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UNIT I INTRODUCTION          
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Variables – Strings 

 

Biology and Computer Science  

One of the most exciting things about being involved in computer programming and biology 

is that both fields are rich in new techniques and results.  

Of course, biology is an old science, but many of the most interesting directions in biological 

research are based on recent techniques and ideas. The modern science of genetics, which has 

earned a prominent place in modern biology, is just about 100 years old, dating from the 

widespread acknowledgement of Mendel's work. The elucidation of the structure of 

deoxyribonucleic acid (DNA) and the first protein structure are about 50 years old, and the 

polymerase chain reaction (PCR) technique of cloning DNA is almost 20 years old. The last 

decade saw the launching and completion of the Human Genome Project that revealed the 

totality of human genes and much more. Today, we're in a golden age of biological research—

a point in human history of great medical, scientific, and philosophical importance.  

Computer science is relatively new. Algorithms have been around since ancient times (Euclid), 

and the interest in computing machinery is also antique (Pascal's mechanical calculator, for 

instance, or Babbage's steam-driven inventions of the 19th century). But programming was 

really born about 50 years ago, at the same time as construction of the first large, 

programmable, digital/electronic (the ENIAC ) computers. Programming has grown very 

rapidly to the present day. The Internet is about 20 years old, as are personal computers; the 

Web is about 10 years old. Today, our communications, transportation, agricultural, financial, 

government, business, artistic, and of course, scientific endeavors are closely tied to computers 

and their programming.  

This rapid and recent growth gives the field of computer programming a certain excitement 

and requires that its professional practitioners keep on their toes. In a way, programming 

represents procedural knowledge—the knowledge of how to do things— and one way to look 

at the importance of computers in our society and our history is to see the enormous growth in 

procedural knowledge that the use of computers has occasioned. We're also seeing the concepts 

of computation and algorithm being adopted widely, for instance, in the arts and in the law, 

and of course in the sciences. The computer has become the ruling metaphor for explaining 

things in general. Certainly, it's tempting to think of a cell's molecular biology in terms of a 

special kind of computing machinery.  

Similarly, the remarkable discoveries in biology have found an echo in computer science. There 

are evolutionary programs, neural networks, simulated annealing, and more. The exchange of 

ideas and metaphors between the fields of biology and computer science is, in itself, a spur to 

discovery (although the dangers of using an improper metaphor are also real).  
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Getting Started with Perl  

Perl is a popular programming language that's extensively used in areas such as 

bioinformatics and web programming. Perl has become popular with biologists because it's so 

well-suited to several bioinformatics tasks.  

Perl is also an application, just like any other application you might install on your computer. 

It is available (at no cost) and runs on all the operating systems found in the average biology 

lab (Unix and Linux, Macintosh, Windows, VMS, and more).The Perl application on your 

computer takes a Perl language program (such as one of the programs you will write in this 

book), translates it into instructions the computer can understand, and runs (or "executes") it.  

An operating system manages the running of programs and other basic services that a computer provides, 

such as how files are stored.  

So, the word Perl refers both to the language in which you will write programs and to the 

application on your computer that runs those programs. You can always tell from context 

which meaning is being used.  

Every computer language such as Perl needs to have a translator application (called an 

interpreter or compiler) that can turn programs into instructions the computer can actually 

run. So the Perl application is often referred to as the Perl interpreter, and it includes a Perl 

compiler as well. You will often see Perl programs referred to as Perl scripts or Perl code. 

The terms program, application, script, and executable are somewhat interchangeable. I refer 

to them as "programs" in this book.  

Perl's Benefits  

The following sections illustrate some of Perl's strong points.  

Ease of Programming  

Computer languages differ in which things they make easy. By "easy" I mean easy for a 

programmer to program. Perl has certain features that simplifies several common 

bioinformatics tasks. It can deal with information in ASCII text files or flat files, which are 

exactly the kinds of files in which much important biological data appears. Perl makes it easy 

to process and manipulate long sequences such as DNA and proteins. Perl makes it convenient 

to write a program that controls one or more other programs. As a final example, Perl is used 

to put biology research labs, and their results, on their own dynamic web sites. Perl does all 

this and more.  

Although Perl is a language that's remarkably suited to bioinformatics, it isn't the only choice 

nor is it always the best choice. Other programming languages such as C and Java are also used 

in bioinformatics. The choice of language depends on the problem to be programmed, the skills 

of the programmers, and the available system.  

Rapid Prototyping  

Another important benefit of using Perl for biological research is the speed with which a 

programmer can write a typical Perl program (referred to as rapid prototyping). Many 
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problems can be solved in far fewer lines of Perl code than in C or Java. This has been 

important to its success in research. In a research environment there are frequent needs for 

programs that do something new, that are needed only once or occasionally, or that need to be 

frequently modified. In Perl, you can often toss such a program off in a few minutes or a few 

hours work, and the research can proceed. This rapid prototyping ability is often a key 

consideration when choosing Perl for a job. It is common to find programmers familiar with 

both Perl and C who claim that Perl is five to ten times faster to program in than C. The 

difference can be critical in the typical understaffed research lab.  

Portability, Speed, and Program Maintenance  

Portability means how many types of computer systems the language can run on. Perl has 

no problems there, as it's available for virtually all modern computers found in biology labs. 

If you write a DNA analyzer in Perl on your Mac, then move it to a Windows computer, 

you'll find it usually runs as is or with only minor retrofitting. Speed means the speed with 

which the program runs. Here Perl is pretty good but not the best. For speed of execution, the 

usual language of choice is C. A program written in C typically runs two or more times faster 

than the comparable Perl program. (There are ways of speeding up Perl with compilers and 

such, but still... .)  

In many organizations, programs are first written in Perl, and then only the programs that 

absolutely need to have maximum speed are rewritten in C. The fact is, maximum speed is 

only occasionally an important consideration.  

Programming is relatively expensive to do: it takes time, and skilled personnel. It's labor- 

intensive. On the other hand, computers and computer time (often called CPU time after the 

central processing unit) are relatively inexpensive. Most desktop computers sit idle for a large 

part of the day, anyway. So it's usually best to let the computer do the work, and save the 

programmer's time. Unless your program absolutely must run in say, four seconds instead of 

ten seconds, you're okay with Perl.  

Program maintenance is the general activity of keeping everything working: such 

activities as adding features to a program, extending it to handle more types of input, porting 

it to run on other computer systems, fixing bugs, and so forth. Programs take a certain 

amount of time, effort and cost to write, but successful programs end up costing more to 

maintain than they did to write in the first place. It's important to write in a language, and in a 

style, that makes maintenance relatively easy, and Perl allows you to do so. (You can write 

obscure, hard-to-maintain code in Perl, as in other languages, but I'll give you pointers on 

how to make your code easy for other programmers to read.)  

Installing Perl on Your Computer  

The following sections provide pointers for installing Perl on the most common types of 

computer systems.  

Perl May Already Be Installed!  

Many computers—especially Unix and Linux computers—come with Perl already installed. 

(Note that Unix and Linux are essentially the same kind of operating system; Linux is a 
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clone, or functional copy, of a Unix system.) So first check to see if Perl is already there. On 

Unix and Linux, type the following at a command prompt:  

$ perl -v  

If Perl is already installed, you'll see a message like the one I get on my Linux machine:  

This is perl, v5.6.1 built for i686-linux 

Copyright 1987-2001, Larry Wall 

Perl may be copied only under the terms of either the 

Artistic License or the 

GNU General Public License, which may be found in the Perl 

5 source kit. 

Complete documentation for Perl, including FAQ lists, 

should be found on 

this system using 'man perl' or 'perldoc perl'.  If you 

have access to the 

Internet, point your browser at http://www.perl.com/, the 

Perl Home Page. 

If Perl isn't installed, you'll get a message like this:  

perl: command not found 

If you get this message, and you're on a shared Unix system at a university or business, be 

sure to check with the system administrator, because Perl may indeed be installed, but your 

environment may not be set to find it. (Or, the system administrator may say, "You need 

Perl? Okay, I'll install it for you.")  

On Windows or Macintosh, look at the program menus, or use the find program to search for 

perl. You can also try typing perl -v, at an MS-DOS command window or at a shell 

window on the MacOS X. (Note that the MacOS X is a Unix system!)  

Installation  

The next sections provide specific installation instructions for specific platforms.  

Unix and Linux  

If Perl isn't installed on your Unix or Linux machine, first try to find a binary to install. At the 

Downloads page of http://www.perl.com, you'll see the subheading Binary 

Distributions. Select Unix or Linux, and then see if your particular flavor of operating  

system has a binary available. Several versions are available, and the web-site instructions 

should be enough to get Perl installed once you've downloaded the binary. Most versions of 

Linux maintain up-to-date Perl binaries on their web sites. For instance, if you have a Red 

Hat Linux system, you need to identify which version of the system you have (by typing 

uname -a) and then get the appropriate rpm file to download and install. Red Hat has an 

rpm for Perl that Red Hat Linux users can install by typing:  
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rpm -Uvh perl.rpm 

(the actual name of the perl.rpm file varies).  

If no binary version of Perl is available for your flavor of Unix or Linux, you must compile 

Perl from its source code. In this case, starting from the Perl web page, click on the 

Downloads button and then select Source Code Distribution. The source code has an 

INSTALL file with instructions that guide you through the process of downloading the 

source code, installing it on your system, compiling the source code into a binary, and finally 

installing the binary.  

As mentioned previously, compiling from source code is a considerably longer process than 

installing an already made binary, and requires a bit more reading of instructions, but it 

usually works quite well. You will need a C compiler on your computer to install from source 

code. Nowadays, some Unix systems ship without a complete C compiler. Linux will always 

have the free C compiler called gcc installed, and you can also install gcc on any Unix (or 

Windows, or Mac) system that lacks a C compiler.  

Macintosh  

The MacPerl installation steps are clearly explained on the MacPerl web page, 

http://www.macperl.com/ (which you can also get to from the Perl web page and its 

Downloads button). Here's a very brief overview.  

From the MacPerl page, click on Get MacPerl, and follow the directions to download the 

application. It will appear on your desktop. Double-click it to unstuff it. If you don't have 

Aladdin Stuffit Expander (most Macs already do), this won't work, and you'll have to go to 

http://www.aladdinsys.com to download and install Stuffit.  

MacPerl can be installed as a standalone application under the MacOS Finder or as a tool 

under the Macintosh Programmer's Workbench; you will probably want the standalone 

application. Perl Version 5 is available for MacOS 7.0 and later. Details about which Perl 

version is available for your particular hardware and MacOS version are available at the 

MacPerl web page.  

Windows  

Several binaries for different Windows versions are available. Since Windows is closely 

coupled with Intel 32-bit chips, these binaries are often called Wintel or Win32 binaries. The 

current standard Perl distribution is ActivePerl from ActiveState, at 

http://www.activestate.com/ActivePerl/, where you can find complete installation 

directions. You can also get to ActivePerl via the Downloads button from the Perl web site. 

Under the subheading Binary Distributions, go to Perl for Win32, and then click on the 

ActivePerl site. From the ActiveState web site's ActivePerl page, click the Downloads button. 

You can then download the Windows-Intel binary. Note that installing it requires a program 

called Windows Installer, which is available at ActivePerl if it's not already on your computer.  
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The Art of Programming  

This chapter provides an overview of how programmers accomplish their jobs.  

Just as visitors to a biology lab tend to have a clueless awe of "all those test tubes," so the 

newcomer to programming may regard the world of the programmer as a kind of arcane 

black box full of weird terminology and abstruse skills. So, to make the whole enterprise a 

little more congenial, let's take a short tour of some important realities that affect all 

programmers. Two of the most important are practical strategies that good programmers use 

and where to go to find answers to questions that arise while you are programming. Using a 

couple of brief narrative case studies, we'll look at how programmers find solutions to 

problems.  

Individual Approaches to Programming  

What's the best way to learn programming? The answer depends on what you hope to 

accomplish. There are several ways to get started. You can:  

Take classes of many different kinds 

Read a tutorial book like this one 

Get the programming manuals and plunge in 

Be tutored by a programmer 

Identify a program you need 

Try any and all of the above until you've managed to write the program  

The answer also depends on how you choose to learn. Some people prefer classes, because 

the information is often presented in a well-organized way, and questions can be answered by 

the teacher. Others learn best with self-paced study.  

Some things about learning to program are common to all these approaches. If you've never 

programmed at all, the information in the following sections is a "heads-up" about what's 

ahead.  

Edit—Run—Revise (and Save)  

The most important thing about programming is that it's a hands-on learning activity such as 

dancing, playing music, cooking, or some other family-oriented activity. You can read about 

it, but you can't actually do it until you actually do it.  

While learning to program in Perl, you need to read about how Perl works, as you will in the 

chapters that follow. You also need to look at plenty of examples of programs. But you 

especially need to attempt to write your own programs, as you are asked to do in the exercises 

at the end of the later chapters. Only this kind of direct experience will make you a 

programmer.  

So I want to give you an overview of the most important tasks involved in writing programs, 

to help you approach your first programs with a clearer idea of what's really involved.  
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What exactly will you be doing at the computer? The bulk of a programmer's work involves 

the steps of writing or revising a program in an editor, then running the program and 

watching how it behaves, and on the basis of that behavior going back and revising the 

program again. A typical programmer spends more than half of his or her time editing the 

program.  

Saves and Backups  

Once you have even a few lines of code written, it's important to save it. In fact, you should 

always remember to save a version of your program at regular intervals during editing, so if 

you make a bunch of edits and the computer crashes, you don't lose hours of work. Also, 

make sure you back up your work on another disk. Hard disks fail, and when yours does, the 

information on it will be lost. Therefore it's essential to make regular (daily) backups of your 

work onto some other medium—tape, floppy disk, Zip disk, another hard disk, writable 

CD—whatever, just so you won't lose all your work if a disk failure occurs.  

In addition to backups of your disks, it's also a good idea to save a dated version of your 

program at regular intervals. This will allow you to go back to an earlier version of your 

program should that prove necessary.  

It's also a good idea to make sure the backups you're making actually work. So, for instance, 

if you're backing up to a tape drive, try restoring the files from your tape drive every once in 

a while, just to make sure that the software and the tapes themselves are all working. You 

may also want to print out ("make a hardcopy") of your programs at regular intervals for 

extra insurance against system failures. Finally, it's good policy to keep the backups 

somewhere away from the computer, so in case of fire or other disaster, the backups will be 

safe.  

Error Messages  

Fixing errors is an essential step in writing programs. After you've written and edited a 

program, the next step is to run it to see if it works. Very often, you'll find that you've made 

some typographical error, like forgetting to put in a semicolon. As a result, your program isn't 

valid, and you'll get various error messages from the system. You then have to read the error 

messages and reedit your program to repair the offending code.  

These error messages are sometimes rather cryptic. In the event of an error, the Perl 

interpreter may have some trouble knowing exactly where you went wrong. It may only 

recognize that there is something wrong. So it guesses where the problem is, and in the 

process, it may give you some extraneous information.  

The most important thing about using error messages is to look at the first one or two error 

messages and ignore the rest; fix the top problems, and try running the program again. Error 

messages are often verbose and can run on for several pages. Just ignore everything but the 

first errors reported. Another important point is that the line numbers reported in those first 

error messages are usually right. Sometimes they're off by a line, and they're rarely way off. 

Later on, we'll practice generating and reading error messages.  

Debugging  
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Perhaps your edits created a valid program, and the Perl interpreter reads in your program and 

runs it. You find, however, that the program isn't doing what you want it to do. Now you 

have to go back, look at the program, and try to figure out what's wrong.  

Perhaps you made a simple mistake, such as adding instead of subtracting. You may have 

misread the documentation, and you're using the language the wrong way (reread the 

documentation). You may simply have an inadequate plan for accomplishing your goal 

(rethink your strategy and reprogram that part of the code). Sometimes you can't see what's 

wrong, and you have to look elsewhere (try searching newsgroup archives or FAQs or asking 

colleagues for help).  

For errors that are difficult to find, there are programs called debuggers that allow you to run 

the program step by step, looking at everything that's happening in the program.  

There are other tools and techniques you can use. For instance, you can examine your 

program by adding print statements that print out intermediate values or results. There are 

also special helper programs that can observe your program while it's running and then report 

about it, telling you, for instance, about where the program is spending most of its time. 

These tools, and others like them, are essential to programming, and you need to learn how to 

use them.  

An Environment of Programs  

Programming is an exercise in problem solving. It's an iterative, gradual process. Although it 

can be done by one person alone, it's often a social activity (this surprises many newcomers). 

It requires developing specific problem-solving skills and learning a few tools. Programming 

is sometimes tricky and can be frustrating. On the other hand, for those with an aptitude, 

there's a great sense of satisfaction that comes from building a working program.  

Computer programs can be many things, from barely useful, to aesthetically and intellectually 

stimulating, to important generators of new knowledge. They can be  

beautiful. (They can also be destructive, stupid, silly, or vicious; they are human creations, 

after all.) Because writing a program is an iterative, building, gradual process, there can be 

real satisfaction in seeing the work unfold from simple beginnings to complete structures. For 

the beginning student, this gradual unfolding of a new program mirrors the gradual mastery 

of the language.  

As our culture began writing and accumulating programs in the middle of the 20th century, a 

programming environment began to develop. Gradually, we've been accumulating a 

substantial body of procedural knowledge. Programs often reflect the fact that they swim in 

waters populated by many other programs, and beginning programmers can expect to learn a 

lot from this environment.  

Open Source Programs  

As programming has become important in the world, it has also become economically 

valuable. As a result, the source code for many programs is kept hidden to protect 

commercial assets and stymie the competition.  
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However, the source code for many of the best and most used programs are freely available 

for anyone to examine. Freely available source code is called open source. (There are various 

kinds of copyrights that may attach to open source program code, but they all allow anyone to 

examine the source code.) The open source movement treats program source code in a similar 

manner to the way scientists publish their results: publicly and open to unfettered 

examination and discussion.  

The source code for these programs can be a wonderful place for the beginning programmer 

to learn how professional programmers write. The programs available in open source include 

the Perl interpreter and a large amount of Perl code, the Linux operating system, the Apache 

web server, the Netscape web browser, the sendmail mail transfer agent, and much more.  

Programming Strategies  

In order to give you, the beginning programmer, an idea of how programming is done, let's 

see how an experienced programmer goes about solving problems by giving a couple of 

instructive case studies.  

Imagine that you want to count all the regulatory elements[1] in a large chunk of DNA that you 

just got from the sequencing lab. You're a professional bioinformatics programmer. What do 

you do? There are two possible solutions: find a program or write one yourself.  

[1] A regulatory element is a stretch of DNA used by the cell in the control of a coding region, helping to 

determine if and when it's used to create a protein.  

It's likely there is already a perfectly good, working, and maybe even free program that does 

exactly what you need. Very often, you can find exactly what you need on the Web and avoid 

the cost and expense of reinventing the wheel. This is programming at its best—minimal 

work for maximal effect. It's the classic case of the experimentalist's adage: a day in the 

library can save you six months in the lab.  

An important part of the art of programming is to keep aware of collections of programs that 

are available. Then you can simply use the code if it does exactly what you need, or you can 

take an existing program and alter it to suit your own needs. Of course, copyright laws must 

be observed, but much is available at no cost, especially to educational and nonprofit 

organizations. Most Perl module code has a copyright, but you are allowed to use it and 

modify it given certain restrictions. Details are available at the Perl web site and with the 

particular modules.  

How do you find this wonderful, free, and already existing program? The Perl community has 

an organized collection of such programming code at the Comprehensive Perl Archive 

Network (CPAN) web site, http://www.CPAN.org. Try exploring: you'll find it's 

organized by topic, so it's possible to quickly find, for example, web, statistics, or graphics 

programs. In our case, you will find the Bioperl module, which includes several useful 

bioinformatics functions. A module is a collection of Perl code that can be easily loaded and 

used by your Perl programs.  

The most useful kinds of code are convenient libraries or modules that package a suite of 

functions. These packages offer a great deal of flexibility in creating new programs. Although 

you still have to program, the job may be only a small fraction of the work of writing the 
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whole program from scratch. For instance, to continue our example of looking for regulatory 

elements, your search may turn up a convenient module that lists the regulatory elements plus 

code that takes a list of elements and searches for them in a DNA library. Then all you have 

to do is combine the existing code, provide the DNA library, and with a little bit of 

programming, you're done.  

There are lots of other places to look for already existing code. You can search the Internet 

with your favorite search engines. You can browse collections of links for bioinformatics, 

looking for programs. You can also search the other sources we've already covered, such as 

newsgroups, relevant experts, etc.  

If you haven't hit paydirt yet, and you know that the program will take a significant amount 

of time to write yourself, you may want to search the literature in the library, and perhaps 

enlist the aid of a librarian. You can search Medline for articles about regulatory elements, 

since often an article will advertise code (an actual program in a language like Perl) that the 

authors will forward. You can consult conference proceedings, books, and journals. 

Conferences and trade shows are also great places to look around, meet people, and ask 

questions.  

In many cases you succeed, and despite the effort involved, you saved yourself and your 

laboratory days, weeks, or months of effort.  

However, one big warning about modifying existing code: depending on how much alteration 

is required, it can sometimes be more difficult to modify existing code than to write a whole 

program from scratch. Why? Well, depending on who wrote the program, it may be difficult 

just to see what the different parts of the code do. You can't make modifications if you can't 

understand what methods the program uses in the first place. (We'll talk more about writing 

readable code, and the importance of comments in code, later.) This factor alone accounts for 

a large part of the expense of programming; many programs can't be easily read, or 

understood, so they can't be maintained. Also, testing the program may be difficult for 

various reasons, and it may take a lot of time and effort to assure yourself that your 

modifications are working correctly.  

Okay, let's say that you spent three days looking for an existing program, and there really 

wasn't anything available. (Well, there was one program, but it cost $30,000 which is way 

outside your budget, and your local programming expert was too busy to write one for you.) 

So you absolutely have to write the program yourself.  

How do you start from scratch and come up with a program that counts the regulatory 

elements in some DNA? Read on.  

The Programming Process  

You've been assigned to write a program that counts the regulatory elements in DNA. If 

you've never programmed you probably have no idea of how to start. Let's talk about what 

you need to know to write the program.  

Here's a summary of the steps we'll cover: 

Identify the required inputs, such as data or information given by the user.  
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Make an overall design for the program, including the general method—the algorithm— by 

which the program computes the output.  

Decide how the outputs will print; for example, to files or displayed graphically.  

Refine the overall design by specifying more detail.  

Write the Perl program code.  

These steps may be different for shorter or longer programs, but this is the general approach 

you will take for most of your programming.  

The Design Phase  

First, you need to conceive a plan for how the program is going to work. This is the overall 

design of the program and an important step that's usually done before the actual writing of 

the program begins. Programs are often compared to kitchen recipes, in that they are specific 

instructions on how to accomplish some task. For instance, you need an idea of what inputs 

and outputs the program will have. In our example, the input would be the new DNA. You 

then need a strategy for how the program will do the necessary computing to calculate the 

desired output from the input.  

Algorithms  

An algorithm is the design, or plan, for the computation done by a computer program. (It's 

actually a tricky term to define, outside of a formal mathematical system, but this is a 

reasonable definition.) An algorithm is implemented by coding it in a specific computer 

language, but the algorithm is the idea of the computation. It's often well represented in 

pseudocode, which gives the idea of a program without actually being a real computer 

program.  

Sequences and Strings  

In this chapter you will begin to write Perl programs that manipulate biological sequence 

data, that is, DNA and proteins. Once you have the sequences in the computer, you'll start 

writing programs that do the following with the sequence data:  

Transcribe DNA to RNA 

Concatenate sequences 

Make the reverse complement of sequences Read sequence data from files  

You'll also write programs that give information about your sequences. How GC-rich is your 

DNA? How hydrophobic is your protein? You'll see programming techniques you can use to 

answer these and similar questions.  

Representing Sequence Data  

The majority of this book deals with manipulating symbols that represent the biological 

sequences of DNA and proteins. The symbols used in bioinformatics to represent these 
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sequences are the same symbols biologists have been using in the literature for this same 

purpose.  

As stated earlier, DNA is composed of four building blocks: the nucleic acids, also called 

nucleotides or bases. Proteins are composed of 20 building blocks, the amino acids, also 

called residues. Fragments of proteins are called peptides. Both DNA and proteins are 

essentially polymers, made from their building blocks attached end to end. So it's possible to 

summarize the structure of a DNA molecule or protein by simply giving the sequence of 

bases or amino acids.  

These are brief definitions; I'm assuming you are either already familiar with them or are 

willing to consult an introductory textbook on molecular biology for more specific details. 

Table 1 shows bases; add a sugar and you get the nucleotides adenosine, guanosine, 

cytidine, thymidine, and uridine. You can further add a phosphate and get the nucleotides 

adenylic acid, guanylic acid, cytidylic acid, thymidylic acid, and uridylic acid. A nucleic acid 

is a chemically linked sequence of nucleotides. A peptide is a small number of joined amino 

acids; a longer chain is a polypeptide. A protein is a biologically functional unit made of one 

or more polypeptides. A residue is an amino acid in a polypeptide chain.  

For expediency, the names of the nucleic acids and the amino acids are often represented as 

one- or three-letter codes, as shown in Table 1 and Table 2. (This book mostly uses the 

one-letter codes for amino acids.)  

Table 1 
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Table 2 

 

 

the lowercase versions of these single-letter codes is also used on occasion, frequently for 

DNA, rarely for protein.  

The computer-science terminology is a little different from the biology terminology for the 

codes in Table 4-1 and Table 4-2. In computer-science parlance, these tables define two 

alphabets, finite sets of symbols that can make strings. A sequence of symbols is called a 

string. For instance, this sentence is a string. A language is a (finite or infinite) set of strings. 

In this book, the languages are mainly DNA and protein sequence data. You often hear 

bioinformaticians referring to an actual sequence of DNA or protein as a "string," as opposed 

to its representation as sequence data. This is an example of the terminologies of the two 

disciplines crossing over into one another.  

As you've seen in the tables, we'll be representing data as simple letters, just as written on a 

page. But computers actually use additional codes to represent simple letters. You won't have 

to worry much about this; just remember that when using your text editor to save as ASCII, 

or plain text.  
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ASCII is a way for computers to store textual (and control) data in their memory. Then when 

a program such as a text editor reads the data, and it knows it's reading ASCII, it can actually 

draw the letters on the screen in a recognizable fashion because it's programmed to know that 

particular code. So the bottom line is: ASCII is a code to represent text on a computer.[1]  

[1] A new character encoding called Unicode, which can handle all the symbols in all the world's languages, is 

becoming widely accepted and is supported by Perl as well.  

A Program to Store a DNA Sequence  

Let's write a small program that stores some DNA in a variable and prints it to the screen. 

The DNA is written in the usual fashion, as a string made of the letters A, C, G, and T, and 

we'll call the variable $DNA. In other words, $DNA is the name of the DNA sequence data 

used in the program. Note that in Perl, a variable is really the name for some data you wish to 

use. The name gives you full access to the data. The following shows the entire program.  

Putting DNA into the computer  

#!/usr/bin/perl -w 

# Storing DNA in a variable, and printing it out 

# First we store the DNA in a variable called $DNA 

$DNA = 'ACGGGAGGACGGGAAAATTACTACGGCATTAGC'; 

# Next, we print the DNA onto the screen 

print $DNA; 

# Finally, we'll specifically tell the program to exit. 

exit;  

 

Using what you've already learned about text editors and running Perl programs in Chapter 
2, enter the code (or copy it from the book's web site) and save it to a file. Remember to save 

the program as ASCII or text-only format, or Perl may have trouble reading the resulting file.  

The second step is to run the program. The details of how to run a program depend on the 

type of computer you have (see Chapter 2). Let's say the program is on your computer in a 

file called example4-1. As you recall from Chapter 2, if you are running this program on 

Unix or Linux, you type the following in a shell window:  

perl example4-1 

On a Mac, open the file with the MacPerl application and save it as a droplet, then just 

double-click on the droplet. On Windows, type the following in an MS-DOS command 

window:  

perl example4 -1 

If you've successfully run the program, you'll see the output printed on your computer screen.  

Control Flow  
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Example 4-1 illustrates many of the ideas all our Perl programs will rely on. One of these 

ideas is control flow , or the order in which the statements in the program are executed by the 

computer.  

Every program starts at the first line and executes the statements one after the other until it 

reaches the end, unless it is explicitly told to do otherwise. Example 4-1 simply proceeds 

from top to bottom, with no detours.  

In later chapters, you'll learn how programs can control the flow of execution.  

Comments Revisited  

Now let's take a look at the parts of Example 4-1. You'll notice lots of blank lines. They're 

there to make the program easy for a human to read. Next, notice the comments that begin 

with the # sign. Remember from Chapter 3 that when Perl runs, it throws these away along 

with the blank lines. In fact, to Perl, the following is exactly the same program as Example 

4-1:  

#!/usr/bin/perl -w 

$DNA = 'ACGGGAGGACGGGAAAATTACTACGGCATTAGC'; print $DNA; exit; 

In Example 4-1, I've made liberal use of comments. Comments at the beginning of code 

can make it clear what the program is for, who wrote it, and present other information that 

can be helpful when someone needs to understand the code. Comments also explain what 

each section of the code is for and sometimes give explanations on how the code achieves its 

goals.  

It's tempting to belabor the point about the importance of comments. Suffice it to say that in 

most university-level, computer-science class assignments, the program without comments 

typically gets a low or failing grade; also, the programmer on the job who doesn't comment 

code is liable to have a short and unsuccessful career.  

Command Interpretation  

Because it starts with a # sign, the first line of the program looks like a comment, but it 

doesn't seem like a very informative comment:  

#!/usr/bin/perl -w 

This is a special line called command interpretation that tells the computer running Unix and 

Linux that this is a Perl program. It may look slightly different on different computers. On 

some machines, it's also unnecessary because the computer recognizes Perl from other 

information. A Windows machine is usually configured to assume that any program ending in 

.pl is a Perl program. In Unix or Linux, a Windows command window, or a MacOS X shell, 

you can type perl my_program, and your Perl program my_program won't need the 

special line. However, it's commonly used, so we'll have it at start all our programs.  

Notice that the first line of code uses a flag -w. The "w" stands for warnings, and it causes 

Perl to print messages in case of an error. Very often the error message suggests the line 

number where it thinks the error began. Sometimes the line number is wrong, but the error is 
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usually on or just before the line the message suggests. Later in the book, you'll also see the 

statement use warnings as an alternative to -w.  

Statements  

The next line of Example 4-1 stores the DNA in a variable: $DNA = 
'ACGGGAGGACGGGAAAATTACTACGGCATTAGC';  

This is a very common, very important thing to do in a computer language, so let's take a 

leisurely look at it. You'll see some basic features about Perl and about programming 

languages in general, so this is a good place to stop skimming and actually read.  

This line of code is called a statement. In Perl, statements end in a semicolon (;). The use of 

the semicolon is similar to the use of the period in the English language.  

To be more accurate, this line of code is an assignment statement. Its purpose in this program 

is to store some DNA into a variable called $DNA. There are several fundamental things 

happening here as you will see in the next sections.  

Variables  

First, let's look at the variable $DNA. Its name is somewhat arbitrary. You can pick another 

name for it, and the program behaves the same way. For instance, if you replace the two 

lines: 
$DNA = 'ACGGGAGGACGGGAAAATTACTACGGCATTAGC';  

print $DNA;  

with these:  

$A_poem_by_Seamus_Heaney = 

'ACGGGAGGACGGGAAAATTACTACGGCATTAGC'; 

print $A_poem_by_Seamus_Heaney; 

the program behaves in exactly the same way, printing out the DNA to the computer screen. 

The point is that the names of variables in a computer program are your choice. (Within 

certain restrictions: in Perl, a variable name must be composed from upper- or lowercase 

letters, digits, and the underscore _ character. Also the first character must not be a digit.)  

This is another important point along the same lines as the remarks I've already made about 

using blank lines and comments to make your code more easily read by humans. The 

computer attaches no meaning to the use of the variable name $DNA instead of 

$A_poem_by_Seamus_Heaney, but whoever reads the program certainly will. One name 

makes perfect sense, clearly indicates what the variable is for in the program, and eases the 

chore of understanding the program. The other name makes it unclear what the program is 

doing or what the variable is for. Using well-chosen variable names is part of what's called 

self-documenting code. You'll still need comments, but perhaps not as many, if you pick your 

variable names well.  
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You've noticed that the variable name $DNA starts with dollar sign. In Perl this kind of 

variable is called a scalar variable, which is a variable that holds a single item of data. Scalar 

variables are used for such data as strings or various kinds of numbers (e.g., the string hello 

or numbers such as 25, 6.234, 3.5E10, -0.8373). A scalar variable holds just one item of data 

at a time.  

Strings  

In Example 4-1, the scalar variable $DNA is holding some DNA, represented in the usual 

way by the letters A, C, G, and T. As stated earlier, in computer science a sequence of letters 

is called a string. In Perl you designate a string by putting it in quotes. You can use single 

quotes, as in Example 4-1, or double quotes. (You'll learn the difference later.) The DNA 

is thus represented by: 'ACGGGAGGACGGGAAAATTACTACGGCATTAGC'  

Assignment  

In Perl, to set a variable to a certain value, you use the = sign. The = sign is called the 

assignment operator . In Example 4-1, the value: 
'ACGGGAGGACGGGAAAATTACTACGGCATTAGC' 

is assigned to the variable $DNA. After the assignment, you can use the name of the  

variable to get the value, as in the print statement in Example 4-1.  

The order of the parts is important in an assignment statement. The value assigned to 

something appears to the right of the assignment operator. The variable that is assigned a 

value is always to the left of the assignment operator. In programming manuals, you 

sometimes come across the terms lvalue and rvalue to refer to the left and right sides of the 

assignment operator.  

This use of the = sign has a long history in programming languages. However, it can be a 

source of confusion: for instance, in most mathematics, using = means that the two things on 

either side of the sign are equal. So it's important to note that in Perl, the = sign doesn't mean 

equality. It assigns a value to a variable. (Later, we'll see how to represent equality.)  

So, to summarize what we've learned so far about this statement:  

$DNA = 'ACGGGAGGACGGGAAAATTACTACGGCATTAGC'; 

It's an assignment statement that sets the value of the scalar variable $DNA to a string 

representing some DNA.  

Print  

The statement:  

print $DNA; 

prints ACGGGAGGACGGGAAAATTACTACGGCATTAGC out to the computer screen. Notice 

that the print statement deals with scalar variables by printing out their values—in this 

case, the string that the variable $DNA contains. You'll see more about printing later.  
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Exit  

Finally, the statement exit; tells the computer to exit the program. Perl doesn't require an 

exit statement at the end of a program; once you get to the end, the program exits 

automatically. But it doesn't hurt to put one in, and it clearly indicates the program is over. 

You'll see other programs that exit if something goes wrong before the program normally 

finishes, so the exit statement is definitely useful.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

 

 

 

 

 

UNIT III GLYCOMICS AND LIPIDOMICS Glycomics – Challenges, Importance, Tools 

used to analyse glycans, softwares and databases. Lipidomics – Structural diversity of lipids, 

extraction, separation, detection and imaging. Challenges and applications. 
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UNIT IV TRANSCRIPTOMICS Gene Expression Profiling – DNA microarrays. 

Transcriptomics: Data Collection- Isolation of RNA, ESTs, SAGE analysis, Microarrays. 

RNA-seq: Principle and advances. Image processing 
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UNIT V OTHER OMICS IN BIOLOGY Secretomics, Metablolomics, fluxomics, 

nutrigenomics, Metagenomics, Organomics, Pharmacogenomics, Phytochemomics, 
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UNIT I INTRODUCTION          

Biology and Computer Science - Getting Started with Perl - Perl's Benefits -  Installing Perl - Running 

Perl Programs on various platforms - The Art of Programming - Programming Strategies - The 

Programming Process - Sequences and Strings - Representing Sequence Data -  A Program to Store a 

DNA Sequence - Control Flow - Comments Revisited - Command Interpretation – Statements – 

Variables – Strings 

 

Concatenating DNA Fragments  

Now we'll make a simple modification of Example 4-1 to show how to concatenate two DNA 

fragments. Concatenation is attaching something to the end of something else. A biologist is 

well aware that joining DNA sequences is a common task in the biology lab, for instance 

when a clone is inserted into a cell vector or when splicing exons together during the 

expression of a gene. Many bioinformatics software packages have to deal with such 

operations; hence its choice as an example.  

Example 4-2 demonstrates a few more things to do with strings, variables, and print 

statements.  

Example 4-2. Concatenating DNA  

#!/usr/bin/perl -w 

# Concatenating DNA 

# Store two DNA fragments into two variables called $DNA1 

and $DNA2 

$DNA1 = 'ACGGGAGGACGGGAAAATTACTACGGCATTAGC'; 

$DNA2 = 'ATAGTGCCGTGAGAGTGATGTAGTA'; 

# Print the DNA onto the screen 

print "Here are the original two DNA fragments:\n\n"; 

print $DNA1, "\n"; 

print $DNA2, "\n\n"; 

# Concatenate the DNA fragments into a third variable and 

print them 

# Using "string interpolation" 

$DNA3 = "$DNA1$DNA2"; 

print "Here is the concatenation of the first two fragments 

(version 1):\n\n"; 

print "$DNA3\n\n"; 

# An alternative way using the "dot operator": 

# Concatenate the DNA fragments into a third variable and 

print them 

$DNA3 = $DNA1 . $DNA2; 

print "Here is the concatenation of the first two fragments 

(version 2):\n\n"; 

print "$DNA3\n\n"; 

# Print the same thing without using the variable $DNA3 

print "Here is the concatenation of the first two fragments 

(version 3):\n\n"; 
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print $DNA1, $DNA2, "\n"; 

exit;  

As you can see, there are three variables here, $DNA1, $DNA2, and $DNA3. I've added print 

statements for a running commentary, so that the output of the program that appears on the 

computer screen makes more sense and isn't simply some DNA fragments one after the other.  

Here's what the output of Example 4-2 looks like: 

Here are the original two DNA fragments:  

ACGGGAGGACGGGAAAATTACTACGGCATTAGC 

ATAGTGCCGTGAGAGTGATGTAGTA 

Here is the concatenation of the first two fragments 

(version 1): 

ACGGGAGGACGGGAAAATTACTACGGCATTAGCATAGTGCCGTGAGAGTGATGT

AGTA 

Here is the concatenation of the first two fragments 

(version 2): 

ACGGGAGGACGGGAAAATTACTACGGCATTAGCATAGTGCCGTGAGAGTGATGT

AGTA 

Here is the concatenation of the first two fragments 

(version 3): 

ACGGGAGGACGGGAAAATTACTACGGCATTAGCATAGTGCCGTGAGAGTGATGT

AGTA 

Example 4-2 has many similarities to Example 4-1. Let's look at the differences. To start 

with, the print statements have some extra, unintuitive parts: 

print $DNA1, "\n";  

print $DNA2, "\n\n"; 

The print statements have variables containing the DNA, as before, but now they also have a 

comma and then "\n" or "\n\n". These are instructions to print newlines. A newline is 

invisible on the page or screen, but it tells the computer to go on to the beginning of the next 

line for subsequent printing. One newline, "\n", simply positions you at the beginning of the 

next line. Two new lines, "\n\n", moves to the next line and then positions you at the 

beginning of the line after that, leaving a blank line in between.  

Look at the code for Example 4-2 and to make sure you see what these newline  

directives do to the output. A blank line is a line with nothing printed on it. Depending on 

your operating system, it may be just a newline character or a combination formfeed and 

carriage return (in which cases, it may also be called an empty line), or it may include 

nonprinting whitespace characters such as spaces and tabs. Notice that the newlines are 

enclosed in double quotes, which means they are parts of strings. (Here's one difference 

between single and double quotes, as mentioned earlier: "\n" prints a newline; '\n' prints \n as 

written.)  
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Notice the comma in the print statement. A comma separates items in a list. The print 

statement prints all the items that are listed. Simple as that.  

Now let's look at the statement that concatenates the two DNA fragments $DNA1 and 

$DNA2 into the variable $DNA3:  

$DNA3 = "$DNA1$DNA2"; 

The assignment to $DNA3 is just a typical assignment as you saw in Example 4-1, a  

variable name followed by the = sign, followed by a value to be assigned.  

The value to the right of the assignment statement is a string enclosed in double quotes. The 

double quotes allow the variables in the string to be replaced with their values. This is called 

string interpolation .[2] So, in effect, the string here is just the DNA of variable $DNA1, 

followed directly by the DNA of variable $DNA2. That concatenation of the two DNA 

fragments is then assigned to variable $DNA3.  

[2] There are occasions when you might add curly braces during string interpolation. The extra curly braces make sure the variable names 

aren't confused with anything else in the double- quoted string. For example, if you had variable $prefix and tried to interpolate it into the 

string I am $prefixinterested, Perl might not recognize the variable, confusing it with a nonexistent variable $prefixinterested. But the string 

I am ${prefix}interested is unambiguous to Perl.  

After assigning the concatenated DNA to variable $DNA3, you print it out, followed by a 

blank line: 

print "$DNA3\n\n";  

One of the Perl catch phrases is, "There's more than one way to do it." So, the next part of the 

program shows another way to concatenate two strings, using the dot operator. The dot 

operator, when placed between two strings, creates a single string that concatenates the two 

original strings. So the line:  

$DNA3 = $DNA1 . $DNA2; 

illustrates the use of this operator.  

An operator in a computer language takes some arguments—in this case, the strings $DNA1 

and $DNA2—and does something to them, returning a value—in this case, the concatenated 

string placed in the variable $DNA3. The most familiar operators from arithmetic—plus, 

minus, multiply, and divide—are all operators that take two numbers as arguments and return 

a number as a value.  

Finally, just to exercise the different parts of the language, let's accomplish the same 

concatenation using only the print statement: 

print $DNA1, $DNA2, "\n"; 

Here the print statement has three parts, separated by commas: the two DNA fragments in the 

two variables and a newline. You can achieve the same result with the following print 

statement:  

print "$DNA1$DNA2\n"; 

Maybe the Perl slogan should be, "There are more than two ways to do it."  
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Before leaving this section, let's look ahead to other uses of Perl variables. You've seen the 

use of variables to hold strings of DNA sequence data. There are other types of data, and 

programming languages need variables for them, too. In Perl, a scalar variable such as $DNA 

can hold a string, an integer, a floating-point number (with a decimal point), a boolean (true 

or false) value, and more. When it's required, Perl figures out what kind of data is in the 

variable. For now, try adding the following lines to Example 4-1 or Example 4-2, storing a 

number in a scalar variable and printing it out:  

$number = 17; 

print $number,"\n"; 

 

Transcription: DNA to RNA  

A large part of what you, the Perl bioinformatics programmer, will spend your time doing 

amounts to variations on the same theme as Examples 4-1 and 4-2. You'll get some data, be it 

DNA, proteins, GenBank entries, or what have you; you'll manipulate the data; and you'll 

print out some results.  

Example 4-3 is another program that manipulates DNA; it transcribes DNA to RNA. In the 

cell, this transcription of DNA to RNA is the outcome of the workings of a delicate, complex, 

and error-correcting molecular machinery.[3] Here it's a simple substitution. When DNA is 

transcribed to RNA, all the T's are changed to U's, and that's all that our program needs to 

know.[4]  

Briefly, the coding DNA strand is the reverse complement of the other strand, which is used as a template to synthesize its reverse 

complement as RNA, with T's replaced as U's. With the two reverse complements, this is the same as the coding strand with the T[4] We're 

ignoring the mechanism of the splicing out of introns, obviously. The T stands for thymine; the U stands for uracil.  

Example 4-3. Transcribing DNA into RNA  

#!/usr/bin/perl -w 

# Transcribing DNA into RNA 

# The DNA 

$DNA = 'ACGGGAGGACGGGAAAATTACTACGGCATTAGC'; 

# Print the DNA onto the screen 

print "Here is the starting DNA:\n\n"; 

print "$DNA\n\n"; 

# Transcribe the DNA to RNA by substituting all T's with 

U's. 

$RNA = $DNA; 

$RNA =~ s/T/U/g; 

# Print the RNA onto the screen 

print "Here is the result of transcribing the DNA to 

RNA:\n\n"; 

print "$RNA\n"; 

# Exit the program. 

exit;  

Here's the output of Example 4-3: Here is the starting DNA:  
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ACGGGAGGACGGGAAAATTACTACGGCATTAGC 

Here is the result of transcribing the DNA to RNA: 

ACGGGAGGACGGGAAAAUUACUACGGCAUUAGC 

This short program introduces an important part of Perl: the ability to easily manipulate text 

data such as a string of DNA. The manipulations can be of many different sorts: translation, 

reversal, substitution, deletions, reordering, and so on. This facility of Perl is one of the main 

reasons for its success in bioinformatics and among programmers in general.  

First, the program makes a copy of the DNA, placing it in a variable called $RNA: 

$RNA = $DNA; 

Note that after this statement is executed, there's a variable called $RNA that actually 

contains DNA.[5] Remember this is perfectly legal—you can call variables anything you like—

but it is potentially confusing to have inaccurate variable names. Now in this case,  

the copy is preceded with informative comments and followed immediately with a statement 

that indeed causes the variable $RNA to contain RNA, so it's all right. Here's a way to 

prevent $RNA from containing anything except RNA:  

[5] Recall the discussion in Section 4.2.4.3 about the importance of the order of the parts in an assignment statement. Here, the value of 
$DNA, that is, the DNA sequence data that has been stored in the $DNA variable, is being assigned to the variable $RNA. If you had 

written $DNA = $RNA;, the value of the $RNA variable (which is empty) would have been assigned to the $DNA variable, in effect wiping 

out the DNA sequence data in that variable and leaving two empty variables.  

($RNA = $DNA) =~ s/T/U/g; 

In Example 4-3, the transcription happens in this statement: $RNA =~ s/T/U/g;  

There are two new items in this statement: the binding operator (=~) and the substitute 

command s/T/U/g.  

The binding operator =~ is used, obviously enough, on variables containing strings; here the 

variable $RNA contains DNA sequence data. The binding operator means "apply the 

operation on the right to the string in the variable on the left."  

The substitution operator , shown in Figure 4-1, requires a little more explanation. The 

different parts of the command are separated (or delimited) by the forward slash. First, the s 

indicates this is a substitution. After the first / comes a T, which represents the element in the 

string that will be substituted. After the second / comes a U, which represents the element 

that's going to replace the T. Finally, after the third / comes g. This g stands for "global" and 

is one of several possible modifiers that can appear in this part of the statement. Global 

means "make this substitution throughout the entire string," that is to say, everywhere 

possible in the string.  

Figure 4-1. The substitution operator  

Thus, the meaning of the statement is: "substitute all T's for U's in the string data stored in  
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the variable $RNA."  

The substitution operator is an example of the use of regular expressions. Regular expressions 

are the key to text manipulation, one of the most powerful features of Perl as you'll see in 

later chapters.  

Using the Perl Documentation  

A Perl programmer's most important resource is the Perl documentation. It should be 

installed on your computer, and it may also be found on the Internet at the Perl site. The Perl 

documentation may come in slightly different forms on your computer system, but the web 

version is the same for everybody. That's the version I refer to in this book. See the references 

in Appendix A for more discussion about different sources of Perl documentation.  

Just to try it out, let's look up the print operator. First, open your web browser, and go to 

http://www.perl.com. Then click on the Documentation link. Select "Perl's Builtin Functions" 

and then "Alphabetical Listing of Perl's Functions". You'll see a rather lengthy alphabetical 

listing of Perl's functions. Once you've found this page, you may want to bookmark it in your 

browser, as you may find yourself turning to it frequently. Now click on Print to view the 

print operator.  

Check out the examples they give to see how the language feature is actually used. This is 

usually the quickest way to extract what you need to know.  

Once you've got the documentation on your screen, you may find that reading it answers 

some questions but raises others. The documentation tends to give the entire story in a 

concise form, and this can be daunting for beginners. For instance, the documentation for the 

print function starts out: "Prints a string or a comma-separated list of strings. Returns TRUE 

if successful." But then comes a bunch of gibberish (or so it seems at this point in your 

learning curve!) Filehandles? Output streams? List context?  

All this information is necessary in documentation; after all, you need to get the whole story 

somewhere! Usually you can ignore what doesn't make sense.  

The Perl documentation also includes several tutorials that can be a great help in learning 

Perl. They occasionally assume more than a beginner's knowledge about programming 
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languages, but you may find them very useful. Exploring the documentation is a great way to 

get up to speed on the Perl language.  

Calculating the Reverse Complement in Perl  

As you recall from Chapter 1, a DNA polymer is composed of nucleotides. Given the close 

relationship between the two strands of DNA in a double helix, it turns out that it's pretty 

straightforward to write a program that, given one strand, prints out the other. Such a 

calculation is an important part of many bioinformatics applications. For instance, when  

searching a database with some query DNA, it is common to automatically search for the 

reverse complement of the query as well, since you may have in hand the opposite strand of 

some known gene.  

Without further ado, here's Example 4-4, which uses a few new Perl features. As you'll see, it 

first tries one method, which fails, and then tries another method, which succeeds.  

Example 4-4. Calculating the reverse complement of a strand of DNA  

#!/usr/bin/perl -w 

# Calculating the reverse complement of a strand of DNA 

# The DNA 

$DNA = 'ACGGGAGGACGGGAAAATTACTACGGCATTAGC'; 

# Print the DNA onto the screen 

print "Here is the starting DNA:\n\n"; 

print "$DNA\n\n"; 

# Calculate the reverse complement 

#  Warning: this attempt will fail! 

# 

# First, copy the DNA into new variable $revcom 

# (short for REVerse COMplement) 

# Notice that variable names can use lowercase letters like 

# "revcom" as well as uppercase like "DNA".  In fact, 

# lowercase is more common. 

# 

# It doesn't matter if we first reverse the string and then 

# do the complementation; or if we first do the 

complementation 

# and then reverse the string.  Same result each time. 

# So when we make the copy we'll do the reverse in the same 

statement. 

# 

$revcom = reverse $DNA; 

# 

# Next substitute all bases by their complements, 

# A->T, T->A, G->C, C->G 

# 

$revcom =~ s/A/T/g; 

$revcom =~ s/T/A/g; 

$revcom =~ s/G/C/g; 
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$revcom =~ s/C/G/g; 

# Print the reverse complement DNA onto the screen 

print "Here is the reverse complement DNA:\n\n"; 

print "$revcom\n"; 

# 

# Oh-oh, that didn't work right! 

# Our reverse complement should have all the bases in it, since the 

# original DNA had all the bases--but ours only has A and G! # 

# Do you see why? 

# 

# The problem is that the first two substitute commands above change 

# all the A's to T's (so there are no A's) and then all the # T's to A's (so all the original A's and 

T's are all now A's). 

# Same thing happens to the G's and C's all turning into G's. 

#  

print "\nThat was a bad algorithm, and the reverse 

complement was wrong!\n"; 

print "Try again ... \n\n"; 

# Make a new copy of the DNA (see why we saved the 

original?) 

$revcom = reverse $DNA; 

# See the text for a discussion of tr/// 

$revcom =~ tr/ACGTacgt/TGCAtgca/; 

# Print the reverse complement DNA onto the screen 

print "Here is the reverse complement DNA:\n\n"; 

print "$revcom\n"; 

print "\nThis time it worked!\n\n"; 

exit;  

Here's what the output of Example 4-4 should look like on your screen: Here is the starting 

DNA:  

ACGGGAGGACGGGAAAATTACTACGGCATTAGC 

Here is the reverse complement DNA: 

GGAAAAGGGGAAGAAAAAAAGGGGAGGAGGGGA 

That was a bad algorithm, and the reverse complement was 

wrong! 

Try again ... 

Here is the reverse complement DNA: 

GCTAATGCCGTAGTAATTTTCCCGTCCTCCCGT 

This time it worked! 

You can check if two strands of DNA are reverse complements of each other by reading one 

left to right, and the other right to left, that is, by starting at different ends. Then compare 

each pair of bases as you read the two strands: they should always be paired C to G and A to 

T.  



 10 

Just by reading in a few characters from the starting DNA and the reverse complement DNA 

from the first attempt, you'll see the that first attempt at calculating the reverse complement 

failed. It was a bad algorithm.  

This is a taste of what you'll sometimes experience as you program. You'll write a program to 

accomplish a job and then find it didn't work as you expected. In this case, we used parts of 

the language we already knew and tried to stretch them to handle a new problem. Only they 

weren't quite up to the job. What went wrong?  

You'll find that this kind of experience becomes familiar: you write some code, and it doesn't 

work! So you either fix the syntax (that's usually the easy part and can be done from the clues 

the error messages provide), or you think about the problem some more, find why the 

program failed, and then try to devise a new and successful way. Often this requires browsing 

the language documentation, looking for the details of how the language works and hoping to 

find a feature that fixes the problem. If it can be solved on a computer, you can solve it using 

Perl. The trick is, how exactly?  

In Example 4-4, the first attempt to calculate the reverse complement failed. Each base in the 

string was translated as a whole, using four substitutions in a global fashion. Another way is 

needed. You could march though the DNA left to right, look at each base one at a time, make 

the change to the complement, and then look at the next base in the DNA, marching on to the 

end of the string. Then just reverse the string, and you're done. In fact, this is a perfectly good 

method, and it's not hard to do in Perl, although it requires some parts of the language not 

found until Chapter 5.  

However, in this case, the tr operator—which stands for transliterate or translation—is 

exactly suited for this task. It looks like the substitute command, with the three forward 

slashes separating the different parts.  

tr does exactly what's needed; it translates a set of characters into new characters, all at once. 

Figure 4-2 shows how it works: the set of characters to be translated are between the first two 

forward slashes. The set of characters that replaces the originals are between the second and 

third forward slashes. Each character in the first set is translated into the character at the same 

position in the second set. For instance, in Example 4-4, C is the second character in the first 

set, so it's translated into the second character of the second set, namely, G. Finally, since 

DNA sequence data can use upper- or lowercase letters (even though in this program the 

DNA is in uppercase only), both cases are included in the tr statement in Example 4-4.  

 

 

 

Figure 4-2. The tr statement 



 11 

 

The reverse function also does exactly what's needed, with a minimum of fuss. It's designed 

to reverse the order of elements, including strings as seen in Example 4-4.  

Proteins, Files, and Arrays  

So far we've been writing programs with DNA sequence data. Now we'll also include the 

equally important protein sequence data. Here's an overview of what is covered in the 

following sections:  

How to use protein sequence data in a Perl program 

How to read protein sequence data in from a file 

Arrays in the Perl language 

For the rest of the chapter, both protein and DNA sequence data are used.  

Reading Proteins in Files  

Programs interact with files on a computer disk. These files can be on hard disk, CD, floppy 

disk, Zip drive, magnetic tape—any kind of permanent storage.  

Let's take a look at how to read protein sequence data from a file. First, create a file on your 

computer (use your text editor) and put some protein sequence data into it. Call the file 

NM_021964fragment.pep (you can download it from this book's web site). You will be using 

the following data (part of the human zinc finger protein NM_021964): 

MNIDDKLEGLFLKCGGIDEMQSSRTMVVMGGVSGQSTVSGELQD 

SVLQDRSMPHQEILAADEVLQESEMRQQDMISHDELMVHEETVKNDEEQMETHERL

PQ GLQYALNVPISVKQEITFTDVSEQLMRDKKQIR  

You can use any name, except one that's already in use in the same folder.  

Just as well-chosen variable names can be critical to understanding a program, well- chosen 

file and folder names can also be critical. If you have a project that generates lots of computer 

files, you need to carefully consider how to name and organize the files and folders. This is as 

true for individual researchers as for large, multi-national teams. It's important to put some 

effort into assigning informative names to files.  

The filename NM_021964fragment.pep is taken from the GenBank ID of the record where 

this protein is found. It also indicates the fragmentary nature of the data and contains the 

filename extension .pep to remind you that the file contains peptide or protein sequence data. 

Of course, some other scheme might work better for you; the point is to get some idea of 

what's in the file without having to look into it.  
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Now that you've created or downloaded a file with protein sequence data in it, let's develop a 

program that reads the protein sequence data from the file and stores it into a variable. 

Example 4-5 shows a first attempt, which will be added to as we progress.  

Example 4-5. Reading protein sequence data from a file  

#!/usr/bin/perl -w 

# Reading protein sequence data from a file 

# The filename of the file containing the protein sequence 

data 

$proteinfilename = 'NM_021964fragment.pep'; 

# First we have to "open" the file, and associate 

# a "filehandle" with it.  We choose the filehandle 

# PROTEINFILE for readability. 

open(PROTEINFILE, $proteinfilename); 

# Now we do the actual reading of the protein sequence data 

from the file, 

# by using the angle brackets < and > to get the input from 

the 

# filehandle. We store the data into our variable $protein. $protein = <PROTEINFILE>;  

# Now that we've got our data, we can close the file. 

close PROTEINFILE; 

# Print the protein onto the screen 

print "Here is the protein:\n\n"; 

print $protein; 

exit; 

Here's the output of Example 4-5: Here is the protein:  

MNIDDKLEGLFLKCGGIDEMQSSRTMVVMGGVSGQSTVSGELQD 

Notice that only the first line of the file prints out. I'll show why in a moment.  

Let's look at Example 4-5 in more detail. After putting a filename into the variable 

$proteinfilename, the file is opened with the following statement: open(PROTEINFILE, 

$proteinfilename);  

After opening the file, you can do various things with it, such as reading, writing, searching, 

going to a specific location in the file, erasing everything in the file, and so on. Notice that 

the program assumes the file named in the variable $proteinfilename exists and can be 

opened. You'll see in a little bit how to check for that, but here's something to try: change the 

name of the filename in $proteinfilename so that there's no file of that name on your 

computer, and then run the program. You'll get some error messages if the file doesn't exist.  

If you look at the documentation for the open function, you'll see many options. Mostly, they 

enable you to specify exactly what the file will be used for after it's opened.  



 13 

Let's examine the term PROTEINFILE, which is called a filehandle. With filehandles, it's not 

important to understand what they really are. They're just things you use when you're dealing 

with files. They don't have to have capital letters, but it's a widely followed convention. After 

the open statement assigns a filehandle, all the interaction with a file is done by naming the 

filehandle.  

The data is actually read in to the program with the statement:  

$protein = <PROTEINFILE>; 

Why is the filehandle PROTEINFILE enclosed within angle brackets? These angle brackets 

are called input operators; a filehandle within angle brackets is how you bring in data from 

some source outside the program. Here, we're reading the file called 

NM_021964fragment.pep whose name is stored in variable $proteinfilename, and which has 

a filehandle associated with it by the open statement. The data is being stored in the variable 

$protein and then printed out.  

However, as you've already noticed, only the first line of this multiline file is printed out. 

Why? Because there are a few more things to learn about reading in files.  

There are several ways to read in a whole file. Example 4-6 shows one way.  

Example 4-6. Reading protein sequence data from a file, take 2  

#!/usr/bin/perl -w 

# Reading protein sequence data from a file, take 2 

# The filename of the file containing the protein sequence 

data 

$proteinfilename = 'NM_021964fragment.pep'; 

# First we have to "open" the file, and associate 

# a "filehandle" with it.  We choose the filehandle 

# PROTEINFILE for readability. 

open(PROTEINFILE, $proteinfilename); 

# Now we do the actual reading of the protein sequence data 

from the file, 

# by using the angle brackets < and > to get the input from 

the 

# filehandle. We store the data into our variable $protein. # 

# Since the file has three lines, and since the read only 

is  

# returning one line, we'll read a line and print it, three 

times. 

# First line 

$protein = <PROTEINFILE>; 

# Print the protein onto the screen 

print "\nHere is the first line of the protein file:\n\n"; 

print $protein; 

# Second line 

$protein = <PROTEINFILE>; 
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# Print the protein onto the screen 

print "\nHere is the second line of the protein file:\n\n"; 

print $protein; 

# Third line 

$protein = <PROTEINFILE>; 

# Print the protein onto the screen 

print "\nHere is the third line of the protein file:\n\n"; 

print $protein; 

# Now that we've got our data, we can close the file. 

close PROTEINFILE; 

exit;  

Here's the output of Example 4-6: 

Here is the first line of the protein file:  

MNIDDKLEGLFLKCGGIDEMQSSRTMVVMGGVSGQSTVSGELQD 

Here is the second line of the protein file: 

SVLQDRSMPHQEILAADEVLQESEMRQQDMISHDELMVHEETVKNDEEQMETHERL

PQ 

Here is the third line of the protein file: 

GLQYALNVPISVKQEITFTDVSEQLMRDKKQIR 

The interesting thing about this program is that it shows how reading from a file works. 

Every time you read into a scalar variable such as $protein, the next line of the file is read. 

Something is remembering where the previous read was and is picking it up from there.  

On the other hand, the drawbacks of this program are obvious. Having to write a few lines of 

code for each line of an input file isn't convenient. However, there are two Perl features that 

can handle this nicely: arrays (in the next section) and loops (in Chapter 5).  

Arrays  

In computer languages an array is a variable that stores multiple scalar values. The values can 

be numbers, strings, or, in this case, lines of an input file of protein sequence data. Let's 

examine how they can be used. Example 4-7 shows how to use an array to read all the lines 

of an input file.  

Example 4-7. Reading protein sequence data from a file, take 3  

#!/usr/bin/perl -w 

# Reading protein sequence data from a file, take 3 

# The filename of the file containing the protein sequence 

data 

$proteinfilename = 'NM_021964fragment.pep'; 

# First we have to "open" the file 

open(PROTEINFILE, $proteinfilename); 

# Read the protein sequence data from the file, and store 

it 

# into the array variable @protein 
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@protein = <PROTEINFILE>; 

# Print the protein onto the screen 

print @protein; 

# Close the file. 

close PROTEINFILE; 

exit;  

Here's the output of Example 4-7: 

MNIDDKLEGLFLKCGGIDEMQSSRTMVVMGGVSGQSTVSGELQD 

SVLQDRSMPHQEILAADEVLQESEMRQQDMISHDELMVHEETVKNDEEQMETHERL

PQ GLQYALNVPISVKQEITFTDVSEQLMRDKKQIR  

which, as you can see, is exactly the data that's in the file. Success!  

The convenience of this is clear—just one line to read all the data into the program.  

Notice that the array variable starts with an at sign (@) rather than the dollar sign ($) scalar 

variables begin with. Also notice that the print function can handle arrays as well as scalar 

variables. Arrays are used a lot in Perl, so you will see plenty of array examples as the book 

continues.  

An array is a variable that can hold many scalar values. Each item or element is a scalar value 

that can be referenced by giving its position in the array (its subscript or offset). Let's look at 

some examples of arrays and their most common operations. We'll define an array @bases 

that holds the four bases A, C, G, and T. Then we'll apply some of the most common array 

operators.  

Here's a piece of code that demonstrates how to initialize an array and how to use subscripts 

to access the individual elements of an array:  

# Here's one way to declare an array, initialized with a 

list of four scalar values. 

@bases = ('A', 'C', 'G', 'T'); 

# Now we'll print each element of the array 

print "Here are the array elements:"; 

print "\nFirst element: "; 

print $bases[0]; 

print "\nSecond element: "; 

print $bases[1]; 

print "\nThird element: "; 

print $bases[2]; 

print "\nFourth element: "; 

print $bases[3]; 

This code snippet prints out:  

First element: A 

Second element: C 

Third element: G 
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Fourth element: T 

You can print the elements one a after another like this:  

@bases = ('A', 'C', 'G', 'T'); 

print "\n\nHere are the array elements: "; 

print @bases; 

which produces the output:  

Here are the array elements: ACGT 

You can also print the elements separated by spaces (notice the double quotes in the print 

statement): 

@bases = ('A', 'C', 'G', 'T'); 

print "\n\nHere are the array elements: ";  

print "@bases"; 

which produces the output:  

Here are the array elements: A C G T You can take an element off the end of an array with 

pop:  

@bases = ('A', 'C', 'G', 'T'); 

$base1 = pop @bases; 

print "Here's the element removed from the end: "; 

print $base1, "\n\n"; 

print "Here's the remaining array of bases: "; 

print "@bases"; 

which produces the output:  

Here's the element removed from the end: T 

Here's the remaining array of bases: A C G 

 

You can take a base off of the beginning of the array with shift: 

@bases = ('A', 'C', 'G', 'T'); 

$base2 = shift @bases; 

print "Here's an element removed from the beginning: "; print $base2, "\n\n";  

print "Here's the remaining array of bases: "; 

print "@bases"; 

which produces the output:  

Here's an element removed from the beginning: A 
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Here's the remaining array of bases: C G T 

You can put an element at the beginning of the array with unshift:  

@bases = ('A', 'C', 'G', 'T'); 

$base1 = pop @bases; 

unshift (@bases, $base1); 

print "Here's the element from the end put on the beginning: ";  

print "@bases\n\n"; 

which produces the output:  

Here's the element from the end put on the beginning: T A C G 

You can put an element on the end of the array with push: 

@bases = ('A', 'C', 'G', 'T');  

$base2 = shift @bases; 

push (@bases, $base2); 

print "Here's the element from the beginning put on the end: "; 

print "@bases\n\n";  

which produces the output:  

Here's the element from the beginning put on the end: C G T 

A 

You can reverse the array:  

@bases = ('A', 'C', 'G', 'T'); 

@reverse = reverse @bases; 

print "Here's the array in reverse: "; 

print "@reverse\n\n"; 

which produces the output:  

Here's the array in reverse: T G C A 

You can get the length of an array:  

@bases = ('A', 'C', 'G', 'T'); 

print "Here's the length of the array: "; 

print scalar @bases, "\n"; 

which produces the output:  

Here's the length of the array: 4 

Here's how to insert an element at an arbitrary place in an array using the Perl splice  

function:  
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@bases = ('A', 'C', 'G', 'T'); 

splice ( @bases, 2, 0, 'X'); 

print "Here's the array with an element inserted after the 

2nd element: "; 

print "@bases\n"; 

which produces the output:  

Here's the array with an element inserted after the 2nd 

element: A C X G T 

Scalar and List Context  

Many Perl operations behave differently depending on the context in which they are used. 

Perl has scalar context and list context; both are listed in Example 4-8.  

Example 4-8. Scalar context and list context  

#!/usr/bin/perl -w 

# Demonstration of "scalar context" and "list context" 

@bases = ('A', 'C', 'G', 'T'); 

print "@bases\n"; 

$a = @bases; 

print $a, "\n"; 

($a) = @bases; 

print $a, "\n"; 

exit;  

Here's the output of Example 4-8: ACGT  

4 

A 

First, Example 4-8 declares an array of the four bases. Then the assignment statement tries to 

assign an array (which is a kind of list) to a scalar variable $a: 

$a = @bases;  

In this kind of scalar context , an array evaluates to the size of the array, that is, the number of 

elements in the array. The scalar context is supplied by the scalar variable on the left side of 

the statement.  

Next, Example 4-8 tries to assign an array (to repeat, a kind of list) to another list, in this 

case, having just one variable, $a:  

($a) = @bases; 

In this kind of list context , an array evaluates to a list of its elements. The list context is 

supplied by the list in parentheses on the left side of the statement. If there aren't enough 

variables on the left side to assign to, only part of the array gets assigned to variables. This 

behavior of Perl pops up in many situations; by design, many features of Perl behave 
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differently depending on whether they are in scalar or list context. See Appendix B for more 

about scalar and list content.  

Now you've seen the use of strings and arrays to hold sequence and file data, and learned the 

basic syntax of Perl, including variables, assignment, printing, and reading files. You've 

transcribed DNA to RNA and calculated the reverse complement of a strand of DNA. By the 

end of Chapter 5, you'll have covered the essentials of Perl programming.  
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UNIT III WRITING MORE CODE         

 Finding Motifs - Regular Expressions - Counting Nucleotides - Exploding Strings into Arrays 

- Operating on Strings - Writing to Files - Subroutines and Bugs  - Subroutines - Scoping and 

Subroutines - Command-Line Arguments and Arrays - Passing Data to Subroutines - Modules 

and Libraries of Subroutines - Fixing Bugs in Your Code - The Perl Debugger 

 

Motifs and Loops  

This chapter continues demonstrating the basics of the Perl language begun in Chapter 4. 

By the end of the chapter, you will know how to:  

Search for motifs in DNA or protein Interact with users at the keyboard Write data to files 

Use loops  

Use basic regular expressions 

Take different actions depending on the outcome of conditional tests Examine sequence data 

in detail by operating on strings and arrays  

These topics, in addition to what you learned in Chapter 4, will give you the skills 

necessary to begin to write useful bioinformatics programs; in this chapter, you will learn to 

write a program that looks for motifs in sequence data.  

Flow Control  

Flow control is the order in which the statements of a program are executed. A program 

executes from the first statement at the top of the program to the last statement at the bottom, 

in order, unless told to do otherwise. There are two ways to tell a program to do otherwise: 

conditional statements and loops. A conditional statement executes a group of statements 

only if the conditional test succeeds; otherwise, it just skips the group of statements. A loop 

repeats a group of statements until an associated test fails.  

Conditional Statements  

Let's take another look at the open statement. Recall that if you try to open a nonexistent file, 

you get error messages. You can test for the existence of a file explicitly, before trying to 

open it. In fact, such tests are among the most powerful features of computer languages. The 

if , if-else, and unless conditional statements are three such testing mechanisms in Perl.  

The main feature of these kinds of constructs is the testing for a conditional. A conditional 

evaluates to a true or false value. If the conditional is true, the statements following 

are executed; if the conditional is false, they are skipped (or vice versa).  

However, "What is truth?" It's a question that programming languages may answer in  

slightly different ways.  

This section contains a few examples that demonstrate some of Perl's conditionals. The true-

false condition in each example is equality between two numbers. Notice that equality of 
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numbers is represented by two equal signs ==, because the single equal sign = is already 

used for assignment to a variable.  

Confusion between = for assignment and == for numeric equality is a frequent 

programming bug, so watch for it!  

The following examples demonstrate whether the conditional will evaluate to true or 

false. You don't ordinarily have much use for such simple tests. Usually you test the values 

that have been read into variables or the return value of function calls—things you don't 

necessarily know beforehand.  

The if statement with a true conditional: if( 1 == 1) {  

    print "1 equals 1\n\n"; 

} 

produces the output:  

1 equals 1 

The test is 1 == 1, or, in English, "Does 1 equal 1?" Since it does, the conditional evaluates 

to true, the statement associated with the if statement is executed, and a message is 

printed out.  

You can also just say:  

if( 1) { 

    print "1 evaluates to true\n\n"; 

}  

which produces the output:  

1 evaluates to true 

The if statement with a false conditional: if( 1 == 0) {  

    print "1 equals 0\n\n"; 

} 

produces no output! The test is 1 == 0 or, in English, "Does 1 equal 0?" Since it doesn't, 

the conditional evaluates to false, the statements associated with the if statement aren't 

executed, and no message is printed out.  

You can also just say:  

if( 0 ) {  

    print "0 evaluates to true\n\n"; 

} 
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which produces no output, since 0 evaluates to false, so the statements associated with the 

if statement are skipped entirely.  

There's another way to write short if statements that mirrors how the English language 

works. In English, you can say, equivalently, "If you build it, they will come" or "They will 

come if you build it." Not to be outdone, Perl also allows you to put the if after the action:  

print "1 equals 1\n\n" if (1 == 1); 

which does the same thing as the first example in this section and prints out:  

1 equals 1 

Now, let's look at an if-else statement with a true conditional: if( 1 == 1) {  

    print "1 equals 1\n\n"; 

} else { 

    print "1 does not equal 1\n\n"; 

} 

which produces the output:  

1 equals 1 

The if-else does one thing if the test evaluates to true and another if the test  

evaluates to false. Here is if-else with a false conditional: if( 1 == 0) {  

    print "1 equals 0\n\n"; 

} else { 

    print "1 does not equal 0\n\n"; 

} 

which produces the output:  

1 does not equal 0 

The final example is unless—the opposite of if. It works like the English word "unless": 

e.g., "Unless you study Russian literature, you are ignorant of Chekov." If the conditional 

evaluates to true, no action is taken; if it evaluates to false, the associated statements are 

executed. If "you study Russian literature" is false, "you are ignorant of Chekov." 
unless( 1 == 0) {  

    print "1 does not equal 0\n\n"; 

}  

produces the output:  

1 does not equal 0 
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Conditional tests and matching braces  

Two more comments are in order about these statements and their conditional tests.  

First, there are several tests that can be used in the conditional part of these statements. In 

addition to numeric equality == as in the previous example, you can also test for inequality 

!=, greater than >, less than <, and more.  

Similarly, you can test for string equality using the eq operator: if two strings are the same, 

it's true. There are also file test operators that allow you to test if a file exists, is empty, if 

permissions are set a certain way, and so on (see Appendix B). One common test is just a 

variable name: if the variable contains zero, it's considered false; any other number 

evaluates to true. If the variable contains a nonempty string, it evaluates to true; the 

empty string, designated by "" or '', is false.  

Second, notice that the statements that follow the conditional are 

enclosed within a matching pair of curly braces. These statements  

within curly braces are called a block and arise frequently in Perl.[1] Matching 

pairs of parentheses, brackets, or braces, i.e., ( ), [ ], < >, and { }, are common programming 

features. Having the same number of left and right braces in the right places is essential for a 

Perl program to run correctly.  

[1] As something of an oddity, the last statement within a block doesn't need a semicolon after it.  

Matching braces are easy to lose track of, so don't be surprised if you miss some and get error 

messages when you try to run the program. This is a common syntax error; you have to go 

back and find the missing brace. As code gets more complex, it can be a challenge to figure 

out where the matching braces are wrong and how to fix them. Even if the braces are in the 

right place, it can be hard to figure out what statements are grouped together when you're 

reading code. You can avoid this problem by writing code that doesn't try to do too much on 

any one line and uses indentation to further highlight the blocks of code (see Section 

5.2).[2]  

[2] Some text editors help you find a matching brace (for instance, in the vi editor, hitting the percent key % 

over a parenthesis bounces you to the matching parenthesis).  

Back to the conditional statements. The if-else also has an if-elsif-else form, as in 

Example 5-1. The conditionals, first the if and then the elsifs, are evaluated in turn, and 

as soon as one evaluates to true, its block is executed, and the rest of the conditionals are 

ignored. If none of the conditionals evaluates to true, the else block is  

executed if there is one—it's optional.  

Example 5-1. if-elsif-else  

#!/usr/bin/perl -w 

# if-elsif-else 

$word = 'MNIDDKL'; 

# if-elsif-else conditionals 
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if($word eq 'QSTVSGE') { 

    print "QSTVSGE\n"; 

} elsif($word eq 'MRQQDMISHDEL') { 

    print "MRQQDMISHDEL\n"; 

} elsif ( $word eq 'MNIDDKL' ) { 

    print "MNIDDKL--the magic word!\n"; 

} else { 

    print "Is \"$word\" a peptide? This program is not 

sure.\n"; 

}  

exit; 

Notice the \" in the else block's print statement; it lets you print a double-quote sign 

(") within a double-quoted string. The backslash character tells Perl to treat the following " 

as the sign itself and not interpret it as the marker for the end of the string. Also note the use 

of eq to check for equality between strings. 

Example 5-1 gives the output: 
MNIDDKL--the magic word!  

5.1.2 Loops  

A loop allows you to repeatedly execute a block of statements enclosed within matching 

curly braces. There are several ways to loop in Perl: while loops, for loops, foreach loops, 

and more. Example 5-2 (from Chapter 4) displays the while loop and how it's used 

while reading protein sequence data in from a file.  

Example 5-2. Reading protein sequence data from a file, take 4  

#!/usr/bin/perl -w 

# Reading protein sequence data from a file, take 4 

# The filename of the file containing the protein sequence 

data 

$proteinfilename = 'NM_021964fragment.pep'; 

# First we have to "open" the file, and in case the 

# open fails, print an error message and exit the program. 

unless ( open(PROTEINFILE, $proteinfilename) ) { 

    print "Could not open file $proteinfilename!\n"; 

exit; }  

# Read the protein sequence data from the file in a "while" 

loop, 

# printing each line as it is read. 

while( $protein = <PROTEINFILE> ) { 

    print "  ######  Here is the next line of the file:\n"; 

    print $protein; 

} 

# Close the file. 

close PROTEINFILE; 
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exit;  

Here's the output of Example 5-2: 
###### Here is the next line of the file:  

MNIDDKLEGLFLKCGGIDEMQSSRTMVVMGGVSGQSTVSGELQD 

  ######  Here is the next line of the file: 

SVLQDRSMPHQEILAADEVLQESEMRQQDMISHDELMVHEETVKNDEEQMETHERLPQ 

  ######  Here is the next line of the file: 

GLQYALNVPISVKQEITFTDVSEQLMRDKKQIR 

In the while loop, notice how the variable $protein is assigned each time through the 

loop to the next line of the file. In Perl, an assignment returns the value of the assignment. 

Here, the test is whether the assignment succeeds in reading another line. If there is another 

line to read in, the assignment occurs, the conditional is true, the new line is stored in the 

variable $protein, and the block with the two print statements is executed. If there are 

no more lines, the assignment is undefined, the conditional is false, and the program skips 

the block with the two print statements, quits the while loop, and continues to the 

following parts of the program (in this case, the close and exit functions).  

open and unless  

The open call is a system call, because to open a file, Perl must ask for the file from the 

operating system. The operating system may be a version of Unix or Linux, a Microsoft 

Windows versions, one of the Apple Macintosh operating systems, and so on. Files are 

managed by the operating system and can be accessed only by it.  

It's a good habit to check for the success or failure of system calls, especially when opening 

files. If a system call fails, and you're not checking for it, your program will continue, 

perhaps attempting to read or write to a file you couldn't open in the first place. You should 

always check for failure and let the user of the program know right away when a file can't be 

opened. Often you may want to exit the program on failure or try to open a different file.  

In Example 5-2, the open system call is part of the test of the unless conditional. 

unless is the opposite of if. Just as in English you can say "do the statements in the block if 

the condition is true"; you can also say the opposite, "do the statements in the block unless 

the condition is true." The open system call gives you a true value if it successfully opens 

the file; so here, in the conditional test of the unless statement, if the open call fails, the 

statements in the block are performed, the program prints an error message, and then exits.  

To sum up, conditionals and loops are simple ideas and not difficult to learn in Perl. They are 

among the most powerful features of programming languages. Conditionals allow you to 

tailor a program to several alternatives, and in that way, make decisions based on the type of 

input it gets. They are responsible for a large part of whatever artificial intelligence there is in 

a computer program. Loops harness the speed of the computer so that in a few lines of code, 

you can handle large amounts of input or continually iterate and refine a computation.  

Code Layout  
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Once you start using loops and conditional statements, you need to think seriously about 

formatting. You have many options when formatting Perl code on the page. Compare these 

variant ways of formatting an if statement inside a while loop:  

Format A  

     while ( $alive ) { 

         if ( $needs_nutrients ) { 

             print "Cell needs nutrients\n"; 

         } 

}  

Format B  

     while ( $alive ) 

     { 

         if ( $needs_nutrients ) 

print "Cell needs nutrients\n"; 

         } 

}  

Format C  

while ( $alive ) 

  { 

     if ( $needs_nutrients ) 

     { 

         print "Cell needs nutrients\n"; 

} }  

Format D  

     while($alive){if($needs_nutrients){print "Cell needs 

     nutrients\n";}} 

These code fragments are equivalent as far as the Perl interpreter is concerned. That's because 

Perl doesn't rely on how the statements are laid out on the lines; Perl cares only about the 

correct order of the syntactical elements. Some elements need some whitespace (such as 

spaces, tabs, or newlines) between them to make them distinct, but in general, Perl doesn't 

restrict how you use whitespace to lay out your code.  

Formats A and B are common ways to lay out code. They both make the program structure 

clear to the human reading it. Notice how the statements that have a block associated with 

them—the while and if statements—line up the curly braces and indent the statements within 

the blocks. These layouts make clear the extent of the block associated with the statements. 

(This can be critical for long, complicated blocks.) The statements inside the blocks are 

indented, for which you normally use the Tab key or groups of four or eight spaces. (Many 
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text editors allow you to insert spaces when you hit the Tab key, or you can instruct them to 

set the tab stops at four, eight, or whatever number of spaces.) The overall structure of the 

program becomes clearer this way; you can easily see which statements are grouped in a 

block and associated with a given loop or conditional. Personally, I prefer the layout in 

Format A, although I'm also perfectly happy with Format B.  

Format C is an example of badly formatted code. The flow control of the code isn't clear; for 

instance, it's hard to see if the print statement is in the block of the while statement.  

Format D demonstrates how hard it is to read code with essentially no formatting, even a 

simple fragment like this.  

The Perl style guide, available from the main Perl manual page or from the command line by 

typing:  

perldoc perlstyle 

has some recommendations and some suggestions for ways to write readable code.  

However, they are not rules, and you may use your own judgment as to the formatting 

practices that work best for you.  

Finding Motifs  

One of the most common things we do in bioinformatics is to look for motifs, short segments 

of DNA or protein that are of particular interest. They may be regulatory elements of DNA or 

short stretches of protein that are known to be conserved across many species. (The 

PROSITE web site at http://www.expasy.ch/prosite/ has extensive information about 

protein motifs.)  

The motifs you look for in biological sequences are usually not one specific sequence. They 

may have several variants—for example, positions in which it doesn't matter which base or 

residue is present. They may have variant lengths as well. They can often be represented as 

regular expressions, which you'll see more of in the discussion following Example 5-3, in 

Chapter 9, and elsewhere in the book.  

Perl has a handy set of features for finding things in strings. This, as much as anything, has 

made it a popular language for bioinformatics. Example 5-3 introduces this string- 

searching capability; it does something genuinely useful, and similar programs are used all 

the time in biology research. It does the following:  

Reads in protein sequence data from a file  

Puts all the sequence data into one string for easy searching  

Looks for motifs the user types in at the keyboard  

Example 5-3. Searching for motifs  

#!/usr/bin/perl -w 
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# Searching for motifs 

# Ask the user for the filename of the file containing 

# the protein sequence data, and collect it from the 

keyboard 

print "Please type the filename of the protein sequence 

data: "; 

$proteinfilename = <STDIN>; 

# Remove the newline from the protein filename 

chomp $proteinfilename; 

# open the file, or exit 

unless ( open(PROTEINFILE, $proteinfilename) ) { 

print "Cannot open file \"$proteinfilename\"\n\n"; 

exit; }  

# Read the protein sequence data from the file, and store 

it 

# into the array variable @protein 

@protein = <PROTEINFILE>; 

# Close the file - we've read all the data into @protein 

now. 

close PROTEINFILE; 

# Put the protein sequence data into a single string, as 

it's easier 

# to search for a motif in a string than in an array of 

# lines (what if the motif occurs over a line break?) 

$protein = join( '', @protein); 

# Remove whitespace 

$protein =~ s/\s//g; 

# In a loop, ask the user for a motif, search for the motif, # 

and report if it was found. 

# Exit if no motif is entered. 

do {  

    print "Enter a motif to search for: "; 

    $motif = <STDIN>; 

    # Remove the newline at the end of $motif 

    chomp $motif; 

    # Look for the motif 

    if ( $protein =~ /$motif/ ) { 

        print "I found it!\n\n"; 

    } else { 

        print "I couldn\'t find it.\n\n"; 

    } 

# exit on an empty user input 

} until ( $motif =~ /^\s*$/ ); 

# exit the program 

exit;  
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Here's some typical output from Example 5-3: 
Please type the filename of the protein sequence data: 

NM_021964fragment.pep 

Enter a motif to search for: SVLQ 

I found it!  

Enter a motif to search for: jkl 

I couldn't find it. 

Enter a motif to search for: QDSV 

I found it! 

Enter a motif to search for: HERLPQGLQ 

I found it! 

Enter a motif to search for: 

I couldn't find it. 

As you see from the output, this program finds motifs that the user types in at the keyboard. 

With such a program, you no longer have to search manually through potentially huge 

amounts of data. The computer does the work and does it much faster and more accurately 

than a human.  

It'd be nice if this program not only reported it found the motif but at what position. You'll 

see how this can be accomplished in Chapter 9. An exercise in that chapter challenges you 

to modify this program so that it reports the positions of the motifs.  

The following sections examine and discuss the parts of Example 5-3 that are new: 

Getting user input from the keyboard 
Joining lines of a file into a single scalar variable 
Regular expressions and character classes  

do-until loops Pattern matching  

Getting User Input from the Keyboard  

You first saw filehandles in Example 4-5. In Example 5-3 (as was true in Example 
4-3), a filehandle and the angle bracket input operator are used to read in data from an 

opened file into an array, like so:  

@protein = <PROTEINFILE>; 

Perl uses the same syntax to get input that is typed by the user at the keyboard. In Example 

5-3, a special filehandle called STDIN (short for standard input), is used for  

this purpose, as in this line that collects a filename from the user:  

$proteinfilename = <STDIN>; 

So, a filehandle can be associated with a file; it can also be associated with the keyboard 

where the user types responses to questions the program asks.  
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If the variable you're using to save the input is a scalar variable starts with a dollar sign $), as 

in this fragment, only one line is read, which is almost always what you want in this case.  

In Example 5-3, the user is requested to enter the filename of a file containing protein 

sequence data. After getting a filename in this fashion, there's one more step before you can 

open the file. When the user types in a filename and sends a newline by hitting the Enter key 

(also known as the Return key), the filename also gets a newline character at the end as it is 

stored in the variable. This newline is not part of the filename and has to be removed before 

the open system call will work. The Perl function chomp removes newlines (or its cousins 

linefeeds and carriage returns) from the end of a string. (The older function chop removes the 

last character, no matter what it is; this caused trouble, so chomp was introduced and is 

almost always preferred.)  

So this part of Perl requires a little bit extra: removing the newline from 
the input collected from the user at the keyboard. Try commenting out 

the chomp function, and you'll see that the open fails, because no filename has a newline 

at the end. (Operating systems have rules as to which characters are allowed in filenames.)  

Turning Arrays into Scalars with join  

It's common to find protein sequence data broken into short segments of 80 or so characters 

each. The reason is simple: when data is printed out on paper or displayed on the screen, it 

needs to be broken up into lines that fit into the space. Having your data broken into 

segments, however, is inconvenient for your Perl program. What if you're searching for a 

motif that's split by a newline character? Your program won't find it. In fact, some of the 

motifs searched for in Example 5-3 are split by line breaks. In Perl you deal with this sort 

of segmented data with the Perl function join. In Example 5-3 join collapses an array 

@protein by combining all the lines of data into a single string stored in a new scalar 

variable $protein:  

$protein = join( '', @protein); 

You specify a string to be placed between the elements of the array as they're joined. In this 

case, you specify the empty string to be placed between the lines of the input file. The empty 

string is represented with the pair of single quotes '' (double quotes "" also serve).  

Recall that in Example 4-2, I introduced several equivalent ways to concatenate two 

fragments of DNA. The use of the join function is very similar. It takes the scalar values that 

are the elements of the array and concatenates them into a single scalar value. Recall the 

following statement from Example 4-2, which is one of the equivalent ways to 

concatenate two strings:  

$DNA3 = $DNA1 . $DNA2; 

Another way to accomplish the same concatenation uses the join function: $DNA3 = 
join( "", ($DNA1, $DNA2) );  

In this version, instead of giving an array name, I specify a list of scalar elements:  
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($DNA1, $DNA2) 

do-until Loops  

There's a new kind of loop in Example 5-3, the do-until loop, which first executes a 

block and then does a conditional test. Sometimes this is more convenient than the usual 

order in which you test first, then do the block if the test succeeds. Here, you want to prompt 

the user, get the user's input, search for the motif, and report the results. Before doing it 

again, you check the conditional test to see if the user has input an empty line. This means 

that the user has no more motifs to look for, so you exit the loop.  

Regular Expressions  

Regular expressions let you easily manipulate strings of all sorts, such as DNA and protein 

sequence data. What's great about regular expressions is that if there's something you want to 

do with a string, you usually can do it with Perl regular expressions.  

Some regular expressions are very simple. For instance, you can just use the exact text of 

what you're searching for as a regular expression: if I was looking for the word 

"bioinformatics" in the text of this book, I could use the regular expression:  

/bioinformatics/ 

Some regular expressions can be more complex, however. In this section, I'll explain their use 

in Example 5-3.  

Regular expressions and character classes  

Regular expressions are ways of matching one or more strings using special wildcard-like 

operators. Regular expressions can be as simple as a word, which matches the word itself, or 

they can be complex and made to match a large set of different words (or even every word!).  

After you join the protein sequence data into the scalar variable $protein in Example 

5-3, you also need to remove newlines and anything else that's not sequence data. This can 

include numbers on the lines, comments, informational or "header" lines, and so on.  

In this case, you want to remove newlines and any spaces or tabs that might be invisibly 

present. The following line of code in Example 5-3 removes this whitespace: $protein 
=~ s/\s//g;  

The sequence data in the scalar variable $protein is altered by this statement. You first 

saw the binding operator =~ and the substitute function s/// back in Example 4-3,  

where they were used to change one character into another. Here, they're used a little 

differently. You substitute any one of a set of whitespace characters, represented by \s with 

nothing and by the lack of anything between the second and third forward slashes. In other 

words, you delete any of a set of whitespace characters, which is done globally throughout 

the string by virtue of the g at the end of the statement.  
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The \s is one of several metasymbols. You've already seen the metasymbol \n. The \s 

metasymbol matches any space, tab, newline, carriage return, or formfeed. \s can also be 

written as:  

[ \t\n\f\r]  

This expression is an example of a character class and is enclosed in square brackets. A 

character class matches one character, any one of the characters named within the square 

brackets. A space is just typed as a space; other whitespace characters have their own 

metasymbols: \t for tab, \n for newline, \f for formfeed, and \r for carriage return. A 

carriage return causes the next character to be written at the beginning of the line, and a 

formfeed advances to the next line. The two of them together amount to the same thing as a 

newline character.  

Each s/// command I've detailed has some kind of regular expression between the first two 

forward slashes /. You've seen single letters as the C in s/C/G/g in that position. The C is an 

example of a valid regular expression.  

There's another use of regular expressions in Example 5-3. The line of code:  

if ( $motif =~ /^\s*$/ ) { 

is, in English, testing for a blank line in the variable $motif. If the user input is nothing 

except for perhaps some whitespace, represented as \s*, the match succeeds, and the 

program exits. The whole regular expression is: 
/^\s*$/  

which translates as: match a string that, from the beginning (indicated by the ^), is zero or 

more (indicated by the *) whitespace characters (indicated by the \s) until the end of the 

string (indicated by the $).  

If this seems somewhat cryptic, just hang in there and you'll soon get familiar with the 

terminology. Regular expressions are a great way to manipulate sequence and other text- 

based data, and Perl is particularly good at making regular expressions relatively easy to use, 

powerful, and flexible. Many of the references in Appendix A contain material on regular 

expressions, and there's a concise summary in Appendix B.  

Pattern matching with =~ and regular expressions  

The actual search for the motif happens in this line from Example 5-3: if ( $protein 
=~ /$motif/ ) {  

Here, the binding operator =~ searches for the regular expression stored as the value of the 

variable $motif in the protein $protein. Using this feature, you can interpolate the 

value of a variable into a string match. (Interpolation in Perl strings means inserting the value 

of a variable into a string, as you first saw in Example 4-2 when you were concatenating 

strings). The actual motif, that is, the value of the string variable $motif, is your regular 

expression. The simplest regular expressions are just strings of characters, such as the motif 

AQQK, for example.  
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You can use Example 5-3 to play with some more features of regular expressions. You 

can type in any regular expression to search for in the protein. Try starting up the program, 

referring to the documentation on regular expressions, and play! Here are some examples of 

typing in regular expressions:  

Search for an A followed by a D or S, followed by a V:  

• Enter a motif to search for: A[DS]V I couldn't find it.  

• Search for K, N, zero or more D's, and two or more E's (note that {2,} means "two 

or more"):  
• Enter a motif to search for: KND*E{2,} I found it!  

Search for two E's, followed by anything, followed by another two E's:  

• Enter a motif to search for: EE.*EE I found it!  

In that last search, notice that a period stands for any character except a newline, and ".*" 

stands for zero or more such characters. (If you want to actually match a period, you have to 

escape it with a backslash.)  

Counting Nucleotides  

There are many things you might want to know about a piece of DNA. Is it coding or 

noncoding?[3] Does it contain a regulatory element? Is it related to some other known DNA, 

and if so, how? How many of each of the four nucleotides does the DNA contain? In fact, in 

some species the coding regions have a specific nucleotide bias, so this last question can be 

important in finding the genes. Also, different species have different  

patterns of nucleotide usage. So counting nucleotides can be interesting and useful.  

[3] Coding DNA is DNA that codes for a protein, that is, it is part of a gene. In many organisms, including 
humans, a large part of the DNA is noncoding—not part of genes and doesn't code for proteins. In humans, 

about 98-99% of DNA is noncoding.  

In the following sections are two programs, Examples 5-4 and 5-6, that make a count of each 

type of nucleotide in some DNA. They introduce a few new parts of Perl:  

"Exploding" a string 

Looking at specific locations in strings Iterating over an array 

Iterating over the length of a string  

To get the count of each type of nucleotide in some DNA, you have to look at each base, see 

what it is, and then keep four counts, one for each nucleotide. We'll do this in two ways:  

Explode the DNA into an array of single bases, and iterate over the array (that is, deal with 

the elements of the array one by one)  

Use the substr Perl function to iterate over the positions in the string of DNA while counting  
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First, let's start with some pseudocode of the task. Afterwards, we'll make more detailed 

pseudocode, and finally write the Perl program for both approaches.  

The following pseudocode describes generally what is needed:  

for each base in the DNA 

    if base is A 

        count_of_A = count_of_A + 1 

    if base is C 

        count_of_C = count_of_C + 1 

    if base is G 

        count_of_G = count_of_G + 1 

    if base is T 

        count_of_T = count_of_T + 1 

done 

 

print count_of_A, count_of_C, count_of_G, count_of_T 

As you can see, this is a pretty simple idea, mirroring what you'd do by hand if you had to. (If 

you want to count the relative frequencies of the bases in all human genes, you can't do it by 

hand—there are too many of them—and you have to use such a program. Thus 

bioinformatics.) Now let's see how it can be coded in Perl.  

Exploding Strings into Arrays  

Let's say you decide to explode the string of DNA into an array. By explode I mean 

separating out each letter in the string—sort of like blowing the string into bits. In other 

words, the letters representing the bases of the DNA in the string are separated, and each 

letter becomes its own scalar value in an array. Then you can look at the array elements (each 

of which is a single character) one by one, making the count as you go along. This is the 

inverse of the join function in Section 5.3.2, which takes an array of strings and makes 

a single scalar value out of them. (After exploding a string into an array, you could then join 

the array back into an identical string using join, if you so desire.)  

I'm also adding to this version of the pseudocode the instructions to get the DNA from a file 

and manipulate that file data until it's a single string of DNA sequence. So first, you join the 

data from the array of lines of the original file data, clean it up by removing whitespace until 

only sequence is left, and then explode it back into an array. But, of course, the point is that 

the last array has exactly what is needed, the data in a convenient form to use in the counting 

loop. Instead of an array of lines, with newlines and possibly other unwanted characters, 

there's an exact array of the individual bases.  

read in the DNA from a file 

join the lines of the file into a single string $DNA 

# make an array out of the bases of $DNA 

@DNA = explode $DNA 

# initialize the counts 

count_of_A = 0 

count_of_C = 0 

count_of_G = 0 
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count_of_T = 0 

for each base in @DNA 

    if base is A 

        count_of_A = count_of_A + 1 

    if base is C 

        count_of_C = count_of_C + 1 

    if base is G 

        count_of_G = count_of_G + 1 

    if base is T 

        count_of_T = count_of_T + 1 

done 

print count_of_A, count_of_C, count_of_G, count_of_T 

As promised, this version of the pseudocode is a bit more detailed. It suggests a method  

to look at each of the bases by exploding the string of DNA into an array of single characters. 

It also initializes the counts to zero to ensure they start off right. It's easier to see what's 

happening if you spell out the initialization in the program, and it can prevent certain kinds of 

errors from creeping into your code. (It's not a rule, however; sometimes, you may prefer to 

leave the values of variables undefined until they are used.) Perl assumes that an uninitialized 

variable has the value 0 if you try to use it as a number, for instance by adding another 

number to it. But you'll most likely get a warning if that is the case.  

We now have a design for the program, let's turn it into Perl code. Example 5-4 is a 

workable program; you'll see other ways to accomplish the same task more quickly as you 

proceed in this chapter, but speed is not the main concern at this point.  

Example 5-4. Determining frequency of nucleotides  

#!/usr/bin/perl -w 

# Determining frequency of nucleotides 

# Get the name of the file with the DNA sequence data 

print "Please type the filename of the DNA sequence data: ";  

$dna_filename = <STDIN>; 

# Remove the newline from the DNA filename 

chomp $dna_filename; 

# open the file, or exit 

unless ( open(DNAFILE, $dna_filename) ) { 

    print "Cannot open file \"$dna_filename\"\n\n"; 

exit; }  

# Read the DNA sequence data from the file, and store it 

# into the array variable @DNA 

@DNA = <DNAFILE>; 

# Close the file 

close DNAFILE; 

# From the lines of the DNA file, 



 18 

# put the DNA sequence data into a single string. 

$DNA = join( '', @DNA); 

# Remove whitespace 

$DNA =~ s/\s//g; 

# Now explode the DNA into an array where each letter of 

the 

# original string is now an element in the array. 

# This will make it easy to look at each position. 

# Notice that we're reusing the variable @DNA for this 

purpose. 

@DNA = split( '', $DNA ); 

# Initialize the counts. 

# Notice that we can use scalar variables to hold numbers. 

$count_of_A = 0; 

$count_of_C = 0; 

$count_of_G = 0; 

$count_of_T = 0; 

$errors =0;  

# In a loop, look at each base in turn, determine which of 

the 

# four types of nucleotides it is, and increment the 

# appropriate count. 

foreach $base (@DNA) { 

if ($baseeq'A'){ ++$count_of_A;  

    } elsif ( $base eq 'C' ) { 

        ++$count_of_C; 

    } elsif ( $base eq 'G' ) { 

        ++$count_of_G; 

    } elsif ( $base eq 'T' ) { 

        ++$count_of_T; 

    } else { 

        print "!!!!!!!! Error - I don\'t recognize this 

base: $base\n"; 

++$errors; }  

}  

# print the results 

print "A = $count_of_A\n"; 

print "C = $count_of_C\n"; 

print "G = $count_of_G\n"; 

print "T = $count_of_T\n"; 

print "errors = $errors\n"; 
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# exit the program 

exit; 

To demonstrate Example 5-4, I have created the following small file of DNA and  

called it small.dna: AAAAAAAAAAAAAAGGGGGGGTTTTCCCCCCCC 
CCCCCGTCGTAGTAAAGTATGCAGTAGCVG 

CCCCCCCCCCGGGGGGGGAAAAAAAAAAAAAAATTTTTTAT AAACG  

The file small.dna can be typed into your computer using your favorite text editor, or you can 

download it from this book's web site.  

Notice that there is a V in the file, an error.[4] Here is the output of Example 5-4:  

[4] Files of DNA sequence data sometimes include such characters as N, meaning "some undetermined base," or 

other special characters. You sometimes have to look at the documentation for the source, say an ABI 

sequencer or a GenBank file or whatever, to discover which characters are used and what they mean.  

Please type the filename of the DNA sequence data: 

small.dna 

!!!!!!!! Error - I don't recognize this base: V 

A = 40 

C = 27 

G = 24 

T = 17 

Now let's look at the new stuff in this program. Opening and reading the sequence data is the 

same as previous programs. The first new thing is at this line:  

@DNA = split( '', $DNA); 

which the comments say will explode the string $DNA into an array of single characters 

@DNA. 

split is the companion to join, and it's a good idea to take a little while to look over the 

documentation for these two commands. Calling split with an empty string as the first 

argument causes the string to explode into individual characters; that's just what we want.[5]  

[5] As you'll see in the documentation for the split function, the first argument can be any regular expression, 

such as /\s+/ (one or more adjacent whitespace characters.)  

Next, there are five scalar variables initialized to 0, the variables $count_of_A and so 

forth. I nitializing means assigning an initial value, in this case, the value 0.  

Example 5-4 illustrates the concepts of type and initialization. The type of a variable 

determines what kind of data it can hold, for instance, strings or numbers. Up to now we've 

been using scalar variables such as $DNA to store strings of letters such as A, C, G, and T. 

Example 5-4 shows that you can also use scalar variables to store numbers. For example, 

the variable $count_of_A keeps a running count of the character A.  

Scalar variables can store integers (0, 1, -1, 2, -2, ...), decimal or floating-point numbers such 

as 6.544, and numbers in scientific notation such as 6.544E6, which translates as 6.544 x 106, 

or 6,544000. (See Appendix B for more details on types of numbers.)  
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In Example 5-4, the variables $count_of_A through $count_of_T are initialized to 

0. Initializing a variable means giving it a value after it's declared. If you don't initialize your 

variables, they assume the value of 'undef'. In Perl, an undefined variable is 0 if it is asked 

for in numerical context; it's an empty string if used in a string operation. Although Perl 

programmers often choose not to initialize variables, it's a critical step in many other 

languages. In C for instance, uninitialized variables have unpredictable values. This can 

wreak havoc with your output. You should get in the habit of initializing variables; it makes 

the program easier to read and maintain, and that's important.  

To declare a variable means to specify its name and other attributes such as an initial value 

and a scope (for scoping, see Chapter 6 and the discussion of my variables).  

Many languages require you to declare all variables before using them. For this book, up to 

now, declarations have been an unnecessary complication. The next chapter begins to require 

declarations. In Perl, you may declare a variable's scope (see Chapter 6 and the discussion 

of my variables) in addition to an initial value. Many languages also require you to declare 

the type of a variable, for example "integer," or "string," but Perl does not.  

Perl is written to be smart about what's in a scalar variable. For instance, 

you can assign the number 1234 (without quotes) to a variable, or you can assign 

the string '1234' (with quotes). Perl treats the variable as a string for printing, and as a 

number for using in arithmetic operations, without your having to worry about it. Example 

5-5 demonstrates this ability. In other words, Perl isn't strict about specifying the type of 

data a variable is used for.  

Example 5-5. Demonstration of Perl's built-in knowledge about numbers and 

strings  

#!/usr/bin/perl -w 

# Demonstration of Perl's built-in knowledge about numbers 

and strings 

$num = 1234; 

$str = '1234'; 

# print the variables 

print $num, " ", $str, "\n"; 

# add the variables as numbers 

$num_or_str = $num + $str; 

print $num_or_str, "\n"; 

# concatenate the variables as strings 

$num_or_str = $num . $str; 

print $num_or_str, "\n"; 

exit; 

Example 5-5 produces the output: 1234 1234 
2468 

12341234  

Example 5-5 illustrates the smart way Perl determines the datatype of a scalar variable, 

whether it's a string or a number, and whether you're trying to add or subtract it like a number 
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or concatenate it like a string. Perl behaves accordingly, which makes your job as a 

programmer a little bit easier; Perl "does the right thing" for you.  

Next is a new kind of loop, the foreach loop. This loop works over the elements of an 

array. The line:  

foreach $base (@DNA) { 

loops over the elements of the array @DNA, and each time through the loop, the scalar  

variable $base (or whatever name you choose) is set to the next element of the array.  

The body of the loop checks for each base and increments the count for that base if found. 

There are four ways to add 1 to a number in Perl. Here, you put a ++ in front of the 

variable, like this:  

++$count; 

You can also put the ++ after the variable: $count++;  

You can spell it out like this, a combination of adding and assignment:  

$count = $count + 1; 

or, as a shorthand of that, you can say:  

$count += 1;  

Almost an embarrassment of riches. The plus-plus (++) notation is convenient for 

incrementing counts, as we're doing here. The plus-equals (+=) notation saves some typing 

and is very popular for adding other numbers besides 1.  

The foreach loop in Example 5-5 could have been written like this:  

foreach (@DNA) { 

if (/A/){ ++$count_of_A;  

    } elsif ( /C/ ) { 

        ++$count_of_C; 

    } elsif ( /G/ ) { 

        ++$count_of_G; 

    } elsif ( /T/ ) { 

        ++$count_of_T; 

    } else { 

        print "!!!!!!!! Error - I don\'t recognize this 

base: "; 

        print; 

print "\n";  
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++$errors; }  

} 

This version of the foreach loop: foreach(@DNA) {.  

doesn't have a scalar value. In a foreach loop, if you don't specify a scalar variable to hold 

the scalars that are being read from the array ($base served that function in the version of 

this loop in Example 5-5), Perl uses the special variable $_ .  

Furthermore, many Perl built-in functions operate on this special variable if no argument is 

provided to them. Here, the conditional tests are simply patterns; Perl assumes you're doing a 

pattern match on the $_ variable, so it behaves as if you had said $_ =~ /A/, for instance. 

Finally, in the error message, the statement print; prints the value of the $_ variable.  

This special variable $_ that doesn't have to be named appears in many Perl programs, 

although I don't use it extensively in this book.  

Operating on Strings  

It's not necessary to explode a string into an array in order to look at each character. In fact, 

sometimes you'd want to avoid that. A large string takes up a large amount of memory in 

your computer. So does a large array. When you explode a string into an array, the original 

string is still there, and you also have to make a copy of each character for the elements of the 

new array you're creating. If you have a large string, that already uses a good portion of 

available memory, creating an additional array can cause you to run out of memory. When 

you run out of memory, your computer performs poorly; it can slow to a crawl, crash, or 

freeze ("hang"). These haven't been worrisome considerations up to now, but if you use large 

data sets (such as the human genome), you have to take these things into account.  

So let's say you'd like to avoid making a copy of the DNA sequence data into another 

variable. Is there a way to just look at the string $DNA and count the bases from it  

directly? Yes. Here's some pseudocode, followed by a Perl program:  

read in the DNA from a file 

join the lines of the file into a single string of $DNA 

# initialize the counts 

count_of_A = 0 

count_of_C = 0 

count_of_G = 0 

count_of_T = 0 

for each base at each position in $DNA 

    if base is A 

        count_of_A = count_of_A + 1 

    if base is C 

        count_of_C = count_of_C + 1 

    if base is G 

        count_of_G = count_of_G + 1 

    if base is T 
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        count_of_T = count_of_T + 1 

done 

print count_of_A, count_of_C, count_of_G, count_of_T 

Example 5-6 shows a program that examines each base in a string of DNA.  

Determining frequency of nucleotides, take 2  

#!/usr/bin/perl -w 

# Determining frequency of nucleotides, take 2 

# Get the DNA sequence data 

print "Please type the filename of the DNA sequence data: ";  

$dna_filename = <STDIN>; 

chomp $dna_filename; 

# Does the file exist? 

unless ( -e $dna_filename) { 

    print "File \"$dna_filename\" doesn\'t seem to 

exist!!\n"; 

exit; }  

# Can we open the file? 

unless ( open(DNAFILE, $dna_filename) ) { 

    print "Cannot open file \"$dna_filename\"\n\n"; 

exit; }  

@DNA = <DNAFILE>; 

close DNAFILE; 

$DNA = join( '', @DNA); 

# Remove whitespace 

$DNA =~ s/\s//g; 

# Initialize the counts. 

# Notice that we can use scalar variables to hold numbers. 

$count_of_A = 0; 

$count_of_C = 0; 

$count_of_G = 0; 

$count_of_T = 0; 

$errors =0;  

# In a loop, look at each base in turn, determine which of 

the 

# four types of nucleotides it is, and increment the 

# appropriate count. 

for ( $position = 0 ; $position < length $DNA ; 

++$position ) { 

    $base = substr($DNA, $position, 1); 
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if ($baseeq'A'){ ++$count_of_A;  

    } elsif ( $base eq 'C' ) { 

        ++$count_of_C; 

    } elsif ( $base eq 'G' ) { 

        ++$count_of_G; 

    } elsif ( $base eq 'T' ) { 

        ++$count_of_T; 

    } else { 

        print "!!!!!!!! Error - I don\'t recognize this 

base: $base\n"; 

        ++$errors; 

}  

}  

# print the results 

print "A = $count_of_A\n"; 

print "C = $count_of_C\n"; 

print "G = $count_of_G\n"; 

print "T = $count_of_T\n"; 

print "errors = $errors\n"; 

# exit the program 

exit;  

Here's the output of Example 5-6: 
Please type the filename of the DNA sequence data: 

small.dna 

!!!!!!!! Error - I don't recognize this vase: V 

A = 40 

C = 27 

G = 24 

T = 17 

errors = 1 

In Example 5-6, I added a line of code to see if the file exists: 
unless ( -e $dna_filename) { 

There are file test operators for several conditions; see Appendix B or Perl documentation 

under -X. Note that files have several attributes, such as size, permission, location in the 

filesystem, and type of file, and that many of these things can be tested for easily with the file 

test operators.  

Notice, also, that I have kept the detailed comments about the regular expression, because 

regular expressions can be hard to read, and a little commenting here helps a reader to skim 

the code.  

Everything else is familiar, until you hit the for loop; it requires a little explanation: for 
( $position = 0 ; $position < length $DNA ; ++$position ) {  
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    # the statements in the block 

} 

This for loop is the equivalent of this while loop: $position = 0;  

while( $position < length $DNA ) { 

    # the same statements in the block, plus ... 

    ++$position; 

} 

Take a moment and compare these two loops. You'll see the same statements but in different 

locations.  

As you can see, the for loop brings the initialization and increment of a counter 

($position) into the loop statement, whereas in the while loop, they are separate 

statements. In the for loop, both the initialization and the increment statement are placed 

between parentheses, whereas you find only the conditional test in the while loop. In the for 

loop, you can put initializations before the first semicolon and increment statements after the 

second semicolon. The initialization statement is done just once before starting the loop, and 

the increment statement is done at the end of each iteration through the block before going 

back to the conditional test. It's really just a shorthand for the equivalent while loop as just 

shown.  

The conditional test checks to see if the position reached in the string is less than the length of 

the string. It uses the length Perl function. Obviously, you don't want to check characters 

beyond the length of the string. But a word is in order here about the numbering of positions 

in strings and arrays.  

By default, Perl assumes that a string begins at position 0 and its last character is at a 

position that's numbered one less than the length of the string. Why do it this way instead of 

numbering the positions from 1 up to and including the length of the string? There are 

reasons, but they're somewhat abstruse; see the documentation for enlightenment. If it's any 

comfort, many other programming languages make the same choice. (However, many do it 

the intuitive way, starting at 1. Ah well.)  

This way of numbering is important to biologists because they are used to numbering 

sequences beginning with 1, not with 0 the way Perl does it. You sometimes have to add 1 

to a position before printing out results so they'll make sense to nonprogrammers. It's mildly 

annoying, but you'll get used to it.  

The same holds true for numbering the elements of an array. The first element of an array is 

element 0; the last is element $length-1.  

Anyway, you see that the conditional test evaluates to true while the value of 

$position is length-1 or less and fails when $position reaches the same value as 

the length of the string. For example, say you have a string that contains the text "seeing." 

This has a length of six characters. The "s" is at position 0, and the "g" is at position 5, which 

is one less than the string length 6.  
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Back in the block, you call the substr function to look into the string:  

$base = substr($DNA, $position, 1); 

This is a fairly general-purpose function for working with strings; you can also insert and 

delete things. Here, you look at just one character, so you call substr on the string $DNA, 

ask it to look in position $position for one character, and save the result in scalar 

variable $base. Then you proceed to accumulate the count as in the preceding version of the 

program, Example 5-4.  

Writing to Files  

Example 5-7 shows one more way to count nucleotides in a string of DNA. It uses a Perl 

trick that was designed with exactly this kind of job in mind. It puts a global regular 

expression search in the test for a while loop, and as you'll see, it's a compact way of 

counting characters in a string.  

One of the nice things about Perl is that if you need to do something fairly regularly, the 

language has probably got a relatively succinct way to do it. (The downside of this is that Perl 

has a lot of things about it to learn.)  

The results of Example 5-7, besides being printed to the screen, will also be written to a 

file. The code that accomplishes this writing to a file is as follows: 
# Also write the results to a file called "countbase"  

$outputfile = "countbase"; 

( 

unless ( open(COUNTBASE, ">$outputfile") ) { 

    print "Cannot open file \"$outputfile\" to write 

to!!\n\n"; 

exit; }  

print COUNTBASE "A=$a C=$c G=$g T=$t errors=$e\n"; 

close(COUNTBASE); 

As you see, to write to a file, you do an open call, just as when reading from a file, but with 

a difference: you prepend a greater-than sign > to the filename. The filehandle becomes a first 

argument to a print statement (but without a comma following it). This makes the print 

statement direct its output into the file.[6]  

[6] In this case, if the file already exists, it's emptied out first. It's possible to specify several other behaviors. As 

mentioned earlier, the Perl documentation has all the details of the open function, which sets the options for 

reading from, and writing to, files as well as other actions.  

Example 5-7 is the third version of the Perl program that examines each base in a string of 

DNA.  

Example 5-7. Determining frequency of nucleotides, take 3  
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#!/usr/bin/perl -w 

# Determining frequency of nucleotides, take 3 

# Get the DNA sequence data 

print "Please type the filename of the DNA sequence data: ";  

$dna_filename = <STDIN>; 

chomp $dna_filename; 

# Does the file exist? 

unless ( -e $dna_filename) { 

    print "File \"$dna_filename\" doesn\'t seem to 

exist!!\n"; 

exit; }  

# Can we open the file? 

unless ( open(DNAFILE, $dna_filename) ) { 

    print "Cannot open file \"$dna_filename\"\n\n"; 

exit; }  

@DNA = <DNAFILE>; 

close DNAFILE; 

$DNA = join( '', @DNA); 

# Remove whitespace 

$DNA =~ s/\s//g; 

# Initialize the counts. 

# Notice that we can use scalar variables to hold numbers. 

$a = 0; $c = 0; $g = 0; $t = 0; $e = 0; 

# Use a regular expression "trick", and five while loops, 

#  to find the counts of the four bases plus errors 

while($DNA =~ /a/ig){$a++} 

while($DNA =~ /c/ig){$c++} 

while($DNA =~ /g/ig){$g++} 

while($DNA =~ /t/ig){$t++} 

while($DNA =~ /[^acgt]/ig){$e++} 

print "A=$a C=$c G=$g T=$t errors=$e\n"; 

# Also write the results to a file called "countbase" 

$outputfile = "countbase"; 

unless ( open(COUNTBASE, ">$outputfile") ) { 

print "Cannot open file \"$outputfile\" to write 

to!!\n\n"; 

exit; }  

print COUNTBASE "A=$a C=$c G=$g T=$t errors=$e\n"; 

close(COUNTBASE); 

# exit the program 

exit;  
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Example 5-7 looks like this when you run it: 
Please type the filename of the DNA sequence data: small.dna 

A=40 C=27 G=24 T=17 errors=1 

The output file countbase has the following contents after you run Example 5-7: A=40 
C=27 G=24 T=17 errors=1 

The while loop: 
while($dna =~ /a/ig){$a++}  

has as its conditional test, within the parentheses, a string-matching expression:  

$dna =~ /a/ig  

This expression is looking for the regular expression /a/, that is, the letter a. Since it has the 

i modifier, it's a case-insensitive match, which means it matches a or A. It also has the 

global modifier, which means match all the a's in the string. (Without the global modifier, it 

just keeps returning true every time through the loop, if there is an "a" in $dna.)  

Now, this string-matching expression, in the context of a while loop, causes the while loop to 

execute its block on every match of the regular expression. So, append the one- statement 

block:  

{$a++}  

to increment the counter at each match of the regular expression; in other words, you're 

counting all the a's.  

One other point should be made about this third version of the program. You'll notice some of 

the statements have been changed and shortened this time around. Some variables have 

shorter names, some statements are lined up on one line, and the print statement at the end is 

more concise. These are just alternative ways of writing. As you program, you'll find yourself 

experimenting with different approaches: try some on for size.  

The way to count bases in this third version is flexible; for instance, it  

allows you to count non-ACGT characters without specifying them 

individually. In later chapters, you'll use those while loops to good effect. 

However, there's an even faster way to count bases. You can use the tr transliteration 

function from Chapter 4; it's faster, which is helpful if you have a lot of DNA to count:  

$a = ($dna =~ tr/Aa//); 

$c = ($dna =~ tr/Cc//); 

$g = ($dna =~ tr/Gg//); 

$t = ($dna =~ tr/Tt//); 

The tr function returns the count of the specified characters it finds in the string, and if the 

set of replacement characters is empty, it doesn't actually change the string. So it makes a 

good character counter. Notice that with tr, you have to spell out the upper- and lowercase 

letters. Also, because tr doesn't accept character classes, there's no direct way to count 

nonbases. You could, however, say:  
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$basecount = ($dna = ~ tr/ACGTacgt//); 

$ nonbase = (length $dna) - $basecount) 

The program however, runs faster using tr than using the while loops of Example 5-7.  

You may find it a bit much to have three (really, four) versions of this base-counting 

program, especially since much of the code in each version is identical. The only part of the 

program that really changed was the part that did the counting of the bases. Wouldn't it have 

been convenient to have a way to just alter the part that counts the bases? In Chapter 6, 

you'll see how subroutines allow you to partition your programs in just such a way.  

Subroutines and Bugs  

In this chapter you'll extend your basic knowledge in two directions: Subroutines 

Using the Perl debugger  

Subroutines are an important way to structure programs. You'll use them in Chapter 7, 

where you'll learn how to use randomization to simulate the mutation of DNA. The Perl 

debugger examines a program's behavior in "slow motion" and helps you find those pesky 

bugs.  

Subroutines  

Subroutines are an important way to organize a program and are used in all major 

programming languages.  

A subroutine wraps up a bit of code, gives the code a name, and provides a way to pass in 

some values for its calculations and then report back the results. The rest of the program can 

then use the subroutine's code just by calling its name, giving the needed values to pass in to 

the subroutine code and then collecting the results. This use or "invocation" of a subroutine is 

commonly referred to as calling the subroutine. You can think of a subroutine as a program 

within a program; just as you run programs to get results, so your programs call subroutines 

to get results. Once you have a subroutine, you can use it in a program simply by knowing 

which values to pass in and what kind of values to expect it to pass out.  

opportunities for something to go wrong.  

Faster to write, since you may, for example, have already written some subroutines that 

handle basic statistics and can just call the one that calculates the mean without having to 

write it again. Or better yet, you found a good statistics library someone else wrote, and you 

never had to write it at all.  

There is another subtle, yet powerful idea at work here. Subroutines can themselves call other 

subroutines, that is, a subroutine can use another subroutine for help in its calculations.[1] By 

writing a set of subroutines, each of which does one or a few things well, you can combine 

them in various ways to make new subroutines. You can then combine the new subroutines, 

and so on, and the end result can be large and flexible programming systems. Decomposing 

problems into sets of subroutines that can be conveniently combined allows you to create 

environments that can grow and adapt to changing conditions with a minimum of effort.  
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[1] Subroutines can even call themselves, and this so-called recursion can be an elegant way to compute (see 

Chapter 11).  

The trick of all this is in how you partition the code into subroutines. You want subroutines 

that encapsulate something that will be generally useful, and not just called once (although 

that sometimes can be useful too). There are various rules of thumb: a subroutine should do 

one thing well, and it should be no more than a page or two of code. These are not real rules, 

and exceptions are frequent, but they can help you divide your code into manageable chunks, 

suitable for subroutines.  

Writing Subroutines  

Let's look at how subroutines are used and then at how they're defined.  

To use a subroutine, you pass data into the subroutine as arguments, and then you collect the 

return value(s) of the subroutine. For example, say you want a subroutine that, given some 

DNA, appends "ACGT" to the end of the DNA and returns the new, longer DNA. Let's call 

the subroutine addACGT. In Perl, you usually call a subroutine by typing its name, followed 

by a parenthesized list of arguments (if any). For example, here's a call to addACGT with 

the one argument $dna:  

addACGT($dna); 

When calling a subroutine, older versions of Perl required starting the name of a subroutine 

with the & (ampersand) character. It's still okay to do so (e.g., : &addACGT), but these days 

the ampersand is usually omitted.[2]  

[2] There are times, even in the newer versions of Perl, when an ampersand is required; you'll see one such 

case in Chapter 11, in Section 11.2.3, which describes the File::Find module. (See also the defined and undef 

functions in the documentation or the perlref manpage).  

Example 6-1 demonstrates a subroutine that shows in detail how this works. Example 6-

1. A subroutine to append ACGT to DNA  

#!/usr/bin/perl -w 

# A program with a subroutine to append ACGT to DNA 

# The original DNA 

$dna = 'CGACGTCTTCTCAGGCGA'; 

# The call to the subroutine "addACGT". 

# The argument being passed in is $dna; the result is saved 

in $longer_dna 

$longer_dna = addACGT($dna); 

print "I added ACGT to $dna and got $longer_dna\n\n"; 

exit; 

########################################################### 

##################### 

# Subroutines for Example 6-1 

########################################################### 

##################### 

# Here is the definition for subroutine "addACGT" 

sub addACGT { 
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    my($dna) = @_; 

    $dna .= 'ACGT'; 

    return $dna; 

} 

Example 6-1 produces the following output: 
I added ACGT to CGACGTCTTCTCAGGCGA and got 

CGACGTCTTCTCAGGCGAACGT  

We'll now look at this code to see how subroutines are defined and used in a Perl program.  

The first thing to notice, taking the large view, is that the program now has two sections. The 

first section starts from the beginning of the program and ends with the exit command. 

Following that (and announced by a blizzard of comments for easy reading) is a section for 

subroutine definitions, in this case, only the one definition for subroutine addACGT. It is 

common to place all subroutine definitions together at the end of a program, for ease in 

reading. Usually they're listed alphabetically or in some other convenient way.  

Actually, it is legal to put the subroutine definitions almost anywhere in a program. This is 

because Perl first scans through the code and does things like check the syntax and learn 

subroutine definitions, before it starts to run the program. In particular, subroutine  

definitions can come after the point in the code where you use them (not necessarily before, 

which many people assume is the rule), and they don't have to be grouped together but can be 

scattered throughout the code. But our method of collecting them together at the end can 

make reading a program much easier. The possible exception is when a small subroutine is 

used in one section of code, as sometimes happens with the sort function, for instance. In this 

case having the definition right there can save the reader paging back and forth between the 

subroutine definition and its use. Usually, it's more convenient to read the program without 

the subroutine definitions, to get the overall flow of the program first, and then go back and 

look into the subroutines, if necessary.  

As you see, Example 6-1 is very simple. It first stores some DNA into the variable $dna 

and then passes that variable as an argument to the subroutine call, which looks like this: 

addACGT($dna). The subroutine is called by its name, followed by parentheses containing 

the arguments to the subroutine. There may be no arguments, or if more than one, they are 

separated by commas. The value returned by the subroutine can be saved; in this program the 

value is saved in a variable called $longer_dna, which is then printed, and the program 

exits.  

The part of the program from the beginning to the exit statement is called variously the main 

program or the main body of the program. By looking over this section of the code, you can 

see what happens from the beginning to the end of the program without looking into the 

details of the subroutines.  

Now that you've looked over the main program of Example 6-1, it's time to 

look at the subroutine definition and how it uses the principal of scoping.  

Scoping and Subroutines  
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A subroutine is defined by the reserved word [3] for subroutine definitions, sub; the 

subroutine's name, in this case, addACGT; and a block, enclosed in a pair of matching 

curly braces. This is the same kind of block seen earlier in loops and conditional statements 

that groups statements together.  

[3] A reserved word is a fundamental, defined word in the Perl language, such as if, while, foreach, or sub.  

In Example 6-1, the name of the subroutine is addACGT, and the block is everything after 

the name. Here is the subroutine definition again: 
sub addACGT {  

    my($dna) = @_; 

    $dna .= 'ACGT'; 

    return $dna; 

} 

Now let's look into the block of the subroutine.  

A subroutine is like a separate helper program for the main program, and it needs to have its 

own variables. You will use two types of variables in your subroutines in this book:[4]  

[4] In the subroutines in this book, we won't use global variables, which can be seen by both the main program 
and the subroutines; nor will we use variables declared with local, which provides a different kind of scoping 

restriction than my.  

Arguments passed in to the subroutine  

Other variables declared with my and restricted to the scope of the subroutine  

Arguments are the values given to a subroutine when it is used, or called. The values of the 

arguments are passed into the subroutine by means of the special variable @_, as you'll see in 

the next section.  

Other variables a subroutine might use must be protected from interacting with variables in 

other parts of the program, so they have effect only within the subroutine's own scope. This is 

accomplished by declaring them as my variables, as will be explained shortly.  

Finally, most subroutines return their results via the return function. This can 

return a single scalar as in return $dna; in our subroutine addACGT, in a list of 

scalars as in return ($dna1, $dna2);, in an array as in return @lines;, and 

more.  

Arguments  

To call a subroutine means to type its name and give it appropriate arguments and, usually, 

collect its results. Arguments , sometimes called parameters, usually contain the data 

that the subroutine computes on. In Example 6-1, this is the call of the subroutine 

addACGT with the argument $dna:  

$longer_dna = addACGT($dna); 
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The essential point is that whenever you, the programmer, want to use a subroutine, you can 

call it with whatever argument(s) it is designed to accept and with which you need to 

compute (in this case, whatever DNA that needs ACGT appended to it) and the value of each 

argument appears in the subroutine in the @_ array.  

When you call a subroutine with certain arguments, the names of the arguments you provide 

in the call are not important inside the subroutine. Only the values of those arguments that are 

actually passed inside the subroutine are important. The subroutine typically collects the 

values from the @_ array and assigns them to new variables that may or may not have the 

same names as the variables with which you called the subroutine. The only thing preserved 

is the order of the values, not the names of the variables containing the values.  

Here's how it works. The first line in the subroutine's block is:  

my($dna) = @_; 

The values of the arguments from the call of the subroutine are passed into the subroutine in 

the special array variable @_. You know it's an array because it starts with the @ character. It 

has the brief name "_", and it's a special array variable that comes predefined in Perl 

programs. (It's not a name you should pick for your own arrays.) The array @_ contains all 

the scalar values passed into the subroutine. These scalar values are the values of the 

arguments to the subroutine. In this case, there is one scalar value: the string of DNA that's 

the value of the variable $dna passed in as an argument.  

If the subroutine has more arguments—for instance one argument for DNA, one for the 

associated protein, and one for the name of the gene—they are all passed in and assigned to 

my variables inside the subroutine:  

my($dna,$protein,$name_of_gene) = @_; 

If there are no arguments, just omit that statement in the subroutine.  

After the statement:  

my($dna) = @_; 

executes in the subroutine, the passed-in value is assigned to the subroutine's variable $dna. 

The next section explains why this is a new variable specific to the subroutine. The 

subroutine's variable can be called anything; it certainly doesn't have to be the same name as 

the argument, as it happens to be in this example. What's cool about scoping is that it doesn't 

matter if it is or not.  

Beware the common mistake of forgetting the @_ array when naming your arguments 

in a subroutine, that is, using the statement:  

my($dna);  

instead of:  
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my($dna) = @_; 

If you make this mistake, the values of the arguments won't appear in your subroutine, 

even though their names are declared.  

Scoping  

By keeping all variables a subroutine uses active only within the subroutine, you can make it 

safe to call the subroutines from anywhere. You make the variables specific only to the 

subroutine by declaring them as myvariables. my is a keyword defined in Perl that limits 

variables to the block in which they are used (in this case, the block is the subroutine).[5]  

[5] There are different models of scoping; my implements a type called lexical scoping, also known as static 

scoping. Another method is available in Perl via the local construct, but you almost always want to use my.  

Hiding variables and making them local to only a restricted part of a program, is called 

scoping. In Perl, using my variables is known as lexical scoping, and it's an essential part of 

modularizing your programs.  

You declare that a variable is a myvariable like this: my($x); 

or: 
my $x ;  

or, combining the declaration with an initialization to a value:  

my($x) = '49'; 

or, if you're collecting an argument within a subroutine:  

my($x) = @_;  

Once a variable is declared in this fashion, it exists only until the end of the block it was 

declared in. So in a subroutine, if you declare all your variables like this (both the arguments 

and any other variables), they are active only in the subroutine. If any variable has the same 

name as another variable elsewhere in the program, you don't have to worry, because the my 

declaration actually creates a new variable, active only in the enclosing block, and any other 

variable of the same name used elsewhere outside the block is kept separate.  

The example that showed collecting an argument in a subroutine uses parentheses around the 

variable. Because @_ is an array, the parentheses around the new variables put them in array 

context and ensure that they are initialized correctly. 

Always declare all your variables in your subroutines—even those variables that don't 

come in as arguments—such as the my construct.  

Why use scoping? Example 6-2 shows the trouble that can happen when you don't. Recall 

that one of the advantages of subroutines is writing a useful bit of code once and then using it 

whenever you need it. Example 6-2 is a program that has a variable in the main program 

with the same name as a variable in a subroutine it calls. This can easily happen if you write 



 35 

the subroutine at a time other than the main program (say six months later) or if you call a 

subroutine someone else wrote.  

The pitfalls of not using my variables  

#!/usr/bin/perl -w 

# Illustrating the pitfalls of not using my variables 

$dna = 'AAAAA'; 

$result = A_to_T($dna); 

print "I changed all the A's in $dna to T's and got 

$result\n\n"; 

exit;  

########################################################### 

##################### 

# Subroutines 

########################################################### 

##################### 

sub A_to_T { 

    my($input) = @_; 

    $dna = $input; 

    $dna =~ s/A/T/g; 

    return $dna; 

} 

Example 6-2 gives the following output: 
I changed all the A's in TTTTT to T's and got TTTTT  

What was expected was this output:  

I changed all the A's in AAAAA to T's and got TTTTT 

You can get by this expected output by changing the definition of subroutine A_to_T to the 

following, in which the variable $dna in the subroutine is declared as a myvariable: sub 
A_to_T {  

    my($input) = @_; 

    my($dna) = $input; 

    $dna =~ s/A/T/g; 

    return $dna; 

}  

Where exactly did Example 6-2 go wrong? When the program entered the subroutine, and 

used the variable $dna to calculate the string with A's changed to T's, the Perl language saw 

that there was already a variable $dna being used in the main part of the  

program and just kept using it. When the program returned from the subroutine and got to the 

print statement, it was still using the same (the one and only) variable $dna. So, when it 



 36 

printed the results, the variable $dna, instead of having the original DNA in it, had the 

altered DNA that had been computed in the subroutine.  

Now this sort of thing can happen a lot. Programmers tend to use certain names for variables 

a great deal: the usual suspects are names such as $tmp, $temp, $x, $a, $number, 

$variable, $var, $array, $input, $output, $result, $data, $file, 

$filename, and so on. Bioinformaticians are quite fond of $dna, $protein, $motif, 

$sequence, and the like. As you start using libraries of subroutines from other people and 

as your programs get larger, it's much easier—and a whole lot safer—to let the Perl language 

worry about avoiding the problem of name collisions.  

In fact, from now on we're going to stop using undeclared variables. From 
this point forward, all our variables, even those in the main program, will 

be declared with my. You can enforce this discipline by adding the following directive to 

your programs:  

use strict;  

which has the effect of insisting that your programs have all their variables declared as my 

variables.  

Lest you rail at this seemingly unnecessary complication to your coding, compared to the 

simpler and happier days of Chapter 4 and Chapter 5, you should know that many 

languages require declarations for all their variables. The fact that in Perl you don't have to 

enforce strict scoping is handy when you're writing short programs, for example, or when 

you're trying to teach programming without hitting the students with a thousand details at the 

beginning.  

Another benefit you get from strict scoping happens if you accidently misspell a variable 

name while writing a program. If the variables aren't being declared, Perl creates a new 

variable with the (misspelled) name. The program may not work correctly, and it may be hard 

to find where the problem is. By strictly scoping the program, any misspelled variables are 

also undeclared, and Perl complains about it, saving you hours or days of hair-pulling and 

bad language.  

Finally, let's recap how scoping, arguments, and subroutines work by taking another look at 

Example 6-1. The subroutine is called by writing its name addACGT, passing it  

the argument $dna, and collecting results (if any) by assignment to $longer_dna: 
$longer_dna = addACGT($dna); 

The first line in the subroutine gets the value of the argument from the special variable @_, 

and stores it in its own variable called $dna, which can't be seen outside the subroutine 

because it uses my. Even though the original variable outside the subroutine is also called 

$dna, the variable called $dna within the subroutine is an entirely new variable (with the 

same name) that belongs only to the subroutine due to the use of my.  

This new variable is in effect only during the time the program is in the subroutine. Notice in 

the output from the print statement at the end of Example 6-2 that even though a 
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variable called $dna is lengthened inside the subroutine, the original variable, $dna, 

outside the subroutine isn't changed.  

Command-Line Arguments and Arrays  

Example 6-3 is another program that uses subroutines. You use the command line to give 

the program information it needs (such as filenames, or strings of DNA) without having to 

interactively answer the program's prompts. This is useful if you're scheduling a program to 

run at a time when you won't be there, for instance.  

Example 6-3 also shows a little more about using arrays. You'll see how to use subscripts 

to access a specific element of an array.  

For command-line programs, you type the name of the program, followed by the arguments 

to the program, if any, and then hit the Enter (or Return) key to start the program running. In 

Example 6-3, when the user types the program name, she follows that with the argument, 

which, in this case, is just the string of DNA in which she'll count the G's. So the program is 

called and returns an answer like so:  

AAGGGGTTTCCC 

The DNA AAGGGGTTTCCC has 4 G's in it! 

Of course, many programs come with a graphical user interface (GUI). This gives the 

program some or all of the computer screen and usually includes such things as menus, 

buttons, and places to type in values to set parameters from the keyboard.  

However, many programs are run from a command line. Even the newer MacOS X, which is 

built on top of Unix, now provides a command line. (Although most Windows users don't use 

the MS-DOS command window much, it's still useful, e.g., for running Perl programs.) As 

already mentioned, running a program noninteractively, passing parameters in as command-

line arguments, allows you to run the program automatically, say in the middle of the night 

when no one is actually sitting at the computer.  

Example 6-3 counts the number of G's in a string of DNA.  

Example 6-3. Counting the G's in some DNA on the command line  

#!/usr/bin/perl -w 

# Counting the number of G's in some DNA on the command 

line 

use strict; 

# Collect the DNA from the arguments on the command line 

#   when the user calls the program. 

# If no arguments are given, print a USAGE statement and 

exit. 

# $0 is a special variable that has the name of the program. 

my($USAGE) = "$0 DNA\n\n";  

# @ARGV is an array containing all command-line arguments. 
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# 

# If it is empty, the test will fail and the print USAGE 

and exit 

#   statements will be called. 

unless(@ARGV) { 

    print $USAGE; 

exit; }  

# Read in the DNA from the argument on the command line. 

my($dna) = $ARGV[0]; 

# Call the subroutine that does the real work, and collect 

the result. 

my($num_of_Gs) = countG ( $dna ); 

# Report the result and exit. 

print "\nThe DNA $dna has $num_of_Gs G\'s in it!\n\n"; 

exit;  

########################################################### 

##################### 

# Subroutines for Example 6-3 

########################################################### 

##################### 

sub countG { 

    # return a count of the number of G's in the argument 

$dna  

    # initialize arguments and variables 

    my($dna) = @_; 

    my($count) = 0; 

    # Use the fourth method of counting nucleotides in DNA, 

as shown in 

    # Chapter Four, "Motifs and Loops" 

$count = ( $dna =~ tr/Gg//); 

    return $count; 

} 

Now let's look at how this program works, while examining and explaining the new features. 

For starters, notice the new line:  

use strict; 

which I will use from now on to ensure all variables are declared with my, thus enforcing  

lexical scoping.  

Perl has some special variables it sets so you can easily use the arguments from the command 

line. Every Perl program has an array variable @ARGV that contains any command-line 
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arguments. Also, there's a special variable called $0 (a zero) that has the name of the 

program as it was called from the command line.  

Notice in Example 6-3 that an informative message is defined in the variable $USAGE 

and that it begins with the value of the variable $0, followed an indication of the arguments 

the program needs. This is a common practice; if the user doesn't give the program what it 

needs, which is determined by some kind of test, the program prints information about how to 

properly use it and exits.  

In fact, this program does check to see if any arguments were typed on the command line. It 

checks if @ARGV has anything in it, in which case it evaluates to true; or if it is completely 

empty, in which case it evaluates to false. If you want the program to require an argument 

be given, you can use the unless conditional, and if @ARGV is empty, to print out the 

$USAGE statement and exit the program:  

unless(@ARGV) { 

    print $USAGE; 

exit; }  

The next bit of code shows something new about arrays, namely, how to extract one element 

from an array, as referenced by a subscript. In other words, it shows how to get at the first, 

fourth, or whichever element. The code in Example 6-3 shows how to extract the first 

element, which as you've seen, is numbered 0:  

my($dna) = $ARGV[0]; 

Now you already know there is a first element, since you've just tested to make sure the array 

isn't empty. You get the first element of array @ARGV by changing the @ to a $ and 

appending square brackets containing the desired subscript; 0 for the first element, 1 for the 

second element, and so on. This syntax indicates that since you're now looking at just one 

element of the array, and it's a scalar variable, you use the dollar sign, as you would any other 

scalar variables.  

In Example 6-3, you copy this first (and only) element of the command-line array @ARGV 

into the variable $dna.  

Finally comes the call to the subroutine, which contains nothing new but 

fulfills a dream from the final paragraph of Chapter 5:  

my($num_of_Gs) = countG ( $dna ); 

Passing Data to Subroutines  

When you start parsing GenBank, PDB, and BLAST files in later chapters, you'll need more 

complicated arguments to your subroutines to hold the several fields of data you'll parse out 

of the records. These next sections explain the way it's done in Perl. You can skim this 

section and return for a closer read when you get to Chapter 10.  
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6.4.1 Subroutines: Pass by Value  

So far, all our subroutines have had fairly simple arguments. The values of these arguments 

are copied and passed to the subroutines, and whatever happens to those values in the 

subroutine doesn't affect the values of the arguments in the main program. This is called 

pass by value or call by value. For example:  

#!/usr/bin/perl -w 

# Example of pass-by-value (a.k.a. call-by-value) 

use strict;  

my $i = 2;  

simple_sub($i); 

print "In main program, after the subroutine call, \$i 

equals $i\n\n"; 

exit;  

########################################################### 

##################### 

# Subroutines 

########################################################### 

##################### 

sub simple_sub { 

    my($i) = @_; 

$i += 100;  

print "In subroutine simple_sub, \$i equals $i\n\n"; 

} 

This gives the following output:  

In subroutine simple_sub, $i equals 102 

In main program, after the subroutine call, $i equals 2 

Subroutines: Pass by Reference  

If you have more complicated arguments, say a mixture of scalars, arrays, and hashes, Perl 

often cannot distinguish between them. Perl passes all arguments into the subroutine as a 

single array, the special @_ array. If there are arrays or hashes as arguments, their elements 

get "flattened" out into this single @_ array in the subroutine. Here's an example: 
#!/usr/bin/perl -w  

# Example of problem of pass-by-value with two arrays 

use strict;  
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my @i = ('1', '2', '3'); 

my @j = ('a', 'b', 'c'); 

print "In main program before calling subroutine: i = " . 

"@i\n"; 

print "In main program before calling subroutine: j = " . 

"@j\n"; 

reference_sub(@i, @j); 

print "In main program after calling subroutine: i = " . 

"@i\n"; 

print "In main program after calling subroutine: j = " . 

"@j\n"; 

exit;  

########################################################### 

##################### 

# Subroutines 

########################################################### 

##################### 

sub reference_sub { 

    my(@i, @j) = @_; 

print "In subroutine : i = " . "@i\n"; 

    print "In subroutine : j = " . "@j\n"; 

    push(@i, '4'); 

shift(@j); }  

The following output illustrates the problem of this approach:  

In main program before calling subroutine: i = 1 2 3 

In main program before calling subroutine: j = a b c 

In subroutine : i = 1 2 3 a b c 

In subroutine : j = 

In main program after calling subroutine: i = 1 2 3 

In main program after calling subroutine: j = a b c 

As you see, in the subroutine all the elements of @i and @j were grouped into one @_ 

array. All distinction between the two arrays you started with was lost in the subroutine. 

When you try to get the two arrays back in the statement: 
my(@i, @j) = @_;  

Perl assigns everything to the first array, @i. This behavior makes passing multiple arrays 

into subroutines somewhat dicey.  

Also, as usual, the original arrays in the main program were not affected by the subroutine, 

since you used lexical scoping (my variables).  

To get around this problem, you can pass arguments into subroutines in a 

style called pass by reference or call by reference. Using pass by reference, you 

can pass a subroutine any collection of scalars, arrays, hashes, and more, and the subroutine 
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can distinguish between them. There is a price to pay: the resulting code looks a little more 

complex. But the payoff is often well worth it.  

There is one big difference in the behavior of arguments that are passed by reference. When 

argument variables are passed in this fashion, anything you do to the values of the argument 

variables in the subroutine also affects the values of the arguments in the main program.  

To call a subroutine that has its arguments passed by reference, you call it the same way as 

before, with one difference: you must preface the argument names with a backslash. In the 

example of pass by reference in this section, the subroutine call is accomplished like so:  

reference_sub(\@i, \@j); 

As you see here, the arguments are two arrays, and, to preserve the distinction between them 

as they are passed into the reference_sub subroutine, they are passed by reference by 

prepending their names with a backslash.  

Within the subroutine, there are a few changes. First, the arguments are collected from the @_ 

array, and saved as scalar variables. This is because a reference is a special kind of data that 

is stored in a scalar variable, no matter whether it's a reference to a scalar, an array, a hash, or 

other. The example collects its arguments as follows:  

my($i, $j) = @_; 

reading them from the @_ array as scalars.  

The subroutine has to do one more thing with these referenced arguments. When it uses them, 

it has to dereference them. To dereference a referenced argument, you have to prepend the 

reference with the symbol that shows what kind of variable it is: a $ for a scalar, @ for an 

array, % for a hash. So these variables have two symbols before their name—reading left to 

right, their usual symbol and then a $ that indicates the variable is a reference. The lines:  

push(@$i, '4'); 

shift(@$j); 

in the following subroutine are the ones that manipulate the arguments. The push adds an 

element '4' to the end of the @i array, and the shift removes the first element from the @j 

array. Because these arrays have been passed by reference, their names in the subroutine are 

@$i and @$j. (If you want to look at the third element of the @j array, which normally is 

$j[2], you'd say $$j[2].)  

Whatever changes you make to the arguments in the subroutine also take effect in the main 

program. This is because the references are references to the actual arguments; they are not 

copies of their values as in pass by value. So, as you see in the example, after calling the 

subroutine, the arrays in the main program have been altered accordingly:  

#!/usr/bin/perl 

# Example of pass-by-reference (a.k.a. call-by-reference) 

use strict; 

use warnings; 
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my @i = ('1', '2', '3'); 

my @j = ('a', 'b', 'c'); 

print "In main program before calling subroutine: i = " . 

"@i\n"; 

print "In main program before calling subroutine: j = " . 

"@j\n"; 

reference_sub(\@i, \@j); 

print "In main program after calling subroutine: i = " . 

"@i\n"; 

print "In main program after calling subroutine: j = " . 

"@j\n"; 

exit;  

########################################################### 

##################### 

# Subroutines 

########################################################### 

##################### 

sub reference_sub { 

    my($i, $j) = @_; 

    print "In subroutine : i = " . "@$i\n"; 

    print "In subroutine : j = " . "@$j\n"; 

    push(@$i, '4'); 

    shift(@$j); 

} 

This gives the following output:  

In main program before calling subroutine: i = 1 2 3 

In main program before calling subroutine: j = a b c 

In subroutine : i = 1 2 3 

In subroutine : j = a b c 

In main program after calling subroutine: i = 1 2 3 4 

In main program after calling subroutine: j = b c 

The subroutine can now distinguish between the two arrays passed on as arguments.The 

changes that were made inside the subroutine to the variables remain in effect after the 

subroutine has ended, and you've returned to the main program. This is the essential 

characteristic of pass by reference.  

Modules and Libraries of Subroutines  

As you start to build a collection of subroutines, you'll find that you're copying them a lot 

from existing programs and pasting them into new programs. The subroutines then appear in 

multiple program. This makes the listings of your program code a bit verbose and repetitive. 

It also makes modifying a subroutine more complicated because you have to modify all the 

copies.  
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In short, subroutines are great, but if you have to keep copying them into each new program 

you write, it gets tiresome. So it's time to start collecting subroutines into the handy files 

called modules or libraries.  

Here's how it works. You put all your reusable subroutines into a separate file. (Or, as you 

keep writing more and more code, and things get complicated, you may want to organize 

them into several files.) Then you just name the file in your program and presto: the 

subroutine's definitions all get read in, just as if they were in your program. To do this, you 

use the Perl built-in function use, which reads in the subroutine library file.  

Let's call this module BeginPerlBioinfo.pm. You can put all your subroutine definitions into 

it, just as they appear in the program code. Then you can create the module by typing in the 

subroutine definitions as you read the book; or, more easily, it can be downloaded from the 

book's web site. But there is one thing to remember when creating or adding to a module: the 

last line in a module must be 1; or it won't work. This 1; should be the last line of the .pm 

file, not part of the last subroutine. If you forget this, you'll get an error message something 

like:  

BeginPerlBioinfo.pm did not return a true value at jkl line 

14. 

BEGIN failed--compilation aborted at jkl line 14. 

Now, to use any of the subroutines in BeginPerlBioinfo.pm, you just have to put the 

following statement in your code, near the top (near the use strict statement):  

use BeginPerlBioinfo; 

Note that .pm is left off the name on purpose: that's how Perl handles the names of modules.  

There's one last thing to know about using modules to load in subroutines: the Perl program 

needs to know where to find the module. If you're doing all your work in one folder, 

everything should work okay. If Perl complains about not being able to find 

BeginPerlBioinfo.pm, give full pathname information to the module. If the full pathname is 

/home/tisdall/book/BeginPerlBioinfo.pm, then use this in your program:  

use lib '/home/tisdall/book'; 

use BeginPerlBioinfo; 

There are other ways to tell Perl where to look for modules; consult the Perl documentation 

for use.  

Beginning in Chapter 8, I'll define subroutines and show the code, but you'll be putting 

them into your module and typing:  

use BeginPerlBioinfo; 

This module is also available for download at this book's web site.  

Fixing Bugs in Your Code  
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Now let's talk about what to do when your program is having trouble.  

A program can go wrong in any number of ways. Maybe it won't run at all. A look at the 

error messages, especially the first line or two of the error messages, usually leads you to the 

problem, which will be somewhere in the syntax, and its solution, which will be to use the 

correct syntax (e.g., matching braces or ending each statement with a semicolon).  

Your program may run but not behave as you planned. Then you have some problem with the 

logic of the program. Perhaps at some point, you've zigged when you should have zagged, 

like adding instead of subtracting or using the assignment operator = when you meant to test 

for equality between two numbers with ==. Or, the problem could be that you just have a 

poor design to accomplish your task, and it's only when you actually try it out that the flaw 

becomes evident.  

However, sometimes the problem is not obvious, and you have to resort to the heavy artillery.  

Fortunately, Perl has several ways to help you find and fix bugs in your programs. The use of 

the statements use strict; and use warnings; should become a habit, as you can 

catch many errors with them. The Perl debugger gives you complete freedom to examine a 

program in detail as it runs.  

use warnings; and use strict;  

In general, it's not too hard to tell when the syntax of a program is wrong because the Perl 

interpreter will produce error messages that usually lead you right to the problem. It's much 

harder to tell when the program is doing something you didn't really want. Many such 

problems can be caught if you turn on the warnings and enforce the strict use of declarations.  

You have probably noticed that all the programs in this book up until now start with the 

command interpreter line:  

#!/usr/bin/perl -w 

That -w turns on Perl's warnings and attempts to find potential problems in your code and 

then to warn you about them. It finds common problems such as variables that are declared 

more than once, and so on, things that are not syntax errors but that can lead to bugs.  

Another way to turn on warnings is to add the following statement near the top of the 

program:  

use warnings; 

The statement use warnings; may not be available on your version of Perl, if it's an  

old one. So if your Perl complains about it, take it out and use the -w command instead, 

either on the command interpreter line, or from the command line: 
$ perl -w my_program 

However, use warnings; is a bit more portable between different operating systems. So, from 

now on, that's the way I'll turn on warnings in my code. Another important helper  



 46 

you should use is the following statement placed near the top of your program (next to use 

warnings;): 
use strict;  

As mentioned previously, this forces you to declare your variables. (It has some options, that 

are beyond the scope of this book.) It finds misspelled variables, undeclared variables that 

may be interfering with other parts of the program, and so on.  

It's best to always use both use strict; and use warnings; when writing your 

Perl code.  

Fixing Bugs with Comments and Print Statements  

Sometimes you can identify misbehaving code by selectively commenting out sections of the 

program until you find the part that seems to cause the problem. You can also add print 

statements at suspicious parts of a misbehaving program to check what certain variables are 

doing. Both of these are time-honored programming techniques, and they work well in almost 

any programming language.  

Commenting out sections of code can be particularly helpful when the error messages that 

you get from Perl don't point you directly at the offending line. This happens occasionally. 

When it does happen you may, by trial and error, discover that commenting out a small 

section of code causes the error messages to go away; then you know where the error is 

occurring.  

Adding print statements can also be a quick way to pinpoint a problem, especially if you 

already have some idea of where the problem is. As a novice programmer, however, you may 

find that using the Perl debugger is easier than adding print statements. In the debugger, 

you can easily set print statements at any line. For instance, the following debugger 

command says to print the values of $i and $k before line 48:  

  a 48 print "$i $k\n" 

Once you learn how to do it, this method is generally faster and easier than editing the Perl 

program and adding print statements by hand. Using this method is partly a matter of 

taste, since some extremely good Perl programmers prefer to do it the old-fashioned way, by 

adding print statements.  

The Perl Debugger  

My favorite way to deal with nonobvious bugs in my programs is to use the Perl debugger. 

The problem with bugs in code is that once a program starts running, all you can see is the 

output; you can't see the steps a program is taking. The Perl debugger lets you examine your 

program in detail, step by step, and almost always can lead you quickly to the problem. You'll 

also find that it's easy to use with a little practice.  

There are situations the Perl debugger can't handle well: interacting processes that depend on 

timing considerations, for instance. The debugger can examine only one program at a time, 
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and while examining, it stops the program, so timing considerations with other processes go 

right out the window.  

For most purposes, the Perl debugger is a great, essential, programming tool. This section 

introduces its most important features.  

A program with bugs  

Example 6-4 has some bugs we can examine. It's supposed to take a sequence and two 

bases, and output everything from those two bases to the end of the sequence (if it can find 

them in the sequence). The two bases can be given as an argument, or if no argument is 

given, the program uses the bases TA by default.  

There is one new thing in Example 6-4. The next statement affects the control flow in a 

loop. It immediately returns the control flow to the next iteration of the loop, skipping 

whatever else would have followed. Also, you may want to recall $_ , which we discussed 

back in Example 5-5 in the context of a foreach loop.  

Example 6-4. A program with a bug or two  

#!/usr/bin/perl 

# A program with a bug or two 

# 

# An optional argument, for where to start printing the 

sequence, 

#  is a two-base subsequence. 

# 

# Print everything from the subsequence ( or TA if no 

subsequence 

# is given as an argument) to the end of the DNA. 

# declare and initialize variables 

my $dna = 'CGACGTCTTCTAAGGCGA'; 

my @dna; 

my $receivingcommittment; 

my $previousbase = ''; 

my$subsequence = ''; 

if (@ARGV) { 

    my$subsequence = $ARGV[0]; 

}else{ 

    $subsequence = 'TA'; 

}  

my $base1 = substr($subsequence, 0, 1); 

my $base2 = substr($subsequence, 1, 1); 

# explode DNA 

@dna = split ( '', $dna ); 

######### Pseudocode of the following loop: 

# 

# If you've received a committment, print the base and 



 48 

continue.  Otherwise: 

# 

# If the previous base was $base1, and this base is $base2, 

print them. 

#   You have now received a committment to print the rest 

of the string. 

# 

# At each loop, save the previous base. 

foreach (@dna) { 

    if ($receivingcommittment) { 

print;  

        next; 

    } elsif ($previousbase eq $base1) { 

        if ( /$base2/ ) { 

            print $base1, $base2; 

            $recievingcommitment = 1; 

} }  

    $previousbase = $_; 

} 

print "\n"; 

exit; 

Here's the output of two runs of Example 6-1: $ perl example 6-4 AA  

$ perl example 6-4 

TA 

Huh? It should have printed out AAGGCGA when called with the argument AA, and 

TAAGGCGA when called with no arguments. There must be a bug in this program. But, if 

you look it over, there isn't anything obviously wrong. It's time to fire up the debugger. What 

follows is an actual debugging session on Example 6-4, interspersed with comments to 

explain what's happening and why.  

How to start and stop the debugger  

The debugger runs interactively, and you control it from the keyboard.[6] The most common 

way to start it is by giving the -d switch to Perl at the command line. Since you're using 

buggy Example 6-4 to demonstrate the debugger, here's how to start that program:  

[6] You also can run it automatically to produce a trace of the program in a file. perl -d example6-4  

Alternatively, you could have added a -d flag to the command interpreter: 
#!/usr/bin/perl -d  

On systems such as Unix and Linux where command interpretation works, this starts the 

debugger automatically.  
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To stop the debugger, simply type q.  

Debugger command summary  

First, let's try to find the bug in Example 6-4 when it's called with no arguments: $ perl 
-d example6-4 

Default die handler restored.  

Loading DB routines from perl5db.pl version 1.07 

Editor support available. 

Enter h or 'h h' for help, or 'man perldebug' for more help.  

main::(example6-4:11):    my $dna = 'CGACGTCTTCTAAGGCGA'; 

  DB<1> 

Let's stop right here at the beginning and look at a few things. After some messages, which 

may not mean a whole lot right now, you get the excellent information that the commands h 

and h h give more help. Let's try h h:  

 
  DB<1> h h 

List/search source lines: 

execution: 

  l [ln|sub]  List source code 

trace 

Control script 

- or .      List previous/current line  s [expr] 

Single step [in expr] 

  w [line]    List around line 

steps over subs 

  f filename  View source in file 

Repeat last n or s 

  /pattern/ ?patt?   Search forw/backw 

Return from subroutine 

  v          Show versions of modules 

Continue until position 

n [expr] 

<CR/Enter> 

r 

c [ln|sub] 

Debugger controls:                        L           List 

break/watch/actions 

  O [...]     Set debugger options        t [expr] 

Toggle trace [trace expr] 

  <[<]|{[{]|>[>] [cmd] Do pre/post-prompt b [ln|event|sub] 

[cnd] Set breakpoint 

  ! [N|pat]   Redo a previous command 

Delete a/all breakpoints 

  H [-num]    Display last num commands 
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cmd before line 

  = [a val]   Define/list an alias 

watch expression 

  h [db_cmd]  Get help on command 

Delete all actions/watch 

  |[|]db_cmd  Send output to pager 

cmd in a subprocess qor^D Quit  

d [ln] orD 

a [ln] cmd Do 

W expr Add a A orW 

![!] syscmd Run R  

Attempt a restart 

Data Examination:       expr     Execute perl code, also 

see: s,n,t expr 

  x|m expr      Evals expr in list context, dumps the 

result or lists methods. 

  p expr        Print expression (uses script's current 

package). 

  S [[!]pat]    List subroutine names [not] matching 

pattern 

  V [Pk [Vars]] List Variables in Package.  Vars can be 

~pattern or !pattern. 

  X [Vars]     Same as "V current_package [Vars]". 

For more help, type h cmd_letter, or run man perldebug for 

all docs. 

DB<2>  

It's a bit hard to read, but you have a concise summary of the debugger commands. You can 

also use the h command, which gives several screens worth of information. The | h 

command displays those several pages one at a time; the pipe at the beginning of a debugger 

command pipes the output through a pager, which typically advances a page when you hit the 

spacebar on your keyboard. You should try those out. Right now, however, let's focus on a 

few of the most useful commands. But remember that typing h command can give you 

help about the command.  

Stepping through statements with the debugger  

Back to the immediate problem. When you started up the debugger, you saw that it stopped 

on the first line of real Perl code:  

main::(example6-4:11):    my $dna = 'CGACGTCTTCTAAGGCGA'; 

 

There's an important point about the debugger you should understand right away. It shows the 

line it's about to execute, not the line it just executed.  
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So really, Example 6-4 hasn't done anything yet. You can see from the command 

summary that p tells the debugger to print out values. If you ask it to print the value of 

$dna, you'll find:  

DB<2> p $dna  

DB<3>  

It didn't show anything because there's nothing to show; it hasn't even seen the variable $dna 

yet. So you should execute the statement. There are two commands to use: n or s both 

execute the statement being displayed. (The difference is that n or "next" skips the plunge 

into a subroutine call, treating it like a single statement; s or "single step" enters a 

subroutine and single step you through that code as well.) Once you've given one of these 

commands, you can just hit Enter to repeat the same command.  

Since there aren't any subroutines, you needn't worry about choosing between n and s, so 

let's use n:  

 DB<3> n 

main::(example6-4:12):    my @dna; 

DB<3>  

This shows the next line (you can see the line numbers of the Perl program at the end of the 

prompt). If you wish to see more lines, the w or "window" command will serve:  

DB<3> w 9  

10 # declare and initialize variables 11: my $dna = 

'CGACGTCTTCTAAGGCGA'; 12==> my @dna;  

13. 13:  my $receivingcommittment;  

14. 14:  my $previousbase = '';  

15 

16: my $subsequence = ''; 17  

18: if (@ARGV) { DB<3>  

The current line—the line that will be executed next—is highlighted with an arrow (==>). 

The w seems like a useful thing. Let's get more information about it with the help  

command h w:  

  DB<3> h w 

w [line] 

DB<4>  
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List window around line. 

Actually, there's more—hitting w repeatedly keeps showing more of the program; a minus 

sign backs up a screen. But enough of that.  

Now that $dna has been declared and initialized, the program seems wrong on the first 

statement:  

  DB<4> p $dna 

CGACGTCTTCTAAGGCGA 

DB<5>  

That's exactly what was expected. There's no bug, so let's continue examining the lines, 

printing out values here and there:  

  DB<5> n 

main::(example6-4:13): 

  DB<5> n 

main::(example6-4:14): 

  DB<5> n 

main::(example6-4:16): 

  DB<5> n 

main::(example6-4:18): 

DB<5> p @ARGV  

DB<6> w 15  

my $receivingcommittment; 

my $previousbase = ''; 

my $subsequence = ''; 

if (@ARGV) { 

16: 

17 

18==> 

19: 

20 

21: 

22 

23 

24: 

my $subsequence = ''; 

if (@ARGV) { 

    my $subsequence = 

}else{  

$ARGV[0];  



 53 

    $subsequence = 'TA'; 

} 

    my $base1 = substr($subsequence, 0, 1); 

DB<6> n 

main::(example6-4:21): 

  DB<6> n 

main::(example6-4:24): 

1); 

  DB<6> p $subsequence 

TA 

  DB<7> n 

main::(example6-4:25): 

1); 

  DB<7> n 

main::(example6-4:28): 

  DB<7> p $base1 

$subsequence = 'TA'; 

my $base1 = substr($subsequence, 0,  

my $base2 = substr($subsequence, 1, @dna = split ( '', $dna );  

T 

  DB<8> p $base2 

A DB<9>  

So far, everything is as expected; the default subsequence TA is being used, and the 

$base1 and $base2 variables are set to T and A, the first and second bases of the 

subsequence. Let's continue:  

  DB<9> n 

main::(example6-4:39): 

  DB<9> p @dna 

CGACGTCTTCTAAGGCGA 

foreach (@dna) { 

DB<10> p "@dna" CGACGTCTTCTAAGGCGA  

DB<11>  

This shows a trick with Perl and printing arrays: normally they are printed without any 

spacing between the elements, but enclosing an array in double quotes in a print statement 

causes it to be displayed with spaces between the elements.  

Again, everything seems okay, and we're about to enter a loop. Let's look at the whole loop 

first:  

DB<11> w 36 #  



 54 

37 # At each loop, save the previous base. 38 

39==> foreach (@dna) {  

40: 

41: 

42: 

43 

44: 

45: 

DB<11> w 43  

    if ($receivingcommittment) { 

        print; 

        next; 

    } elsif ($previousbase eq $base1) { 

        if ( /$base2/ ) { 

            print $base1, $base2; 

    } elsif ($previousbase eq $base1) { 

        if ( /$base2/ ) { 

            print $base1, $base2; 

            $recievingcommitment = 1; 

    $previousbase = $_; 

} 

44: 

45: 

46: 

47 } 48 }  

49: 50 51 52:  

    print "\n"; 

DB<11> 

Despite the few repeated lines resulting from the w command, you can see the whole loop. 

Now you know something in here is going wrong: when you tested the program without 

giving it an argument, as it's running now, it took the default argument TA, and so far it  

seemed okay. However, all it actually did in your test was to print out the TA when it was 

supposed to print out everything in the string starting with the first occurrence of TA. What's 

going wrong?  

Setting breakpoints  

To figure out what's wrong, you can set a breakpoint in your code. A breakpoint is a spot in 

your program where you tell the debugger to stop execution so you can poke around in the 

code. The Perl debugger lets you set breakpoints in various ways. They let you run the 

program, stopping only to examine it when a statement with a breakpoint is reached. That 

way, you don't have to step through every line of code. (If you have 5,000 lines of code, and 
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the error happens when you hit a line of code that's first used when you're reading the 

12,000th line of input, you'll be happy about this feature.)  

Notice that the part of this loop that prints out the rest of the string, once the starting two 

bases have been found, is the if block starting at line 40:  

    if ($receivingcommittment) { 

        print; 

next; }  

Let's look at that $receivingcommittment variable. 

Here's one way to do this. Let's set a breakpoint at line 40. Type b 40 and then c to  

continue, and the program proceeds until it hits line 40:  

DB<11> b 40  

  DB<12> c 

main::(example6-4:40): 

DB<12> p C  

DB<12>  

if ($receivingcommittment) { 

The last command, p , prints out the element from the @dna array you reached in the 

foreach loop. Since you didn't specify a variable for the loop, it used the default $_ 

variable. Many Perl commands such as print or pattern matching operate on the default 

$_ variable if no other variable is given. (It's the cousin of the @_ default array subroutines 

used to hold their parameters.) So the p debugger command shows that you're operating on 

C from the @dna array, which is the first character.  

All well and good. But it would be good to have the program break when the variable 

$receivingcommittment has a change in its value, and then single step from there, to 

see why the program isn't printing out the rest of the string. Recall that this variable is the flag 

whose change tells the program to print the rest of the string. First let's delete all other 

breakpoints:  

DB<12> D  

Deleting all breakpoints... You can "watch" the variable with W like so:  

  DB<12> W $receivingcommittment 

DB<13> c TA  



 56 

Debugged program terminated. Use q to quit or R to restart, 

use O inhibit_exit to avoid stopping after program  

termination, 

  h q, h R or h O to get additional info. 

  DB<13> 

Wait a minute! The W command should indicate when $receivingcommittment 

changes value. But when the program continued running with the c command, it ran to the 

end, meaning that $receivingcommittment never changed value. So let's start up the 

program again and break on the line that changes its value:  

DB<13> R 

Warning: some settings and command-line options may be lost! 

Default die handler restored.  

Loading DB routines from perl5db.pl version 1.07 

Editor support available. 

Enter h or 'h h' for help, or 'man perldebug' for more help.  

main::(example6-4:11): my $dna = 'CGACGTCTTCTAAGGCGA';  

  DB<13> w 45 

42: 

    next; 

} elsif ($previousbase eq $base1) { 

43 

44: 

45: 

46: 

47 } 

48 } 

49: $previousbase = $_; 50 }  

51 

  DB<14> b 46 

  DB<15> c 

TAmain::(example6-4:46): 

1; 

  DB<15> n 

main::(example6-4:49): 

if ( /$base2/ ) { 

    print $base1, $base2; 

    $recievingcommitment = 1; 

                           $previousbase = $_; 

DB<15> p $receivingcommittment 

DB<16>  
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Huh? The code says it's assigning the variable a value of 1, but after you execute the code, 

with the n and try to print out the value, it doesn't print anything.  

If you stare harder at the program, you see that at line 66 you misspelled 

$receivingcommittment as $recievingcommitment. That explains everything; 

fix it and run it again:  

$ perl example6-4 

TAAGGCGA 

Success!  

Fixing another bug  

Now, did that fix the other bug when you ran Example 6-4 with an argument? 
$ perl example6-4 AA 

GACGTCTTCTAAGGCGA 

Again, huh? You expected AAGGCGA. Can there be another bug in the program? Let's try the 

debugger again:  

$ perl -d example6-4 AA 

Default die handler restored. 

Loading DB routines from perl5db.pl version 1.07 

Editor support available. 

Enter h or 'h h' for help, or 'man perldebug' for more help.  

 
main::(example6-4:11): 

  DB<1> n 

main::(example6-4:12): 

  DB<1> n 

main::(example6-4:13): 

  DB<1> n 

main::(example6-4:14): 

  DB<1> n 

main::(example6-4:16): 

  DB<1> n 

main::(example6-4:18): 

  DB<1> n 

main::(example6-4:19): 

  DB<1> n 

main::(example6-4:24): 

1); 

  DB<1> n 

main::(example6-4:25): 

1); 

  DB<1> n 

main::(example6-4:28): 

  DB<1> p $subsequence 



 58 

 my $dna = 'CGACGTCTTCTAAGGCGA'; 

 my @dna; 

 my $receivingcommittment; 

 my $previousbase = ''; 

 my $subsequence = ''; 

 if (@ARGV) { 

my $subsequence = $ARGV[0]; 

my $base1 = substr($subsequence, 0,  

my $base2 = substr($subsequence, 1, @dna = split ( '', $dna );  

Fixing another bug  

Now, did that fix the other bug when you ran Example 6-4 with an argument? 
$ perl example6-4 AA 

GACGTCTTCTAAGGCGA 

Again, huh? You expected AAGGCGA. Can there be another bug in the program? Let's try the 

debugger again:  

$ perl -d example6-4 AA 

Default die handler restored. 

Loading DB routines from perl5db.pl version 1.07 

Editor support available. 

Enter h or 'h h' for help, or 'man perldebug' for more help.  

 
main::(example6-4:11): 

  DB<1> n 

main::(example6-4:12): 

  DB<1> n 

main::(example6-4:13): 

  DB<1> n 

main::(example6-4:14): 

  DB<1> n 

main::(example6-4:16): 

  DB<1> n 

main::(example6-4:18): 

  DB<1> n 

main::(example6-4:19): 

  DB<1> n 

main::(example6-4:24): 

1); 

  DB<1> n 

main::(example6-4:25): 

1); 

  DB<1> n 

main::(example6-4:28): 

  DB<1> p $subsequence 

 my $dna = 'CGACGTCTTCTAAGGCGA'; 
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 my @dna; 

 my $receivingcommittment; 

 my $previousbase = ''; 

 my $subsequence = ''; 

 if (@ARGV) { 

my $subsequence = $ARGV[0]; 

my $base1 = substr($subsequence, 0,  

my $base2 = substr($subsequence, 1, @dna = split ( '', $dna );  

DB<2> p $base1 

  DB<3> p $base2 

  DB<4> 

Okay, for some reason the $subsequence, and therefore the $base1 and $base2 

variables, are not getting set right. How come?  

Check out line 19 where you declared a new my variable in the block of the if statement 

with the same name, $subsequence. That's the variable you're setting, but it's 

disappearing as soon as the if statement is over, because it's scoped in the block since it's a 

my variable.  

So again, you fix that problem by removing the my declaration on line 19 and 

instead inserting an assignment $subsequence = $ARGV[0]; and run the program 

again:  

  $ perl example6-4 

TAAGGCGA 

$ perl example6-4 AA 

AAGGCGA 

Here, finally, is success.  

use warnings; and use strict; redux  

Example 6-4 was somewhat artificial. It turns out that these problems would have been 

reported easily if warnings had been used. So let's see an actual example of the benefits of 

use strict; and use warnings;, as discussed earlier in this chapter.  

If you go back to the original Example 6-4 and add the use warnings; directive near 

the top of the program, you get the following output:  

$ perl example6-4 

Name "main::recievingcommitment" used only once: possible 

typo at example6-4 line 47. 

TA 
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As you see, the warnings found the first bug immediately. They noticed there was a variable 

that was used only once, usually a sign of a misspelled variable. (I can never spell "receiving" 

or "commitment" properly.) So fix the misspelling at line 66, and run it again:  

$ perl example6-4 

TAAGGCGA 

$ perl example6-4 AA 

substr outside of string at example6-4 line 26. 

Use of uninitialized value in regexp compilation at 

example6-4 line 45. 

Use of uninitialized value in print at example6-4 line 46. 

GACGTCTTCTAAGGCGA 

So, the first bug is fixed. The second bug remains with a few warnings that are, perhaps, hard 

to understand. But focus on the first error message, and see that it complains about line 26:  

my $base2 = substr($subsequence, 1, 1); 

So, there's something wrong with $subsequence. Often, error messages will be off by one 

line, so it may well be that the error starts on the line before, the first time $subsequence 

is operated on by the substr. But that's not the case here.  

Nonetheless, the warnings have pointed directly to the problem. In this case, you still have to 

take a little initiative; look back at the $subsequence variable and notice the extra my 

declaration within the if block on line 20 that is preventing the variable from being 

initialized properly. Now this is not necessarily always a bug—declaring a variable scoped 

within a block and that overrides another variable of the same name that is outside the block. 

In fact, it's perfectly legal, so the programmers who wrote the warnings did not flag it as an 

obvious error. However, it seems to have caused a real problem here!  

One final point: if you go back to the original, buggy program, notice 

there's no use strict; in the program. If you add that and run the program without 

arguments, you get the following:  

$ perl example6-4 

Global symbol "$recievingcommitment" requires explicit 

package name at example6-4 line 47. 

Execution of example6-4 aborted due to compilation errors. 

Fixing the misspelled variable, and running the program with the argument, you get:  

$ perl example6-4 AA 

GACGTCTTCTAAGGCGA 

You can see that use strict; didn't help for the other bug. Remember, it's best to 

employ both use strict; and use warnings;.  
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UNIT IV MANIPULATING MACROMOLECULES AND DATABASES     
 Mutations and Randomization - A Program Using Randomization - A Program to Simulate 
DNA Mutation - Generating Random DNA - Analyzing DNA - The Genetic Code – Hashes - Data 
Structures and Algorithms for Biology - A Gene Expression Database - Gene Expression Data 
Using Unsorted Arrays - Gene Expression Data Using Hashes - Relational Databases - 
Translating Codons to Amino Acids - Translating DNA into Proteins - Reading DNA from Files 
in FASTA Format - Reading Frames - Translating Reading Frames 
 

Mutations and Randomization  

As every biologist knows, mutation is a fundamental topic in biology. Mutations in DNA 

occur all the time in cells. Most of them don't affect the actions of proteins and are benign. 

Some of them do affect the proteins and may result in diseases such as cancer. Mutations can 

also lead to nonviable offspring that dies during development; occasionally they can lead to 

evolutionary change. Many cells have very complex mechanisms to repair mutations.  

Mutations in DNA can arise from radiation, chemical agents, replication errors, and other 

causes. We're going to model mutations as random events, using Perl's random number 

generator.  

Randomization is a computer technique that crops up regularly in everyday programs, most 

commonly in cryptography, such as when you want to generate a hard-to-guess password. 

But it's also an important branch of algorithms: many of the fastest algorithms employ 

randomization.  

Using randomization, it's possible to simulate and investigate the mechanisms of mutations in 

DNA and their effect upon the biological activity of their associated proteins. Simulation is a 

powerful tool for studying systems and predicting what they will do; randomization allows 

you to better simulate the "ordered chaos" of a biological system. The ability to simulate 

mutations with computer programs can aid in the study of evolution, disease, and basic 

cellular processes such as division and DNA repair mechanisms. Computer models of cell 

development and function, now in their early stages, will become much more accurate and 

useful in coming years, and mutation is a basic biological mechanism these models will 

incorporate.  

From the standpoint of programming technique, as well as from the standpoint of modeling 

evolution, mutation, and disease, randomization is a powerful—and, luckily for us, easy-to-

use—programming skill.  

Here's a breakdown of what we will accomplish in this chapter:  

Randomly select an index into an array and a position in a string: these are the basic tools for 

picking random locations in DNA (or other data)  

Model mutation with random numbers by learning how to randomly select a nucleotide in 

DNA and then mutate it to some other (random) nucleotide  
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Use random numbers to generate DNA sequence data sets, which can be used to study the 

extent of randomness in actual genomes  

Repeatedly mutate DNA to study the effect of mutations accumulating over time during 

evolution  

Use random numbers to generate DNA sequence data sets, which can be used to study the 

extent of randomness in actual genomes  

Repeatedly mutate DNA to study the effect of mutations accumulating over time during 

evolution  

A Program to Simulate DNA Mutation  

Example 7-1 gave you the tools you'll need to mutate DNA. In the following examples, 

you'll represent DNA, as usual, by a string made out of the alphabet A, C, G, and T. You'll 

randomly select positions in the string and then use the substr function to alter the DNA.  

This time, let's go about things a little differently and first compose some of the useful 

subroutines you'll need before showing the whole program.  

Pseudocode Design  

Starting with simple pseudocode, here's a design for a subroutine that mutates a random 

position in DNA to a random nucleotide:  

Select a random position in the string of DNA. 

Choose a random nucleotide. 

Substitute the random nucleotide into the random position in the DNA.  

This seems short and to the point. So you decide to make each of the first two sentences into 

a subroutine.  

Select a random position in a string  

How can you randomly select a position in a string? Recall that the built-in function length 
returns the length of a string. Also recall that positions in strings are numbered from 0 to 

length-1, just like positions in arrays. So you can use the same general idea as in 

Example 7-1, and make a subroutine:  

# randomposition 

# 

# A subroutine to randomly select a position in a string. 

# 

# WARNING: make sure you call srand to seed the 

#  random number generator before you call this function. 

sub randomposition { 

    my($string) = @_; 

    # This expression returns a random number between 0 and 
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length-1, 

    # which is how the positions in a string are numbered 

in Perl. 

    return int(rand(length($string))); 

} 

randomposition is really a short function, if you don't count the comments. It's just like 

the idea in Example 7-1 to select a random array element.  

Of course, if you were really writing this code, you'd make a little test to see if your 

subroutine worked:  

#!/usr/bin/perl -w 

# Test the randomposition subroutine 

my $dna = 'AACCGTTAATGGGCATCGATGCTATGCGAGCT'; 

srand(time|$$); 

for (my $i=0 ; $i < 20 ; ++$i ) { 

    print randomposition($dna), " "; 

} 

print "\n"; 

exit; 

sub randomposition { 

    my($string) = @_; 

    return int rand length $string; 

} 

Here's some representative output of the test (your results should vary):  

28 26 20 1 29 7 1 27 2 24 8 1 23 7 13 14 2 12 13 27 

Notice the new look of the for loop: 
for (my $i=0 ; $i < 20 ; ++$i ) { 

This shows how you can localize the counter variables (in this case, $i) to the loop by 

declaring them with my inside the for loop.  

Choose a random nucleotide  

Next, let's write a subroutine that randomly chooses one of the four nucleotides:  

# randomnucleotide 

# 

# A subroutine to randomly select a nucleotide 

# 

# WARNING: make sure you call srand to seed the 

#  random number generator before you call this function. 

sub randomnucleotide { 

  my(@nucs) = @_; 

  # scalar returns the size of an array. 

  # The elements of the array are numbered 0 to size-1 

  return $nucs[rand @nucs]; 
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}  

Again, this subroutine is short and sweet. (Most useful subroutines are; although writing a 

short subroutine is no guarantee it will be useful. In fact, you'll see in a bit how you can 

improve this one.)  

Let's test this one too:  

#!/usr/bin/perl -w 

# Test the randomnucleotide subroutine 

my @nucleotides = ('A', 'C', 'G', 'T'); 

srand(time|$$); 

for (my $i=0 ; $i < 20 ; ++$i ) { 

print randomnucleotide(@nucleotides), " "; 

} 

print "\n";  

exit;  

sub randomnucleotide { 

    my(@nucs) = @_; 

    return $nucs[rand @nucs]; 

} 

Here's some typical output (it's random, of course, so there's a high probability your output 

will differ):  

CAAAATTTTTACACTAAGGG  

Place a random nucleotide into a random position  

Now for the third and final subroutine, that actually does the mutation. Here's the code:  

# mutate 

# 

# A subroutine to perform a mutation in a string of DNA 

# 

sub mutate {  

    my($dna) = @_; 

    my(@nucleotides) = ('A', 'C', 'G', 'T'); 

    # Pick a random position in the DNA 

    my($position) = randomposition($dna); 

    # Pick a random nucleotide 

    my($newbase) = randomnucleotide(@nucleotides); 

    # Insert the random nucleotide into the random position 

in the DNA. 

    # The substr arguments mean the following: 
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    #  In the string $dna at position $position change 1 

character to 

    #  the string in $newbase 

    substr($dna,$position,1,$newbase); 

    return $dna; 

} 

Here, again, is a short program. As you look it over, notice that it's relatively easy to read and 

understand. You mutate by picking a random position then selecting a nucleotide at random 

and substituting that nucleotide at that position in the string. (If you've forgotten how substr 

works, refer to Appendix B or other Perl documentation. If you're like me, you probably 

have to do that a lot, especially to get the order of the arguments right.)  

There's a slightly different style used here for declaring variables. Whereas you've been 

declaring them at the beginning of a program, here you're declaring each variable the first 

time it's used. There are pros and cons for each programming style. Having all the variables 

at the top of the program gives good organization and can help in reading; declaring them on-

the-fly can seem like a more natural way to write. The choice is yours.  

Also, notice how this subroutine is mostly built from other subroutines, with a little bit added. 

That has a lot to do with its readability. At this point, you may be thinking that you've 

actually decomposed the problem pretty well, and the pieces are fairly easy to build and, in 

the end, they fit together well. But do they?  

The Genetic Code  

Up to this point we've used Perl to search for motifs, simulate DNA mutations, generate 

random sequences, and transcribe DNA to RNA. These are all important activities, and they 

serve as a good introduction to the computational techniques you can use to study biological 

systems.  

In this chapter, we'll write Perl programs to simulate how the genetic code directs the 

translation of DNA into protein. I will start by introducing the hash datatype. Then, after a 

brief discussion of how different data structures (hashes, arrays, and databases) can store and 

access experimental information, we will write a program to translate DNA to protein. We'll 

also continue exploring regular expressions and write code to handle FASTA files.  

Hashes  

There are three main datatypes in Perl. You've already seen two: scalar variables and arrays. 

Now we'll start to use the third: hashes (also called associative arrays).  

A hash provides very fast lookup of the value associated with a key. As an example, say you 

have a hash called %english_dictionary. (Yes, hashes start with the percent sign.) If 

you want to look up the definition of the word "recreant," you say:  

$definition = $english_dictionary{'recreant'}; 

The scalar 'recreant' is the key, and the scalar definition that's returned is the value. As 

you see from this example, hashes (like arrays) change their leading character to a dollar sign 
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when you access a single element, because the value returned from a hash lookup is a scalar 

value. You can tell a hash lookup from an array element by the type of braces they use: arrays 

use square brackets [ ]; hashes use curly braces { }.  

If you want to assign a value to a key, it's similarly an easy, single statement:  

$english_dictionary{'recreant'} = "One who calls out in 

surrender."; 

Also, if you want to initialize a hash with some key-value pairs, it's done much like 

initializing arrays, but every pair becomes a key-value:  

%classification = ( 

    'dog',      'mammal', 

    'robin',    'bird', 

    'asp',      'reptile', 

); 

which initializes the key 'dog' with the value 'mammal', and so on. There's another way 

of writing this, which shows what's happening a little more clearly. The following  

does exactly the same thing as the preceding code, while showing the key-value relationship 

more clearly: 
%classification = (  

    'dog'   => 'mammal', 

    'robin' => 'bird', 

    'asp',  => 'reptile', 

);  

You can get an array of all the keys of a hash:  

@keys  = keys %my_hash; 

You can get an array of all the values of a hash:  

@values  = values %my_hash; 

You use hashes in lots of different situations, especially when your data is in the form of key-

value or you need to look up the value of a key fast. For instance, later in this chapter, we'll 

develop programs that use hashes to retrieve information about a gene. The gene name is the 

key; the information about the gene is the value of that key. Mathematically, a Perl hash 

always represents a finite function.  

The name "hash" comes from something called a hash function, which practically any book 

on algorithms will define, if you've a mind to look it up. Let's skip the details of how they 

work under the hood and just talk about their behavior.  

Data Structures and Algorithms for Biology  
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Biologists explore biological data and try to figure out how to do things with it based on its 

existing structure in living systems. Bioinformatics is often used to model that existing 

structure as closely as possible. (Bear with me; I'm speaking in generalities!)  

Bioinformatics also can take a slightly different approach. It thinks about what it wants to do 

with the data and then tries to figure out how to organize it to accomplish that goal. In other 

words, it tries to produce an algorithm by representing the data in a convenient data structure.  

Now that you've got the three datatypes of Perl in hand—namely scalars, arrays, and 

hashes—it's time to take a look at these interrelated topics of algorithms and data structures. 

We've already talked about algorithms in Chapter 3. The present discussion highlights the 

importance of the organization of the data for algorithms, in other words, the data structures 

for the algorithm.  

The most important point here is that different algorithms often require different data 

structures.  

A Gene Expression Database  

Let's consider a typical problem. Say you're studying an organism that has a total of about 

30,000 genes. (Yep, you're right, it's human.) Say you're looking at a type of cell that's never 

been well characterized under certain interesting environmental conditions, and you are 

determining, for each gene, whether it's being expressed.[1] You have a nice microarray 

facility that has given you the expression information for that cell. Now, for each gene, you 

need to look up whether it's expressed in the cell. You have to put this look-up capability on 

your web site, so visitors who read your results in your upcoming paper can find the 

expression data for the genes.  

[1] For the nonbiologists: a gene is expressed when it is transcribed into RNA, so that a protein can be made 

from it.  

There are several ways to proceed. Let's look at a few alternatives as a short and gentle 

introduction to the art and science of algorithms and data structures.  

What is your data? For simplicity, let's say you have the names for all the genes in the 

organism and a number for the expressed genes indicating the level of the expression in your 

experiment; the unexpressed genes have the number 0.  

Gene Expression Data Using Unsorted Arrays  

Now let's suppose you want to know if the genes were expressed, but not the expression 

levels, and you want to solve this programming problem using arrays. After all, you are 

somewhat familiar with arrays by this point. How do you proceed?  

You might store in the array only the names of the genes that are being expressed and discard 

the other gene names. Say there were 8,000 expressed genes. Then, for any query, the answer 

requires looking through the array and comparing the query with each gene in the array until 

either you find it or get to the end of the array without finding it.  
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That works, but there are problems. Mainly, it's kind of slow. This isn't bad if you just do it 

now and then, but if you've got a lot of people hitting your web site asking questions about 

this new expression data, it can be a problem. On average, a lookup for an expressed gene 

requires looking through 4,000 gene names. A lookup for an unexpressed gene takes 8,000 

comparisons.  

Also, if someone asked about a gene missing from your study, you couldn't respond, since 

you discarded the unexpressed gene names. The query gives a negative response, not an error 

message saying the gene being searched for isn't part of your experiment. This might even be 

a false negative if the query gene that wasn't part of your study actually is expressed in the 

cell type (but you just missed it). You'd prefer it if your program would report to the user that 

no gene by that name was studied.  

So you decide to keep all 30,000 genes in the array. (Of course, now a search will be slower.) 

But how to distinguish the expressed from the unexpressed genes? You can load each gene's 

name into the array and then append the expression measurement after the name of each 

gene. Then you will definitely know if a gene is missing from your experiment.  

However, the program is still a bit slow. You still have to search through the entire array until 

you find the gene or determine that it wasn't studied. You may find it right away if it's the 

first element in the array, or you may have to wait until the last element. On average, you 

have to search through half of the array. Plus, you have to compare the name of the searched-

for gene with the names of the genes in the array one by one. It will average 15,000 

comparisons per query: slow. (Actually, on a modern computer, not too horribly slow, really, 

but I'm making a point. These sorts of things do add up with a program that runs too slowly.)  

Another problem is that you're now keeping two values in one scalar: the gene name and the 

expression measurement. To do anything with this data, you have to also separate the gene 

name from the measurement of the expression of the gene.  

Despite these drawbacks, this method will work. Now, let's think about alternatives.  

Relational Databases  

Databases are programs that store and retrieve large amounts of data. They provide the most 

common forms of datatypes to use in algorithms. There are several popular databases. Some 

good ones that are free of charge (the best ones are very expensive), and Perl provides access 

to all the most popular ones. The Perl/DBI modules, for instance, provide convenient access 

to relational databases from Perl programs.  

Most databases are called relational, which describes how they store data. Another common 

name for these types of databases is relational database management systems, or RDMS.  

Relational databases store data organized in tables. The data is usually entered and extracted 

with a query language called Structured Query Language , or SQL, which is a  

fairly simple language for accessing the data in the tables and following links between the 

tables.  
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Relational databases are the most popular way to store and retrieve large amounts of data, but 

they do require a fair bit of learning. Programming with relational databases is beyond the 

scope of this book, but if you end up doing a lot of programming with Perl, you'll find that 

knowing the basics of using a database is a valuable skill. See the discussion in Chapter 

13.  

In particular, it's perfectly reasonable to store your gene expression data in a relational 

database and use that in your program to respond to queries made on your web site.  

The Genetic Code  

The genetic code is how a cell translates the information contained in its DNA into amino 

acids and then proteins, which do the real work in the cell.  

Background  

Herein is a short introduction for the nonbiologists.  

As stated earlier, DNA encodes the primary structure (i.e., the amino acid sequence) of 

proteins. DNA has four nucleotides, and proteins have 20 amino acids. The encoding works 

by taking each group of three nucleotides from the DNA and "translating" them to an amino 

acid or a stop signal. Each group of three nucleotides is called a codon. We'll see in detail 

how this coding and translation works.  

Actually, transcription first uses DNA to make RNA, and then translation uses RNA to make 

proteins. This is called the central dogma of molecular biology. But in this course, I'll 

abbreviate the process and somewhat inaccurately call the entire process from DNA to 

protein "translation."  

The reason for this cavalier distinction is that the whole business is much easier to simulate 

on computer using strings to represent the DNA, RNA, and proteins. In fact, as shown in 

Chapter 4, transcribing DNA to RNA is very easy indeed. In your computer simulations, 

you can simply skip that step, since it's just a matter of changing one letter to another. (The 

actual process in the cell, of course, is much more complex.)  

Note that with four kinds of bases, each group of three bases of DNA can represent as many 

as 4 x 4 x 4 = 64 possible amino acids. Since there are only 20 amino acids plus a stop signal, 

the genetic code has evolved some redundancy, so that some amino acids are represented by 

more than one codon. Every possible three bases of DNA—each codon— represents some 

amino acid (apart from the three codons that represent a stop signal).  

The chart in Figure 8-1 shows how the various bases combine to form amino acids. There 

are many interesting things to note about the genetic code. For our purposes, the most 

important is redundancy—the way more than one codon translates to the same amino acid. 

We'll program this using character classes and regular expressions, as you'll soon see.[2]  

[2] Also note that the genetic code in Figure 8-1 is properly based on RNA, where uracil appears instead of 
thymine. In our programs, we're going to go directly from DNA to amino acids, so our codons will use thymine 

instead of uracil.  
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The machinery of the cell actually starts at some point along the RNA and "reads" the 

sequences codon after codon, attaching the encoded amino acid to the end of the growing 

protein sequence. Example 8-1 simulates this, reading the string of DNA three bases at a 

time and concatenating the symbol for the encoded amino acid to the end of the growing 

protein string. In the cell, the process stops when a codon is encountered.  

Translating Codons to Amino Acids  

The first task is to enable the following programs to do the translation from the three- 

nucleotide codons to the amino acids. This is the most important step in implementing the 

genetic code, which is the encoding of amino acids by three-nucleotide codons.  

Here's a subroutine that returns an amino acid (represented by a one-letter abbreviation) given 

a three-letter DNA codon:  

# codon2aa 

# 
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# A subroutine to translate a DNA 3-character codon to an 

amino acid 

sub codon2aa { 

    my($codon) = @_; 

       if ( $codon =~ /TCA/i ) 

Serine 

    elsif ( $codon =~ /TCC/i ) 

Serine 

    elsif ( $codon =~ /TCG/i ) 

Serine 

    elsif ( $codon =~ /TCT/i ) 

Serine 

    elsif ( $codon =~ /TTC/i ) 

Phenylalanine 

    elsif ( $codon =~ /TTT/i ) 

Phenylalanine 

    elsif ( $codon =~ /TTA/i ) 

Leucine 

    elsif ( $codon =~ /TTG/i ) 

Leucine 

    elsif ( $codon =~ /TAC/i ) 

Tyrosine 

    elsif ( $codon =~ /TAT/i ) 

Tyrosine 

    elsif ( $codon =~ /TAA/i ) 

    elsif ( $codon =~ /TAG/i ) 

    elsif ( $codon =~ /TGC/i ) 

Cysteine 

    elsif ( $codon =~ /TGT/i ) 

Cysteine 

    elsif ( $codon =~ /TGA/i ) 

    elsif ( $codon =~ /TGG/i ) 

Tryptophan 

    elsif ( $codon =~ /CTA/i ) 

Leucine  

{ return 'S' }  

{ return 'S' }  

{ return 'S' }  

{ return 'S' }  

{ return 'F' }  

{ return 'F' }  

{ return 'L' }  
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{ return 'L' }  

{ return 'Y' }  

{ return 'Y' }  

{ return '_' } 

{ return '_' } 

{ return 'C' } 

{ return 'C' }  

{ return '_' } 

{ return 'W' } 

{ return 'L' }  

# # # # # # # # # #  

# Stop # Stop #  

#  

# Stop #  

#  

elsif ( $codon =~ /CTC/i ) 

Leucine 

    elsif ( $codon =~ /CTG/i ) 

Leucine 

    elsif ( $codon =~ /CTT/i ) 

Leucine 

    elsif ( $codon =~ /CCA/i ) 

Proline 

    elsif ( $codon =~ /CCC/i ) 

Proline 

    elsif ( $codon =~ /CCG/i ) 

Proline 

    elsif ( $codon =~ /CCT/i ) 

Proline 

    elsif ( $codon =~ /CAC/i ) 

Histidine 

    elsif ( $codon =~ /CAT/i ) 

Histidine 

    elsif ( $codon =~ /CAA/i ) 

Glutamine 

    elsif ( $codon =~ /CAG/i ) 

Glutamine 

    elsif ( $codon =~ /CGA/i ) 
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Arginine 

    elsif ( $codon =~ /CGC/i ) 

Arginine 

    elsif ( $codon =~ /CGG/i ) 

Arginine 

    elsif ( $codon =~ /CGT/i ) 

Arginine 

    elsif ( $codon =~ /ATA/i ) 

Isoleucine 

    elsif ( $codon =~ /ATC/i ) 

Isoleucine 

    elsif ( $codon =~ /ATT/i ) 

Isoleucine 

    elsif ( $codon =~ /ATG/i ) 

Methionine 

    elsif ( $codon =~ /ACA/i ) 

Threonine 

    elsif ( $codon =~ /ACC/i ) 

Threonine 

    elsif ( $codon =~ /ACG/i ) 

Threonine 

    elsif ( $codon =~ /ACT/i ) 

Threonine 

{ return 'L' }    # 

{ return 'L' }    # 

{ return 'L' }    # 

{ return 'P' }    # 

{ return 'P' }    # 

{ return 'P' }    # 

{ return 'P' }    # 

{ return 'H' }    # 

{ return 'H' }    # 

{ return 'Q' }    # 

{ return 'Q' }    # 

{ return 'R' }    # 

{ return 'R' }    # 

{ return 'R' }    # 

{ return 'R' }    # 

{ return 'I' }    # 

{ return 'I' }    # 

{ return 'I' }    # 

{ return 'M' }    # 

{ return 'T' }    # 

{ return 'T' }    # 

{ return 'T' }    # 

{ return 'T' }    # 

elsif ( $codon =~ /AAC/i ) 

Asparagine 

    elsif ( $codon =~ /AAT/i ) 

Asparagine 

    elsif ( $codon =~ /AAA/i ) 
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Lysine 

    elsif ( $codon =~ /AAG/i ) 

Lysine 

    elsif ( $codon =~ /AGC/i ) 

Serine 

    elsif ( $codon =~ /AGT/i ) 

Serine 

    elsif ( $codon =~ /AGA/i ) 

Arginine 

    elsif ( $codon =~ /AGG/i ) 

Arginine 

    elsif ( $codon =~ /GTA/i ) 

Valine 

    elsif ( $codon =~ /GTC/i ) 

Valine 

    elsif ( $codon =~ /GTG/i ) 

Valine 

    elsif ( $codon =~ /GTT/i ) 

Valine 

    elsif ( $codon =~ /GCA/i ) 

Alanine 

    elsif ( $codon =~ /GCC/i ) 

Alanine 

    elsif ( $codon =~ /GCG/i ) 

Alanine 

    elsif ( $codon =~ /GCT/i ) 

Alanine 

    elsif ( $codon =~ /GAC/i ) 

Aspartic Acid 

    elsif ( $codon =~ /GAT/i ) 

Aspartic Acid 

    elsif ( $codon =~ /GAA/i ) 

Glutamic Acid 

    elsif ( $codon =~ /GAG/i ) 

Glutamic Acid 

    elsif ( $codon =~ /GGA/i ) 

Glycine 

    elsif ( $codon =~ /GGC/i ) 

Glycine 

    elsif ( $codon =~ /GGG/i ) 

Glycine 

{ return 'N' }    # 

{ return 'N' }    # 

{ return 'K' }    # 

{ return 'K' }    # 

{ return 'S' }    # 

{ return 'S' }    # 

{ return 'R' }    # 

{ return 'R' }    # 

{ return 'V' }    # 

{ return 'V' }    # 
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{ return 'V' }    # 

{ return 'V' }    # 

{ return 'A' }    # 

{ return 'A' }    # 

{ return 'A' }    # 

{ return 'A' }    # 

{ return 'D' }    # 

{ return 'D' }    # 

{ return 'E' }    # 

{ return 'E' }    # 

{ return 'G' }    # 

{ return 'G' }    # 

{ return 'G' }    # 

elsif ( $codon =~ /GGT/i )    { return 'G' }    # 

Glycine 

    else { 

        print STDERR "Bad codon \"$codon\"!!\n"; 

        exit; 

} }  

Translating DNA into Proteins  

Example 8-1 shows how the new codon2aa subroutine translates a whole DNA 

sequence into protein.  

Translate DNA into protein  

#!/usr/bin/perl 

# Translate DNA into protein 

use strict; 

use warnings; 

use BeginPerlBioinfo;     # see Chapter 6 about this module 

# Initialize variables 

my $dna = 'CGACGTCTTCGTACGGGACTAGCTCGTGTCGGTCGC'; 

my $protein = ''; 

my $codon; 

# Translate each three-base codon into an amino acid, and 

append to a protein 

for(my $i=0; $i < (length($dna) - 2) ; $i += 3) { 

$codon = substr($dna,$i,3); 

    $protein .= codon2aa($codon); 

} 

print "I translated the DNA\n\n$dna\n\n  into the 

protein\n\n$protein\n\n"; 

exit;  

To make this work, you'll need the BeginPerlBioinfo.pm module for your subroutines in a 

separate file the program can find, as discussed in Chapter 6. You also have to add the 
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codon2aa subroutine to it. Alternatively, you can add the code for the subroutine condon2aa 

directly to the program in Example 8-1 and remove the reference to the 

BeginPerlBioinfo.pm module.  

Here's the output from Example 8-1: I translated the DNA  

CGACGTCTTCGTACGGGACTAGCTCGTGTCGGTCGC 

  into the protein 

RRLRTGLARVGR 

You've seen all the elements in Example 8-1 before, except for the way it loops through 

the DNA with this statement: 
for(my $i=0; $i < (length($dna) - 2) ; $i += 3) { 

Recall that a for loop has three parts, delimited by the two semicolons. The first part 

initializes a counter: my $i=0 statically scopes the $i variable so it's visible only inside 

this block, and any other $i elsewhere in the code (well, in this case, there aren't any, but it 

can happen) is now invisible inside the block. The third part of the for loop increments the 

counter after all the statements in the block are executed and before returning to the 

beginning of the loop:  

$i += 3  

Since you're trying to march through the DNA three bases at a shot, you increment by three.  

The second, middle part of the for loop tests whether the loop should continue: 
$i < (length($dna) - 2) 

The point is that if there are none, one, or two bases left, you should quit, because there's not 

enough to make a codon. Now, the positions in a string of DNA of a certain length are 

numbered from 0 to length-1. So if the position counter $i has reached length-2, 

there's only two more bases (at positions length-2 and length-1), and you should quit. 

Only if the position counter $i is less than length-2 will you still have at least three 

bases left, enough for a codon. So the test succeeds only if: 
$i < (length($dna) -2)  

(Notice also how the whole expression to the right of the less-than sign is enclosed in 

parentheses; we'll discuss this in Chapter 9 in Section 9.3.1.)  

The line of code:  

$codon = substr ($dna, $i 3); 

actually extracts the 3-base codon from the DNA. The call to the substr function specifies 

a substring of $dna at position $i of length 3, and saves it in the variable $codon.  

If you know you'll need to do this DNA-to-protein translation a lot, you can turn Example 
8-1 into a subroutine. Whenever you write a subroutine, you have to think about which 

arguments you may want to give the subroutine. So you realize, there may come a time when 

you'll have some large DNA sequence but only want to translate a given part of it. Should 

you add two arguments to the subroutine as beginning and end points? You could, but decide 
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not to. It's a judgment call—part of the art of decomposing a collection of code into useful 

fragments. But it might be better to have a subroutine that just translates; then you can make 

it part of a larger subroutine that picks endpoints in the sequence, if needed. The thinking is 

that you'll usually just translate the whole thing and always typing in 0 for the start and 

length($dna)-1 at the end, would be an annoyance. Of course, this depends on what 

you're doing, so this particular choice just illustrates your thinking when you write the code.  

You should also remove the informative print statement at the end, because it's 

more suited to a main program than a subroutine.  

Anyway, you've now thought through the design and just want a subroutine that takes one 

argument containing DNA and returns a peptide translation:  

# dna2peptide 

# 

# A subroutine to translate DNA sequence into a peptide 

 
sub dna2peptide { 

    my($dna) = @_; 

    use strict; 

    use warnings; 

    use BeginPerlBioinfo; 

module  

    # Initialize variables 

    my $protein = ''; 

# see Chapter 6 about this 

 
 # Translate each three-base codon to an amino acid, and 

append to a protein 

    for(my $i=0; $i < (length($dna) - 2) ; $i += 3) { 

        $protein .= codon2aa( substr($dna,$i,3) ); 

    } 

    return $protein; 

} 

Reading DNA from Files in FASTA Format  

Over the fairly short history of bioinformatics, several different biologists and programmers 

invented several ways to format sequence data in computer files, and so  

bioinformaticians must deal with these different formats. We need to extract the sequence 

data and the annotations from these files, which requires writing code to deal with each 

different format.  

There are many such formats, perhaps as many as 20 in regular use for DNA alone. The very 

multiplicity of these formats can be an annoyance when you're analyzing a sequence in the 

lab: it becomes necessary to translate from one format to another for the various programs 

you use to examine the sequence. Here are some of the most popular:  
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FASTA  

The FASTA and Basic Local Alignment Search Technique (BLAST) programs are popular; 

they both use the FASTA format. Because of its simplicity, the FASTA format is perhaps the 

most widely used of all formats, aside from GenBank.  

Genetic Sequence Data Bank (GenBank)  

GenBank is a collection of all publicly released genetic data. It includes lots of information in 

addition to the DNA sequence. It's very important, and we'll be looking closely at GenBank 

files in Chapter 10.  

European Molecular Biology Laboratory (EMBL)  

The EMBL database has substantially the same data as the GenBank and the DDBJ (DNA 

Data Bank of Japan), but the format is somewhat different.  

Simple data, or Applied Biosystems (ABI) sequencer output  

This is DNA sequence data that has no formatting whatsoever, just the characters that 

represent the bases; it is output into files by the sequencing machines from ABI and from 

other machines and programs.  

Protein Identification Resource (PIR)  

PIR is a well-curated collection of protein sequence data.  

Genetics Computer Group (GCG)  

The GCG program (a.k.a. the GCG Wisconsin package) from Accelrys is used at many large 

research institutions. Data must be in GCG format to be usable by their programs.  

Of these six sequence formats, GenBank and FASTA are by far the most common. The next 

few sections take you through the process of reading and manipulating data in FASTA.  

FASTA Format  

Let's write a subroutine that can handle FASTA-style data. This is useful in its own right and 

as a warm-up for the upcoming chapters on GenBank, PDB, and BLAST.  

FASTA format is basically just lines of sequence data with newlines at the end so it can  

be printed on a page or displayed on a computer screen. The length of the lines isn't specified, 

but for compatibility, it's best to limit them to 80 characters in length. There is also header 

information, a line or lines at the beginning of the file that start with the greater-than > 

character, that can contain any text whatsoever (or no text). Typically, a header line contains 

the name of the DNA or the gene it comes from, often separated by a vertical bar from 

additional information about the sequence, the experiment that produced it, or other, 

nonsequence information of that nature.  
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Much FASTA-aware software insists that there must be only one header line; others permit 

several lines. Our subroutine will accept either one or several header lines plus comments 

beginning with #.  

The following is a FASTA file. We'll call it sample.dna and use it in several programs. 

You should copy it, download it from this book's web site, or make up your own file with 

your own data. 
> sample dna | (This is a typical fasta header.) 

agatggcggcgctgaggggtcttgggggctctaggccggccacctactgg 

tttgcagcggagacgacgcatggggcctgcgcaataggagtacgctgcct 

gggaggcgtgactagaagcggaagtagttgtgggcgcctttgcaaccgcc 

tgggacgccgccgagtggtctgtgcaggttcgcgggtcgctggcgggggt 

cgtgagggagtgcgccgggagcggagatatggagggagatggttcagacc 

cagagcctccagatgccggggaggacagcaagtccgagaatggggagaat 

gcgcccatctactgcatctgccgcaaaccggacatcaactgcttcatgat 

cgggtgtgacaactgcaatgagtggttccatggggactgcatccggatca 

ctgagaagatggccaaggccatccgggagtggtactgtcgggagtgcaga 

gagaaagaccccaagctagagattcgctatcggcacaagaagtcacggga 

gcgggatggcaatgagcgggacagcagtgagccccgggatgagggtggag 

ggcgcaagaggcctgtccctgatccagacctgcagcgccgggcagggtca 

gggacaggggttggggccatgcttgctcggggctctgcttcgccccacaa 

atcctctccgcagcccttggtggccacacccagccagcatcaccagcagc 

agcagcagcagatcaaacggtcagcccgcatgtgtggtgagtgtgaggca 

tgtcggcgcactgaggactgtggtcactgtgatttctgtcgggacatgaa 

gaagttcgggggccccaacaagatccggcagaagtgccggctgcgccagt 

gccagctgcgggcccgggaatcgtacaagtacttcccttcctcgctctca 

ccagtgacgccctcagagtccctgccaaggccccgccggccactgcccac 

ccaacagcagccacagccatcacagaagttagggcgcatccgtgaagatg 

agggggcagtggcgtcatcaacagtcaaggagcctcctgaggctacagcc 

acacctgagccactctcagatgaggaccta  

A Design to Read FASTA Files  

In Chapter 4, you learned how to read in sequence data; here, you just have to extend that 

method to deal with the header lines. You'll also learn how to discard empty lines and lines 

that begin with the pound sign #, i.e., comments in Perl and other languages and file formats. 

(These don't appear in the FASTA file sample.dna just shown.)  

There are two choices when reading in the data. You can read from the open file one line  

at a time, making decisions as you go. Or, you can slurp the whole file into an array and then 

operate on the array. For very big files, it's sometimes best to read them one line at a time, 

especially if you're looking for some small bit of information. (This is because reading a large 

file into an array uses a large amount of memory. If your system isn't robust enough, it may 

crash.)  

For smaller, normal-sized files, the advantage to reading all the data into an array is that you 

can then easily look through at the data and do operations on it. That's what we'll do with our 

subroutine, but remember, this approach can cause memory space problems with larger files, 

and there are other ways of proceeding.  
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Let's write a subroutine that, given as an argument a filename containing FASTA- formatted 

data, returns the sequence data.  

Before doing so you should think about whether you should have just one subroutine, or 

perhaps one subroutine that opens and reads a file, called by another subroutine that extracts 

the sequence data. Let's use two subroutines, keeping in mind that you can reuse the 

subroutine that deals with arbitrary files every time you need to write such a program for 

other formats.  

Let's start with some pseudocode:  

subroutine get data from a file 

    argument = filename 

    open file 

        if can't open, print error message and exit 

    read in data and 

    return @data 

} 

Subroutine extract sequence data from fasta file 

    argument = array of file data in fasta format 

       Discard all header lines 

       (and blank and comment lines for good measure) 

       If first character of first line is >, discard it 

    Read in the rest of the file, join in a scalar, 

        edit out nonsequence data 

    return sequence 

} 

In the first subroutine that gets data from a file, there's a question as to what's the best thing to 

do when the file can't be read. Here, we're taking the drastic approach: yelling "Fire!" and 

exiting. But you wouldn't necessarily want your program to just stop whenever it can't open a 

file. Maybe you're asking for filenames from the user at the keyboard or on a web page, and 

you'd like to give them three chances to type in the filename correctly. Or maybe, if the file 

can't be opened, you want a default file instead.  

Maybe you can return a false value, such as an empty array, if you can't open the file. 

Then a program that calls this subroutine can exit, try again, or whatever it wants. But what if 

you successfully open the file, but it was absolutely empty? Then you'd have succeeded and 

returned an empty array, and the program calling this subroutine would think incorrectly, that 

the file couldn't be opened. So, that wouldn't work.  

There are other options, such as returning the special "undefined" value. Let's keep what 

we've got, but it's important to remember that handling errors can be an important, and 

sometimes tricky, part of writing robust code, code that responds well in unusual 

circumstances.  

The second subroutine takes the array of FASTA-formatted sequence and returns just the 

unformatted sequence in a string.  

Reading Frames  
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The biologist knows that, given a sequence of DNA, it is necessary to examine all six reading 

frames of the DNA to find the coding regions the cell uses to make proteins.  

What Are Reading Frames?  

Very often you won't know where in the DNA you're studying the cell actually begins 

translating the DNA into protein. Only about 1-1.5% of human DNA is in genes, which are 

the parts of DNA used for the translation into proteins. Furthermore, genes very often occur 

in pieces that are spliced together during the transcription/translation process.  

If you don't know where the translation starts, you have to consider the six possible reading 

frames. Since the codons are three bases long, the translation happens in three "frames," for 

instance starting at the first base, or the second, or perhaps the third. (The fourth would be the 

same as starting from the first.) Each starting place gives a different series of codons, and, as 

a result, a different series of amino acids.  

Also, transcription and translation can happen on either strand of the DNA; that is, either the 

DNA sequence, or its reverse complement, might contain DNA code that is actually 

translated. The reverse complement can also be read in any one of three frames. So a total of 

six reading frames have to be considered when looking for coding regions , that part of the 

DNA that encodes proteins.  

It is therefore quite common to examine all six reading frames of a DNA sequence and to 

look at the resulting protein translations for long stretches of amino acids that lack stop 

codons.  

The stop codons are definite breaks in the DNA protein translation process. During 

translation (actually of RNA to protein, but I'm being deliberately informal and vague about 

the biochemistry), if a stop codon is reached, the translation stops, and the growing peptide 

chain grows no more.  

Long stretches of DNA that don't contain any stop codons are called open reading frames 

(ORFs) and are important clues to the presence of a gene in the DNA under study. So gene 

finder programs need to perform the type of reading frame analysis we'll do in this chapter.  

Translating Reading Frames  

Based on the facts just presented, let's write some code that translates the DNA in all six 

reading frames.  

In the real world, you'd look around for some subroutines that are already written to do  

that task. Given the basic nature of the task—something anyone who studies DNA has to 

do—you'd likely find something. But this is a tutorial, not the real world, so let's soldier on.  

This problem doesn't sound too daunting. So, take stock of the subroutines at your disposal, 

think of where you are and how you can get to your destination.  

Looking through the subroutines we've already written, recall dna2peptide. You may recall 

considering adding some arguments to specify starting and end points. Let's do this now.  
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Remember that although we calculated reverse complements back in Chapter 4, we never 

made a subroutine out of it. So let's start there:  

# revcom 

# 

# A subroutine to compute the reverse complement of DNA 

sequence 

sub revcom { 

    my($dna) = @_; 

    # First reverse the sequence 

    my($revcom) = reverse($dna); 

    # Next, complement the sequence, dealing with upper and 

lower case 

    # A->T, T->A, C->G, G->C 

    $revcom =~ tr/ACGTacgt/TGCAtgca/; 

    return $revcom; 

} 

Now, a little pseudocode to sketch an idea for the subroutine that will translate specific 

ranges of DNA:  

Given DNA sequence 

subroutine translate_frame ( DNA, start, end) 

return dna2peptide( substr( DNA, start, end - start + 1))  

}  

That went well! Luckily, the substr built-in Perl function made it easy to apply the desired 

start and end points, while passing the DNA into the already written dna2peptide  

subroutine.  

Note that the length of the sequence is end-start+1. To give a small example: if you start 

at position 3 and end at position 5, you've got the bases at positions 3, 4, and 5, three bases in 

all, which is exactly what 5 - 3 + 1 equals.  

Dealing with indices like this has to be done carefully, or the code won't work. For many 

programs, this is the worst the mathematics gets.  

You have to decide if you wish to keep the numbering of positions from 0, which is Perl's 

way to do it, or the first character of the sequence is in position 1, which is the biologist's way 

to do it. Let's do it the biologist's way. The positions will be decreased by one when passed to 

the Perl function substr, which, of course, does it Perl's way.  

The corrected pseudocode looks like this:  

Given DNA sequence 

subroutine translate_frame ( DNA, start, end) 

    # start and end are numbering the sequence from 1 to 
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length 

return dna2peptide( substr( DNA, start - 1, end - start +1))  

}  

The length of the desired sequence doesn't change with the change in indices, since:  

 (end - 1) - (start - 1) + 1 = end - start + 1 

So let's write this subroutine:  

# translate_frame 

# 

# A subroutine to translate a frame of DNA 

sub translate_frame { 

    my($seq, $start, $end) = @_; 

    my $protein; 

# To make the subroutine easier to use, you won't need 

to specify 

    #  the end point--it will just go to the end of the 

sequence 

    #  by default. 

    unless($end) { 

        $end = length($seq); 

    } 

    # Finally, calculate and return the translation 

        return dna2peptide ( substr ( $seq, $start - 1, 

$end -$start + 1) ); 

} 
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Regular Expressions  

We've been dealing with regular expressions for a while now. This section fills in some 

background an.d ties together the somewhat scattered discussions of regular expressions from 

earlier parts of the book.  

Regular expressions are interesting, important, and rich in capabilities. Jeffrey Friedl's book 

Mastering Regular Expressions (O'Reilly) is entirely devoted to them. Perl makes 

particularly good use of regular expressions, and the Perl documentation explains them well. 

Regular expressions are useful when programming with biological data such as sequence, or 

with GenBank, PDB, and BLAST files.  

Regular expressions are ways of representing—and searching for—many strings with one 

string. Although they are not strictly the same thing, it's useful to think of regular expressions 

as a kind of highly developed set of wildcards. The special characters in regular expressions 

are more properly known as metacharacters.  

Most people are familiar with wildcards, which are found in search engines or in the game of 

poker. You might find the reference to every word that starts with biolog by typing 

biolog*, for instance. Or you may find yourself holding five aces. (Different situations 

may use different wildcards. Perl regular expressions use * to mean "0 or more of the 

preceding item," not "followed by anything" as in the wildcard example just given.)  

In computer science, these kinds of wildcards or metacharacters have an important history, 

both practically and theoretically. The asterisk character in particular is called the Kleene 

closure after the eminent logician who invented it. As a nod to the theory, I'll mention there is 

a simple model of a computer, less powerful than a Turing machine, that can deal with 

exactly the same kinds of languages that can be described by regular expressions. This 

machine model is called a finite state automaton. But enough theory for fundamental ideas 

we've just seen—repetition, alternation, and concatenation. For instance, the character class 

shown earlier can be written using alternation as (C|G|T). Another common feature is the 

period, which can stand for any character, except a newline. So ACG.*GCA stands for any 

DNA that starts with ACG and ends with GCA. In English, this reads as: ACG followed by 0 

or more characters followed by GCA.  

In Perl, regular expressions are usually enclosed within forward slashes and are used as 

pattern-matching specifiers. Check the documentation (or Appendix B), for m//, which 
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includes some options that affect the behavior of the regular expressions. Regular expressions 

are also used in many of Perl's built-in commands, as you will see.  

The Perl documentation is essential: start with the perlre section of the Perl 

manual at http://www.perldoc.com/perl5.6/pod/perlre.html#top.  

now.  

We've already seen many examples that use regular expressions to find things in a DNA or 

protein sequence. Here I'll talk briefly about the fundamental ideas behind regular 

expressions as an introduction to some terminology. There is a useful summary of regular-

expression features in Appendix B. Finally, we'll see how to learn more about them in the 

Perl documentation.  

So let's start with a practical example that should be familiar by now to those who have been 

reading this text sequentially: using character classes to search DNA. Let's say there is a 

small motif you'd like to find in your library of DNA that is six basepairs long: CT followed 

by C or G or T followed by ACG. The third nucleotide in this motif is never A, but it can be 

C, G, or T. You can make a regular expression by letting the character class [CGT] stand for 

the variable position. The motif can then be represented by a regular expression that looks 

like this: CT[CGT]ACG. This is a motif that is six base pairs long with a C,G, or T in the 

third position. If your DNA was in a scalar variable $dna, you can test for the presence of 

the motif by using the regular expression as a conditional test in a pattern-matching 

statement, like so:  

if( $dna =~ /CT[CGT]ACG/ ) { 

    print "I found the motif!!\n"; 

}  

Regular expressions are based on three fundamental ideas:  

Repetition (or closure)  

The asterisk (*), also called Kleene closure or star, indicates 0 or more repetitions of the 

character just before it. For example, abc* matches any of these strings: ab, abc, abcc, 

abccc, abcccc, and so on. The regular expression matches an infinite number of strings.  

Alternation  

In Perl, the pattern (a|b) (read: a or b) matches the string a or the string b. 

Concatenation  

This is a real obvious one. In Perl, the string ab means the character a followed by 

(concatenated with) the character b.  

The use of parentheses for grouping is important: they are also metacharacters. So, for 

instance, the string (abc|def)z*x matches such strings as abcx, abczx, abczzx, 

defx, defzx, defzzzzzx, and so on. In English, it matches either abc or def followed 
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by zero or more z's, and ending with an x. This example combines the ideas of grouping, 

alternation, closure, and concatenation. The real power of regular expressions is seen in this 

combining of the three fundamental ideas.  

Perl has many regular-expression features. They are basically shortcuts for the three 

fundamental ideas we've just seen—repetition, alternation, and concatenation. For instance, 

the character class shown earlier can be written using alternation as (C|G|T). Another 

common feature is the period, which can stand for any character, except a newline. So 

ACG.*GCA stands for any DNA that starts with ACG and ends with GCA. In English, this 

reads as: ACG followed by 0 or more characters followed by GCA.  

In Perl, regular expressions are usually enclosed within forward slashes and are used as 

pattern-matching specifiers. Check the documentation (or Appendix B), for m//, which 

includes some options that affect the behavior of the regular expressions. Regular expressions 

are also used in many of Perl's built-in commands, as you will see.  

The Perl documentation is essential: start with the perlre section of the Perl 

manual at http://www.perldoc.com/perl5.6/pod/perlre.html#top.  

Finding the Restriction Sites  

So now it's time to write a main program and see our code in action. Let's start with a little 

pseudocode to see what still needs to be done:  

# Get DNA 

# 

get_file_data 

extract_sequence_from_fasta_data 

# 

# Get the REBASE data into a hash, from file "bionet" 

# 

parseREBASE('bionet'); 

for each user query 

    If query is defined in the hash 

        Get positions of query in DNA 

    Report on positions, if any 

}  

You now need to write a subroutine that finds the positions of the query in the DNA. 

Remember that trick of putting a global search in a while loop from Example 5-7  

and take heart. No sooner said than:  

Given arguments $query and $dna 

while ( $dna =~ /$query/ig ) { 

    save the position of the match 

}  
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return @positions 

When you used this trick before, you just counted how many matches there were, not what 

the positions were. Let's check the documentation for clues, specifically the list of built-in 

functions in the documentation. It looks like the pos function will solve the problem. It 

gives the location of the last match of a variable in an m//g search. Example 9-3 shows 

the main program followed by the required subroutine. It's a simple subroutine, given the Perl 

functions like pos that make it easy.  

Make restriction map from user queries  

#!/usr/bin/perl 

# Make restriction map from user queries on names of 

restriction enzymes 

use strict; 

use warnings; 

use BeginPerlBioinfo;     # see Chapter 6 about this module 

# Declare and initialize variables 

my %rebase_hash = (  ); 

my @file_data = (  ); 

my $query = ''; 

my $dna = ''; 

my $recognition_site = ''; 

my $regexp = ''; 

my @locations = (  ); 

# Read in the file "sample.dna" 

@file_data = get_file_data("sample.dna"); 

# Extract the DNA sequence data from the contents of the 

file "sample.dna" 

$dna = extract_sequence_from_fasta_data(@file_data); 

# Get the REBASE data into a hash, from file "bionet" 

%rebase_hash = parseREBASE('bionet'); 

# Prompt user for restriction enzyme names, create 

restriction map 

do { 

    print "Search for what restriction site for (or quit)?: 

"; 

    $query = <STDIN>; 

    chomp $query; 

    # Exit if empty query 

    if ($query =~ /^\s*$/ ) { 

exit; }  

    # Perform the search in the DNA sequence 

    if ( exists $rebase_hash{$query} ) { 

        ($recognition_site, $regexp) = split ( " ", 

$rebase_hash{$query}); 

        # Create the restriction map 

        @locations = match_positions($regexp, $dna); 
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        # Report the restriction map to the user 

        if (@locations) { 

print "Searching for $query $recognition_site 

print "A restriction site for $query at 

locations:\n"; 

            print join(" ", @locations), "\n"; 

        } else { 

            print "A restriction site for $query is not in 

the DNA:\n"; 

} }  

    print "\n"; 

} until ( $query =~ /quit/ ); 

exit;  

########################################################### 

##################### 

# 

# Subroutine 

# 

# Find locations of a match of a regular expression in a 

string 

# 

# 

# return an array of positions where the regular expression 

#  appears in the string 

# 

sub match_positions { 

    my($regexp, $sequence) = @_; 

use strict;  

    use BeginPerlBioinfo; 

module 

    # 

    # Declare variables 

    # 

    my @positions = (  ); 

# see Chapter 6 about this 

IT-SC  

221  

# 

# Determine positions of regular expression matches 

# 

while ( $sequence =~ /$regexp/ig ) { 
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push ( @positions, pos($sequence) - length($&) + 1); }  

    return @positions; 

} 

Here is some sample output from Example 9-3: 
Search for what restriction enzyme (or quit)?: AceI Searching 

for AceI G^CWGC GC[AT]GC 

A restriction site for AceI at locations: 

54 94 582 660 696 702 840 855 957  

Search for what restriction enzyme (or quit)?: AccII 

Searching for AccII CG^CG CGCG 

A restriction site for AccII at locations: 

181 

Search for what restriction enzyme (or quit)?: AaeI 

A restriction site for AaeI is not in the DNA: 

Search for what restriction enzyme (or quit)?: quit 

Notice the length($&) in the subroutine match_positions. That $& is a special 

variable that's set after a successful regular-expression match. It stands for the sequence that 

matched the regular expression. Since pos gives the position of the first base following the 

match, you have to subtract the length of the matching sequences, plus one (to make the bases 

start at position 1 instead of position 0) to report the starting position of the match. Other 

special variables include $` which contains everything in the string before the successful 

match; and $ ,́ which contains everything in the string after the successful match. So, for 

example: '123456' =~ /34/ succeeds at setting these special variables like so: $`= 

'12', $& = '34', and $  ́= '56'.  

What we have here is admittedly bare bones, but it does work. See the exercises at the end of 

the chapter for ways to extend this code.  

Perl Operations  

We've made it pretty far in this introductory programming book without talking about basic 

arithmetic operations, because you haven't really needed much more than addition to 

increment counters.  

However, an important part of any programming language, Perl included, is the ability to do 

mathematical calculations. Look at Appendix B, which shows the basic operations 

available in Perl.  

Precedence of Operations and Parentheses  

Operations have rules of precedence. These enable the language to decide which  

operations should be done first when there are a few of them in a row. The order of 

operations can change the result, as the following example demonstrates.  
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Say you have the code8+4/2. If you did the division first, you'd get8+2, or 10.However, if 

you did the addition first, you'd get 12 / 2, or 6.  

Now programming languages assign precedences to operations. If you know these, you can 

write expressions such as8+4/2, and you'd know what to expect. But this is a slippery slope.  

For one thing, what if you get it wrong? Or, what if someone else has to read the code who 

doesn't have the memorization powers you do? Or, what if you memorize it for one language 

and Perl does it differently? (Different languages do indeed have different precedence rules.)  

There is a solution, and it's called using parentheses. For Example 9-3, if you simply 

add parentheses: (8 + ( 4 / 2 )), it's clear to you, other readers, and the Perl program, 

that you want to do the division first. Note that "inner" parentheses, contained within another 

pair of parentheses, are evaluated first.  

Remember to use parentheses in complicated expressions to specify the order of operations. 

Among other things, it will save you some long debugging sessions!  

GenBank  

GenBank (Genetic Sequence Data Bank) is a rapidly growing international repository of 

known genetic sequences from a variety of organisms. Its use is central to modern biology 

and to bioinformatics.  

This chapter shows you how to write Perl programs to extract information from GenBank 

files and libraries. Exercises include looking for patterns; creating special libraries; and 

parsing the flat-file format to extract the DNA, annotation, and features. You will learn how 

to make a DBM database to create your own rapid-access lookups on selected data in a 

GenBank library.  

Perl is a great tool for dealing with GenBank files. It enables you to extract and use any of the 

detailed data in the sequence and in the annotation, such as in the FEATURES table and 

elsewhere. When I first started using Perl, I wrote a program that searched GenBank for all 

sequence records annotated as being located on human chromosome 22. I found many genes 

where that information was so deeply buried within the annotation, that the major gene 

mapping database, Genome Database (GDB), hadn't included them in their chromosome 

map. I think you'll discover the same feeling of power over the information when you start 

applying Perl to GenBank files.  

Most biologists are familiar with GenBank. Researchers can perform a search, e.g., a BLAST 

search on some query sequence, and collect a set of GenBank files of related sequences as a 

result. Because the GenBank records are maintained by the individual scientists who 

discovered the sequences, if you find some new sequence of interest, you can publish it in 

GenBank.  

GenBank files have a great deal of information in them in addition to sequence data, 

including identifiers such as accession numbers and gene names, phylogenetic classification, 

and references to published literature. A GenBank file may also include a detailed 
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FEATURES table that summarizes facts about the sequence, such as the location of the 

regulatory regions, the protein translation, and exons and introns.  

GenBank is sometimes referred to as a databank or data store, which is different from a 

database. Databases typically have a relational structure imposed upon the data, including 

associated indices and links and a query language. GenBank in comparison is a flat file, that 

is, an ASCII text file that is easily readable by humans.[1]  

[1] GenBank is also distributed in ASN.1 format, for which you need specialized tools, provided by NCBI.  

From its humble beginnings GenBank has rapidly grown, and the flat-file format has seen 

signs of strain during the growth. With a quickly advancing body of knowledge, especially 

one that's growing as quickly as genetic data, it's difficult for the design of a databank to keep 

up. Several reworkings of GenBank have been done, but the flat-file format—in all its 

frustrating glory—still remains.  

Due to a certain flexibility in the content of some sections of a GenBank record, extracting 

the information you're looking for can be tricky. This flexibility is good, in that it allows you 

to put what you think is most important into the data's annotation. It's bad, because that same 

flexibility makes it harder to write programs that to find and extract the desired annotations. 

As a result, the trend has been towards more structure in the annotations.  

Since Perl's data structures and its use of regular expressions make it a good tool for 

manipulating flat files, Perl is especially well-suited to deal with GenBank data. Using these 

features in Perl and building on the skills you've developed from previous chapters, you can 

write programs to access the accumulated genetic knowledge of the scientific community in 

GenBank.  

Since this is a beginning book that requires no programming experience, you should not 

expect to find the most finished, multipurpose software here. Instead you'll find a solid 

introduction to parsing and building fast lookup tables for GenBank files. If you've never 

done so, I strongly recommend you explore the National Center for Biotechnology 

Information (NCBI) at the National Institutes of Health (NIH) 

(http://www.ncbi.nlm.nih.gov). While you're at it, stop by the European 

Bioinformatics Institute (EBI) at http://www.ebi.ac.uk and the bioinformatics arm of 

the European Molecular Biology Laboratory (EMBL) at http://www.embl- 

heidelberg.de/. These are large, heavily funded governmental bioinformatics 

powerhouses, and they have (and distribute) a great deal of state-of-the-art bioinformatics 

software.  

$regexp\n";  

GenBank Files  

The primary repositories for genetic information are the NCBI GenBank, EMBL in Europe, 

and the DNA Data Bank of Japan (DDBJ). All have almost identical information due to 

international cooperative agreements. Each entry or record in GenBank or its mirror sites may 

contain identifying, descriptive, and genetic information in ASCII- format files. Each record 

is written in a specific standard format, organized so that both humans and computer 

programs can extract the desired information with reasonable ease.  
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Let's look at a relatively short GenBank record and at how the fields are defined, before 

writing any code. I'll save this information in a file called record.gb, for use in later  

programs.  

LOCUS       AB031069     2487 bp    mRNA            PRI 

27-MAY-2000 

DEFINITION  Homo sapiens PCCX1 mRNA for protein containing 

CXXC domain 1, 

            complete cds. 

ACCESSION   AB031069 

VERSION     AB031069.1  GI:8100074 

KEYWORDS    . 

SOURCE      Homo sapiens embryo male lung fibroblast 

cell_line:HuS-L12 cDNA to 

            mRNA. 

  ORGANISM  Homo sapiens 

            Eukaryota; Metazoa; Chordata; Craniata; 

Vertebrata; Euteleostomi; 

            Mammalia; Eutheria; Primates; Catarrhini; 

Hominidae; Homo. 

REFERENCE   1  (sites) 

  AUTHORS   Fujino,T., Hasegawa,M., Shibata,S., 

Kishimoto,T., Imai,Si. and 

            Takano,T. 

  TITLE     PCCX1, a novel DNA-binding protein with PHD 

finger and CXXC domain, 

            is regulated by proteolysis 

  JOURNAL   Biochem. Biophys. Res. Commun. 271 (2), 305-310 

(2000) 

  MEDLINE   20261256 

REFERENCE   2  (bases 1 to 2487) 

  AUTHORS   Fujino,T., Hasegawa,M., Shibata,S., 

Kishimoto,T., Imai,S. and 

            Takano,T. 

  TITLE     Direct Submission 

  JOURNAL   Submitted (15-AUG-1999) to the 

DDBJ/EMBL/GenBank databases. 

            Tadahiro Fujino, Keio University School of 

Medicine, Department of 

            Microbiology; Shinanomachi 35, Shinjuku-ku, 

Tokyo 160-8582, Japan 

            (E-mail:fujino@microb.med.keio.ac.jp, 

            Tel:+81-3-3353-1211(ex.62692), Fax:+81-3-5360- 

1508) 

FEATURES             Location/Qualifiers 

     source          1..2487 

                     /organism="Homo sapiens" 

                     /db_xref="taxon:9606" 

                     /sex="male" 

                     /cell_line="HuS-L12" 
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                     /cell_type="lung fibroblast" 

                     /dev_stage="embryo" 

     gene            229..2199 

                     /gene="PCCX1" 

     CDS             229..2199 

                     /gene="PCCX1" 

                     /note="a nuclear protein carrying a 

PHD finger and a CXXC 

domain"  

/codon_start=1 

/product="protein containing CXXC 

/protein_id="BAA96307.1" 

/db_xref="GI:8100075" 

/translation="MEGDGSDPEPPDAGEDSKSENGENAPIYCICRKPDINCFMIGCD 

NCNEWFHGDCIRITEKMAKAIREWYCRECREKDPKLEIRYRHKKSRERDGNERDSSEP 

RDEGGGRKRPVPDPDLQRRAGSGTGVGAMLARGSASPHKSSPQPLVATPSQHHQQQQQ 

QIKRSARMCGECEACRRTEDCGHCDFCRDMKKFGGPNKIRQKCRLRQCQLRARESYKY 

FPSSLSPVTPSESLPRPRRPLPTQQQPQPSQKLGRIREDEGAVASSTVKEPPEATATP 

EPLSDEDLPLDPDLYQDFCAGAFDDHGLPWMSDTEESPFLDPALRKRAVKVKHVKRRE 

KKSEKKKEERYKRHRQKQKHKDKWKHPERADAKDPASLPQCLGPGCVRPAQPSSKYCS 

DDCGMKLAANRIYEILPQRIQQWQQSPCIAEEHGKKLLERIRREQQSARTRLQEMERR 

FHELEAIILRAKQQAVREDEESNEGDSDDTDLQIFCVSCGHPINPRVALRHMERCYAK 

YESQTSFGSMYPTRIEGATRLFCDVYNPQSKTYCKRLQVLCPEHSRDPKVPADEVCGC 

PLVRDVFELTGDFCRLPKRQCNRHYCWEKLRRAEVDLERVRVWYKLDELFEQERNVRT 

                     AMTNRAGLLALMLHQTIQHDPLTTDLRSSADR" 

BASECOUNT 564a 715c 768g 440t ORIGIN  

        1 agatggcggc gctgaggggt cttgggggct ctaggccggc 

cacctactgg tttgcagcgg 

       61 agacgacgca tggggcctgc gcaataggag tacgctgcct 

gggaggcgtg actagaagcg 

      121 gaagtagttg tgggcgcctt tgcaaccgcc tgggacgccg 

ccgagtggtc tgtgcaggtt 

      181 cgcgggtcgc tggcgggggt cgtgagggag tgcgccggga 

gcggagatat ggagggagat 

      241 ggttcagacc cagagcctcc agatgccggg gaggacagca 

agtccgagaa tggggagaat 

      301 gcgcccatct actgcatctg ccgcaaaccg gacatcaact 

gcttcatgat cgggtgtgac 

      361 aactgcaatg agtggttcca tggggactgc atccggatca 

ctgagaagat ggccaaggcc 

      421 atccgggagt ggtactgtcg ggagtgcaga gagaaagacc 

ccaagctaga gattcgctat 

481 cggcacaaga agtcacggga gcgggatggc aatgagcggg 

acagcagtga gccccgggat 

      541 gagggtggag ggcgcaagag gcctgtccct gatccagacc 

tgcagcgccg ggcagggtca 

      601 gggacagggg ttggggccat gcttgctcgg ggctctgctt 
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cgccccacaa atcctctccg 

      661 cagcccttgg tggccacacc cagccagcat caccagcagc 

agcagcagca gatcaaacgg 

      721 tcagcccgca tgtgtggtga gtgtgaggca tgtcggcgca 

ctgaggactg tggtcactgt 

      781 gatttctgtc gggacatgaa gaagttcggg ggccccaaca 

agatccggca gaagtgccgg 

      841 ctgcgccagt gccagctgcg ggcccgggaa tcgtacaagt 

acttcccttc ctcgctctca 

      901 ccagtgacgc cctcagagtc cctgccaagg ccccgccggc 

cactgcccac ccaacagcag 

      961 ccacagccat cacagaagtt agggcgcatc cgtgaagatg 

agggggcagt ggcgtcatca 

     1021 acagtcaagg agcctcctga ggctacagcc acacctgagc 

cactctcaga tgaggaccta 

     1081 cctctggatc ctgacctgta tcaggacttc tgtgcagggg 

cctttgatga ccatggcctg 

     1141 ccctggatga gcgacacaga agagtcccca ttcctggacc 

ccgcgctgcg gaagagggca 

     1201 gtgaaagtga agcatgtgaa gcgtcgggag aagaagtctg 

agaagaagaa ggaggagcga 

     1261 tacaagcggc atcggcagaa gcagaagcac aaggataaat 

ggaaacaccc agagagggct 

     1321 gatgccaagg accctgcgtc actgccccag tgcctggggc 

ccggctgtgt gcgccccgcc 

     1381 cagcccagct ccaagtattg ctcagatgac tgtggcatga 

agctggcagc caaccgcatc 

     1441 tacgagatcc tcccccagcg catccagcag tggcagcaga 

gcccttgcat tgctgaagag 

     1501 cacggcaaga agctgctcga acgcattcgc cgagagcagc 

agagtgcccg cactcgcctt 

     1561 caggaaatgg aacgccgatt ccatgagctt gaggccatca 

ttctacgtgc caagcagcag 

     1621 gctgtgcgcg aggatgagga gagcaacgag ggtgacagtg 

atgacacaga cctgcagatc 

     1681 ttctgtgttt cctgtgggca ccccatcaac ccacgtgttg 

ccttgcgcca catggagcgc 

     1741 tgctacgcca agtatgagag ccagacgtcc tttgggtcca 

tgtaccccac acgcattgaa 

     1801 ggggccacac gactcttctg tgatgtgtat aatcctcaga 

gcaaaacata ctgtaagcgg 

1861 ctccaggtgc tgtgccccga gcactcacgg gaccccaaag 

tgccagctga cgaggtatgc 

     1921 gggtgccccc ttgtacgtga tgtctttgag ctcacgggtg 

acttctgccg cctgcccaag 

     1981 cgccagtgca atcgccatta ctgctgggag aagctgcggc 

gtgcggaagt ggacttggag 

     2041 cgcgtgcgtg tgtggtacaa gctggacgag ctgtttgagc 

aggagcgcaa tgtgcgcaca 

     2101 gccatgacaa accgcgcggg attgctggcc ctgatgctgc 

accagacgat ccagcacgat 
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     2161 cccctcacta ccgacctgcg ctccagtgcc gaccgctgag 

cctcctggcc cggacccctt 

     2221 acaccctgca ttccagatgg gggagccgcc cggtgcccgt 

gtgtccgttc ctccactcat 

     2281 ctgtttctcc ggttctccct gtgcccatcc accggttgac 

cgcccatctg cctttatcag 

     2341 agggactgtc cccgtcgaca tgttcagtgc ctggtggggc 

tgcggagtcc actcatcctt 

     2401 gcctcctctc cctgggtttt gttaataaaa ttttgaagaa 

accaaaaaaa aaaaaaaaaa 

     2461 aaaaaaaaaa aaaaaaaaaa aaaaaaa 

// 

Even if you're used to seeing GenBank files, it's worth taking the time to look one over, while 

considering how you would write a program to extract various parts of the data. For instance, 

how would you extract the sequence data? What's the format of the FEATURES table and its 

various subfields?  

There's a lot of information packed into a typical GenBank entry, and it's important to be able 

to separate the different parts. For instance, if you can extract the sequence, you can search 

for motifs, calculate statistics on the sequence, look for similarity with other sequences, and 

so forth. Similarly, you'll want to separate out—or parse—the various parts of the data 

annotation. In GenBank, this includes ID numbers, gene names, genus and species, 

publications, etc. The FEATURES table part of the annotation can include specific 

information about the DNA, such as the locations of exons, regulatory regions, important 

mutations, and so on.  

The format specification of GenBank files and a great deal of other information about 

GenBank can be found in the GenBank release notes, gbrel.txt, on the GenBank web site 

at ftp://ncbi.nlm.nih.gov/genbank/gbrel.txt. 

gbrel.txt gives complete detail about the structure of GenBank files to help programmers, 

so you may want to refer to it as your searches become more complex. As a Perl programmer, 

you won't need all of the detail because you can parse data using regular expressions or the 

split function. You need to get the data out and make it available to your programs. The 

code that accomplishes this task can be fairly simple, as you will see in this chapter.  

GenBank Libraries  

GenBank is distributed as a set of libraries—flat files containing many records in 

succession.[2] As of GenBank release 125.0, August 2001, there are 243 files, most of which 

are over 200 MB in size. Altogether, GenBank contains 12,813516 loci and 13,543,364,296 

bases from 12,813,516 reported sequences. The libraries are usually distributed compressed, 

which means you can download somewhat smaller files, but you need to uncompress them 

after you received them. Uncompressed, this amounts to about 50 GB of data. Since 1982, the 

number of sequences in GenBank has doubled about every 14 months.  

[2] The data is also distributed in the ASN.1 format.  

GenBank libraries are further organized into divisions by the classification of the sequences 

they contain, either phylogenetically or by sequencing technology. Here are the divisions:  
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PRI: primate sequences 

ROD: rodent sequences 

MAM: other mammalian sequences 

VRT: other vertebrate sequences 

INV: invertebrate sequences 

PLN: plant, fungal, and algal sequences 

BCT: bacterial sequences 

VRL: viral sequences 

PHG: bacteriophage sequences 

SYN: synthetic and chimeric sequences 

UNA: unannotated sequences 

EST: EST sequences (expressed sequence tags) 

PAT: patent sequences 

STS: STS sequences (sequence tagged sites) 

GSS: GSS sequences (genome survey sequences) 

HTG: HTGS sequences (high throughput genomic sequencing data)  

HTC: HTC sequences (high throughput cDNA sequencing data)  

Some divisions are very large: the largest, the EST, or expressed sequence tag division, is 

comprised of 123 library files! A portion of human DNA is stored in the PRI division, which 

contains (as of this writing) 13 library files, for a total of almost 3.5 GB of data. Human data 

is also stored in the STS, GSS, HTGS, and HTC divisions. Human data alone in GenBank 

makes up almost 5 million record entries with over 8 trillion bases of sequence.  

The public database servers such as Entrez or BLAST at 

http://www.ncbi.nlm.nih.gov/ give you access to well-maintained and updated 

sequence data and programs, but many researchers find that they need to write their own 

programs to manipulate and analyze the data. The problem is, there's so much data. For many 

purposes, you can download a selected set of records from NCBI or other locations, but 

sometimes you need the whole dataset.  

It's possible to set up a desktop workstation (Windows, Mac, Unix, or Linux) that contains all 

of GenBank; just be sure to buy a very large hard disk! Getting all that data onto your hard 

drive, however, is more difficult. A Perl program called mirror.pl helps to address this need. 

Downloading it, even with a university-standard, high-speed Internet connection can be time-

consuming; downloading an entire dataset with a modem can be an exercise in frustration. 

The best solution is to download only the files you need, in compressed form. The EST data, 

for example, is about half the entire database; don't download it unless you really need to. If 

you need to download GenBank, I recommend contacting the help desk at NCBI. They'll help 

you get the most up-to-date information.  

Since you're learning to program, it makes more sense to practice on a tiny, five-record 

library file, but the programs you'll write will work just fine on the real files.  

Separating Sequence and Annotation  

In previous chapters you saw how to examine the lines of a file using Perl's array operations. 

Usually, you do this by saving the data in an array with each appearing as an element of the 

array.  
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Let's look at two methods to extract the annotation and the DNA from a GenBank file. In the 

first method, you'll slurp the file into an array and look through the lines, as in previous 

programs. In the second, you'll put the whole GenBank record into a scalar variable and use 

regular expressions to parse the information. Is one approach better than the other? Not 

necessarily: it depends on the data. There are advantages and disadvantages to each, but both 

get the job done.  

I've put five GenBank records in a file called library.gb. As before, you can download the 

file from this book's web site. You'll use this datafile and the file record.gb in the next few 

examples.  

Separating annotations from sequence  

Now that you've met the pattern-matching modifiers and regular expressions that will be your 

main tools for parsing a GenBank file as a scalar, let's try separating the annotations from the 

sequence.  

The first step is to get the GenBank record stored as a scalar variable. Recall that a GenBank 

record starts with a line beginning with the word "LOCUS" and ends with the end-of-record 

separator: a line containing two forward slashes.  

First you want to read a GenBank record and store it in a scalar variable. There's a device 

called an input record separator denoted by the special variable $/ that lets you do exactly 

that. The input record separator is usually set to a newline, so each call to read a scalar from a 

filehandle gets one line. Set it to the GenBank end-of-record separator like so:  

$/ = "//\n";  

A call to read a scalar from a filehandle takes all the data up to the GenBank end-of- record 

separator. So the line $record = <GBFILE> in Example 10-2 stores the multiline 

GenBank record into the scalar variable $record. Later, you'll see that you can keep 

repeating this call in order to read in successive GenBank records from a GenBank library 

file.  

After reading in the record, you'll parse it into the annotation and sequence parts making use 

of /s and /m pattern modifiers. Extracting the annotation and sequence is the easy part; 

parsing the annotation will occupy most of the remainder of the chapter.  

 

Extract annotation and sequence from Genbank record  

#!/usr/bin/perl 

# Extract the annotation and sequence sections from the 

first 

#   record of a GenBank library 

use strict; 

use warnings; 

use BeginPerlBioinfo;     # see Chapter 6 about this module 

# Declare and initialize variables 



 16 

my $annotation = ''; 

my $dna = ''; 

my $record = ''; 

my $filename = 'record.gb'; 

my $save_input_separator = $/; 

# Open GenBank library file 

unless (open(GBFILE, $filename)) { 

print "Cannot open GenBank file \"$filename\"\n\n"; 

exit; }  

# Set input separator to "//\n" and read in a record to a 

scalar 

$/ = "//\n"; 

$record = <GBFILE>; 

# reset input separator 

$/ = $save_input_separator; 

# Now separate the annotation from the sequence data 

($annotation, $dna) = ($record =~ 

/^(LOCUS.*ORIGIN\s*\n)(.*)\/\/\n/s); 

# Print the two pieces, which should give us the same as 

the 

#  original GenBank file, minus the // at the end 

print $annotation, $dna; 

exit;  

The output from this program is the same as the GenBank file listed previously, minus the 

last line, which is the end-of-record separator //.  

Let's focus on the regular expression that parses the annotation and sequence out of the 

$record variable. This is the most complicated regular expression so far:  

$record = /^(LOCUS.*ORIGIN\s*\n)(.*)\/\/\n/s. 

There are two pairs of parentheses in the regular expression: (LOCUS.*ORIGIN\s*\n) 

and (.*). The parentheses are metacharacters whose purpose is to remember the parts of the 

data that match the pattern within the parentheses, namely, the annotation and the sequence. 

Also note that the pattern match returns an array whose elements are the matched 

parenthetical patterns. After you match the annotation and the sequence within the pairs of 

parentheses in the regular expression, you simply assign the matched patterns to the two 

variables $annotation and $dna, like so: 
($annotation, $dna) = ($record =~ 

/^(LOCUS.*ORIGIN\s*\n)(.*)\/\/\n/s); 

Notice that at the end of the pattern, we've added the /s pattern matching modifier, which, 

as you've seen earlier, allows a dot to match any character including an embedded newline. 

(Of course, since we've got a whole GenBank record in the $record scalar, there are a lot 

of embedded newlines.)  

Next, look at the first pair of parentheses:  
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(LOCUS.*ORIGIN\s*\n) 

This whole expression is anchored at the beginning of the string by preceding it with a ^  

metacharacter. (/s doesn't change the meaning of the ^ character in a regular expression.)  

Inside the parentheses, you match from where the string LOCUS appears at the beginning of 

the GenBank record, followed by any number of characters including newlines with .*, 

followed by the string ORIGIN, followed by possibly some whitespace with \s*, followed 

by a newline \n. This matches the annotation part of the GenBank record.  

Now, look at the second parentheses and the remainder:  

(.*)\/\/\n 

This is easier. The .* matches any character, including newlines because of the /s pattern 

modifier at the end of the pattern match. The parentheses are followed by the end- of-record 

line, //, including the newline at the end, with the slashes preceded by backslashes to show 

that you want to match them exactly. They're not delimiters of the pattern matching operator. 

The end result is the GenBank record with the annotation and the sequence separated into the 

variables $annotation and $sequence. Although the regular expression I used 

requires a bit of explanation, the attractive thing about this approach is that it took only one 

line of Perl code to extract both annotation and sequence.  

Parsing Annotations  

Now that you've successfully extracted the sequence, let's look at parsing the annotations of a 

GenBank file.  

Looking at a GenBank record, it's interesting to think about how to extract the useful 

information. The FEATURES table is certainly a key part of the story. It has considerable 

structure: what should be preserved, and what is unnecessary? For instance, sometimes you 

just want to see if a word such as "endonuclease" appears anywhere in the record. For this, 

you just need a subroutine that searches for any regular expression in the annotation. 

Sometimes this is enough, but when detailed surgery is necessary, Perl has the necessary 

tools to make the operation successful.  

Protein Data Bank  

The success of the Human Genome Project in decoding the DNA sequence of human genes 

has captured the public imagination, but another project has been quietly gaining momentum, 

and it promises equally revolutionary results. This project is an international effort to 

determine the 3D structure of a comprehensive range of proteins on a genome- wide level 

using high-throughput analytical technologies. This international effort is the foundation of 

the new field of structural genomics.  

Recent and expected advances in technology promise an accelerating pace of protein 

structure determination. The storehouse for all of this data is the Protein Data Bank 

(PDB). The PDB may be found on the web at http://www.rcsb.org/pdb/.  



 18 

Finding the amino acid or primary sequence is just the beginning of studying a protein. 

Proteins fold locally into secondary structures such as alpha helices, beta-strands, and turns. 

Two or three adjacent secondary structures might combine into common local folds called " 

motifs" or "supersecondary" structures such as beta sheets or alpha-alpha units. These 

building blocks then fold into the 3D or tertiary structure of a protein. Finally, one or more 

tertiary structures may be combined as subunits into a quaternary structure such as an enzyme 

or a virus.  

Without knowing how a protein folds into a 3D structure, you are less likely to know what 

the protein does or how it does it. Even if you know that the protein is implicated in a disease, 

knowledge of its tertiary structure is usually needed to find a possible treatment. Knowing the 

tertiary conformation of the active site of a protein (which may involve amino acids that are 

far apart in terms of the primary sequence but which are brought together by the folding of 

the protein) is critical to guide the selection of targets for new drugs.  

Now that the basic genetic information of a number of organisms, including humans, has 

been decoded, a primary challenge facing biologists is to learn as much as possible about the 

proteins those genes produce and how they interact.  

In fact, one of the great questions of modern biology is how the primary amino acid sequence 

of a protein determines its ultimate 3D shape. If a computational method can be found to 

reliably predict the fold of a protein from its amino acid sequence, the effect on biology and 

medicine would be profound.  

In this chapter, you'll learn the basics of PDB files and how to parse out selected information 

form them. You'll also explore interesting Perl techniques for finding and iterating over lots 

of files, as well as controlling other bioinformatics programs from a Perl program. The 

exercises at the end of the chapter challenge you to extend the introductory material presented 

here to gain access to more of the PDB data.  

BLAST  

In biological research, the search for sequence similarity is very important. For instance, a 

researcher who has discovered a potentially important DNA or protein sequence wants to 

know if it's already been identified and characterized by another researcher. If it hasn't, the 

researcher wants to know if it resembles any known sequence from any organism. This 

information can provide vital clues as to the role of the sequence in the organism.  

The Basic Local Alignment Search Tool (BLAST) is one of the most popular software tools 

in biological research. It tests a query sequence against a library of known sequences in order 

to find similarity. BLAST is actually a collection of programs with versions for query-to-

database pairs such as nucleotide-nucleotide, protein-nucleotide, protein-protein, nucleotide-

protein, and more.  

This chapter examines the output from the nucleotide-nucleotide version of the program, 

BLASTN . For simplicity's sake, I'll simply refer to it here as BLAST. The main goal of this 

chapter is to show how to write code to parse a BLAST output file using regular expressions. 

The code is simple and basic, but it does the job. Once you understand the basics, you can 

build more features into your parser or obtain one of the fancier BLAST output parsers that's 
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available via the Web. In either case, you'll know enough about output parsers to use or 

extend them.  

This chapter also gives you a brief introduction to Bioperl, which is a collection of Perl 

bioinformatics modules. The Bioperl project is an example of an open source project that 

you, the Perl bioinformatics programmer, can put to good use. The Perl programming 

language is itself an open source project. The program and its source code are available for 

use and modification with only very reasonable restrictions and at no cost.  

Obtaining BLAST  

There are a several implementations of BLAST. The most popular is probably the one offered 

free of charge by the National Center for Biotechnology Information (NCBI): 

http://www.ncbi.nlm.nih.gov/BLAST/. The NCBI web site features a publicly 

available BLAST server, a comprehensive set of databases, and a well-organized collection 

of documents and tutorials, in addition to the BLAST software available for downloading.  

Also popular is the WU-BLAST implementation from Washington University. The main web 

site, including a list of other WU-BLAST servers, can be found at 

http://blast.wustl.edu. Older versions of WU-BLAST are available at no charge. Newer 

versions are free if you qualify as a research or nonprofit organization and agree to the 

licensing arrangements from Washington University where the program is developed and 

maintained. If you work at a major research organization, you may already have a site license 

for the WU-BLAST program. If you are a for-profit company, there is a rather hefty charge 

for the newer WU-BLAST program (older versions are freely  

available if you want to run BLAST on your own computer). Pennsylvania State University 

also develops some BLAST programs, available at http://bio.cse.psu.edu/. In addition 

to NCBI and WU-BLAST, many other BLAST server web sites are available. A Google 

search (http://www.google.com) on "BLAST server" will bring up many hits.  

A big question that faces researchers when they use BLAST is whether to use a public 

BLAST server or to run it locally. There are significant advantages to using a public server, 

the largest being that the databases (such as GenBank) used by the BLAST server are always 

up to date. To keep your own up-to-date copy of these databases requires a significant 

amount of hard-disk space, a computer with a fairly high-end processor and a lot of memory 

(to run the BLAST engine), a high-capacity network link, and a lot of time setting up and 

overseeing the software that updates the databases. On the other hand, perhaps you have your 

own library of sequences that you want to use in BLAST searches, you do frequent or large 

searches, or you have other reasons to run your own in-house BLAST engine. If that's the 

case, it makes sense to invest in the hardware and run it locally.  

The online documentation for BLAST is fairly extensive and includes details on the statistical 

methods the program uses to calculate similarity. In the next section, I touch briefly on some 

of those points, but you should refer to the BLAST home page and to the excellent material at 

the NCBI web site for the whole story and detailed references. Our interest here is not the 

theory, but rather to parse the output of the program.  

String Matching and Homology  
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String matching is the computer-science term for algorithms that find one string 

embedded in another. It has a fairly long and fruitful history, and many string-matching 

algorithms have been developed using a variety of techniques and for different cases. (See the 

Gusfield book in Appendix A for an excellent treatment with a biological emphasis.) We've 

already done a fair amount of string matching, using the binding operator to search for motifs 

and other text with regular expressions.  

BLAST is basically a string-matching program. Details of the string-matching algorithms, 

and of the algorithms used in BLAST in particular, are beyond the scope of this book. But 

first I want to define some terms that are frequently confused or used interchangeably. I also 

briefly introduce the BLAST statistics.  

Biological string matching looks for similarity as an indication of homology. Similarity 

between the query and the sequences in the database may be measured by the percent 

identity, or the number of bases in the query that exactly match a corresponding region of a 

sequence from the database. It may also be measured by the degree of conservation, which 

finds matches between equivalent (redundant) codons or between amino acid residues with 

similar properties that don't alter the function of a protein (see Chapter 8). Homology 

between sequences means the sequences are related evolutionarily. Two sequences are or are 

not homologous; there's no degree of homology.  

At the risk of oversimplifying a complex topic, I'll summarize a few facts about BLAST 

statistics. (See the BLAST documentation for a complete picture.) The output of a BLAST 

search reports a set of scores and statistics on the matches it has found based on the raw score 

S, various parameters of the scoring algorithm, and properties of the query and database. The 

raw score S is a measure of similarity and the size of the match. The BLAST output lists the 

hits ranked by their E value. The E (expect) value of a match measures, roughly, the chances 

that the string matching (allowing for gaps) occurs in a randomly generated database of the 

same size and composition. The closer to 0 the E value is, the less likely it occurred by 

chance. In other words, the lower the E value, the better the match. As a general rule of 

thumb for BLASTN, an E value less than 1 may be a solid hit, and an E value of less than 10 

may be worth looking at, but this is not a hard and fast rule. (Of course, proteins can be 

homologous with even a very small percent identity; the percent similarity is typically higher 

for homologous DNA.)  

Now that you have the basics, let's write code to parse BLAST output. First, you separate the 

hits, then extract the sequence, and finally, you find the annotation showing the E value 

statistic.  

Bioperl  

The Bioperl project is an important collection of Perl code for bioinformatics that has been 

in development since 1998. Although Bioperl uses the more advanced object- oriented style 

of Perl program design, it's possible to take an introductory look here at how it's organized 

and used.  

The main focus of Bioperl modules is to perform sequence manipulation, provide access to 

various biology databases (both local and web-based), and parse the output of various 

programs.  
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Bioperl is available at http://www.bioperl.org/. Some of its features rely on having 

additional Perl modules—available from CPAN (http://www.cpan.org/)—installed. 

This situation is quite common, and as you do more Perl programming, you'll become 

familiar with installing modules from CPAN. The Bioperl tutorials include information on 

installing Bioperl and additional modules for the three major operating systems: Unix or 

Linux, Mac, and Windows.  

Bioperl doesn't provide complete programs. Rather, it provides a fairly large—and growing—

set of modules for accomplishing common tasks, including some tasks you've seen in this 

book. You're responsible for writing the code that holds the modules together. By providing 

these ready and (usually) easy-to-use modules, Bioperl makes developing bioinformatics 

applications in Perl faster and easier. There are example programs for  

most of the modules, which can be examined and modified to get started.  

Like many open source projects, Bioperl has suffered from fragmentation and uneven 

documentation, due to the strictly volunteer and geographically dispersed group of 

contributors. But recent work on the project leading up to Release 0.7 in March 2001 has 

significantly improved the project. In particular, there is now enough tutorial information on 

using the modules to enable you to make good use of the code.  

Some difficulties still remain. Most of the code has been developed on Unix or Linux 

systems. Not all of it works on Macs or Windows operating systems, but most will. There are 

some documents available at the Bioperl web site that discuss using Bioperl on non- Unix 

computers, but the bottom line is that you might find that some things don't work.  

If you're going to give Bioperl a try (and I strongly recommend you do), you should make 

sure you have a fairly recent version of Perl installed. You'll need at least Version 5.004; it 

would be much better to install the latest stable release from the Perl web site 

http://www.perl.com.  

Bioperl Tutorial Script  

Bioperl has a tutorial script to help you try out various parts of the package. In this section, 

I'll show how to start up and run some example computations.  

I've mentioned already that you should learn how to download code from CPAN in order to 

add modules such as Bioperl. A great deal of the usefulness of the Perl programming 

environment now resides in these modules available on CPAN. This was a design decision: 

by concentrating on the core Perl language, the Perl designers can focus on making the 

language as good as they can. The Perl module developers can then concentrate on their 

many modules. By all means, take a look around the CPAN web site for an idea of the wealth 

of Perl modules available to you.  

I won't give the details of how to install Bioperl here: as mentioned, they are available at the 

Bioperl web site, or you can visit the CPAN web site for information.  

So, let's assume you've installed the Bioperl module and looked over the tutorial at the 

Bioperl web site. Now, let's see how to try out some Bioperl programs.  
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Go to the directory where the Bioperl software has been built on your system. For instance, 

on my Linux computer, I put the download file bioperl-0.7.0.tar.gz into the  

directory /usr/local/src, and then unpacked it with the command: tar xvzf 
bioperl-0.7.0.tar.gz  

which creates the source directory /usr/local/src/bioperl-0.7.0. After installing the module 

(check the documentation), you're ready to run the tutorial script.  

Change to the source directory and type perl bptutorial.pl. Here's the result (I've 

shown the head of the tutorial to give the author and copyright information):  

% head bptutorial.pl 

# $Id: ch12,v 1.44 2001/10/10 20:37:42 troutman Exp mam $ 

=head1  BioPerl Tutorial 

  Cared for by Peter Schattner <schattner@alum.mit.edu> 

  Copyright Peter Schattner 

   This tutorial includes "snippets" of code and text from 

various 

   Bioperl documents including module documentation, 

example scripts 

% perl bptutorial.pl 

The following numeric arguments can be passed to run the 

corresponding demo-script. 

1 => access_remote_db , 

2 => index_local_db , 

3 => fetch_local_db , 

run with demo 2) 

4 => sequence_manipulations , 

5 => seqstats_and_seqwords , 

6 => restriction_and_sigcleave , 

7 => other_seq_utilities , 

8 => run_standaloneblast , 

9 => blast_parser , 

10 => bplite_parsing , 

11 => hmmer_parsing , 

12 => run_clustalw_tcoffee , 

(# NOTE: needs to be 

13 => run_psw_bl2seq , 

14 => simplealign_univaln , 

15 => gene_prediction_parsing , 

16 => sequence_annotation , 

17 => largeseqs , 

18 => liveseqs , 

19 => demo_variations , 

20 => demo_xml , 

In addition the argument "100" followed by the name of a 

single 

bioperl object will display a list of all the public 

methods 
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available from that object and from what object they are 

inherited. 

Using the parameter "0" will run all tests. 

Using any other argument (or no argument) will run this 

display. 

So typical command lines might be: 

To run all demo scripts: 

 > perl -w  bptutorial.pl 0 

or to just run the local indexing demos: 

 > perl -w  bptutorial.pl 2 3 

or to list all the methods available for object 

Bio::Tools::SeqStats - 

 > perl -w  bptutorial.pl 100 Bio::Tools::SeqStats 

% 

Now let's try option 9, the BLAST parser, and option 1, access_remote_db. So here  

goes, starting with the BLAST parser:  

% perl bptutorial.pl 9 

Beginning blast.pm parser example... 

QUERY NAME 

QUERY DESC 

LENGTH 

FILE 

DATE 

PROGRAM 

VERSION 

DB-NAME 

sequences 

DB-RELEASE 

DB-LETTERS 

: gi|1401126 

: UNKNOWN 

: 504 

: t/blast.report 

: Thu, 16 Apr 1998 18:56:18 -0400 

: TBLASTN 

: 2.0.4 [Feb-24-1998]</b> 

: Non-redundant GenBank+EMBL+DDBJ+PDB 

: Apr 16, 1998  9:38 AM 

: 677679054 

DB-SEQUENCES 

GAPPED 

TOTAL HITS 

CHECKED ALL 

FILT FUNC 

SIGNIF HITS 

SIGNIF CUTOFF  : 1.0e-05 (EXPECT-VALUE) 

LOWEST EXPECT  : 0.0 

HIGHEST EXPECT : 1e-05 
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HIGHEST EXPECT : 7.6 (OVERALL) 

MATRIX 

FILTER 

EXPECT 

LAMBDA, K, H 

WORD SIZE 

: BLOSUM62 

: NONE 

:10 

: 0.270, 0.0470, 0.230 (SHARED STATS) :13  

S 

GAP CREATION 

GAP EXTENSION  : 1 

: 336723 : YES 

: 100 

: YES :NO :4  

: 42, 74 (SHARED STATS) :11  

Number of hits is 4 

Fraction identical for hit 1 is 0.25 

Sequence identities for hsp of hit 1 are 66-68 70 73 76 79 

80 87-89 114 117 

119 131 144 146 149 150 152 156 162 165 168 170 171 176 

178-182 184 187 190 

191 205-207 211 214 217 222 226 241 244 245 249 256 266-268 

270 278 284 291 

296 304 306 309 311 316 319 324 

% 

This is an interesting way to parse BLAST output! Now let's look at the access of the remote 

DB:  

% perl bptutorial.pl 1 

Beginning remote database access example... 

seq1 display id is MUSIGHBA1 

seq2 display id is AF303112 

Display id of first sequence in stream is AF041456 

% 

Well, that was less informative as an output, but it seems you can infer that the remote DB 

access was successful. (By the way, if you're unsuccessful with this, it may be that you're 

behind a firewall which is denying access—a not uncommon occurrence in universities or 

large companies.)  

The documentation suggests running the bptutorial.pl script under the Perl debugger to 

watch what happens step by step. I concur with that suggestion but won't include the  
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output here. Try it yourself!  

Since that last example wasn't much fun, let's try one more: here's the sequence manipulation 

tutorial:  

% perl bptutorial.pl 4 

Beginning sequence_manipulations and SeqIO example... 

First sequence in fasta format... 

>Test1 

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGT 

C 

TGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAG 

G 

TCACTAAATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTA 

C 

ACAACATCCATGAAACGCATTAGCACCACC 

Seq object display id is Test1 

Sequence is 

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGT 

CTGATAG 

CAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACT 

AAATACTTTAACCAATATA 

GGCATAGCGCACAGACAGATAAAAATTACAGAGTACACAACATCCATGAAACGCATTAG 

CACCACC 

Sequence from 5 to 10 is TTTCAT 

Acc num is unknown 

Moltype is dna 

Primary id is Test1 

Truncated Seq object sequence is TTTCAT 

Reverse complemented sequence 5 to 10  is GTGCTA 

Translated sequence 6 to 15 is LQRAICLCVD 

Beginning 3-frame and alternate codon translation example... 

ctgagaaaataa translated using method defaults : LRK* 

ctgagaaaataa translated as a coding region (CDS): MRK  

Translating in all six frames: 

 frame: 0 forward: LRK* 

 frame: 0 reverse-complement: LFSQ 

 frame: 1 forward: *ENX 

 frame: 1 reverse-complement: YFLX 

 frame: 2 forward: EKI 

 frame: 2 reverse-complement: IFS 

Translating with all codon tables using method defaults: 

1 : LRK* 

2 : L*K* 

3 : TRK* 

4 : LRK* 

5 : LSK* 

6 : LRKQ 

9 : LSN* 
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10 : LRK* 

11 : LRK* 

12 : SRK* 

13 : LGK* 

14 : LSNY 

15 : LRK* 

16 : LRK* 

21 : LSN* 

% 

That was more fun, because this part of Bioperl is doing several things we've done in this 

book.  

I hope this brief look at Bioperl has whetted your appetite for more. It's a good idea to 

explore this set of modules. A Perl module for parsing BLAST output called BPLite.pm may 

also be of interest: it's now part of the Bioperl project.  

 

 

 
 
 

 


