way, the boundary of a system has to be drawn somewhere,
with the implicit assumption that what is outside the boundary is irrelevant to the
behavior inside. Such assumptions tend to be taken for granted until they fail.)



Robustness to Initial Conditions

If the property thought to be robust is associated with an attractor, such as a steady
state, then its robustness to initial conditions would seem to follow from the stability
of the attractor, in the sense discussed in Section 2.4.1. However, it is often the case
that the dynamics satisfy additional constraints. For instance, an enzyme suffers no
net change in concentration in any reaction that it catalyzes. If it is not being other-
wise synthesized or degraded, then its total concentration remains constant at all times.
Similarly, if a substrate exists in many states of modification—multisite phosphoryla-
tion, for instance—and is also not synthesized or degraded, then its total concentration
remains constant. (Note that these constraints are linear in the state variables; non-
linear constraints may also be possible.) If there are k independent constraints, they
confine the dynamics to lie within a subspace of dimension d = n — k, where n is
the dimension of the ambient space. The state space thereby becomes divided into
“slices” of dimension d, each corresponding to a set of constraint values (Figure 2.4).
Within each slice, the dynamics behave as they did in Figure 2.1, with attractors,
basins of attraction and stability, as appropriate to an ambient space of dimension
d (not n). However, its qualitative character can change with the constraint values.
Hence, the constraint space also becomes divided into regions, within each of which
the dynamics in the corresponding slices remain qualitatively similar (Figure 2.4).

"

Figure 2.4 Dynamical system with constraints. The state space becomes divided into “slices,
represented by the straight lines, each slice comesponding to a set of constraint values, repre-
sented by a point in the space of constraints. Note that if the invariants are nonlinear, then the
slices may be curved spaces. The dynamics are confined within the slices. If an initial condition
is chosen within a slice, then the trajectory remains within that slice for all time; trajectories never
cross between slices. The dynamics within a slice can have attractors, represented by stars,
and other features as described in Figure 2.1 but their qualitative character can change as the
constraints vary, as illustrated by the appearance and disappearance of attractors.
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Robustness in Reality

With this background, let us review some particularly interesting and influential
demonstrations of robustness in different biological systems.

Signaling in bacteria is typically implemented by two-component systems con-
sisting of a sensor kinase coupled to a response regulator protein [79]. The sensor
autophosphorylates in response to a signal, using ATP as the phosphate donor. It
then transfers the phosphate to the response regulator, which initiates the signaling
response, by, for instance, stimulating gene transcription. In some two-component
systems involved in homeostasis—such as the EnvZ/OmpR system that regulates
osmolarity in Escherichia coli—the sensor also catalyzes the dephosphorylation of
the response regulator. This unusual bifunctional mechanism has been studied in sev-
eral models [80-82], whose general conclusion is that the mechanism enables the
amount of phosphorylated response regulator at steady state to be constraint robust
with respect to changes in the total amounts of sensor and response regulator. The
initial analysis by Russo and Silhavy using Michaelis-Menten kinetics [81], which
provided the first indication of this robustness, was subsequently refined using mass-
action kinetics by Batchelor and Goulian [80]. Their analysis showed approximate
constraint robustness when the amount of sensor kinase is much less than the amount
of response regulator, which, indeed, corresponds well to E. coli’s normal operating
regime. In their accompanying experimental analysis, they vared the total amounts
of EnvZ and OmpR and found good agreement with their model. Shinar et al. incor-
porated a further element into the mechanism by noting that in certain bifunctional
two-component systems [82, Table 1], including the EnvZ/OmpR system in E. coli,
ATP acts as a cofactor in the dephosphorylation of the response regulator. Their model
for this shows exact constraint robustness of the amount of phosphorylated response
regulator, with respect to changes to the total amounts of sensor, response regulator,
and ATP, provided the amount of response regulator remains above a threshold. These
predictions were also borne out by experiment.

E. coli has also been a model bacterium for the study of chemotaxis. It moves by
rotating its multiple flagella. Rotation in one direction brings the flagella into align-
ment, allowing the bacterium to “run” in a straight line. Rotation in the other direction

drives the flagella apart, causing the bacterium to “tumble™ and randomly reorient its
direction. By regulating its tumbling frequency, the bacterium can efficiently seck
out nutrients and escape poisons (chemotaxis) in environments that lie outside its
control. Because E. coli is so small, it has to sense changes in ligand concentration
over time, not space. It has been found to adapt its sensitivity to such changes across
a remarkably broad range of background concentrations. Unraveling the mechanism
behind this has been a triumph of systems biology [83].
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Structural Stability

Robustness with respect to functional variation—perturbing the f in Eq. (2.3)—
has not been as widely utilized as the kinds of robustness described above. How-
ever, it was the basis for a remarkable historical episode that still has resonance
for us today. Waddington’s distillaton of biological dynamics inspired the distin-
guished French pure mathematician René Thom to develop a mathematical frame-
work for describing it [95]. Thom made two general assumptions. First, that the dy-
namics arose from descending down a gradient, so that f(x;a) = —Vg(x;a), where
v=Y"_ | @/ dxj is the gradient operator. Waddington’s epigenetic landscape has just
such a gradient dynamics but for Thom the assumption arose from technical neces-
sity rather than analogy and, in his case, the parameters play a key role. In gradient
dynamics, steady states correspond to minima of the gradient function, g, which pro-
vides a crucial simplification. Second, Thom assumed that, in the absence of detailed
knowledge about the underlying molecular mechanisms that gives rise to g, it was
reasonable to focus on structurally stable behaviors; that is, those behaviors that re-
mained qualitatively the same if the function g was perturbed, g — g + h, where h
is “small.” Under these assumptions, Thom proved that, for small numbers of pa-
rameters (m < 5), there were only finitely many—in fact, just 11—different types of
structurally stable bifurcations [96, Chapter 7]. Note that the state space can be of
any dimension. Furthermore, most bifurcations that have been studied tend to depend
on only a few parameters, with the others playing only a background role. Hence, in
practice, the restriction to m < 5 is not limiting.

Classifying Robustness

One reason why robustness has attracted such attention is that it may be a biological de-
sign principle [74]. This is an appealing idea, but to make sense of it, robustness needs
to be precisely defined and grounded in the kind of careful experiments discussed in
Section 2.5.3. As we have shown, there are different types of robustness, which may
be classified according to which aspect of the dynamical system is changed.

e Type I: Dynamical Stabiliry. Robustness to change of initial conditions within a
fixed set of constraint values.

o Type II: Constraint Robustness. Robustness to change of constraint values.

e Type HI: Parametric Robustness. Robustness to change of parameter values.

o Type IV: Structural Stability. Robustness to change of the dynamical function.

12



No doubt there are others. As noted in Section 2.5.1, the interpretation of these math-
ematical properties depends crucially on the biological context that is being modeled.
Robustness could be quantified if we could estimate the size and shape of various
regions in high-dimensional spaces: basins of attraction, constraint regions, and pa-
rameter regions. Many studies can be seen as attempts to do this by random sampling
[84, 99]. Lack of space precludes a discussion of robustness trade-offs [74, 104]
and new methods of global sensitivity analysis [54, 55]. Kitano has remarked on the
need for a theory of biological robustness [105]. The dynamical systems framework
outlined here may provide a basis for this.

RULE BASED MODELING AND MODEL REFINEMENT

Rule-based modeling is an effective way of handling the explosive combinatorics of
biological networks. The use of partial objects in describing molecular interactions
means that only the necessary conditions for a rule are specified and not the com-
plete chemical entities taking part in a reaction. This leads to descriptions that are
easier to set up and more compact. Networks of substantial scale can be described
without having to reduce the combinatorics of the system—as other approaches
must.

An important aspect of the rule-based approach is its agility, as one can easily
modify rules to incorporate new knowledge or test different assumptions. A special
and rather frequent case is when one wishes to replace a rule with ones imposing

stronger conditions. This process is called refinement, and we approach itin this study
both from the practical and the theoretical point of view.
There are various reasons why one would like to use refinement:

¢ One wants to understand how the activity of a rule varies with its application
contexts

¢ One realizes that more conditions are necessary than previously thought
¢ One more subtly wishes to evolve the behavior of the current system

The notion of behavior-preserving, or neutral, refinement commands an analysis
of the possible symmetries of partial complexes. Here, we need a rigourous algebraic
theory to see through the intricacies caused by symmetries. Incidentally, the problem
of neutral refinement is one of a family of problems that is well-studied in the theory
of concurrent systems, usually under the catch phrase of “behavioral equivalence.”
The form of equivalence we are looking for here is especially strong, since it should
hold irrespective of the other rules defining the dynamics of the model.

The material is organized as follows. We begin with a brief introduction to the
Kappa language (Section 4.1). Next, we present several examples (Section 4.2) of
refinements. We have, in particular, a somewhat lengthy example that shows how
refinements can be used to evolve complex behavior from simple systems. By intro-
ducing mutant variants of agents that alter the behavior of a single rule, it is possible to
change dramatically and inunexpected ways the outcome of a pathway (Section4.2.2).
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Once we are reassured that the notion of refinement is actually useful, we turn to
the second part, namely, the mathematical development of rule refinement. An alge-
braic version of (a mild simplification of) Kappa is introduced (Section 4.3). This is
framed in basic category theory, which allows us to make use of existing mathematical
techniques. Previous work in this area developed a framework for homogeneous rule
refinement, where agents of the same type had the same sets of sites [1]. The frame-
work developed here is much more general and introduces the notion of addresses to
access specific agents in partial complexes (Section 4.4). This enables us to model a
much larger class of rule refinements, and an example is given of a model that could
not have been dealt with previously. We end by deriving a general formula for neutral
refinement and show that the stochastic transition system underlying the rule set is
unchanged.

The following is self-contained. Nevertheless, readers might want to consult earlier
Kappa references on a concrete example of the agility of rule-based modeling [2], the
use of debugging methods based on abstract interpretation [3], the development of
techniques for large-scale stochastic simulation [4], or the study of statistical asymp-
totic properties of simple Kappa networks [5].

A Simple Cascade

In order to introduce our notation for rules and agents and demonstrate the notion of
refinement in a first simple case, we start with an elementary cascade. This type of
biological circuitry occurs frequently in actual pathways (e.g., see [8]).

In our example, we have one kinase S, covalently modifying another kinase X,
which, in turn, modifies some third agent ¥. Each agent type is supposed to have a
singlesite, and the sites of X and ¥ hold an internal state of either « (unphosphorylated)
or p (phosphorylated); one says, X and ¥ are active when they are phosphorylated.
To keep things simple, the model does not include any mechanism to deactivate
Xor¥.

4.2.1.1 The Rules The interactions between S and X are defined by the follow-
ing rules:

S(i), X(s,) — SGi"), X(sh),
S, X(s') — S(), X(s),
('), X(sy) — S, X(s}).

14



In this rule set, a binding is represented by a shared exponent, for example,
S(i'), X(s') represents a binding between the § and the X agents via their respective
i and s sites. The first rule in the triplet specifies the conditions for such a binding to
take place: one needs the sites i and s to be free and one also needs the site s to have a
specific internal state u, indicated as a subscript s,. One might say that § is *smart’ in
so far as it does not bind a target that is already modified, that is, of the form X(s,).
The second rule represents the unbinding of the two molecules. Contrary to the first
one, this rule does not depend on the s site of X being in a particular internal state.
The ability to not have to specify the entirety of the context in which an event can
be triggered—which we alluded to earlier, and which is sometimes called the “don’t
care, don’t write”’ convention—already shows here in a very simple form. The third
rule represents the activation of X, that is, the change of X's internal state from u
to p.

A second and similar rule triplet defines the interactions of X and Y:

X(sp), Y(su) = X(s)), Y(sh).
ri= X(s"), Ys') = X(5), Y(5),
X(s"), Y(s,) — X("), Y(s).

This rule set differs from the previous one only in that the X agent is required to have

a phosphorylated s site in order to bind a Y agent, as stipulated in the first rule. This
ensures that the first half of the cascade happens before the second and, in particular,

that ¥ cannot be activated if there is no § signal.

CELL CYCLE AND BREAST TUMOR GROWTH CONTROL

In this section, we show how the computational paradigm introduced in Section 5.5
can be adapted in order to model important cellular processes. In particular, we show
how it is possible to model the processes concerning cell cycle and breast tumor
growth.

It is well-known that the life of human beings is marked by the cycling life of
its constitutive cells. It goes through four repetitive phases: Gap 1 (G1), 3, Gap 2
(G2), and M. G1 is in between mitosis and DNA replication and is responsible for cell
growth. The transition occurring at the restriction point (called r) during the G1 phase
commits a cell to the proliferative cycle. If the conditions that enforce this transition

are not present, the cell exits the cell cycle and enters a nonproliferative phase (called
z0) during which cell growth, segregation, and apoptosis occur. Replication of DNA
takes place during the synthesis phase (called g). Itis followed by a second gap phase
responsible for cell growth and preparation for division. Mitosis and production of
two daughter cells occur in the M phase. Switches from one phase to the next one
are critical checkpoints of the basic cyclic mechanism, and they are under constant
investigation [20, 21].
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Passage through these four phases is regulated by a family of cyclins' that act
as regulatory subunits for the cyclin-dependent kinases (Cdks). Cyclins® complex
activates Cdks, with the aim to promote the next phase transition. Such activation
is due to sequential phosphorylations and dephosphorylations® of the key residues
mostly located on each cdk complex subunit. Therefore, the activity of the various
cyclin-Cdk complexes results to be controlled by the synthesis of the approprate
cyclins during each specific phase of the cell cycle.

Cell Cycle Progression Inhibition in G1/S

Episodes of DNA damage during G1 pose a particular challenge because replication
of damaged DNA can be deleterious and because no other chromatid is present to
provide a template for recombinational repair. Besides, by considering that cyclins
operate as promoting factors for mitosis and that typical cancer evolutions act as
suppressors of certain members of the cyclins family, in case of DNA damage, the
desired (healthy) state is identified by the G0 phase. Hence, in this context, we are
interested to understand where and why G0 is reached.

5.6.1.1 p53-Dependent Checkpoint Pathway There are several proteins
that can inhibit the cell cycle in ¢1 but, whenever a DNA damage occurs, |_::.533
is the protein that gets accumulated in the cell and that induces the CyclinE cdk2
p21-mediated inhibition. It can be activated by different proteins that, in tum, can be
activated by different genotoxic or nongenotoxic stimuli. The role of this transcription
factoris toinduce the transcription of genes that encode proteins involved in apoptosis,
of genes that encode proteins in charge to stop the cell cycle, and of proteins involved
in the DNA repair machinery. When a damage is detected, p53 allows a cell a unique
possibility for survival by starting the repair machinery. If this process fails, the cell
is destined to die. In particular, whenever the DNA double strand is broken, p53 is
activated by the ATM protein kinase. The oncoprotein Mdm2* binds the transcription
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factor and blocks its activity through a dual mechanism: It conceals the p53 trans-
activation domain and promotes the p53 degradation after ubiquitination® [22]. ATM
activates p53 preventing the Mdm2 binding, so its inhibitory effect cannot occur. This
action allows p53 to shuttle to the nucleus. Here, it can promote the transcription of
different target genes; one of them is a cyclin-dependent kinase inhibitor: p21. p21
is in charge to suppress the CyclinE_Cdk2 kinase activity, thereby resulting in G1
arrest [23].

This mechanism has been formalized using membrane systems and simulated
in Mazza and Nocera [24]. In particular, we have extended the comesponding
Reactome® [25] model (written in the Systems Biology Markup Language, SBML
[26]). Moreover, we have translated the model into the membrane system frame-
work [27] and have simulated its dynamics. The obtained membrane system model
is described in Figure 5.6.

In addition to the described pathway, we have provided some extra rules with the
aim to reduce any possible pathways cross-talk effects (in fact, very often, chemicals
are involved in more than one living function and hence, they are involved in different
pathways). Moreover, we have added an interaction rate to the rules, as described in
Sedwards and Mazza [28], and we have used J(}_i,l'm\-Simjr to simulate the model.

We have initially employed the same quantitative initial configurations (except for
Cyeclin_cdk2, which we set one-tenth of the others with the aim both to acceler-
ate the degradation of p21 and to better qualitatively depict the arrest process) and
same rate constants (except for the last two degradations and for the p21 binding,
merely for complying qualitatively the well-known behaviors of the chemicals under
examination).

As already mentioned before, we have added to the model some extra feed-
back rules in order to avoid pathways cross-talks issues. In particular, we have
added a fictitious rule (rg) that causes the consumption of the sequestered com-
plex CyeclinE Cdk2 by p21 (rg). In this way, we can monitor and temporize the
cycle arrest process. Moreover, because damage, ATM, p53, and Mdm2 undergo phos-
phorylation and the corresponding ATMphospho, p53phosphoe, and Mdm2phospho
are endlessly created, we have introduced three simple degradation rules (rjo—12) to
take into account their balancing processes (that are, possibly, envisaged by other

pathways). When the modeled pathway is not perturbed by a DNA damage, the
Mdm2_p53 complex is rapidly created (r1) and quickly shuttled to cytoplasm (ry),
where itis degradated (r2) (Figure 5.7). But when a damage occurs (r2), the accumu-
lation of Mdm2_p53 into the nucleus is quickly blocked (reducing its shuttling) and
the accumulation of p53phospho is promptly triggered (rg). After the damage, the
quantity of Mdm2_p53 shuttled decreases (from 270 to 370 complexes), and the accu-
mulated p53phospho molecules transcriptionally activate p21 (r7) that accumulates
and sequesters CyclinE_Cdk2 (rg) for G1/5 arrest (Figure 5.8).
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M= (0, u, woo Wy, (U, v.), (u,, v,), R, R}, where

0 = {damage, ATMdimer, ATMphospho, Mdm2 , Mdm2_p53 , Mdm2 phospho, pS3phospho,
p21, CyclinE_Cdk2, p21_CyclinE_Cdk2},

p = [elaln]e,

Wes A,

w, = damage'"™ ATM_ dimer'"™ Mdm2""" ps3'"™ Cyelin cdk2'™"

U-= Ajves= Ajun= Ajva= A,

R" = {r: [Mdm2_p53]"—=[ 1" Mdm2_p53} rate(r,) =1,
R=

{

1 : [damage + ATMdimer — ATMphospho®]” rate(r,) =1,
r : [Mdm2 + p53 — Mdm2_ps3]” rate(r,) =1,
r : [Mdm2_p53 — A]° rate(r,) =1,

n : [ATMphospho + Mdm2 — ATMphospho + Mdm2phospho]” ratel(r,) =1,

% : [ATMphospho + p53 — ATMphospho + pS3iphosphol ® rate(r,) =1,
r, : [pS3iphospho — pS3iphospho + p21]" rate(r,) =1,
5 : [p21 + CyclinE_Cdk2 — p2l_CyclinE_Cdk2]” rate(r,) = 0.8,
ry 1 [p21 CyelinE Cdk2 — A]" rate(r,) =1,
¥ : [ATMphospho — A]" rate(r,,) =1,
ry : [pS3phospho — A]" rate(r,,) = 0 .6,
1y : [Mdm2phospho — A" rate(r,,} = 0.6

}

Figure 5.6 p53-dependent G1/S arrest. The membrane system is written in the style described
in Section 5.5. However, with the aim o be closer to biochemistry, we use the symbol “+" to
represent multiset concatenation (instead of just writing them by concatenating the symbols, as
is usually done in the membrane systems area and as presented in Section 5.3). For instance,
here a rule [uyu; — vy ]! is written as [uy + U — vy + w]'. Moreover, the labels used are
short notations for the following cellular compartments: s = system, ¢ = cytoplasm, and n =
nucleoplasm.
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UNIT Il BIOLOGICAL NETWORK INFERENCE Reconstruction of Biological Networks by
Supervised Machine Learning Approaches - Graph Reconstruction as a Pattern Recognition
Problem - Problem Formalization - Graph Inference as a Pattern Recognition Problem - Graph
Inference with Local Models and Global Models - Examples - Reconstruction of a Metabolic
Network - Reconstruction of a PPl Network Reconstruction of Gene Regulatory Networks

RECONSTRUCTION OF BIOLOGICAL NETWORKS BY SUPERVISED MACHINE LEARNING APPROACHES

In this review chapter, we focus on the problem of reconstructing the structure of large-
scale biological networks. By biological networks, we mean graphs whose vertices are
all or a subset of the genes and proteins encoded in a given organism of interest, and
whose edges, either directed or undirected, represent various biological properties.
As running examples, we consider the three following graphs, although the methods
presented below may be applied to other biological networks as well,

» Protein-protein interaction (PPI) network. This is an undirected graph with no
self-loop, which contains all proteins encoded by an organism as vertices. Two
proteins are connected by an edge if they can physically interact.

e Gene regulatory network. This is a directed graph that contains all genes of an
organism as vertices. Among the genes, some called transcription factors (TFs)
regulate the expression of other genes through binding to the DNA. The edges
of the graph connect TFs to the genes they regulate. Self-loops are possible

if a TF regulates itself. Moreover, each edge may in principle be labeled to
indicate whether the regulation is a positive (activation) or negative (inhibition)
regulation.

e Metabolic network. This graph contains only a subset of the genes as vertices,
namely, those coding for enzymes. Enzymes are proteins whose main function
is to catalyze a chemical reaction, transforming substrate molecules into product
molecules. Two enzymes are connected in this graph if they can catalyze two
successive reactions in a metabolic pathway, that is, two reactions, such that the
main product of the first one is a substrate of the second one.



Deciphering these networks for model organisms, pathogens, or human is currently
a major challenge in systems biology, with many expected applications ranging from
basic biology to medical applications. For example, knowing the detailed interactions
possible between proteins on a genomic scale would highlight key proteins that inter-
act with many partners, which could be interesting drug targets [1], and would help
in the annotation of proteins by annotation transfer between interacting proteins. The
elucidation of gene regulatory networks, especially in bacteria and simple eukaryotes,
would provide new insights into the complex mechanisms that allow an organism to
regulate its metabolism and adapt itself to environmental changes and could provide
interesting guidelines for the design of new functions. Finally, understanding, in de-
tail, the metabolism of an organism and clarifying which proteins are in charge of
its control, would give a valuable description of how organisms have found original
pathways for degradation and synthesis of various molecules, and could help again
in the identification of new drug targets [2].

Decades of research in molecular biology and genetics have already provided a
partial view of these networks, in particular, for model organisms. Moreover, recent
high-throughput technologies such as the yeast two-hybrid systems for PPI provide
large numbers of likely edges in these graphs, although probably with a high rate
of false positives [3, 4]. Thus, much work remains to be done in order to complete
(adding currently unknown edges) and correct (removing false-positive edges) these
partially known networks. To do so, one may want to use information about individual
genes and proteins such as their sequence, structure, subcellular localization, or level
of expression across several experiments. Indeed, this information often provides
useful hints about the presence or absence of edges between two proteins. Forexample,
two proteins are more likely to interact physically if they are expressed in similar
experiments and localized in the same cellular compartment, or twoenzymes are more
likely to be involved in the same metabolic pathway if they are often coexpressed and
if they have homologs in the same species [5-7].

Following this line of thought, many approaches have been proposed in the recent
years to infer biological networks from genomic and proteomic data, most of them
attempting to reconstruct the graphs de novo. In de novo inference, the data about
individual genes and proteins are given and edges are inferred from these data only,
using a variety of inference principles. For example, when time series of expression
data are used, regulatory networks have been reconstructed by fitting various dynam-
ical system equations to the data [8—14]. Bayesian networks have also been used to



infer de novo regulatory networks from expression data, assuming that direct regu-
lation can be inferred from the analysis of correlation and conditional independence
between expression levels [15]. Another rationale for de nove inference is to connect
genes or proteins that are similar to each other in some sense [5, 6]. For example,
coexpression networks or the detection of similar phylogenetic profiles are popular
ways to infer “functional relationships™ between proteins, although the meaning of the
resulting edges has no clear biological justification [ 16]. Similarly, some authors have
attempted to predict gene regulatory networks by detecting large mutual information
between expression levels of a TF and the genes it regulates [17, 18].

In contrast to these de novo methods, in this review, we present a general approach
to reconstruct biological networks using information about individual genes and pro-
teins based on supervised machine learning algorithms, as developed through a recent
series of articles [19-26]. The graph inference paradigm we follow assumes that,
besides the information about individual vertices (genes or proteins) used by de novo
approaches, the graph we wish to infer is also partially known, and known edges can
be used by the inference algorithm to infer unknown edges. This paradigm is similar
to the notion of supervised inference in statistics and machine leaming, where one
uses a set of input/output pairs (often called the training set) to estimate a function that
can predict the output associated with new inputs [27, 28]. In our paradigm, we give
us the right to use the known edges of the graph to supervise the estimation of a func-
tion that could predict whether a new pair of vertices is connected by an edge or not,
given the data about the vertices. Intuitively, this setting can allow us to automatically
learn what features of the data about vertices are the most informative to predict the
presence of an edge between two vertices. In a sense, this paradigm leads to a problem
much simpler than the de nove inference problem, since more information is used as
an input, and it might seem unfair to compare de noveo and supervised methods. How-
ever, as already mentioned, in many real-world cases of interest, we already partially
know the graph we wish to infer. It is, therefore, quite natural to use as much infor-
mation as we can in order to focus on the real problem, which is to infer new edges
(and perhaps delete wrong edges), and, therefore, to use as an input both the genomic
and proteomic data, on the one hand, and the edges already known, on the other.



In a slightly more formal language, we, therefore, wish to learn a function that can
predict whether an edge exists or not between two vertices (genes or proteins), given
data about the vertices (e.g., expression levels of each gene in different experimental
conditions). Technically, this problem can be thought of as a problem of binary clas-
sification, where we need to assign a binary label (presence or absence of an edge)
to each pair of vertices, as explained in Section 7.2.1. From a computational point
of view, the supervised inference paradigm we investigate can, in principle, benefit
from the availability of a number of methods for supervised binary classification,
also known as pattem recognition [28]. These methods, as reviewed in Section 7.2.2,
are able to estimate a function to predict a binary label from data about patterns,
given a training set of (pattem, label) pairs. The supervised inference problem we are
confronted with, however, is not a classical pattern/label problem because the data
are associated with individual vertices (e.g., expression profiles are available for each
individual gene), while the labels correspond to pairs of vertices. Before applying

out-of-the-box state-of-the-art machine leaming algorithms, we, therefore, need to
clarify how our problem can be transformed as a classical pattern recognition prob-
lem (Section 7.2.3). In particular, we show that there is not a unique way to do that, and
present in Sections 7.2.4 and 7.2.5, two classes of approaches that have been proposed
recently. Both classes involve a support vector machine (SVM) as a binary classifica-
tion engine, but follow different avenues to cast the edge inference problem as a binary
classification problem. In Section 7.3, we provide experimental results that justify the
relevance of supervised inference and show that a particular approach, based on local
models, performs particularly well on the reconstruction of PPI and regulatory and
metabolic networks. We conclude with a rapid discussion in Section 7.4,

GRAPH RECONSTRUCTION AS A PATTERN RECOGNITION PROBLEM

In this section, we formally define the graph reconstruction problem considered and
explain how to solve it with pattern recognition techniques.

We consider a finite set of vertices V = (vy, ..., v, ) that typically correspond to the
set of all genes or proteins of an organism. We further assume that for each vertex
v € V, we have a description of various features of v as a vector ¢p(v) € R”. Typically,
¢(v) could be a vector of expression levels of the gene v in p different experimental
conditions, measured by DNA microarrays, a phylogenetic profile that encodes the
presence or absence of the gene in a set of p sequenced genomes [6], a vector of p
sequence features, or a combination of such features. We wish to reconstruct a set of
edges E C V x V that defines a biological network. While in de novo inference, the
goal is to design an algorithm that automatically predicts edges in E from the set of

vertex features (¢(vy), ..., @(v,)), in our approach, we further assume that a set of
pairs of vertices known to be connected by an edge or not is given. In other words,
we assume given a list S = ((e, y1). ..., (en, yn)) of pairs of vertices (¢; € V x V)

tagged with a label y; € {—1, 1} that indicate whether the pair ¢; is known to interact



(vi = D ornot(y; = —1). In an ideal noise-free situation, where the labels of pairs in
the training set are known with certainty, we thus have y; = life¢; € E,and y; = —1
otherwise. However, in some situations, we may also have noise or errors in the
training set labels, in which case, we could only assume that pairs in E tend to have
a positive label, while pairs not in E tend to have a negative label.

The graph reconstruction problem can now be formally stated as follows: Given
the training set S and the set of vertex features (¢(v1), . .., ¢(vy)), predict for all pairs
notin § whether they interact (i.e., whether they are in E) or not. This formulation is
illustrated in Figure 7.1.

Stated this way, this problem is similar to a classical pattern recognition problem,
for which a variety of efficient algorithms have been developed over the years. Before
highlighting the slight difference between the classical pattern recognition framework

Figure7.1 We consider the problem of inferring missing edgesin a graph (dotted edges), where
a few edges are already known (solid edges). To carry out the inference, we use attributes avail-
able about individual vertices such as vectors of expression levels across different experiments
if vertices are genes.

and ours, it is, therefore, worth recalling this classical pattern recognition paradigm
and mentioning some algorithms adapted to solve it.

Pattern Recognition

Pattern recognition, of binary supervised classification, is a well-studied problem
in statistics and machine learning [27, 28]. In its basic setup, a training set 7 =

{(uyr, 1), ..., (un, ty)} of labeled patterns is given, where u; € R? is a vector and
ti € {—1,1)} is a binary label, fori =1, ..., N. The goal is then to infer a function
f :RY — {—1, 1} that is able to predict the binary label r of any new pattern u € R?
by f(u).

Many methods have been proposed to infer the labeling function f from the training
set 7, including, for example, nearest neighbor classifiers, decision trees, logistic
regression, artificial neural networks, or SVMs. Although any of these methods can
be used in what follows, we will present experiments carried out with an SVM, which
we briefly describe below, mainly for three reasons:



e [t is now a widely used algorithm, in particular, in computational biology, with
many public implementations [29, 30].

[t provides a convenient framework to combine heterogeneous features about
the vertices such as the sequence, expression, and subcellular localization of
proteins [19, 31, 32].

* Some methods developed so far for graph inference, which we describe below,

are particularly well-adapted for a formalization in the context of SVM and
kernel methods [22, 24].

Letus, therefore, briefly describe the SVM algorithm and redirect the interested reader
to various textbooks for more details [33-35]. Given the labeled training set 7, an

SVM estimates a linear function h(u) = w' u for some vector w € RY (here w ' u

represents the inner product between w and u) and then makes a label prediction for a
new pattern u« that depends only on the sign of h(u): f(u) = 1ifh(u) > 0, f(u) = —1
otherwise. The vector w is obtained as the solution of an optimization problem that
attempts to enforce a correct sign with large absolute values for the values i(u;) on
the training set while controlling the Euclidean norm of w. The resulting optimization
problem is a quadratic program for which many specific and fast implementations
have been proposed.

Graph Inference as a Pattern Recognition Problem

Let us now return to the graph reconstruction problem, as presented in Section 7.2.1.
At first sight, this problem is very similar to the general pattern recognition paradigm
recalledin Section 7.2.2: Given pairs of vertices with positive and negative labels, infer
a function f to predict whether a new pair has a positive label (i.e., is connected) or
not. An important difference between the two problems, however, is that the features
available in the graph reconstruction problem describe properties of individual vertices
v and not of pairs of vertices (v, v). Thus, in order to apply pattern recognition
techniques such as the SVM to solve the graph reconstruction problem, we can follow
one of the two possible avenues.

(1) Reformulate the graph reconstruction problem as a pattern recognition prob-
lem, where binary labels are attached to individual vertices (and not to pairs
of vertices). Then pattern recognition methods can be used to infer the label
of vertices based on their features.

(2) Keep the formulation as the problem of predicting the binary label of a pair of
vertices, but find a way to represent as vectors (or as a kernel) pairs of vertices,
while we initially only have features for individual vertices.



Graph Inference with Local Models

In this section, we describe an approach that was proposed by Bleakley et al. [25]
for the reconstruction of metabolic and PPI networks and successfully applied by
Mordelet and Vert [26] for regulatory network inference. The basic idea is very simple
and can be thought of as a “divide-and-conquer” strategy to infer new edges in a
graph. Each vertex of the graph is considered in turn as a seed vertex, independently
from the others, and a “local™ pattern recognition problem is solved to discriminate
the vertices that are connected to this seed vertex against the vertices that are not

connected to it. The local model can then be applied to predict new edges between
the seed vertex and other vertices. This process is then repeated with other vertices
as seed to obtain edge prediction throughout the graph. More precisely, the “local
model” approach can be described as follows:

(1) Take a seed vertex vseeq in V.

(2) For each pair (vgeq, v") with label y in the training set, associate the same
label y with the individual vertex v’. This results in a set of labeled vertices
{(vrl )y, (v;,{v_w]. "Mv.wl)}- where n(vgeeq) is the number of pairs start-
ing with vg.q in the training set. We call this set a local training set.

(3) Train a pattern recognition algorithm on the local training set designed in step
2.

(4) Predict the label of any vertex v’ that has no label, that is, such that (vgeq. V')
is not in the training set.

(5) If a vertex v” has a positive predicted label, then predict that the pair (vgeeq, V)
has a positive label (i.e., is an edge).

(6) Repeat steps (1)—5) for each vertex vseeq in V.

(7) Combine the edges predicted at each iteration together to obtain the final list
of predicted edges.



Reconstruction of a Metabolic Network

The reconstruction of metabolic networks has been among the first applications that
motivated the line of research surveyed in this Chapter [19-21, 25]. We consider
here the problem of inferring the metabolic gene network of the yeast S. cerevisiae
with the enzymes represented as vertices, and an edge between two enzymes when
the two enzymes catalyze successive reactions. The dataset, proposed by Yamanishi
et al. [21], consists of 668 vertices (enzymes) and 2782 edges between them, which
were extracted from the KEGG database of metabolic pathways [38]. In order to
predict edges in these networks, Bleakley et al. [25] used various genomic datasets
and compared different inference methods. Following Yamanishi et al. [21], the data
used to characterize enzymes comprise 157 expression data measured under different
experimental conditions [39, 40], a vector of 23 bits representing the localization of
the enzymes (found or not found) in 23 locations in the cell determined experimentally
[41], and the phylogenetic profiles of the enzymes as vectors of 145 bits denoting the
presence or absence of the enzyme in 145 fully sequenced genomes [38]. Each type
of data was processed and transformed into a kernel as described in Yamanishi et al.
and Kato et al. [21, 42], and all matrices were summed together to produce a single
kernel integrating heterogeneous data.

On a common five-fold cross-validation setting, Bleakley et al. [25] compared dif-
ferent methods including local models (Section 7.2.4), the TPPK and MLPK kernels
(Section 7.2.5) as well as several other methods: a direct de novo approach, which
only infers edges between similar vertices, an approach based on kernel canonical
correlation analysis (KCCA) [19], and a matrix completion algorithm based on an

em procedure [42, 43]. On each fold of the cross-validation procedure, each method
uses the training set to learn a model and makes predictions on pairs in the test set.
All methods associate a score with all pairs in the test set, hence by thresholding this
score at different levels, they can predict more or less edges. Results were assessed in
terms of average ROC curve (which plots the percentage of true positives as a function
of the percentage of false positives, when the threshold level is varied) and average
precision/recall curve (which plots the percentage of true positives among positive
predictions, as a function of the percentage of true positives among all positives).
In practical applications, the later criterion is a better indicator of the relevance of a
method than the former one. Indeed, as biological networks are usually sparse, the
number of negatives far exceeds the number of positives, and only large precision
(over arecall as large as possible) can be tolerated if further experimental validations
are expected.

Figure 7.4 shows the performance of the different methods on this benchmark.
A very clear advantage for the local model can be seen. In particular, it is the only
method tested that can produce predictions at more than 80 percent precision. There
is no clear winner among the other supervised methods, while the direct approach,
which is the only de nove method in this comparison, is clearly below the supervised
methods.



Reconstruction of a PPl Network

As a second application, we consider the problem of inferring missing edges in the
PPI network of the yeast S. cerevisiae. The gold standard PPI graph used to perform
a cross-validation experiment is a set of high-confidence interactions supported by
several experiments provided by Von Mering etal. [44] and also used in Kato et al. [42].
After removal of proteins without interactions, we end up with a graph involving 2438
interactions (edges) among 984 proteins (vertices). In order to reconstruct missing
edges, the genomic data used are the same as those used for the reconstruction of the

metabolic network in Section 7.3.1, namely, gene expression, protein localization,
and phylogenetic profiles, together with a set of yeast two-hybrid data obtained from
Uetz et al. [3] and Ito et al. [4]. The later was converted into a positive definite kernel
using a diffusion kernel, as explained in Kato et al. [42]. Again, all datasets were
combined into a unique kernel by adding together the four individual kernels.

Figure 7.5 shows the performances of the different methods, using the same ex-
perimental protocol as the one used for the experiment with metabolic network re-
construction in Section 7.3.1. Again, the best method is the local model, although
it outperforms the other methods with a smaller margin than for the reconstruction
of the metabolic network (Figure 7.4). Again, the ROC curve of the de novo direct
method is clearly below the curves of the supervised methods, although this time it
leads to a large precision at low recall. This means that a few interacting pairs can
very easily be detected because they have very similar genomic data.

Reconstruction of Gene Regulatory Networks

Finally, we report the results of an experiment conducted for the inference of a gene
regulatory network by Mordelet and Vert [26]. In that case, the edges between tran-
scription factors and the genes they regulate are directed; therefore, only the local
model of Section 7.2.4 is tested. It is compared with a panel of other state-of-the-art
methods dedicated to the inference of gene regulatory networks from a compendium
of gene expression data, using a benchmark proposed by Faith et al. [ 18]. More pre-
cisely, the goal of this experiment is to predict the regulatory network of the bacteria
Escherichia coli from a compendium of 445 microarray expression profiles for 4345
genes. The microarray was collected under different experimental conditions such as
pH changes, growth phases, antibiotics, heat shock, different media, varying oxygen
concentrations, and numerous genetic perturbations. The goal standard graph used to
assess the performance of different methods by cross-validation consists of 3293 ex-
perimentally confirmed regulations between 154 TF and 1211 genes, extracted from
the RegulonDB database [45].

10



In Faith et al. [18], this benchmark was used to compare different algorithms,
including Bayesian networks [15], ARACNe [46], and the context likelihood of re-
latedness (CLR) algorithm [18], a new method that extends the relevance networks
class of algorithms [17]. They observed that CLR outperformed all other methods in
prediction accuracy and experimentally validated some predictions. CLR can, there-
fore, be considered as the state-of-the-art among methods that use compendia of gene
expression data for large-scale inference of regulatory networks. However, all the
methods compared in Faith et al. [18] are de nove, and the goal of Mordelet and Vert
[26] was to compare the supervised local approach to the best de novo method on this
benchmark, namely, the CLR algorithm. Using a three-fold cross-validation proce-
dure (see details in Mordelet and Vert [26]), they obtained the curves in Figure 7.6.
We can observe that the local supervised approach (called SIRENE for Supervised
Inference of REgulatory NEtwork) strongly outperforms the CLR method on this
benchmark. The recall obtained by SIRENE, that is, the proportion of known regula-
tions that are correctly predicted, is several times larger than the recall of CLR at all
levels of precision. More precisely, Table 7.1 compares the recalls of SIRENE, CLR,
and several other methods at 80 percent and 60 percent precision. The other methods
reported are relevance network [17], ARACNe [46], and a Bayesian network [15]
implemented by Faith et al. [18].

Table 7.1 Recall of different gene regulation
prediction algorithms at different levels of precision

(60% and 80%)

Method Recall at 60%  Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

Source: From Ref. 26.
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UNIT IV GENOMICS AND COMPUTATIONAL SYSTEMS BIOLOGY From DNA Motifs to Gene
Networks: A Review of Physical Interaction Models - Physical Basis of Transcription
Regulation and Representation of DNA Patterns - Physical Interaction Algorithms - Genomic
Signatures and a Space of Genomes for Genome Comparison - Study of Metabolic Networks
Through Sequence Analysis and Transcriptomic Data

FROM DNA MOTIFS TO GENE NETWORKS: A REVIEW OF PHYSICAL INTERACTION MODELS

Understanding the interactions between biomolecules within a cell and between cells
and their environment is one of the major challenges in computational biology. Al-
though every cell in an organism contains the same genetic material, its expression
profile depends on the tissue type, developmental stage, and the extracellular sig-
nals it receives at the given point in time. Cells exert various ways to regulate the
expression of their genes. Chromatin structure, for example, can make large parts
of the genome transcriptionally silent or potentially active. Also, posttranscriptional
and posttranslational mechanisms can influence the amount and the activity of the
available proteins and noncoding genes in a cell. The best studied mechanism for
gene expression control, however, is the transcription regulation at the individual

Enhancer elements

CAAT TATA TSS
CRMs Core promoter

Figure 12.1 Schematic representation of a typical eukaryotic promoter. The transcription start
site (TSS), the core promoter, and the enhancer elements are depicted.

gene level. Transcription factor (TF) proteins recognize short DNA “signals”
(typically 6-15base pairs long) in the vicinity of the genes’ transcription start sites
(TSSs) and enhance or suppress their expression. These DNA signals are commonly
referred to as transcription-factor binding sites (TFBSs) or—more general—as cis-
regulatory elements. A broad classification of the role of these regulatory elements can
be done on the basis of their distance from the gene’s TSS (Figure 12.1). The region
located in the first 300-500-bp upstream of the TSS constitutes the core promoter of
the gene and frequently contains binding sites for general TFs, like the TATA-box and
the CAAT-box. Core promoters are relatively conserved regions across all vertebrates
[1, 2]. Farther upstream are located the TF binding sites that are responsible for the



gene's expression specificity (i.e., when and where the gene is expressed). The timely
and tissue-specific expression of all genes is crucial for the cell itself and the organism
as a whole. Expression is usually regulated by sets of TFs, whose binding sites are
closely located in the genome, and the TFs themselves can directly interact with each
other. These sets of sites are known as cis-regulatory modules (CRMs.) CRMs can
be found few kilobases around the TSS. Finally, in complex eukaryotic organisms,
some TF target sequences can be found tens of thousands of bases away from the
TSS. These regions are usually called enhancers, and their main role is to fine-tune
genes’ regulation, usually through protein—protein interactions. Figure 12.1 presents
some of the features of a typical eukaryotic promoter.

TF genes interact with each other either directly (i.e., by forming protein com-
plexes) or indirectly (i.e., by regulating each other’s expression). TFs act individually
(as monomers) or in complexes (as homo- or hetero-multimers). This creates a net-
work of interactions that characterizes a cell’s response to a particular stimulus. Fo-
cusing only on TF genes, one can construct the network of all regulatory interactions.
Figure 12.2 shows some of the simple components of the TF interaction networks
that have been observed [3]. Reverse engineering refers to the traditional mathemati-
cal inverse problem, which is to infer the gene regulatory circuit (network topology)
from gene expression data. Genes can be represented as nodes in a graph, where
edges represent the direct interactions between genes. There are two broad classes
of reverse-engineering algorithms for gene regulatory networks [4]: those based on

Autoregulation Multicomponent Feed-forward
) 00 0-0-0
Single layer Multiple layer Regulatory chain

(4] 00 .
P AN 0-0-0
© 0O 000
(b)

Figure 12.2 Network components. Regulatory network components are presented with respect
to their interactions (a) or the layers of the signal transduction (b). Data from Alon [3] and Lee
etal. [48].

the “physical interactions™ that aim at identifying interactions among transcription
factors and their target genes (gene-to-sequence) and those based on the “influence
interactions™ that try to relate the expression of a gene to the expression of the other
genes in the cell (gene-to-gene).



A number of approaches have been developed for modeling regulatory networks.
A broad taxonomical organization suggests four major methodological categories for
these approaches. The first includes optimization methods based on the maximization
of a high-dimensional objective function associated with different network topologies
such as Bayesian networks [5, 6] or chain functions [7]. An objective function used
frequently is the log-likelihood of the network topology given the observed data. The
second category includes a variety of regression techniques to fit the observed data
to an empirical a priori model of the underlying biochemical interactions [8-10]. A
third group includes integrative bioinformatics approaches that combine data from a
number of independent clues, such as known protein—protein and protein—-DNA inter-
actions (from databases or literature), expression data, or DNA binding motifs [11-
13]. The fourth category includes statistical/information theoretical methods [14, 15],
which define two-way or higher order probabilistic measures of gene correlation to
distinguish potential interactions from background noise. Models of gene regulatory
networks can also be divided according to the representation of the network states (dis-
crete vs. continuous), the nature of the data (static vs. dynamic over time or different
conditions), the representation of gene associations (qualitative vs. quantitative), the
dependencies between genes (linear vs. nonlinear), the nature of the model (determin-
istic vs. stochastic), and the location of the genes in the cells (nonspatial vs. spatial).

This chapter focuses on the “physical interaction™ networks. First, we will give an
overview of the physical basis of transcription regulation and the representation of
the regulatory DNA patterns. Then, we will survey some of the physical interaction
algorithms for reverse engineering of gene expression data. The coverage of the algo-
rithms is not exhaustive and is biased toward what we believe are the more practical

methods. We attempt to cover at least one method from each class of algorithms of
this broad category.

Physical Basis of Transcription Regulation and Representation of DNA Patterns

Each TF recognizes a set of DNA binding sites with high affinity. It usually achieves
this by placing one or more a-helices in the major groove of the DNA. The specific
DNA target recognition results from the molecular contacts (hydrogen bonds, electro-
static interactions, etc.) between the amino acids and the DNA bases. Contacts from
and to the backbone of the protein or DNA also contribute to the overall binding affin-
ity (how strongly a target sequence is bound), although their contribution to binding
specificity (how more strongly a sequence is bound compared to a random sequence)
1s generally assumed to be secondary [16]. Sometimes, nonbase-specific DNA inter-
actions contribute to the target recognition. This is usually referred in the literature as
“indirect readout.” An example is the CAP (or CPR) protein, which bends the DNA
upon binding. In this case, in addition to the specific base-amino acid contacts, the
overall sequence of the DNA target needs to have some degree of “bendability,” thus
restricting further the repertoire of tolerated changes.



Preferred binding sites of a TF can be discovered and verified by in vitro target
selection experiments (e.g., SELEX [17] or protein-binding microarrays [18]) or by
biochemical analysis of the upstream regions of its known target genes. The length
and the number of optimal targets vary, depending on the TF in question. Forexample,
c-myc oncogene in mammals and Ultrabiothorax (Ubx) gene in Drosophila have a
very restricted set of targets (CACGTG and ATTA, respectively), whereas the pattern
of p53 is more degenerate (Figure 12.3). There are many ways to represent the TF
binding preferences [19], but the most popular so far has been proven to be the
position-specific scoring matrices (PSSMs) or position weight matrices (PWMs.)

PSSM models are 4XL weight matrices, where L is the length of the DNA binding
motif (the single targets of most TFs are of a given length L, which is a characteristic
of the TF). To generate a PSSM model, the known sites of a given TF are aligned and
a 4XL frequency table is calculated. Column 7 in this table consists of the four base
frequencies at position 7 of the alignment. The PSSM model typically consists of the
log-likelihood ratios of the observed frequencies against the background frequency of
the corresponding base. We note that the average log-likelihood ratio in each position
is the relative entropy, formally defined as:

f(b, 1)
Pref(b) .
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where f(b,[) 1s the estimated frequency of base b at position [ of the pattern and
Pres(b) 1s background frequency of base b (e.g., in the genome). Averaging over all
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Figure 12.3 Types of DNA patterns. Ubx and c-myc have very restricted repertoire of binding
sites (a), whereas p53targets are more degenerate (b).



L positions, we obtain the average relative entropy of the motif. A number of motif
finding algorithms identify patterns that maximize either the overall log-likelihood of
the motif or its relative entropy.

There 1s an interesting theoretical interpretation of the PSSM models. Through a
Boltzmann theory perspective, a PSSM model can be viewed as the average binding
specificity of a TF protein to its DNA targets. There are examples in the literature that
show that the PSSM score is in agreement with binding energy measurements [20)].
One general assumption of the PSSM models is the position independence, that is, the
observed base frequencies in one position are independent of the frequencies in any
other position. According to the thermodynamic model, this corresponds to energetic
additivity, that is, each base position contributes independently of the others to the total
binding energy. Energetic additivity is a simplification of the physical properties of the
TF-DNA interactions and it does not hold in general [21, 22]. However, in practice,
it has been found to be a good approximation in modeling binding affinities [23].
In addition, additive models require a significantly smaller number of parameters.
These two properties have made additive models very useful and contributed to their
popularity.

PHYSICAL INTERACTION ALGORITHMS

Physical interaction algorithms are those reverse-engineering algorithms that aim at
identifying interactions among TFs and their target genes (gene-to-sequence interac-
tions). Microarray measurements, of course, do not necessarily reflect the transcrip-
tion factor activities (TFAs) in all cases, since posttranscriptional and posttranslational
modifications may play an important role for determining the activity of a TF. Nev-
ertheless, for practical purposes, all physical network algorithms focus on the TFAs
that can be deduced from microarray data.

Practically, physical interaction algorithms have two goals. One is to identify
the genes regulated by a TF (or a set of TFs). In other words, they aim to recon-
struct the connectivity structure and weights of the network. Second, they aim to
reconstruct the activity profile of each TF from the gene expression data. An advan-
tage of this strategy, compared to influence interaction algorithms, is that it reduces
the dimensionality of the problem by analyzing only the interactions between TFs and
their putative target genes (instead of all-against-all). It also enables the use of genome
sequence data (“static data”), in combination with gene expression data (“dynamic
data”), in order to enhance the sensitivity and specificity of the predicted interactions.
The limitation of this approach is that it can only describe the regulatory control
exercised by TFs.



Some physical interaction algorithms depend on the prediction of sets of coregu-
lated genes, while others construct a more general model without such assumptions.
Some of the algorithms represent regulatory activities as a function of the mRNA
measurements, while others treat the regulatory activities as hidden variables. Finally,
some of the algorithms can model complex cis-regulatory logic of multiple interact-
ing TFs binding closely located DNA targets (cis-regulatory modules or CRMs). In
the following, we will review four classes of physical interaction algorithms: the
clustering-based approaches, the regression-based models, the network component
analysis methods, and the factor analysis methods.

GENOMIC SIGNATURES AND A SPACE OF GENOMES FOR GENOME COMPARISON

On the basis of this analysis, we propose a novel formal framework to interpret ge-
nomic relationships derived from entire genome sequences rather than individual loci.
This space allows to analyze sets of organisms related by a common codon bias sig-
nature (at times, more than one kind of bias influences the same genomic sequence
and the ensemble of these overlapped biases defines what we call the signature of a
genome) [34]. We give a number of numerical criteria to infer content bias, transla-
tional bias, and strand bias for genome sequences. We show in a uniform framework
that genomes of quite different phylogenetic relationship share similar codon bias;
other genomes grouped together by various phylogenetic methods appear to be sub-
divided into finer subgroups sharing different codon bias characteristics; Archaea
and Eubacteria share the same codon preferences when AT3 or GC3 bias is their
dominant bias; archaeal genomes satisfying translational bias use a more sharply dis-
tinguished set of preferred codons than bacterial genomes do. Our analysis, based on
96 eubacterial and archaeal genomes, opens the possibility that this space might re-
flect the geometry of a prokaryotic “physiology space”. If this turns out to be the case,

the combination of the upcoming sequencing of entire genomes and the detection of
codon bias signatures will become a valuable tool to infer information on the physiol-
ogy, ecology, and possibly, ecological conditions under which bacterial and archaeal
organisms evolved. For many organisms, this information would be impossible to be
detected otherwise. More recently, our algorithm has been applied to more than 300
genomes and our hypothesis of environmental signature has been supported at larger
scale |35].

Spaces for environmental and physiological classification represent a bacterial
classification alternative to phylogeny and they are closer to the living conditions of
the organism. With a growing number of genomic data available, it becomes more and
more important to have new alternative organizational schemes to understand bacterial
populations and the biology of single organisms within their living environment. The
algorithmic idea working for bacteria should be revisited for metagenomic sequences
for instance and adapted for viral genomes. On such spaces, hypotheses such as
adaptability of a virus to the codon bias of its host can be checked and preliminary
analysis support this hypothesis (see Section 14.8).



STUDY OF METABOLIC NETWORKS THROUGH SEQUENCE ANALYSIS AND
TRANSCRIPTOMIC DATA

Genes with high codon bias describe in meaningful ways the biological characteristics
of the organism and are representative of specific metabolic usage [36]. In silico
methods exploiting this basic principle are expected to become important in learning
about the lifestyle of an organism and explain its evolution in the wild. We demonstrate
that besides high expressivity during fast growth or glycolytic activities, which have
been very often reported, the necessity for survival under specific biological conditions
has its traces in the genetic coding [36]. This observation opens the possibility to
predict rare but necessary metabolic activities through genome analysis.

High expression of certain classes of genes, like those constituting the translational
machinery or those involved in glycolysis, are correlated particularly well in the case
of fast-growing organisms. By shifting the paradigm toward metabolic pathways, we
notice that several energy metabolism pathways are correlated with high codon bias in
organisms known to be driven by very different physiologies, which are not necessarily
fast growing and whose genomes might be very homogeneous. More generally, we
derive a classification of metabolic pathways induced by codon analysis and show
that genetic coding for different organisms is tuned on specific pathways and that
this is a universal fact. The codon composition of enzymes involved in glycolysis
for instance, often required to be rapidly translated, is highly biased by dominant
codon composition across species (this is indicated by the high CAI value of these
enzymes). In fast growers, the numerical evidence is definitely far more striking than
for other organisms (that is, the absolute difference between the CA[ value of these
enzymes and the average CA [ value for genes in the genome is “large”), but even for
Helicobacter pylori, a genome of rather homogeneous codon composition, enzymes
involved in glycolytic pathways happen to be biased above average. In the same

manner, one detects the crucial role of photosynthetic pathways for Synechocystis or
of methane metabolism for Methanobacterium.

mRNA transcriptional levels collected during the S. cerevisiae cell cycle under
diauxic shift [37] (here, glucose quantities decrease in the media during cell cycle
and yeast goes from fermentation to aerobic respiration), have been used to analyze
the yeast metabolic network in a similar spirit as done with codon analysis. A classi-
fication of metabolic pathways based on transcriptomic data has been proposed, and
we show that the metabolic classification obtained through codon analysis essentially
“coincides™ with the one based on (a large and differentiated pool of) transcriptomic
data. Such a result opens the way to explain evolutionary pressure and natural se-
lection for organisms grown in the wild, and hopefully, to explain metabolism for
slow-growing bacteria, as well as to suggest best conditions of growth in the labora-
tory.

It is an open question whether this kind of analysis can contribute to the recon-
struction metabolic information from metagenomics data.
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ALI BABA: A TEXT MINING TOOL FOR SYSTEMS BIOLOGY

Textmining is the process of automatically deriving information from text (as opposed
to data mining that works on structured data). This process starts with accessing
the relevant literature and ends with extracting the desired pieces of information.
Access mostly is provided by Web-based search tools, the best known of which is
PubMed [1]. PubMed currently contains citations from close to 18 million publica-
tions in the biomedical domain (biology, biochemistry, medicine, and related fields),
from approximately 5200 journals, since 1865. Up to 4000 citations (abstract and bib-
liographical information) are added to PubMed per day, which necessitates automated
means to efficiently handle searches for high-quality information.

Text mining falls into several tasks, most of which depend on each other, but few
of which have been sufficiently solved. The first task is information retrieval (IR):
given a user’s query, find the (most) relevant documents containing the keywords
or, even better, providing an answer to the question the user actually has in mind.
The later part is also called question answering (QA), where the task is not only
to find relevant documents but also to extract the answer to the query from them.
Information retrieval is often solved by keyword queries, as in PubMed [1], which
returns the most recent abstracts containing the query. PubMed goes a step farther,
expanding the initial set of keywords to related terms: a search for “cancer” will
also find abstracts that mention neoplasms instead of cancer. Another related
task is text summarization, which aims to summarize one or multiple documents
with respect to a certain problem. An example is Entrez Gene [2], a database
of genes, which contains a short summary for every entry, describing known
functions, implications in diseases, and so on of the gene or the gene's products.
These summaries are currently all manually compiled from various publications
studying the gene and significant efforts are under way to automatize this curation
process.



The next groups of tasks for text mining relates to information extraction; the
most prominent is named entity recognition (NER), referring to the search for
genes, proteins, diseases, drugs, and so on, mentioned in a text (we will call these
biomedical entities in the remainder). In addition, instead of only recognizing that
a name refers to a particular class of entities, entity mention normalization (EMN)
tries to actually identify the entity, usually by searching a reference to a database.
For instance, consider the name p53, which may stand for a large number of different
yet orthologous genes; the task for EMN is to pick, when p53 appears in a text,
the correct one of these genes by identifying a corresponding database entry, for
instance in Entrez Gene. Only then can the right set of additional information
(function, species, sequence, etc.) become available to the user. Word sense dis-
ambiguation (WSD), on the other hand, tries to tell apart entities of different kinds
that share the same name; cancer mostly refers to a disease, but in some contexts,
it also refers to the genus of various crab species. Once entities are recognized,
classified, and properly resolved, relation mining (RM) searches for evidence for
associations between them, such as protein—protein interactions or gene—disease
associations.

In the biological domain, an abundance of data of various types, degrees of
detail, and quality is available. Much of these are stored in curated databases,
that is, databases whose content is maintained by human experts. Among these
databases, some store information on single types of biomedical objects, such as
proteins (e.g., UniProt [3]), genes (e.g., NCBI Entrez Gene [2]), and drugs (e.g.,
DrugBank [4]); or on associations between these, such as protein—protein interactions
(IntAct [5], MINT [6], etc.), drug—protein and target—disease relations (TTD [7]
etc.), or metabolic pathways and other processes (e.g., KEGG [8]). The curation
process for most of these databases relies on trained experts extracting supportive
information from scientific publications and updating the database accordingly.
Far from being able to deliver off-the-shelf solutions for handling such curation
automatically, research in text mining currently focuses on aiding database curators
and researchers in biology, medicine, and interdisciplinary fields, who search for sin-
gle, specific, and accurate pieces of information in literature collections. With novel
high-throughput data generation techniques, manual curation is not sufficient any
longer [9]. A second focus of text mining research is to help in the interpretation of
high-throughput screens such as gene expression or RNA interference screens, which
typically generate large clusters of genes with somehow similar behavior. Identifying
relationships within such clusters such as protein interactions or shared function is
important to gain deeper insights. Text mining can also serve directly to cluster genes
by phenotype [10]. In Lage et al. [11], for example, candidate genes for diseases
are identified by clustering genes based on phenotype terminology extracted from a
database with text mining. In addition to search and curation, knowledge extracted
from the literature, combined with knowledge from databases, helps generating
hypotheses, which can then be further verified. Examples for improving protein func-
tion prediction with results from text mining are given in Gabow et al. [12] and Groth
etal. [10].



With Ari BaBa, we provide means to efficiently search and browse PubMed
citations, extract basic information, and link these to additional information avail-
able from relevant databases [13]. The basic idea behind ALt BABA is to display the
contents of a collection of PubMed abstracts as a graph, that is, biomedical entities are
nodes, and connections between those refer to potential associations, for example, in-
teractions between proteins. AL1 BABA, therefore, parses abstracts selected by the user
for proteins, diseases, enzymes, and so on, and searches for potential relationships.
The resulting graph should be understood as a summary of all abstracts, restricted to
molecular biology entities and their associations. Figure 15.1 shows an example of
such a graph, which resulted from 20 abstracts for the query “glutamate metabolism.”
Clicking on nodes and edges accesses the original text that contains them (see lower
right panel in the figure). Each node is linked to one or more entries in a relevant
biological databases; for instance, proteins are linked to UniProt and drugs to either
DrugBank or MeSH.

In the remainder of this chapter, we will present the ALt BABA tool, starting with
examples relevant to systems biology. We describe the functionality of AL1 BABa
from a user’s perspective in Section 15.2. In Section 15.3, we give an overview of
the techniques underlying AL1 BABA and present quantitative assessments of the core
techniques. We conclude the chapter with a discussion of related tools and future
perspectives for biomedical text mining.

From the Web page http://alibaba.informatik.hu-berlin.de/, users
launch ALt BABA via Java Web Start.! Installation instructions for this environment
can be found on the Web page, although it is nowadays available on most systems
by default. The Web page also provides a manual, further information, answers to
frequently asked questions, as well as additional examples. As a convention for this
chapter, we will write user queries to ALI BABA enclosed in double quotations marks

(“‘query”), entities such as genes and diseases in italics (Dickkopf), and actions a user
can take as well as items in ALI BABA in teletype (File menu).
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Figure 15.1 Ali Baba graph resulting from a query for “glutamate metabolism.” Highlighted is
the protein “interferon—gamma.” Associated proteins and cells can be seen in the Object panel
(upper right), with the supporting evidence being shown in the Text panel (lower right).

VALIDATION ISSUES IN REGULATORY MODULE DISCOVERY

Over the last decade, many new techniques have emerged for measuring the func-
tional activity of genes. These include measurements of individual genes through
their transcriptional activity, the interaction of their products, or by in vitro exper-
iments with synthesized DNA. For each measurement technique a different set of
data is created, each containing information on the functioning of genes, but under
differing conditions and with different degrees of experimental error. At the same
time, summary information of accepted gene behavior is being collected in the form
of the gene ontology database and annotation terms for individual genes. These re-
sources represent accumulated knowledge rather than individual experimental data.
Current research is being undertaken to investigate ways in which these rich but
diverse sources of information about gene behavior can be combined to provide a
more accurate interpretation of experimental work. The goals are two-fold. Firstly,
fusing data from diverse sources can be used to stabilize the results from individ-
ual experiments. For example, microarray experiments have been generally found
to produce data of high variance, and therefore require some form of regularization
before results can be interpreted. Secondly, when the data are processed to infer some



higher organization among genes, it is essential to have some form of validation of the
results.

Work in molecular biology has focused both on identifying the function of indi-
vidual genes and the way in which they interact in regulation processes. In nature,
complex functions of living cells are carried out through the concerted activities of
many genes and gene products that are organized into coregulated sets also known
as regulatory modules [1]. Understanding the organization of these sets of genes will
provide 1nsights into the cellular response mechanism under various conditions. Re-
cently, a considerable volume of data on gene activity, measured using several diverse
techniques, has become widely available. By fusing these data using an integrative
approach, 1t may be possible to unravel the regulation process at a more global level.
Although an integrated model could never be as precise as one built from a small
number of genes in controlled conditions, such global modeling can provide insights
into higher processes in which many genes are working together to achieve a task.
Various techniques from statistics, machine learning, and computer science have been
employed by researchers for the analysis and combination of the different types of
data in an attempt to understand the function of regulatory modules.

There are two underlying problems resulting from the nature of the available data.
Firstly, each of the different data types (microarrays, DNA-binding, protein—protein
interaction, and sequence data) provides a partial and noisy picture of the whole
process. They need to be integrated in order to obtain an improved and rehable pic-
ture. Secondly, the amount of data that is available from each of these techniques
is severely himited. To learn good models, we need considerable amounts of data.
Unfortunately, data are only available for a few experiments of each type. These two
problems are often cited as a reason for taking an integrative approach. However,
integration will filter and obscure some of the information in the actual experimental
results, and thus proper validation methods are required to test the effectiveness of any
approach.

DATA TYPES

Various types of data are used to identify regulatory mechanisms. These are primarily
generated by molecular biologists using expenmental techmques. In most cases, a
considerable amount of data processing must be applied before the results can be
mterpreted.

One of the most important sources of data is genome-wide measurement of mRNA
expression levels carried out using microarrays. These have received considerable at-
tention in the last 6 years and various technologies for microarray measurement have
been developed [2]. Microarrays allow simultaneous measurement of the expression
levels of a large number of genes. Similar expression profiles identify genes that
may be controlled by a shared regulatory mechanism. An important point to note 1s
that coregulation does not necessarily imply only positive correlation of expression
values, as some of the genes might be downregulated, while others may be upregu-
lated [3]. Processing microarray data to make different experiments as far as possible



comparable is known as normalization. A good overview of techniques for normal-
ization and analysis is provided by Quackenbush [4] and a detailled discussion of the
statistical 1ssues mnvolved 1s given by Smyth [5].

Spellman was one of the microarray pioneers who studied the global expression
of genes [6]. He studied both the expression variation at various time points in the
yeast cell cycle, and, along with other researchers [7], the response of the yeast genes
when subjected to various kinds of stress.

A second major source of data is transcription factor-DNA binding data, which
is generated as a result of the chromatin immunoprecipitation (ChIP) technique, also
popularly known as the ChIP—chip assay. The techmique 1s used to determine whether
proteins, including transcription factors, will bind to particular regions of the chro-
matin within living cells. Harbison et al. determined the global genomic occupancy
of 203 transcription factors in yeast, which are all known to bind to DNA in the
yeast genome [8]. Lee et al. produced a similar yeast dataset for a smaller number
of transcription factors [9]. Both these researchers reported results in the form of a
confidence value (statistical P value) of a transcription factor attaching to the pro-
moter region of a gene. The reason behind using statistical techniques was to reduce
the experimental errors inherent in microarray technology and to account for multiple
cell populations. One of the prominent problems with such approaches is that in order
to infer whether a transcription factor is attached to the promoter sequence or not, we
have to choose an arbitrary artificial threshold of the P-value.

Transcription factor binding motifs are sequence patterns observed in the intergenic
regions of the genome usually located upstream of the genes. They are thought to
be responsible for allowing access of transcription factors to binding sites. Initial
approaches to identifying these were based on first clustering genes by coexpression
and then looking for common sequences in the upstream regions of the genes located
in the same cluster. Kellis et al. used comparative genome analysis between three
related yeast species to find these motifs [10].

Protein—protein interaction ( PPI) data for human and other organisms are available
as a result of advances in technologies like mass spectroscopy and yeast two-hybrid
assays. There has been a tremendous growth in this type of data in the recent years.



COMPUTATIONAL IMAGING AND MODELING FOR SYSTEMS BIOLOGY

Conventional biological studies focus on one gene or one protein at a time. Life,
however, is a complex system that is not subject such a reductionalist approach. In
today’s postgenomic era, biologists believe that many genes and proteins interact in
various fashions and that the deciphering and modeling of interaction among them
would help better reveal and understand the mechanisms of living systems [1]. The
emerging field of systems biology attempts to investigate such complex biological
interaction from a systems viewpoint instead of individual molecules or components.
New computational techniques are much needed for this new scientific endeavor,
and, in particular, imaging plays an important role of providing objective, repeatable,
quantitative phenotyping measures for complementing and correlating with large-
scale genotyping studies. In this chapter, we will discuss the computational imaging
and modeling techniques used in systems biology studies.

Computational techniques in systems biology can be roughly categorized into two
broad classes: bioinformatics and bioimage informatics. Bioinformatics in systems
biology mainly focuses on the biomarker discovery, including high-throughput molec-
ular data analysis, molecular networks reconstruction from high-throughput data,

molecular networks analysis, and so on. Bioimage informatics, on the other hand, ad-
dress issues of image phenotyping, secondary screening, target validation, drug lead
selection, and so on. The two classes of techniques are not necessarily orthological
and are often integrated in solving complex problems. For example, Figure 17.1 exem-
plifies a systems biologic oriented workflow for biomarker discovery and validation,
involving both bioinformatics (left) and bioimage informatics (right). The biomarker
can be identified directly from the high-throughput data, such as gene microarray and
mass spectrometry, as well as from the integrated molecular networks, such as gene
regulatory networks, protein—protein interaction networks, and metabolic signaling
networks. The molecular networks can be reconstructed from the high-throughput
biological data by computational modeling means and integrated with the existing
knowledge from the literatures and the databases, such as (KEGG) Kyoto Encyclo-
pedia of Genes and Genomes and (DIP) Database of Interacting Proteins. Once we
have identified certain candidate biomarkers, the next step is to validate them by bio-
logical expenments, such as knockout expeniments using RNA1 (RNA interference)
and PCR (polymerase chain reaction). The validation provides valuable feedback for
the next iteration of biomarker discovery process. The biomedical imaging provides
multidimensional functional and morphologic features of biological systems under
investigation and plays an important role in the biomarker validation, for example,
high content screening for in vitro experiments and molecular imaging for in vivo
experiments.
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Figure 17.1 Systems biology approach that integrates bioinformatics and biomedical imaging
in iterative biomarker discovery and validation.

CONNECTING BIOINFORMATICS AND BIOMEDICAL IMAGING

Information obtained from bioinformatics studies such as high-throughput genomics,
proteomics, and metabonomics can be correlated with biomedical imaging to aid in
the understanding of molecular interactions and disease pathways. For instance, cell-
based screening assays can be used to distinguish between phenotypes and investigate
interactions between signaling pathways and are useful in determining the interaction
between drug candidates and target genes. Molecular imaging offers the possibil-
ity of imaging in vivo gene expression and protein-protein interactions. HCS can
output screening hits and functional effectors. Starting from those effectors, we can
study their interactions from a systems viewpoint such as that of metabolic networks.
Metabolic networks can give biologists hints such as which genes/proteins/enzy mes
are in the pathway under study, they can then again use cellular imaging to validate
them. In this section, we briefly discuss how to connect bioinformatics to biomedical
imaging within systems biology framework and review some recent development of
systems biology approach in this direction.



