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High-throughput molecular analysis is a well-known technology that plays an 

important role in exploring biological questions in many species, especially in human 

genomic studies. Over the past 20 years, gene expression profiling, a revolutionary technique, 

has been widely used for genomic identification, genetic testing, drug discovery, and disease 

diagnosis, among other things (1). The field of genomics and proteomics research has 

undergone neoteric fluctuations as a result of next-generation sequencing (NGS), a paradigm-

shifting technology that provides higher accuracy, larger throughput and more applications 

than the microarray platform (2-4). The use of massively parallel sequencing has increasingly 

been the object of study in recent years. The NGS technologies are implemented for several 

applications, including whole genome sequencing, de novo assembly sequencing, 

resequencing, and transcriptome sequencing at the DNA or RNA level. 

Next-generation sequencing (NGS) refers to the deep, high-throughput, in-parallel 

DNA sequencing technologies developed a few decades after the Sanger DNA sequencing 

method first emerged in 1977 and then dominated for three decades . The NGS technologies 

are different from the Sanger method in that they provide massively parallel analysis, 

extremely high-throughput from multiple samples at much reduced cost. Millions to billions 

of DNA nucleotides can be sequenced in parallel, yielding substantially more throughput and 

mini‐ mizing the need for the fragment-cloning methods that were used with Sanger 

sequencing . The second-generation sequencing methods are characterized by the need to 

prepare amplified sequencing libraries before undertaking sequencing of the amplified DNA 

clones, whereas third-generation single molecular sequencing can be done without the need 

for creating the time-consuming and costly amplification libraries . The parallelization of a 

high number of sequencing reactions by NGS was achieved by the miniaturization of 

sequencing reactions and, in some cases, the development of microfluidics and improved 

detection systems. The time needed to generate the gigabase (Gb)-sized sequences by NGS 

was reduced from many years to only a few days or hours, with an accompanying massive 

price reduction. 

For example, as part of the Human Genome Project, the J. C. Venter genome [7] took 

almost 15 years to sequence at a cost of more than 1 million dollars using the Sanger method, 

whereas the J. D. Watson (1962 Nobel Prize winner) genome was sequenced by NGS using 

the 454 Genome Sequencer FLX with about the same 7.5x coverage within 2 months and for 

approximately 100th of the price. The cost of sequencing the bacterial genome is now 

possible at about $1000 (https://www.nanoporetech.com), and the large-scale whole-genome 

sequencing (WGS) of 2,636 Icelanders has brought some of the aims of the 1000 Genomes 

Project to abrupt fruition Rapid progress in NGS technology and the simultaneous 

development of bioinformatics tools has allowed both small and large research groups to 

generate de novo draft genome sequences for any organism of interest. Apart from using 

NGS for WGS [11], these technologies can be used for whole transcriptome shotgun 

sequencing (WTSS) — also called RNA sequencing (RNA-seq) [12], whole-exome 

sequencing (WES) [13], targeted (TS) or candidate gene se‐ quencing (CGS) [14–16], and 

methylation sequencing (MeS) [17]. RNA-seq can be used to identify all transcriptional 

activities (coding and noncoding) or a select subset of targeted RNA transcripts within a 
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given sample, and it provides a more precise and sensitive measurement of gene expression 

levels than microarrays in the analysis of many samples. In contrast to WGS, WES provides 

coverage for more than 95% of human exons to investigate the protein-coding regions (CDS) 

of the genome and identify coding variants or SNPs when WGS and WTSS are not practical 

or necessary. Since the exome represents less than 2% of the human genome, it is the cost-

effective alternative to WGS and RNA-seq in the study of human genetics and disease [13]. 

However, WGS may be preferred over WES because it provides more data with better 

uniformity of read coverage on disease-associated variants and reveals polymorphisms 

outside coding regions and genomic rearrangements. The analysis of the methylome by MeS 

complements WGS, WES, and CGS to determine the active methylation sites and the 

epigenetic markers that regulate gene expression, epistructural base variations, imprinting, 

development, differentiation, disease, and the epigenetic state. The impact of NGS 

technology is indeed egalitarian in that it allows both small and large research groups the 

possibility to provide answers and solutions to many different problems and questions in the 

fields of genetics and biology, including those in medicine, agriculture, forensic science, 

virology, microbiology, and marine and plant biology. 

 

WHAT NGS DOES  

• NGS provides a much cheaper and higherthroughput alternative to sequencing DNA than 

traditional Sanger sequencing. Whole small genomes can now be sequenced in a day.  

• High-throughput sequencing of the human genome facilitates the discovery of genes and 

regulatory elements associated with disease.  

• Targeted sequencing allows the identification of disease-causing mutations for diagnosis of 

pathological conditions.  

• RNA-seq can provide information on the entire transcriptome of a sample in a single 

analysis without requiring previous knowledge of the genetic sequence of an organism. This 

technique offers a strong alternative to the use of microarrays in gene expression studies.  

LIMITATIONS  

• NGS, although much less costly in time and money in comparison to first-generation 

sequencing, is still too expensive for many labs. NGS platforms can cost more than $100,000 

in start-up costs, and individual sequencing reactions can cost upward of $1,000 per genome.  

• Inaccurate sequencing of homopolymer regions (spans of repeating nucleotides) on certain 

NGS platforms, including the Ion Torrent PGM, and short-sequencing read lengths (on 

average 200–500 nucleotides) can lead to sequence errors.  

• Data analysis can be time-consuming and may require special knowledge of bioinformatics 

to garner accurate information from sequence data. 
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The First Generation of Sequencing  

Sanger and Maxam-Gilbert sequencing technologies were classified as the First Generation 

Sequencing Technology [10,16] who initiated the field of DNA sequencing with their 

publication in 1977. 

Sanger sequencing  

Sanger Sequencing is known as the chain termination method or the dideoxynucleotide 

method or the sequencing by synthesis method. It consists in using one strand of the double 

stranded DNA as template to be sequenced. This sequencing is made using chemically 

modified nucleotides called dideoxy-nucleotides (dNTPs). These dNTPs are marked for each 

DNA bases by ddG, ddA, ddT, and ddC. The dideoxynucleotides are used dNTPs are used 

for elongation of nucleotide, once incorporated into the DNA strand they prevent the further 

elongation and the elongation is complete. Then, we obtain DNA fragments ended by a dNTP 

with different sizes. The fragments are separated according to their size using gel slab where 

the resultant bands corresponding to DNA fragments can be visualized by an imaging system 

(X-ray or UV light) [24,25]. Figure 1 details the Sanger sequencing technology. The first 

genomes sequenced by the Sanger sequencing are phiX174 genome with size of 5374 bp [26] 

and in 1980 the bacteriophage λ genome with length of 48501 bp [27]. After years of 

improvement, Applied Biosystems is the first company that has automated Sanger 

sequencing. Applied Biosystems has built in 1995 an automatic sequencing machine called 

ABI Prism 370 based on capillary electrophoresis allowing fast an accurate sequencing.  The 

Sanger sequencing was used in several sequencing projects of different plant species such as 

Arabidopsis [28], rice [29] and soybean [30] and the most emblematic achievement of this 

sequencing technology is the decoding of the first human genome. The sanger sequencing 

was widely used for three decades and even today for single or low-throughput DNA 
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sequencing, however, it is difficult to further improve the speed of analysis that does not 

allow the sequencing of complex genomes such as the plant species genomes and the 

sequencing was still extremely expensive and time consuming. Maxam-Gilbert sequencing 

Maxam-Gilbert is another sequencing belonging to the first generation of sequencing known 

as the chemical degradation method. Relies on the cleaving of nucleotides by chemicals and 

is most effective with small nucleotides polymers. Chemical treatment generates breaks at a 

small proportion of one or two of the four nucleotide bases in each of the four reactions (C, 

T+C, G, A+G). This reaction leads to a series of marked fragments that can be separated 

according to their size by electrophoresis. The sequencing here is performed without DNA 

cloning. However, the development and improvement of the Sanger sequencing method 

favored the latter to the Maxam-Gilbert sequencing method, and it is also considered 

dangerous because it uses toxic and radioactive chemicals. 

 

The Second Generation of Sequencing  

The first generation of sequencing was dominant for three decades especially Sanger 

sequencing, however, the cost and time was a major stumbling block. In 2005 and in 

subsequent years, have marked the emergence of a new generation of sequencers to break the 

limitations of the first generation. the basic characteristics of second generation sequencing 

technology are: (1) Нe generation of many millions of short reads in parallel, (2) Нe speed up 

of sequencing the process compared to the first generation, (3) Нe low cost of sequencing and 

(4) Нe sequencing output is directly detected without the need for electrophoresis. Short read 

sequencing approaches divided under two wide approaches: sequencing by ligation (SBL) 

and sequencing by synthesis (SBS), (more details for these sequencing categories are 

presented in [22,32]) and are mainly classified into three major sequencing platforms: 

Roche/454 launched in 2005, Illumina/Solexa in 2006 and in 2007 the ABI/SOLiD. We will 

briefly describe these commonly utilized sequencing platforms. 

 

Roche/454 sequencing  

Roche/454 sequencing appeared on the market in 2005, using pyrosequencing technique 

which is based on the detection of pyrophosphate released aіer each nucleotide incorporation 

in the new synthetic DNA strand (http://www.454.com). Нe pyrosequencing technique is a 

sequencing-by-synthesis approach. DNA samples are randomly fragmented and each 

fragment is attached to a bead whose surface carries primers that have oligonucleotides 

complementary to the DNA fragments so each bead is associated with a single fragment 

(Figure 2A). Нen, each bead is isolated and amplified using PCR emulsion which produces 

about one million copies of each DNA fragment on the surface of the bead (Figure 2B). Нe 

beads are then transferred to a plate containing many wells called picotiter plate (PTP) and 

the pyrosequencing technique is applied which consists in activating of a series of 

downstream reactions producing light at each incorporation of nucleotide. By detecting the 

light emission after each incorporation of nucleotide, the sequence of the DNA fragment is 
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deduced (Figure 2C) [15]. tНe use of the picotiter plate allows hundreds of thousands of 

reactions occur in parallel, considerably increasing sequencing throughput [14]. tНe latest 

instrument launched by Roche/454 called GS FLX+ that generates reads with lengths of up to 

1000 bp and can produce ~1Million reads per run (454.com GS FLX+Systems 

http//454.com/products/gs-flxsystem/index.asp). Other characteristics of Roche/454 

instruments are listed in [16,25].  tНe Roche/454 is able to generate relatively long reads 

which are easier to map to a reference genome. Нe main errors detected of sequencing are 

insertions and deletions due to the presence of homopolymer regions [33,34]. Indeed, the 

identification of the size of homopolymers should be determined by the intensity of the light 

emitted by pyrosequencing. Signals with too high or too low intensity lead to under or 

overestimation of the number of nucleotides which causes errors of nucleotides identification. 

Ion torrent sequencing  

Life Technologies commercialized the Ion Torrent semiconductor sequencing technology in 

2010 (https//www.thermofisher.com/us/en/ home/brands/ion-torrent.html). It is similar to 454 

pyrosequencing technology but it does not use fluorescent labeled nucleotides like other 

second-generation technologies. It is based on the detection of the hydrogen ion released 

during the sequencing process [35]. 6pecifically, Ion Torrent uses a chip that contains a set of 

micro wells and each has a bead with several identical fragments. Нe incorporation of each 

nucleotide with a fragment in the pearl, a hydrogen ion is released which change the pH of 

the solution. Нis change is detected by a sensor attached to the bottom of the micro well and 

converted into a voltage signal which is proportional to the number of nucleotides 

incorporated (Figure 3). Нe Ion Torrent sequencers are capable of producing reads lengths of 

200 bp, 400 bp and 600 bp with throughput that can reach 10 Gb for ion proton sequencer. Нe 

major advantages of this sequencing technology are focused on read lengths which are longer 

to other SGS sequencers and fast sequencing time between 2 and 8 hours. Нe major 

disadvantage is the diٹculty of interpreting the homopolymer sequences (more than 6 bp) 

[21,36] which causes insertion and deletion (indel) error with a rate about ~1%. 

 

Illumina/Solexa sequencing  

The Solexa company has developed a new method of sequencing. Illumina company 

(http://www.illumina.com) purchased Solexa that started to commercialize the sequencer 

Ilumina/Solexa Genome Analyzer (GA) [3,37]. Illumina technology is sequencing by 

synthesis approach and is currently the most used technology in the NGS market. TНe 

sequencing process is shown in Figure 4. During the first step, the DNA samples are 

randomly fragmented into sequences and adapters are ligated to both ends of each sequence. 

TНen, these adapters are fixed themselves to the respective complementary adapters, the 

latter are hooked on a slide with many variants of adapters (complementary) placed on a solid 

plate (Figure 4A). During the second step, each attached sequence to the solid plate is 

amplified by ―PCR bridge amplification  that creates several identical copies of each 

sequence; a set of sequences made from the same original sequence is called a cluster. Each 
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cluster contains approximately one million copies of the same original sequence (Figure 4B). 

Нe last step is to determine each nucleotide in the sequences, Illumina uses the sequencing by 

synthesis approach that employs reversible terminators [38] in which the four modified 

nucleotides, sequencing primers and DNA polymerases are added as a mix, and the primers 

are hybridized to the sequences. TНen, polymerases are used to extend the primers using the 

modified nucleotides. Each type of nucleotide is labeled with a fluorescent specific in order 

for each type to be unique. TНe nucleotides have an inactive 3’-hydroxyl group which 

ensures that only one nucleotide is incorporated. Clusters are excited by laser for emitting a 

light signal specific to each nucleotide, which will be detected by a coupled-charge device 

(CCD) camera and Computer programs will translate these signals into a nucleotide sequence 

(Figure 4C). Нe process continues with the elimination of the terminator with the fluorescent 

label and the starting of a new cycle with a new incorporation [21,39]. Нe first sequencers 

Illumina/Solexa GA has been able to produce very short reads ~35 bp and they had an 

advantage in that they could produce paired-end (PE) short reads, in which the sequence at 

both ends of each DNA cluster is recorded. Нe output data of the last Illumina sequencers is 

currently higher than 600 Gpb and lengths of short reads are about 125 bp. Details on 

Illumina sequencers [13]. One of the main drawbacks of the Illumina/Solexa platform is the 

high requirement for sample loading control because overloading can result in overlapping 

clusters and poor sequencing quality. TНe overall error rate of this sequencing technology is 

about 1%. Substitutions of nucleotides are the most common type of errors in this technology 

[40], the main source of error is due to the bad identification of the incorporated nucleotide. 

 

ABI/SOLiD sequencing  

Supported Oligonucleotide Ligation and Detection (SOLiD) is a NGS sequencer Marketed by 

Life Technologies (http:// www.lifetechnologies.com). In 2007, Applied Biosystems (ABI) 

has acquired SOLiD and developed ABI/SOLID sequencing technology that adopts by 

ligation (SBL) approach [3]. TНe ABI/SOLiD process consists of multiple sequencing 

rounds. It starts by attaching adapters to the DNA fragments, fixed on beads and cloned by 

PCR emulsion. TНese beads are then placed on a glass slide and the 8-mer with a fluorescent 

label at the end are sequentially ligated to DNA fragments, and the color emitted by the label 

is recorded (Figure 5A). TНen, the output format is color space which is the encoded form of 

the nucleotide where four fluorescent colors are used to represent 16 possible combinations 

of two bases. Нe sequencer repeats this ligation cycle and each cycle the complementary 

strand is removed and a new sequencing cycle starts at the position n-1 of the template. TНe 

cycle is repeated until each base is sequenced twice (Figure 5B). Нe recovered data from the 

color space can be translated to letters of DNA bases and the sequence of the DNA fragment 

can be deduced [15]. ABI/SOLiD launched the first sequencer that produce short reads with 

length 35 bp and output of 3 Gb/run and continued to improve their sequencing which 

increased the length of reads to 75 bp with an output up to 30 Gb/run [22,23]. TНe strength of 

ABI/SOLiD platform is high accuracy because each base is read twice while the drawback is 

the relatively short reads and long run times. TНe errors of sequencing in this technology is 
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due to noise during the ligation cycle which causes error identification of bases. TНe main 

type of error is substitution. 

 

The third Generation of Sequencing 

The second-generation of sequencing technologies previously discussed have revolutionized 

the analysis of DNA and have been the most widely used compared to the first generation of 

sequencing technologies. However, the SGS technologies generally require PCR 

amplification step which is a long procedure in execution time and expansive in sequencing 

price. Also, it became clear that the genomes are very complex with many repetitive areas 

that SGS technologies are incapable to solve them and the relatively short reads made 

genome assembly more diffcult. To remedy the problems caused by SGS technologies, 

scientists have developed a new generation of sequencing called ―third generation 

sequencing‖. Нese third generations of sequencing have the ability to offer a low sequencing 

cost and easy sample preparation without the need PCR amplification in an execution time 

significantly faster than SGS technologies. In addition, TGS are able to produce long reads 

exceeding several kilobases for the resolution of the assembly problem and repetitive regions 

of complex genomes. TНere are two main approaches that characterize TGS [22]: Нe single 

molecule real time sequencing approach (SMRT) [38] that was developed by Quake 

laboratory [41-43] and the synthetic approach that rely on existing short reads technologies 

used by Illumina (Moleculo) [43] and 10xGenomics (https://www.10xgenomics.com) to 

construct long reads. TНe most widely used TGS technology approach is SMRT and the 

sequencers that have used this approach are Pacific Biosciences and Oxford Nanopore 

sequencing (specifically the MinION sequencer). In the following, we present the two most 

widely used sequencing platforms in TGS to know Pacific Biosciences and the MinION 

sequencing from Oxford Nanopore technology. 

 

Pacific biosciences SMRT sequencing  

Pacific Biosciences (http//www.pacificbiosciences.com/) developed the first genomic 

sequencer using SMRT approach and it’s the most widely used third-generation sequencing 

technology. Pacific Biosciences uses the same fluorescent labelling as the other technologies, 

but instead of executing cycles of amplification nucleotide, it detects the signals in real time, 

as they are emitted when the incorporations occur. It uses a structure composed of many 

SMRT cells, each cell contains microfabricated nanostructures called zeromode waveguides 

(ZMWs) which are wells of tens of nanometers in diameter microfabricated in a metal film 

which is in turn deposited onto a glass substrate [44,45]. These ZMWs exploit the properties 

of light passing through openings with a diameter less than its wavelength, so light cannot be 

propagated. Due to their small diameter, the light intensity decreases along the wells and the 

bottom of the wells illuminated (Figure 6A). Each ZMW contains a DNA polymerase 

attached to their bottom and the target DNA fragment for sequencing. During the sequencing 

reaction, the DNA fragment is incorporated by the DNA polymerase with fluorescent labelled 
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nucleotides (with different colors). Whenever a nucleotide is incorporated, it releases a 

luminous signal that is recorded by sensors (Figure 6B). The detection of the labelled 

nucleotides makes it possible to determine the DNA sequence. Compared to SGS, Pacific 

Bioscience technology has several advantages. TНe preparation of the sample is very fast, it 

takes 4 to 6 hours instead of days [16]. In addition, the long-read lengths, currently averaging 

~10 kbp [46] but individual very long reads can be as long as 60 kbp, which is longer than 

that of any SGS technology. Pacific Biosciences sequencing platforms have a high error rate 

of about 13% [13] dominated by insertions and deletions errors. These errors are randomly 

distributed along the long read. 
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Oxford nanopore sequencing  

TНe Oxford Nanopore sequencing (ONT) was developed as a technique to determine the 

order of nucleotides in a DNA sequence. In 2014, Oxford Nanopore Technologies released 

the MinION [48] device that promises to generate longer reads that will ensure a better 

resolution structural genomic variants and repeat content [49]. It’s a mobile single-molecule 

Nanopore sequencing measures four inches in length and is connected by a USB 3.0 port of a 

laptop computer. TНis device has been released for testing by a community of users as part of 

the MinION Access Program (MAP) to examine the performance of the MinION sequencer 

[50]. In this sequencing technology, the first strand of a DNA molecule is linked by a hairpin 

to its complementary strand. TНe DNA fragment is passed through a protein nanopore (a 

nanopore is a nanoscale hole made of proteins or synthetic materials [39]). When the DNA 

fragment is translated through the pore by the action of a motor protein attached to the pore, it 

generates a variation of an ionic current caused by differences in the moving nucleotides 

occupying the pore (Figure 7A). TНis variation of ionic current is recorded progressively on 

a graphic model and then interpreted to identify the sequence (Figure 7B). TНe sequencing is 

made on the direct strand generating the ―template read‖ and then the hairpin structure is read 

followed by the inverse strand generating the ―complement read‖, these reads is called "1D". 

If the ―temple‖ and ―complement‖ reads are combined, then we have a resulting consensus 

sequence called ―two direction read‖ or "2D" [51,52]. Among the advantages offered by this 

sequencer: first, it’s low cost and small size. Нen, the sample is loaded into a port on the 

device and data is displayed on the screen and generated without having to wait till the run is 

complete. And, MinION can provide very long reads exceeding 150 kbp which can improve 

the contiguity of the denovo assembly. However, MinION produces a high error rate of ~12% 

distributed about ~3% mismatchs, ~4% insertions and ~5% deletions [53]. TНe ONT 

technology has continued to evolve. Recently, a new instrument has emerged called 

"PromethION"[54]; it is the bigger brother of the MinION [55]. It is an autonomous 
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worktable sequencer with 48 individual flow cells each with 3000 pores (equivalent to 48 

MinIONs) operating at 500 bp [51] per second which is suٹciently powerful to achieve an 

ultra-high throughput needed for sequencing large genomes such as the human genome. 

Although the PromethION is not commercially available, the ONT announces that it is 

capable of producing ~2 to 4 Tb for a duration of 2 days and a length of reads [22] which can 

attain 200 Kpb which puts this sequencer in competition with the PacBioRSII sequencer from 

pacific biosciences in terms of read length and HiSeq sequencer from Illumina in cost. 

 

 

NGS workflow 
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NGS Library  

In NGS, a library is defined as a collection of DNA/RNA fragments that represents either the 

entire genome/transcriptome or a target region. Each NGS platform has its specificities, but, 

in simple terms, the preparation of an NGS library starts with the fragmentation of the 

starting material, then sequence adaptors are connected to fragments to allow the enrichment 

of those fragments. A good library should have great sensitivity and specificity. This means 

that all fragments of interest should be equally represented in the library and should not 

contain random errors (non-specific products). However, it is easier said than done, as 

genomic regions are not equally prone to be sequenced, making the construction of a 

sensitive and specific library challenging [10].  

The first step to prepare libraries in most NGS workflows is the fragmentation of nucleic 

acid. Fragmentation can be done either by physical or enzymatic methods [11,12]. Physical 

methods include acoustic shearing, sonication and hydrodynamic shear. The enzymatic 

methods include digestion by DNase I or Fragmentase. Knierim and co-works, compared 

both enzymatic and physical fragmentation methods and found similar yields, showing that 

the choice between physical or enzymatic method only relies on experimental design or 

external factors, such as lab facilities [13].  

Once the starting DNA has been fragmented, adaptors are connected to those fragments. The 

adaptors are introduced to create known begins and ends to random sequences allowing the 

sequencing process. An alternative strategy was developed that combines fragmentation and 

adaptor ligation in a single step, thus making the process simpler, faster and requiring a 

reduce sample input. The process is known as tagmentation and is based on transposon-based 

technology [14]. Upon nucleic acid fragmentation, the fragments are select according to the 

desired library size. This is limited either by the type of NGS instrument and by the specific 

sequencing application.  

Short-read sequencers, such as Illumina and Ion Torrent, present best results when DNA 

libraries contain shorter fragments of similar sizes. Illumina fragments are longer than in Ion 

Torrent and can go up to 1500 bases in length [11] while in Ion Torrent the fragments can go 

up to 400 bases in length [15]. In contrast, long-read sequencers, like PacBio RS II [16] tend 

to produce ultra-long reads by fully sequencing a DNA fragment. The optimal library size is 

also limited by the sequencing application. For whole-genome sequencing, the longer 

fragments are preferable, while for RNA-seq and exome sequencing smaller fragments are 

feasible since most of the human exons are under 200 base pairs in length [17].  

Next, an enrichment step is required, where the amount of target material is increased in a 

library to be sequenced. When just a part of the genome needs to be investigated both for 

research or clinical applications, it is known as target libraries. Basically, two methods are 

commonly used for such targeted approaches: capture hybridization-based sequencing and 

amplicon-based sequencing [18,19]. In the hybrid capture method, upon the fragmentation 

step, the fragmented molecules are hybridized specifically to DNA fragments complementary 

to the targeted regions of interest. This could be done by different methods such as 
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microarray technology or using biotinylated oligonucleotide probes [20], which aims to 

physically capture and isolate the sequences of interest. Two well-known examples of 

commercial library prep solutions based on hybrid capture methods are the SureSelect 

(Agilent Technologies) and SeqCap (Roche). Concerning the amplicon-based methods, those 

are based on the design of synthetic oligonucleotides (or probes), with a complementary 

sequence to the flanking regions of the target DNA to be sequenced. HaloPlex (Agilent 

Technologies) and AmpliSeq (Ion Torrent) are two examples of commercial library prep 

solutions based on amplicon-based strategies.  

The amplicon-based methods have the limitations intrinsic to PCR amplifications, such as 

bias, PCR duplicates, primer competition and non-uniform amplification of target regions 

(due to variation in GC content) [21]. Hybrid capture methods were shown to be superior to 

amplicon-based methods, providing much more uniform coverage and depth than amplicon 

assays [19]. However, hybridization methods have the drawback of higher costs due to the 

specificity of the method (cost of the probes, experimental design, software, etc.) and are 

more time consuming than amplicon approaches. Hence, several attempts have been 

performed to overcome PCR limitations. One promising strategy is the Unique molecular 

identifiers (UMIs) that are short DNA molecules, which are ligated to library fragments [22]. 

Those UMI have a random sequence composition that assures that every fragment with a 

UMI is unique in your library. This allows that after PCR enrichment, PCR duplicates can be 

found by searching for non-unique fragment-UMI combinations, while the real biological 

duplicated will contain those UMI sequences [23,24]. 

 

Applications of NGS 

NGS technologies have many applications such as DNA-sequencing and assembly to 

determine an unknown genome without any preparation or search for variations among 

genome samples, RNA-sequencing [26,27], to analyze gene expression [28] and to 

predominantly identify DNA regions of DNA binding proteins, for example, transcription 

factors etc. The most important application of NGS is in identifying mutations. Commonly, 

short i.e. 50–250 bp NGS reads are initially mapped to a reference genome and after that 

from the mapped data, variations are detected. While most of the NGS applications 

concentrate on identification of single nucleotide variations (SNVs) or small insertions/ 

deletions (indels), structural variation including translocations, bigger indels, and copy 

number variation (CNV) can also be recognized from similar data. Structural variation 

discovery can be performed from whole genome NGS data or ―targeted‖ data including 

exomes or gene panels. While targeted sequencing incredibly increments sequencing 

coverage or depth of specific genes, it might present predispositions in the data that require 

particular computational analysis. Since the past few years, there have been extensive 

advances in methods used to identify structural variations and a full coverage of variations 

from SNVs; balanced translocations to CNV can now be identified with reasonable 

sensitivity from either whole genome or targeted NGS data. Such methods are connected to 

clinical testing where they can supplement fluorescence in situ hybridization or array-based 
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testing. The identification of structural DNA variation has since quite a while ago assumed a 

part in the diagnosis of cancer and Mendelian disorders, originating before the approach of 

current DNA sequencing [29,30]. Structural DNA variation is found in a DNA region larger 

than 1 kb and incorporates a few classes, for example, translocations, inversions, 

insertions/deletions (indels) and copy number variations (CNVs) [31]. NGS-based 

diagnostics implement some portion of the clinical genomic testing in which a limited set of 

genes are targeted and not the entire genome and exome. Such diagnostics are routinely 

offered by more than 250 commercial and academic laboratories. One of the key elements of 

NGS-based diagnostics is its capacity to identify a full coverage of hereditary variation, 

offering the possibility to significantly streamline testing by utilizing a single analysis 

platform. For instance, prognostic assessment of acute myeloid leukemia for the most part 

requires the utilization of various advances including PCR and fragment sizing to detect 

FLT3 internal tandem duplications and NPM1 insertions, Sanger sequencing to identify 

CEBPA, IDH1/2, and DNMT3A mutations, and FISH to identify MLL, RARA, CBFB, and 

RUNX1 rearrangements. Such complicated assessments require very well trained staff with 

prohibitive cost. Thus, NGS-based testing can identify SNVs, insertions and translocations in 

a single test, considerably bringing down cost as compared with that of a conventional 

workup [32,33]. Single-cell sequencing is used for characterization of cancer heterogeneity. 

Cancer heterogeneity is caused due to different factors such as tissue hierarchies, clonal 

evolution, rare cells and dynamic cell states. With single-cell sequencing, it can be 

characterized in a large population of cells and molecular properties influencing clinical 

outcomes like prognosis and treatment, and can be determined in contrast to bulk sequencing, 

in which significant information is lost as the molecular profile represents an average 

phenotype over a large number of cells [34]. 
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NGS WORK FLOW 

Next generation methods of DNA sequencing have three general steps: 

 Library preparation: libraries are created using random fragmentation of DNA, followed 

by ligation with custom linkers 

 Amplification: the library is amplified using clonal amplification methods and PCR 

 Sequencing: DNA is sequenced using one of several different approaches 

 

Step 1 in NGS Workflow: Library Prep 

Library preparation is crucial to the success of your NGS workflow. This step prepares DNA or 

RNA samples to be compatible with a sequencer. Sequencing libraries are typically created by 

fragmenting DNA and adding specialized adapters to both ends. In the Illumina sequencing 

workflow, these adapters contain complementary sequences that allow the DNA fragments to 

bind to the flow cell. Fragments can then be amplified and purified. 

To save resources, multiple libraries can be pooled together and sequenced in the same run—a 

process known as multiplexing. During adapter ligation, unique index sequences, or ―barcodes,‖ 

are added to each library. These barcodes are used to distinguish between the libraries during 

data analysis. 

Step 2 in NGS Workflow: Sequencing 

During the sequencing step of the NGS workflow, libraries are loaded onto a flow cell and 

placed on the sequencer. The clusters of DNA fragments are amplified in a process called 

cluster generation, resulting in millions of copies of single-stranded DNA. On most Illumina 

sequencing instruments, clustering occurs automatically. 

In a process called sequencing by synthesis (SBS), chemically modified nucleotides bind to the 

DNA template strand through natural complementarity. Each nucleotide contains a fluorescent 

tag and a reversible terminator that blocks incorporation of the next base. The fluorescent signal 

indicates which nucleotide has been added, and the terminator is cleaved so the next base can 

bind. 

After reading the forward DNA strand, the reads are washed away, and the process repeats for 

the reverse strand. This method is called paired-end sequencing. 

Step 3 in NGS Workflow: Data Analysis 

After sequencing, the instrument software identifies nucleotides (a process called base calling) 

and the predicted accuracy of those base calls. During data analysis, you can import your 

sequencing data into a standard analysis tool or set up your own pipeline. 

Today, you can use intuitive data analysis apps to analyze NGS data without bioinformatics 

training or additional lab staff. These tools provide sequence alignment, variant calling, data 

visualization, or interpretation. 

https://www.atdbio.com/content/20/Sequencing-forensic-analysis-and-genetic-analysis#The-Polymerase-Chain-Reaction-PCR
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LIBRARY PREPARATION 

Firstly, DNA is fragmented either enzymatically or by sonication (excitation using 

ultrasound) to create smaller strands. Adaptors (short, double-stranded pieces of synthetic 

DNA) are then ligated to these fragments with the help of DNA ligase, an enzyme that joins 

DNA strands. The adaptors enable the sequence to become bound to a complementary 

counterpart. 

Adaptors are synthesised so that one end is 'sticky' whilst the other is 'blunt' (non-cohesive) 

with the view to joining the blunt end to the blunt ended DNA. This could lead to the 

potential problem of base pairing between molecules and therefore dimer formation. To 

prevent this, the chemical structure of DNA is utilised, since ligation takes place between the 

3′-OH and 5′-P ends. By removing the phosphate from the sticky end of the adaptor and 

therefore creating a 5′-OH end instead, the DNA ligase is unable to form a bridge between 

the two termini (Figure 1). 

 

https://www.atdbio.com/content/58/Next-generation-sequencing#figure-ngs-library-preparation


Introduction to NGS 

19 
 

 

In order for sequencing to be successful, the library fragments need to be spatially clustered 

in PCR colonies or 'polonies' as they are conventionally known, which consist of many copies 

of a particular library fragment. Since these polonies are attached in a planar fashion, the 

features of the array can be manipulated enzymatically in parallel. This method of library 

construction is much faster than the previous labour intensive procedure of colony picking 

and E. coli cloning used to isolate and amplify DNA for Sanger sequencing, however, this is 

at the expense of read length of the fragments. 

AMPLIFICATION 

Library amplification is required so that the received signal from the sequencer is strong 

enough to be detected accurately. With enzymatic amplification, phenomena such as 'biasing' 

and 'duplication' can occur leading to preferential amplification of certain library fragments. 



Introduction to NGS 

20 
 

Instead, there are several types of amplification process which use PCR to create large 

numbers of DNA clusters. 

Emulsion PCR 

Emulsion oil, beads, PCR mix and the library DNA are mixed to form an emulsion which 

leads to the formation of micro wells (Figure 2). 

 

Figure 2 | Emulsion PCR 

In order for the sequencing process to be successful, each micro well should contain one bead 

with one strand of DNA (approximately 15% of micro wells are of this composition). The 

PCR then denatures the library fragment leading two separate strands, one of which (the 

reverse strand) anneals to the bead. The annealed DNA is amplified by polymerase starting 

from the bead towards the primer site. The original reverse strand then denatures and is 

released from the bead only to re-anneal to the bead to give two separate strands. These are 

both amplified to give two DNA strands attached to the bead. The process is then repeated 

over 30-60 cycles leading to clusters of DNA. This technique has been criticised for its time 

consuming nature, since it requires many steps (forming and breaking the emulsion, PCR 

amplification, enrichment etc) despite its extensive use in many of the NGS platforms. It is 

also relatively inefficient since only around two thirds of the emulsion micro reactors will 

actually contain one bead. Therefore an extra step is required to separate empty systems 

leading to more potential inaccuracies. 

Bridge PCR 

The surface of the flow cell is densely coated with primers that are complementary to the 

primers attached to the DNA library fragments (Figure 3). The DNA is then attached to the 

surface of the cell at random where it is exposed to reagents for polymerase based extension. 

On addition of nucleotides and enzymes, the free ends of the single strands of DNA attach 

themselves to the surface of the cell via complementary primers, creating bridged structures. 

Enzymes then interact with the bridges to make them double stranded, so that when the 

denaturation occurs, two single stranded DNA fragments are attached to the surface in close 

proximity. Repetition of this process leads to clonal clusters of localised identical strands. In 

order to optimise cluster density, concentrations of reagents must be monitored very closely 

to avoid overcrowding. 

https://www.atdbio.com/content/58/Next-generation-sequencing#figure-emulsion-pcr
https://www.atdbio.com/content/58/Next-generation-sequencing#figure-bridging-pcr
https://www.atdbio.com/img/articles/emulsion-pcr-large.png


Introduction to NGS 

21 
 

 

Figure 3 | Bridging PCR 

 

SEQUENCING 

Several competing methods of Next Generation Sequencing have been developed by different 

companies. 

454 Pyrosequencing 

Pyrosequencing is based on the 'sequencing by synthesis' principle, where a complementary 

strand is synthesised in the presence of polymerase enzyme (Figure 4). In contrast to using 

dideoxynucleotides to terminate chain amplification (as in Sanger sequencing), 

pyrosequencing instead detects the release of pyrophosphate when nucleotides are added to 

the DNA chain. It initially uses the emulsion PCR technique to construct the polonies 

required for sequencing and removes the complementary strand. Next, a ssDNA sequencing 

primer hybridizes to the end of the strand (primer-binding region), then the four different 

dNTPs are then sequentially made to flow in and out of the wells over the polonies. When the 

correct dNTP is enzymatically incorporated into the strand, it causes release of 

pyrophosphate. In the presence of ATP sulfurylase and adenosine, the pyrophosphate is 

converted into ATP. This ATP molecule is used for luciferase-catalysed conversion of 

luciferin to oxyluciferin, which produces light that can be detected with a camera. The 

relative intensity of light is proportional to the amount of base added (i.e. a peak of twice the 

intensity indicates two identical bases have been added in succession). 

https://www.atdbio.com/content/58/Next-generation-sequencing#figure-pyrosequencing
https://www.atdbio.com/img/articles/bridging-pcr-large.png
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Figure 4 | 454 Pyrosequencing 

Pyrosequencing, developed by 454 Life Sciences, was one of the early successes of Next-

generation sequencing; indeed, 454 Life Sciences produced the first commercially available 

Next-generation sequencer. However, the method was eclipsed by other technologies and, in 

2013, new owners Roche announced the closure of 454 Life Sciences and the discontinuation 

of the 454 pyrosequencing platform. 

Ion torrent semiconductor sequencing 

Ion torrent sequencing uses a "sequencing by synthesis" approach, in which a new DNA 

strand, complementary to the target strand, is synthesized one base at a time. A 

semiconductor chip detects the hydrogen ions produced during DNA polymerization (Figure 

5). 

Following polony formation using emulsion PCR, the DNA library fragment is flooded 

sequentially with each nucleoside triphosphate (dNTP), as in pyrosequencing. The dNTP is 

then incorporated into the new strand if complementary to the nucleotide on the target strand. 

Each time a nucleotide is successfully added, a hydrogen ion is released, and it detected by 

the sequencer's pH sensor. As in the pyrosequencing method, if more than one of the same 

nucleotide is added, the change in pH/signal intensity is correspondingly larger. 

https://www.atdbio.com/content/58/Next-generation-sequencing#figure-ion-torrent-semiconductor-sequencing
https://www.atdbio.com/content/58/Next-generation-sequencing#figure-ion-torrent-semiconductor-sequencing
https://www.atdbio.com/img/articles/pyrosequencing-large.png
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Figure 5 | Ion Torrent semiconductor sequencing 

Ion torrent sequencing is the first commercial technique not to use fluorescence and camera 

scanning; it is therefore faster and cheaper than many of the other methods. Unfortunately, it 

can be difficult to enumerate the number of identical bases added consecutively. For 

example, it may be difficult to differentiate the pH change for a homorepeat of length 9 to 

one of length 10, making it difficult to decode repetitive sequences. 

Sequencing by ligation (SOLiD) 

SOLiD is an enzymatic method of sequencing that uses DNA ligase, an enzyme used widely 

in biotechnology for its ability to ligate double-stranded DNA strands (Figure 6). Emulsion 

PCR is used to immobilise/amplify a ssDNA primer-binding region (known as an adapter) 

which has been conjugated to the target sequence (i.e. the sequence that is to be sequenced) 

on a bead. These beads are then deposited onto a glass surface − a high density of beads can 

be achieved which which in turn, increases the throughput of the technique. 

Once bead deposition has occurred, a primer of length N is hybridized to the adapter, then the 

beads are exposed to a library of 8-mer probes which have different fluorescent dye at the 5' 

end and a hydroxyl group at the 3' end. Bases 1 and 2 are complementary to the nucleotides 

to be sequenced whilst bases 3-5 are degenerate and bases 6-8 are inosine bases. Only a 

complementary probe will hybridize to the target sequence, adjacent to the primer. DNA 

ligase is then uses to join the 8-mer probe to the primer. A phosphorothioate linkage between 

bases 5 and 6 allows the fluorescent dye to be cleaved from the fragment using silver ions. 

This cleavage allows fluorescence to be measured (four different fluorescent dyes are used, 

all of which have different emission spectra) and also generates a 5’-phosphate group which 

https://www.atdbio.com/content/58/Next-generation-sequencing#figure-sequencing-by-ligation
https://www.atdbio.com/img/articles/ion-torrent-semiconductor-sequencing-large.png
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can undergo further ligation. Once the first round of sequencing is completed, the extension 

product is melted off and then a second round of sequencing is perfomed with a primer of 

length N−1. Many rounds of sequencing using shorter primers each time (i.e. N−2, N−3 etc) 

and measuring the fluorescence ensures that the target is sequenced. 

Due to the two-base sequencing method (since each base is effectively sequenced twice), the 

SOLiD technique is highly accurate (at 99.999% with a sixth primer, it is the most accurate of 

the second generation platforms) and also inexpensive. It can complete a single run in 7 days 

and in that time can produce 30 Gb of data. Unfortunately, its main disadvantage is that read 

lengths are short, making it unsuitable for many applications. 
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Figure 6 | Sequencing by ligation 

https://www.atdbio.com/img/articles/sequencing-by-ligation-large.png
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Reversible terminator sequencing (Illumina) 

Reversible terminator sequencing differs from the traditional Sanger method in that, instead 

of terminating the primer extension irreversibly using dideoxynucleotide, modified 

nucleotides are used in reversible termination. Whilst many other techniques use emulsion 

PCR to amplify the DNA library fragments, reversible termination uses bridge PCR, 

improving the efficiency of this stage of the process. 

Reversible terminators can be grouped into two categories: 3′-O-blocked reversible 

terminators and 3′-unblocked reversible terminators. 

3′-O-blocked reversible terminators 

The mechanism uses a sequencing by synthesis approach, elongating the primer in a stepwise 

manner. Firstly, the sequencing primers and templates are fixed to a solid support. The 

support is exposed to each of the four DNA bases, which have a different fluorophore 

attached (to the nitrogenous base) in addition to a 3’-O-azidomethyl group (Figure 7). 

 

Figure 7 | Structure of fluorescently labelled azidomethyl dNTP used in Illumina 

sequencing 
 

 

Only the correct base anneals to the target and is subsequently ligated to the primer. The solid 

support is then imaged and nucleotides that have not been incorporated are washed away and 

the fluorescent branch is cleaved using TCEP (tris(2-carboxyethyl)phosphine). TCEP also 

removes the 3’-O-azidomethyl group, regenerating 3’-OH, and the cycle can be repeated 

(Figure 8) . 

https://www.atdbio.com/content/58/Next-generation-sequencing#figure-blocked-terminator-illumina
https://www.atdbio.com/content/58/Next-generation-sequencing#figure-reversible-terminator-sequencing
https://www.atdbio.com/img/articles/blocked-terminator-illumina-large.png
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Figure 8 | Reversible terminator sequencing 

3′-unblocked reversible terminators 

The reversible termination group of 3′-unblocked reversible terminators is linked to both the 

base and the fluorescence group, which now acts as part of the termination group as well as a 

reporter. This method differs from the 3′-O-blocked reversible terminators method in three 

ways: firstly, the 3’-position is not blocked (i.e. the base has free 3’-OH); the fluorophore is 

the same for all four bases; and each modified base is flowed in sequentially rather than at the 

same time. 

The main disadvantage of these techniques lies with their poor read length, which can be 

caused by one of two phenomena. In order to prevent incorporation of two nucleotides in a 

single step, a block is put in place, however in the event of no block addition due to a poor 

synthesis, strands can become out of phase creating noise which limits read length. Noise can 

also be created if the fluorophore is unsuccessfully attached or removed. These problems are 

prevalent in other sequencing methods and are the main limiting factors to read length. 

https://www.atdbio.com/img/articles/reversible-terminator-sequencing-large.png
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This technique was pioneered by Illumina, with their HiSeq and MiSeq platforms. HiSeq is 

the cheapest of the second generation sequencers with a cost of $0.02 per million bases. It 

also has a high data output of 600 Gb per run which takes around 8 days to complete. 
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NGS DATA PROCESSING - Workflow of NGS data analysis 
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First, the DNA library is prepared and samples are sequenced using NGS platform. Then, 

quality assessment of NGS reads is carried out and reads are aligned with the reference 

genome. After that, variant identification and annotation is performed followed by 

visualization. Further prioritization and filtration of identified variations is followed by 

validation of the generated results in the lab (Fig. 4). NGS instruments give higher throughput 

data at an immense speed by sequencing a huge number of short DNA fragments in parallel 

[56,57]. The three most commonly utilized platforms Roche 454, Illumina and ABI SOLiD 

sequence DNA by measuring and analyzing signals, which are discharged amid the formation 

of the second DNA strand, however the contrast in how the second strand is created. Keeping 

in mind the end goal to create detectable signals, template DNA is divided into small 

fragments, amplified and immobilized on a glass slide before sequencing. Subsequent to 

finishing lab work and the real sequencing, the researcher will have a huge amount of raw 

data to be further processed. The analysis of the data can be divided into five particular steps 

(Fig. 4): i) quality assessment of the raw data, (ii) read alignment to a reference genome, (iii) 

variant identification, (iv) annotation of the variants and (v) data visualization 
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Assessment of quality  

In this step, quality of NGS reads is evaluated to remove, correct or trim the reads not 

meeting the standards. Errors such as base calling errors, poor quality reads etc. are assessed 

in this step [58]. For this, tools such as FASTQC are used, which assesses the quality by 

considering the above mentioned errors with calculation of quality scores.  

Aligning sequences  

After assessing the quality of NGS reads, the reads are aligned to the reference genome. For 

that UCSC (University of Santa Cruz) and GRC (Genome Reference Consortium) are mainly 

used as sources of human reference genome [59–61]. There are some issues in selecting 

alignment software, the first is solving the problem of ambiguity in mapping short reads to 

the reference genome, which can be solved by considering paired-end reads as a better option 

[62]. Secondly, mutations generated from reads with many mismatches have to be discarded 

from further analysis steps.  

Identifying variants  

Variant identification is a very important part of NGS data analysis. In this, sequence 

coverage is a main parameter, as identified mutations should be supported by several reads 

[63]. Tools of variant identification are divided into 4 categories: (i) germline callers, (ii) 

somatic callers, (iii) Copy Number Variants (CNV) identification and (iv) Structural Variants 

(SV) identification. In case of rare diseases, germline mutations are focused while in cancer, 

somatic mutations are targeted for detection. Structural variant identification tools identify 

SVs such as inversions, translocations or large INDELS as well as CNVs which are the 

simplest form of SVs only [64]. The list of variant identification tools is provided in Table 2.  

Annotating variants  

Annotation of variants provides biological significance by identifying disease causing 

variants. Annotation of SNPs and INDELs is provided via computational annotation tools by 

providing links to pertaining databases such as dbSNP etc. Yohe S and co-workers have 

identified and annotated 1102 variants of inherited disorders across the 568 genes using the 

ANNOVAR tool combined with SIFT, PolyPhen2 and Provean annotation scores to evaluate 

the functional significance of novel variants [65]. The various variant annotation tools are 

listed in Table 3.  

Visualizing NGS data  

After annotating the variants, they are visualized using visualization tools and genome 

browsers. By visualizing the variants, we can obtain information about variants, such as 

mapping quality, aligned reads, annotation information which includes consequence, impact 

of variants, scores of different annotation tools, etc. [66]. Paula Paulo and coworkers have 

identified and visualized functionally deleterious germline mutations in novel genes in early-

onset/familial prostate cancer using Geneticist Assistant tool [67].  

NGS tools selection criteria  
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For identifying variations, germline and somatic variant callers can be selected if: (i) they use 

Binary Alignment/Map (BAM) or pileup and Sequence alignment/map (SAM) [68] format as 

input and (ii) the tools offer output effects in the Variant Call Format (VCF). SVs and CNVs 

detection tools are used after the acceptance of SAM/BAM as input format. For annotating 

variations, requirements of annotation packages are: (i) It should accept VCF as input format 

and (ii) It should integrate results from other software. GUI availability, VCF, SAM and 

BAM support are required for visualization of results. 
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Structural variome  

Variation in more than one nucleotide is called the structural variome. There are two major 

classes of structural variations: balanced and unbalanced variations. Balanced variations do 

not change content of DNA while unbalanced variations change the content of DNA. 

Inversion, same chromosomal translocation and different chromosomal translocation are 

subtypes of balanced structural variations, while duplication and deletion are subtypes of 

unbalanced structural variations. The types of known structural variations are highlighted in 

Fig. 5. Structural variations can be detected by five types of methods. First is the Pair-end 

mapping (PEM) method. In this type, the two ends of the DNA fragment are sequenced and 

uniquely mapped to the reference genome. Second is the Single-end method in which single 

ends of multiple DNA fragments are sequenced and mapped with the reference genome at 
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different positions, which forms overlapping in read mapping. The third type is Translocation 

and inversion detection. In interchromosomal translocations, one member of the pair maps to 

one chromosome and its mate to every other. And in inversions or intrachromosomal 

translocations, the two ends map to the equal chromosome, however in the wrong orientation 

or the wrong distance apart. Fourthly is Copy number variant detection which can be defined 

as stretches of DNA, longer than a kilobase, which is present in the genome with an abnormal 

number of copies that include large deletions and duplications, as well as unbalanced 

translocations. Large deletions are less difficult to detect than smaller indels using paired-end 

methods, as they are easily identified from normal variation within the insert size. Large 

duplications are harder to discover, as there may be no single read or read pair spanning the 

insertion. And the fifth type is Insertion and deletion detection. Indels are common in human 

genome and make a contribution to genetic diversity and human diseases [71–73]. In the 

clinical molecular oncology laboratory, the detection of small (< 10 bp) and medium (> 10 

but < 1 kb) indels is important to many cancers. Of specific clinical importance are the NPM1 

insertion, FLT3 internal tandem duplication (FLT3-ITD), KIT exon 8 indels in acute myeloid 

leukemia and EGFR exons 19 and 21 insertions and deletions in lung cancers [74–77]. By 

Sanger sequencing or gel capillary based sizing methods, small-and medium sized indels are 

typically simple to detect. Indel detection via NGS methods has been challenging largely 

because of the short read lengths generated by using NGS methods. In general, small indels 

can be called with reasonable sensitivity from NGS data, despite the fact that the specificity 

has a tendency to be low. Further, most indel detection software detect deletions over 

insertions because of inherited bias in the tool, as inserted sequences are more difficult to 

align to the reference sequences.  

 

 

Clinical validation of variants  

Translation of NGS methods for clinical use is a very important and challenging task that is 

carried out by validation of different performance characteristics. Clinical validation of NGS 

data is performed by measuring different parameters like analytical sensitivity that is defined 
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as an ability of the assay to detect true sequence variants i.e. falsenegative rate, analytical 

specificity that is defined as probability of the assay to not detect mutations where none are 

present i.e. false-positive rate. Accuracy is the measure of sequencing accuracy and error 

rates and precision are the measure of reproducibility of mutation detection by the assay and 

inter-user reproducibility. In a related work, researchers have clinically validated 30 known 

mutations of more than 100 inherited diseases with 100% analytical sensitivity and 100% 

analytical specificity for 18 samples of patients in whom pathogenic mutations were 

previously identified 

 

Handling of NGS data  

While analyzing NGS data, a number of intermediate analysis files and result files are 

generated that are collectively very large in size i.e., 100's of GB, TB and even reaching 

petabytes. Interpretation of these complex NGS data files especially for aggregated large 

amounts of variations or heterogeneous sequencing data, is challenging in terms of translating 

data to knowledge for clinical applications. Also, processing power, memory (RAM) and data 

storage are hardware bottlenecks in computational analysis that can be overcome by high 

performance computational resources, but increase the computational cost [84]. After 

analyzing the NGS data, the next step is handling of the resultant NGS data, which is carried 

out by employing machine learning based methods. Machine learning is a descendent of the 

statistical model fitting method, which extracts the information from data by building 

probabilistic models. Efficient machine learning methods study huge amounts of generated 

NGS data comparatively and evolutionarily [85]. Good classification and regression results 

can be yielded by machine learning methods like Support Vector Machines, Artificial Neural 

Network. Weizhong Zhao and coworkers have employed machine learning methods for 

evaluating the performance of the NGS data set for the Salmonella enterica strains [86]. The 

analysed NGS data can be classified with these methods to obtain clinically significant 

results. 
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NGS FILE FORMATS 

There are lots of file formats related to NGS analyses. The most common ones are: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  



Introduction to NGS 

39 
 

 

 

Sequence file formats 

The different sequence related formats include different information about the sequence. The 

most common file formats in the NGS world are: fastq and sff. 

SFF 

The SFF (Standard Flowgram Format) files are the 454 equivalent to the ABI chromatogram 

files. They hold information about: 

 the flowgram, 

 the called sequence, 

 the qualities, 

 and the recommended quality and adaptor clipping. 

These recommended clippings are given by the 454 sequencer. The Roche software takes into 

account the quality and the adaptor sequence to recommend a clipping for each sequence. 

Like the ABI files, these are binary files that should be opened with specialized programs. 

There are several tools to extract the sequences and to convert them to a more usable format. 

Roche provides one executable able to do it with the 454 machine. Alternatively we can use 

the sff_extract tool to obtain a fasta file. 

Fasta 

The fasta format is based on a simple text. Each sequence starts with a ―>‖ followed by the 

sequence name, an space and, optionally, the description 

http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?cmd=show&f=formats&m=doc&s=format#sff
http://bioinf.comav.upv.es/sff_extract/index.html
https://bioinf.comav.upv.es/courses/sequence_analysis/_images/ngs_file_formats.png
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>seq_1 description 

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCAC

AGTTT 

>seq_2 

ATCGTAGTCTAGTCTATGCTAGTGCGATGCTAGTGCTAGTCGTATGCATGGCTAT

GTGTG 

Usually, if we have quality information, another fasta file with the quality information could 

be provided. In this cases both the sequence and the quality file should have the sequences in 

the same order. 

sanger fastq 

The fastq format was developed to provide a convenient way of storing the sequence and the 

quality scores in the same file. These are text files and they look like: 

@seq_1 

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCAC

AGTTT 

+ 

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65 

@seq_2 

ATCGTAGTCTAGTCTATGCTAGTGCGATGCTAGTGCTAGTCGTATGCATGGCTAT

GTGTG 

+ 

208DA8308AD8SF83FH0SD8F08APFIDJFN34JW830UDS8UFDSADPFIJ3N8DAA 

In this file every sequence has 4 lines. In the first line we get the sequence name after the 

symbol ―@‖ and, optionally, the description. The second line has the sequence and the fourth 

line has the quality scores encoded as letters. 

Illummina fastq 

This file is almost identical to a sanger fastq file, but the encoding for the quality scores is 

different. When we deal with a fastq file we have to be sure about which kind of file we are 

dealing with, an illumina fastq or a sanger fastq. Unfortunately they are not easy to 

differentiate. Also you have to take into account that solexa used to had a third fastq format, 

the solexa fastq, although this one is mostly obsoleted. Recently Illumina has also decided to 

distribute its files as Sanger fastq, so the Illumina fastq will be not used any more. 

One of the seq_crumbs utilities, guess_seq_format, is able to differentiate the Sanger from 

the Illumina version by looking for quality characters exclusive of the Sanger version. 

http://en.wikipedia.org/wiki/FASTQ_format
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SRA 

SRA is the file format in which all NCBI SRA content is provided. SRA files are binary files 

and we need specific tools to extract the information. There is a toolkit (SRA 

Toolkit)developed by NCBI to deal with these binary files. 

Compressed files 

Sometime these sequence text file can be found compressed to save up hard drive space. The 

most common compression formats are gzip and bgzip. bgzip is a gzip variant commonly 

used in genomics because, although it is a little less efficient in the compression ratio, it 

allows random access. Most software is becoming compatible with these formats. 

Paired files 

It is common to obtain two reads from a single molecule. Examples of these techniques are 

the Illumina pair-ends and mate-pairs. In this cases for each read there is another paired read. 

One common way to store those paired reads is to create to fastq files, one for the first read of 

the pairs and another one for the second. In this case the files should hold the reads exactly in 

the same order. 

Fastq file 1 

@molecule_1 1st_read_from_pair 

@molecule_2 1st_read_from_pair 

@molecule_3 1st_read_from_pair 

 

Fastq file 2 

@molecule_1 2nd_read_from_pair 

@molecule_2 2nd_read_from_pair 

@molecule_3 2nd_read_from_pair 

Another option is to interleave the reads in a single file alternating the first and second read 

for each pair. 

Interleaved Fastq file 

@molecule_1 1st_read_from_pair 

@molecule_1 2nd_read_from_pair 

@molecule_2 1st_read_from_pair 

@molecule_2 2nd_read_from_pair 

@molecule_3 1st_read_from_pair 

@molecule_3 2nd_read_from_pair 

Depending on the software that we want to use we should the interleaved or the two file 

version. In seq_crumbs there are programs to convert between one option and the other. 

http://www.ncbi.nlm.nih.gov/sra
https://github.com/ncbi/sra-tools
https://github.com/ncbi/sra-tools
http://en.wikipedia.org/wiki/Gzip
http://samtools.sourceforge.net/tabix.shtml
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Read QA and Cleaning 

Before using the raw sequences generated by the sequencing machines we have to check their 

quality and eventually to clean them to get rid of adaptor, contaminants and low quality 

regions. 

Assessing the read quality 

We can assess the quality of the reads by taking a look at their length distribution, phred 

quality distribution, nucleotide frequencies and complexity. It is highly recommended to take 

a look at the excellent documentation found in the fastqc and prinseq sites. 

The length distribution of the reads is a basic quality check. We have to make sure that the 

length distribution complies with the expected distribution for the sequencing technology that 

we have used. 

 

For Illumina it would be typical to obtain the same sequence length for all reads. 

We should also evaluate the sequence quality. We can do it by calculating some statistics 

like: mean quality, Q20 and Q30. Q30 is the percentage of bases in the reads with a phred 

quality equal or bigger than 30. For instance: 

Q20: 86.85 

Q30: 82.39 

minimum: 2 

maximum: 41 

average: 32.32 

We can also evaluate the quality by taking a look at the quality distribution. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://prinseq.sourceforge.net/manual.html
https://bioinf.comav.upv.es/courses/sequence_analysis/_images/454_length_distribution.png
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Another very useful and common way of evaluating the quality is to generate a boxplot with 

the qualities per position along de reads. 

 

Also, to spot the presence of adaptors at the first positions of the reads it is common to 

represent the frequency of each nucleotide for each position. Ideally, in these charts, all 

https://bioinf.comav.upv.es/courses/sequence_analysis/_images/illumina_qual_distrib.png
https://bioinf.comav.upv.es/courses/sequence_analysis/_images/454_qual_boxplot.png
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positions should have the same nucleotide frequencies, but it is common to find adapter 

contamination or biases produced during the library construction protocol. 

  

https://bioinf.comav.upv.es/courses/sequence_analysis/_images/nucl_freq_adapter.png
https://bioinf.comav.upv.es/courses/sequence_analysis/_images/nucl_freq_bias.png
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It can be also quite useful to study the k-mer composition of the reads. This will give us an 

idea of the overall complexity of the sequence and also it can serve to spot highly repetitive 

k-mers corresponding to adapters, poli-A or repetitive sequences. 

Read cleaning 

The raw sequences can have some regions that could be problematic, for instance vector or 

adapter sequences and that it would be advisable to remove to avoid problems with 

downstream analyses. Some of these problems are: 

 Vectors 

 Adapters 

 Low quality 

 Low complexity 

 Contaminants 

 Duplicates 

 Error correction 

It would be OK to keep these regions if the downstream analysis software is prepared to use 

this noisy information or if at least would not be negatively affected by it, but in a lot of real 

world scenarios the downstream software will be negatively affected or can even choke if we 

do not get rid of this extra noise. For instance, if we want to map the reads with a local 

mapper (e.g. bowtie2) not trimming the reads wouldn’t be so problematic, because the 

mapper would be capable of even mapping reads with adapters in it. But if we plan to use a 

global mapper we would be better off trimming the adapters and the bad quality regions to be 

able to map more reads. 

The cleaning programs could be classified in filters and trimmers. The filtering software 

remove the reads that do not meet the criteria and the trimming software clip only certain 

regions. 

Vectors 

During the cloning and sequencing processes several vectors and adapters are usually added 

to the sequences. If we were to use these raw sequences these vectors are likely to interfere 

with the rest of the analyses, although this is highly dependent on the analysis and the 

software that will be applied to the reads. If we know for sure that the software that we are 

using is prepared to deal with these vectors we could go on without the cleaning, but 

otherwise it is advisable to do it. 

It is not common to find cloning vectors in the NGS reads because the cloning step is skip in 

most of these experiments, but they are common in the Sanger sequences. If we want to 

remove them there are two main approaches to find them. If we know the exact vector and 

cloning site sequence we could use lucy. lucy looks carefully for the cloning sites and for the 

given vectors and recommends how to trim the sequences. If we are not sure about which 

http://lucy.sourceforge.net/
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sequencing vector was used we could blast our reads against the UniVec database and trim 

the regions with significant blast matches. 

Adapters 

The main practical difference, in the context of the sequence analysis, between the vectors 

and adapters is the sequence length, the adaptors are short sequences and they are common in 

the NGS reads. For the long vectors we could use Blast, but to look for the adapters, that are 

short, with the standard Blast algorithm is not the best approach. It is better to use the blast-

short algorithm also implemented by the NCBI Blast software. 

When the adapters are shorter than 15 base pairs the algorithms used by the aligners might 

fail. An alternative in these case it to look for exact matches or to use the cutadapt software. 

The blast-short algorithm is used by seq_crumbs. 

Quality 

For some analyses it could be advisable to remove the regions of bad quality. Some people 

advise against the low quality trimming of the sequences, because even the low quality 

regions have information in them. But it is common for the downstream software not to deal 

particularly well with the low quality regions of the reads, in this case it is important to 

remove these regions. The usual approach to get rid of the low quality regions is to do a 

window analysis setting a threshold for the quality. prinseq or seq_crumbs can do this 

cleaning. Alternatively lucy can clean the long reads. 

If the reads have no quality we can estimate which regions had a poor sequencing quality by 

looking at the density of Ns found in the sequence. 

Duplicates 

In theory, we would like to obtain one read from every molecule (template) of the original 

library, but this is not always the case. Due to the PCR amplification and to the detection 

systems we could end up with even thousands of reads of some molecules. This PCR 

amplification problem is particularly noteworthy in the systems that use emulsion PCR and in 

the mate-pair Illumina libraries. In Illumina there are also optical duplicates due to a cluster 

being read twice. These optical duplicates can be detected because they will appear very 

close in the slide. The number of expected sequence duplicates depends on the depth of the 

sequencing, the type of library and the sequencing technology used. 

If we do not remove these duplicated reads from the analysis we could calculate skewed 

allele frequencies in a SNP calling experiment, or false expression profiles in a RNA-seq 

experiment, or we could give false assurance to an assembler. The problem with the 

duplication filtering is that when the reads are removed we could be removing reads covering 

the same region, but that come originally from different molecules, for instance from the 

http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html
http://code.google.com/p/cutadapt/
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different chromosomes of a diploid individual. By removing them we could lose some 

information. 

Ideally, two duplicated reads should had the same sequence and we could look for them just 

by searching for identical sequences, but due to the sequencing errors they could be not 

identical but merely very similar. If we have a reference genome a usual method to remove 

these duplicates is to remove them once we have align them to the reference. If we don’t have 

a reference we could look at least for reads that are identical. The software PRINSEQ has a 

module to filter identical duplicated reads. 

Low complexity 

Low complexity reads can impact several downstream analyses. These low complex reads 

can be a burden specially for the assemblers, so, in some cases, it could be advisable to filter 

them out. The NCBI Blast distribution includes dust, a program to mask low complexity 

regions. ngs_crumbs also has a low complexity filtering executable. 

Contaminants 

In the samples to analyze there can be different kinds of contaminants: 

 Due to the sample preparation, e.g. E. coli. 

 Mitochondrial and chloroplastic in genomic samples. 

 rRNA in transcriptomes 

 pathogens in infected samples 

This contaminants should be minimized during the sample preparation, for instance 

extracting the genomic DNA from isolated nuclei, but if we have them in our reads we can 

filter them out by running blast searchers. We can filter the contaminants 

with ngs_crumbs_ by doing blast searches. 

Error correction 

By trimming and purging the reads the mean sequencing quality of the resulting reads can be 

improved, but some information is lost. An alternative has been developed and implemented 

in several programs that tries to correct the errors in the reads. The overall idea is based on 

gathering the reads, or parts of them, that correspond to the same genomic region and to 

assume that the changes in low frequency should be due to sequencing errors. This method 

has been commonly used in the SOLiD world and a review have been recently published: A 

survey of error-correction methods for next-generation sequencing. 

Some conclusions can be derived from the mentioned review. The proposed algorithms and 

methods are quite new and differ in some key points: quality of the result, memory and time 

consumed, and scalability. Different methods have been derived for 454/Ion Torrent and 

Illumina due to their different error models. As the review explains ―error correction with 

respect to a specific genomic position can be achieved by laying out all the reads covering the 

http://prinseq.sourceforge.net/manual.html
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=FAQ#LCR
https://bioinf.comav.upv.es/courses/sequence_analysis/read_cleaning.html#id7
http://bib.oxfordjournals.org/content/14/1/56
http://bib.oxfordjournals.org/content/14/1/56
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position, and examining the base in that specific position from all these reads. As errors are 

infrequent and random, reads that contain an error in a specific position can be corrected 

using the majority of the reads that have this base correctly.‖ 

There are methods based on the study of the k-mers frequencies and based on multiple 

sequence alignments. The authors conclude that these methods are more mature for the 

Illumina reads due to the popularity and the abundance of them. For Illumina Reptile, HiTEC 

and ECHO are generally more accurate and have better scalability than other methods. The 

drawback is that most of the software tested failed with some datasets. Only four programs: 

HSHREC, Reptile, SOAPec and Coral—succeeded in generating results for all data sets. For 

454 and ion-torrent the authors recommend Coral over HSHREC. 

The study carried out in this review was done in bacteria and in Drosophila. 

After the mentioned review a new method based on a different algorithm has been proposed 

and implemented in the software lighter. The authors claim that this algorithm is faster and 

requires much less memory despite having a comparable accuracy to the other algorithms. 

I’ve tried bless with good results. 

Caution should be taken when applying these methods to pooled samples or to polyploids. 

Usual read cleaning software 

There are plenty of software to process the reads, but some that we have used are: 

 Prinseq. 

 Trimmomatic. 

 cutadapt 

 pregap4 (only for Sanger) 

 lucy (long reads, created for Sanger) 

Sequence Assembly 

Assembly software 

Some useful assembly software: 

 Staden (Sanger). 

 Celera assembler (genomic). 

 SOAPdenovo (Illumina, genomic). 

 trinity (Illumina and 454, transcriptome). 

 Mira (454 and not many Illumina reads). 

 iAssembler (454, transcriptome). 

 newbler (454). 

http://biorxiv.org/content/biorxiv/early/2014/05/27/005579.full.pdf
https://github.com/mourisl/Lighter
http://sourceforge.net/p/bless-ec/wiki/Home/
http://prinseq.sourceforge.net/manual.html
http://www.usadellab.org/cms/?page=trimmomatic
http://code.google.com/p/cutadapt/
http://staden.sourceforge.net/
http://lucy.sourceforge.net/
http://staden.sourceforge.net/
http://sourceforge.net/apps/mediawiki/wgs-assembler/index.php?title=Main_Page
http://soap.genomics.org.cn/soapdenovo.html
http://trinityrnaseq.sourceforge.net/
http://www.chevreux.org/projects_mira.html
http://bioinfo.bti.cornell.edu/tool/iAssembler/
http://454.com/products/analysis-software/index.asp
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Assembly versus mapping 

Once we have a collection of reads there are two different kinds of analyses. If we do not 

have any previous genomic information we would have to assemble the reads into a genome 

or transcriptome, as we have already seen in the assembly section. Alternatively, if we had 

genome already available we could map our reads against that genome. Although both 

analyses could seem to be similar they are very different. To assemble a genome is 

computationally much costly than to do a mapping. Assembling the human genome was a 

difficult task, re-sequencing and mapping the reads from a new individual is much more 

amenable. 

The main computational difference is that the typical software used to assemble requires a 

time that depends on the total reads length squared or the genome length squared (or quite a 

lot of memory) while the mapping is just lineal with the reads length. For a review take a 

look at Sense from sequence reads, but the take home message is that the assembly is time 

and memory consuming while the mapping can be done in standard computer. 

Also, it is important to notice that the read length is a critical parameter for the assemblies, 

but this is not the case for the mapping. We can map short reads with ease and high accuracy 

in most cases. Palmieri and Schlötterer reviewed this aspect in 2009. 

Mapping 

The mapping is the process of comparing each one of the reads with the reference genome. 

We will obtain one alignment, or more, between each read and the genome. 

Like for any other bioinformatic task there is a lot of mapping software available. The most 

commonly used programs are bowtie2 and bwa. These tools differ on the algorithm used, the 

sensitivity, the memory requirements, the speed, and the sequence length requirements. 

Seqanswers keep a comprehensive list of mappers. In Next generation sequencing has lower 

sequence coverage and poorer SNP-detection capability in the regulatory regions the authors 

review some of these programs. 

SAM format 

In general all mappers render the result in a common file format, the SAM format. This 

format is not meant for human consumption, although we can open the text version of the 

file. There is a growing collection of software created for dealing with these files. We can 

merge, sort, filter, realign and browse them. Some useful programs are: 

 samtools and picard to merge, sort and filter. 

 IGV for browsing. 

 GATK to recalibrate the quality scores, to realign the sequences and many other 

algorithms. 

http://www.nature.com/nmeth/journal/v6/n11s/abs/nmeth.1376.html
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0006323
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bio-bwa.sourceforge.net/
http://seqanswers.com/wiki/How-to/short_read_aligners
http://www.nature.com/srep/2011/110805/srep00055/full/srep00055.html
http://www.nature.com/srep/2011/110805/srep00055/full/srep00055.html
http://samtools.sourceforge.net/SAM1.pdf
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
http://www.broadinstitute.org/igv/
http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit
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Also the most common SNP callers would require a SAM file to work. 

We can encounter SAM files in two flavors: SAM and BAM. The BAM is the binary version 

and the SAM is just the equivalent text file. They hold exactly the same information and we 

can convert between them with samtools. These files are composed of two parts, a header in 

which the sequences used as references are named and the alignment section in which the 

alignments for all reads are shown. The read groups are defined also in the header. A read 

group is a collection of reads that share some characteristics like: 

 Sample. Name of the individual sequenced. 

 Library. 

 Platform. Technology used (454, Sanger, Illumina, Solid) 

SAM realignment 

The mapping is done read by read (pairwise instead of multiple alignment), so the alignment 

obtained could present some artifacts. There are a couple of ways to avoid these artifacts. 

One is to inspect the alignment in order to realign the regions with problems to fix them. 

Another is to mark those problematic regions in order to avoid calling SNPs in there. 

The GATK software has an option to realign a BAM file generating a new one with these 

problems solved. It would be specially advisable running this analysis, specially if we are 

going to take into account the small indels. 

reference CAATC   realignment CAATC 

read1     CA-TC      ---->    CA-TC 

read2     C-ATC               CA-TC 

samtools has the option (calmd) to calculate a probability for each position in the BAM file of 

having alignment artifacts. samtools calculates a probability for each position of being 

incorrectly aligned. The results is a Phred-scaled probability called Base Alignment Quality 

(BAQ). This BAQ can be combined with the sequencing quality to obtain the probability for 

each position of being a sequening error or a misalignment. 

Duplicated reads 

The reads that originate from the same original template are considered duplicated, as we 

already discussed in the read cleaning section. These duplicated reads align exactly at the 

same position on the reference genome because their sequence starts exactly at the same 

point. 

If we ignored the sequencing errors the duplicated reads should had exactly the same 

sequence, but there will be errors. One way to detect them is to look for sequences that are 

almost identical (the differences being to the sequencing errors) and that align exactly in the 

5’ end. If we had pair ends both the forward and the reverse sequencing would had to match 

and they would be detected more easily. This detection of duplicates is eased once we have 

http://www.broadinstitute.org/gsa/wiki/index.php/Local_realignment_around_indels
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all reads mapped to the reference, so in practice unless we’re assembling it tends to be carried 

out on the BAM files. The algorithms try to look for reads that map exactly in the same 

reference location. 

SNP calling 

One of the main applications of the NGS technologies is the SNP mining in the resequencing 

projects. Reads from different individuals are generated and Single Nucleotide 

Polymorphisms (SNPs) and indels are looked for by comparing them with the reference 

genome. 

Once an alignment is generated as a BAM file looking for SNPs is not a conceptually a 

difficult task. We go through every column of the alignment and in every one we see how 

many alleles are found and how they compare with the one found in the reference genome. 

Unfortunately this naive view is complicated by several confounding factors: 

 The cloning process artifacts (e.g. PCR induced mutations). 

 The error rate associated with the sequence reads. 

 The error rate associated with the mapping. 

 The reliability of the reference genome. 

In fact Heng Li, the author of BWA, has recently evaluated the error rate of the SNP calling 

proccess and has concluded that the two major sources of errors are: 

 erroneous realignment in low-complexity regions 

 incomplete reference genome with respect to the sample 

He concludes that with the methods available at April of 2014 ―the raw genotype calls is as 

high as 1 in 10-15 kb, but the error rate of post-filtered calls is reduced in 1 in 100-200kb 

without significant compromise on the sensitivity‖. 

Alignment considerations 

The mapping tools calculate a probability for the correctness of the alignment for the whole 

read. This probability depends on the length of alignment, on the number of mismatches and 

gaps and on the uniqueness of the aligned region on the genome and it should reflect the 

probability of the read being originate from the aligned region on the reference. It is 

important to distinguish the real SNPs from the mismatches between repeated homologous 

genomic regions. 

Even in the case in which the read maps only to one location in the reference genome and we 

have a good alignment score for the overall read some bases of the read can be misaligned. 

coor     12345678901234    5678901234567890123456 

ref      aggttttataaaac----aattaagtctacagagcaacta 

sample   aggttttataaaacAAATaattaagtctacagagcaacta 

read1    aggttttataaaac****aaAtaa 

http://arxiv.org/pdf/1404.0929v1.pdf


Introduction to NGS 

52 
 

read2     ggttttataaaac****aaAtaaTt 

read3         ttataaaacAAATaattaagtctaca 

read4             CaaaT****aattaagtctacagagcaac 

read5               aaT****aattaagtctacagagcaact 

read6                 T****aattaagtctacagagcaacta 

One approach to this problem is to realign the problematic regions to solve the problem, this 

is the approach taken by GATK realignment. The actual implementations of this realignment 

are computationally quite intensive and the results are not perfect. The samtools developers 

have proposed an alternative solution, instead of solving the problem, to detect it and mark it 

with alignment qualities per base and not only per read. The resulting qualities calculated by 

the samtools are known as BAQ (Base Alignment Quality) and the method to calculate them 

is described in the mpileup manual. 

Quality recalibration 

Every base of the reads is generated with a Phred score associated. This score should be 

related with the probability of a sequencing error on the nucleotide read. In this way we could 

distinguish sequencing errors from real variation, but there is a catch, the Phred values have 

an intrinsic error in themselves. When the Phread values are compared with the real 

sequencing error rates, calculated by resequencing well established standards, they are 

usually found to be in disagreement. It is often the case that the sequencing error rates 

predicted by the sequencing machines are not completely accurate. To solve this issue a 

recalibration of the quality scores can be carried out. 

To do a recalibration the variable positions found in the alignments are classified according to 

the information of which SNPs have been previously detected in the species. The variable 

positions that do not match a previously known SNP are expected to be mainly sequencing 

errors and with that information the read quality can be recalibrated. This process is 

implemented by GATK and SOAPsnp. 

In the case of a species with much previous SNP information the recalibration could be 

carried out by doing a first round of SNP calling and then recalibrating using the called SNPs 

as the true SNP of the species. In this case after the recalibration is done the second, and 

definitive, SNP calling would be performed. 

SNP calling 

Once we have taken into account the sequencing and alignment problems we can use a SNP 

calling software to look for the SNPs. The most commonly used SNP callers are: 

samtools’ mpileup, GATK and FreeBayes. Each one of these SNP callers make different 

assumptions about the reference genome and the reads, so each one of them is best suited for 

different situations. 

Some SNP callers are based on counting the number of reads for each alleles once 

appropriate thresholds for the sequencing and mapping qualities have been applied. This 

http://www.broadinstitute.org/gsa/wiki/index.php/Local_realignment_around_indels
http://samtools.sourceforge.net/mpileup.shtml
http://en.wikipedia.org/wiki/Phred_quality_score
http://samtools.sourceforge.net/mpileup.shtml
http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit
https://github.com/ekg/freebayes
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simple method is the one used by the VarScan SNP caller as well as by most of the 

commercial SNP callers. But other methods based on more advanced statistics have also been 

developed. This methods often perform better, specially with low coverages, and do certain 

assumptions to create bayesian models. Most of them assume diploid individuals and some 

even take into account the Hardy-Weinberg equilibrium and Linkage Disequilibrium 

information as well as previous information about the SNPs present in the species and their 

allele frequencies. 

The GATK project has published a good resource to lear more about SNP calling best 

practices. 

Brad Chapman has a very interesting piece comparing the use of several aligners and SNP 

callers. For the read alignment he used bwa-mem. Then he compared two alternative post-

processing methods: 

 de-duplication with Picard MarkDuplicates, GATK base quality score recalibration 

and GATK realignment around indels. 

 Minimal post-processing, with de-duplication using samtools rmdup and no 

realignment or recalibration. 

For the SNP and indel calling with compared three methods: 

 FreeBayes (v0.9.9.2-18): A haplotype-based Bayesian caller from the Marth 

Lab. 

 GATK UnifiedGenotyper (2.7-2): GATK’s widely used Bayesian caller. 

 GATK HaplotypeCaller (2.7-2): GATK’s more recently developed haplotype 

caller which provides local assembly around variant regions 

Some of his main conclusions were: 

 skipping base recalibration and indel realignment had almost no impact on the quality 

of resulting variant calls 

 FreeBayes outperforms the GATK callers on both SNP and indel calling. The most 

recent versions of FreeBayes have improved sensitivity and specificity which puts 

them on par with GATK HaplotypeCaller. 

 GATK HaplotypeCaller is all around better than the UnifiedGenotyper. 

He has also compared the performance of the Structural variant callers and the cancer SNP 

callers. 

VCF format 

The end result of a SNP calling analysis is a collection of SNPs. An standard file has been 

created to hold these SNPs, the Variant Call Format file (VCF). In this file every line 

represents an SNP and the following information is found: 

 The position in the reference genome. 

 The allele in the reference genome. 

http://varscan.sourceforge.net/
http://gatkforums.broadinstitute.org/discussion/1186/best-practice-variant-detection-with-the-gatk-v4-for-release-2-0
http://gatkforums.broadinstitute.org/discussion/1186/best-practice-variant-detection-with-the-gatk-v4-for-release-2-0
http://bcbio.wordpress.com/2013/10/21/updated-comparison-of-variant-detection-methods-ensemble-freebayes-and-minimal-bam-preparation-pipelines/
http://bcb.io/2014/08/12/validated-whole-genome-structural-variation-detection-using-multiple-callers/
http://bcb.io/2015/03/05/cancerval/
http://bcb.io/2015/03/05/cancerval/
http://vcftools.sourceforge.net/specs.html
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 The other alleles found. 

 The filters not passed by the SNP. 

 The genotypes found with its abundances. 

 

A tool for working with these files has been created, VCFtools. In its web site a definition of 

the file format can be found. VCFtools allow: 

 Format validation. 

 SNV annotation. 

 VCF comparison. 

 Statistics calculation. 

 Merging, intersections and complements. 

We can take a look at a VCF file quite easily with a text editor, although we might also find 

some of them convected to a binary format (BCF). Also, the fields in this file are delimited 

by tabs, so it can be imported into a spreadsheet program by using the csv option. 

The types of variants that can be stored in a VCF file are: 

SNPs 

Alignment  VCF representation 

ACGT       POS REF ALT 

AtGT       2   C   T 

 

Insertions 

Alignment  VCF representation 

AC-GT       POS REF ALT 

ACtGT       2   C   CT 

 

Deletions 

Alignment  VCF representation 

ACGT       POS REF ALT 

A--T       1   ACG A 

 

Complex events 

Alignment  VCF representation 

ACGT       POS REF ALT 

http://vcftools.sourceforge.net/index.html
https://bioinf.comav.upv.es/courses/sequence_analysis/_images/vcf_format.png
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A-tT       1   ACG AT 

 

Large structural variants 

VCF representation 

POS REF ALT   INFO 

100 T   <DEL> SVTYPE=DEL;END=300 

SNP quality assessment 

Several distributions can be created to analyze the SNP calling result: 

 % of missing calls per SNP 

 SNP depth or Genotype depth 

 SNP observed heterozygosity 

 SNP quality 

 SNP density 

 Sample depth 

 % of missing calls per sample 

 Sample observed heterozygosity 

SNP filtering 

Filtering the SNPs after the SNP calling is a critical task. We can filter the SNPs for different 

reasons like usefulness or risk of being a false positive. In the called SNPs there will be some 

false positives so we could want to remove those false positives. It is common to divide the 

SNPs in several tiers according to our confidence in them. 

Several application exist to filter SNPs VCFtools, SnpSift, Vardict and GATK are just some 

examples. 

Some of the parameters than can be taken into account are: quality, heterozygosity, depth, 

mapping quality, errors of the reads, or allele frequency. 

We could also select some SNPs for a genotyping platform or to do a particular analysis. 

A VCF file is a matrix with the SNPs in rows, the samples (e.g. individuals) in the columns 

and the genotypes in the cells. We can filter SNPs (lines/rows), samples (columns) or 

genotypes (setting the corresponding genotype to not determined). In the case of the SNP 

filtering the nomenclature can be confusing, because two different kind of analyses are 

commonly refered as filtering. We can remove the lines corresponding to the filtered SNPs 

from the file altogether or we can annotate the SNP/row adding a tag to the filter column in 

the VCF file, but without removing the SNP from the file. 

The freebayes SNP caller includes some programs to filter the SNPs, among them vcffilter 

that makes possible to remove SNPs/rows or genotypes from the VCF file by using different 

criteria. 

Filter for SNPs 

https://vcftools.github.io/
http://snpeff.sourceforge.net/SnpSift.html
http://bcb.io/2016/04/04/vardict-filtering/
https://www.broadinstitute.org/gatk/guide/article?id=2806
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Low quality 

SNP callers usually assign a quality (probability) to the SNPs. We can filter out the SNPs 

with lower qualities. 

Missing data 

We could filter the SNPs with large amount of missing genotypes. This could happen, for 

example, in RNASeq experiments (in genes with low expression in some samples), in GBS 

experiments or in low coverge genome sequencings. 

Number of alleles 

It is possible to remove the monomorphic SNPs or to filter out the SNPs that are not biallelic. 

Kind 

We can filter the SNVs according to its type: SNV, indel, complex or structural variation 

Position 

We can filters the SNPs according to its location in the genome. For instance, we could keep 

only the SNPs found in an exon or in a coding region. 

It is also common to thin out the SNPs, to select one SNP every some kilobases in the 

genome. 

Low Complexity Region 

It has been shown that due to problems with the PCR and the alignment the low complexity 

regions are particularly prone to false positive SNPs. We could remove them with a low 

complexity filter. These are also the regions that tend to be more variable in the populations, 

so by removing those SNPs we will create lots of false negatives. This filter will tend to 

decrease the amount of information, but hopefully will also remove quite a lot of noise. 

Flag and info 

We could filter the SNPs according to the flag and info fields found in the VCF files. It is 

usual that a tools that runs a filter in a VCF file just puts a tag in the VCF flag field. 

Minor Allele Frequency (MAF) 

MAF can sometimes refer to the Minor Allele Frequency and sometimes to the Major Allele 

Frequency. Both statistics convey the same information for the biallelic SNPs, but the Major 

Allele Frequency is more straightforward if we have more than 2 alleles. 
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SNPs due to sequencing errors will usually have major allele frequencies close to 1, because 

few genotypes will have an allele due to the error. So we could remove most SNPs due to 

sequencing errors by using this filter. If we do it, we will also filter out lots of real SNPs that 

are almost fixed in the population. 

If we are dealing with a segregant population we usually expect a range of MAF values and 

we can use this information to decide which SNPs should be filtered out. 

If we have pooled samples we might consider applying this filter to individual samples. 

Another very related measure is MAC: major/minor allele count. 

Observed Heterozygosity 

One common source of false positive SNPs with high heterozygosity rates is due to 

duplicated regions found in the problem sample that are not found in the reference genome. It 

is common to have SNPs in these regions with heterozygosities close to 0.5. In such cases the 

SNPs will be due to reads from the two copies that are piled in the only copy found in the 

reference genome. This cases can not be avoided by filtering the reads with MAPQ because 

since only one copy of the duplication is found in the reference genome the mapper software 

can not guess that there is a problem due to a repetitive element. Another way to spot these 

false positives is to look for SNPs with a high coverage. 

High Coverage 

An excessive coverage can point to false positives due to duplicated regions in the sequenced 

sample not found in the reference genome. See also the observed heterozygosity filter. 

Highly Variable Region 

Having regions with too many SNPs could also be a sign that we are piling up reads from 

repeated regions. We could filter out the SNPs located in such highly variable regions. This 

analysis is usually done counting the number of SNPs in a window around each SNP. 

It can also be useful to remove the SNPs with an SNP too close if we want to design primers 

to do a PCR or genotyping experiment. In this case we might also want to remove the SNPs 

that are close to the start or the end of the reference sequence. This could be particularly 

relevant if we are using a transcriptome as a reference. 

Linkage Disequilibrium 

If we have genotype a segregant population it could be useful to filter out the SNPs that are 

not in linkage disequilibrium with their closest SNPs. Many of these unlinked SNPs will be 

false positives. 
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Variability 

We might be interested in filtering out or selecting SNPs that are variable in a set of samples 

or that differenciate two sets of samples. 

Aminoacid change 

We can select the SNPs with large impacts in the coded proteins. The SnpEff tool can be used 

for that. 

Cap enzyme 

We can select the SNPs that create restriction sites if we want to detect them by PCR and 

restriction enzyme digestion. 

HWE 

We can also filter out the SNPs that are not in HWE or that show a non-medelian segregation 

in a segregant population. 

Filters for Genotypes 

It is also possible to filter out not SNPs, but genotypes. In this case the genotype is usually set 

to not determined. 

To genotype a sample with good quality we need more information than to just get the SNP 

with good quality. If we have several samples, all their reads will contribute information to 

determine the SNP, but to get the genotype of any of them we need enough coverage in the 

given sample. 

Two common filters used for genotypes are the depth of coverage for the genotypes and the 

genotype quality that is created by most SNP callers. 

GFF format 

The GFF files are used to store annotations. An annotation can be thought as a label applied 

to a region of a molecule. For instance we could tag a region covered by a gene in a 

chromosome. The GFF files are text files and every line represents a region on the annotated 

sequence and these regions are called features. In the previous case the gene would be a 

feature of the chromosome. Features can be functional elements (e.g., genes), genetic 

polymorphisms (e.g. SNPs, INDELs, or structural variants), or any other annotations. Each 

feature should have a type associated. Examples of some possible types are: SNPs, introns, 

ORFs, UTRs, etc. The terms used to define these types should belong to the Sequence 

Ontology terms. If you are interested you can take a look at the Sequence Ontology or at 

the GFF format specification. 

http://snpeff.sourceforge.net/
http://www.sequenceontology.org/
http://www.sequenceontology.org/resources/gff3.html
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In the GFF format both the start and the end of the features are 1-based. 

##gff-version 3 

##sequence-region ctg123 1 1497228 

ctg123 . gene 1000 9000 . + . ID=gene00001;Name=EDEN 

ctg123 . TF_binding_site 1000 1012 . + . ID=tfbs00001;Parent=gene00001 

ctg123 . mRNA 1050 9000 . + . ID=mRNA00001;Parent=gene00001;Name=EDEN.1 

BED format 

The BED format provides a simpler way of representing the features in a molecule. Each line 

represents a feature in a molecule and it has only three required fields: name, start and end. 

chr22 1000 5000 cloneA 960 + 1000 5000 0 2 567,488, 0,3512 

chr22 2000 6000 

The BED format uses 0-based coordinates for the starts and 1-based for the ends. So the 1st 

base on chromosome 1 would be: 

chr1    0    1    first_base 

Headers are allowed. Those lines should be preceded by # and they will be ignored. 
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Whole genome sequencing 

The aim of whole-genome sequencing (WGS) is to determine an organism‟s complete 

DNA sequence in a single experiment, including a comprehensive picture of both the coding 

and non-coding regions. As such, WGS provides a comprehensive picture of both the coding 

and noncoding regions of chromosomal and mitochondrial DNA, as well as chloroplast DNA 

(in plants). WGS enables the detection of all types of genetic variation, including single-

nucleotide polymorphisms (SNPs), small insertions and deletions (indels), and structural 

variants, such as translocations and copy number variation (CNV).
1
 

The genome of bacteriophage ɸX174 (5,386 bp) was the first genome to be fully 

sequenced, by Fred Sanger and colleagues in 1977.
2
 In the 14 years that followed, the Sanger 

method was used to sequence small genomes, such as those of bacteriophages and viruses (all 

in the 50 – 200 kb range); as well as the first genome of a free-living organism (Haemophilus 

influenza, 1.8 Mb; published in 1995
3
). Sanger sequencing was also used to sequence the first 

plant genome (Arabidopis thaliana, 135 Mb; published in 2000
4
) and the first draft of the 

human genome (published in 2001
5
). The advent of next-generation sequencing (NGS) made 

sequencing of the first human cancer genome possible (published in 2008
6
). Continuous 

improvements in NGS technology (and concomitant reductions in per-base cost) have since 

enabled routine, high-throughput WGS of both simple and highly complex genomes. 

 Among other applications, WGS research enables us to: 

 gain deeper insight into the genomic basis of health, disease and ancestry than what is 

possible with targeted sequencing approaches 

 discover biomarkers and understand pharmacogenetics 

 perform genome-level comparative analysis, to identify synteny, orthologs and 

horizontal gene transfer events  

 generate reference genomes for agriculturally important animals and plant, to assist 

with breeding 

 support ecology and conservation biology 

 understand disease outbreaks and public health 

 secure food safety 

 understand antibiotic resistance 

 study microbiomes and their role in human health and disease 

 

 

Sample Prep for whole-genome sequencing 
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As is the case for all NGS applications, sample prep constitutes the first step in the WGS 

workflow, and holds the key to unlocking the potential of every sample. Because NGS 

samples are precious, the best sample prep solutions are needed to process more samples 

successfully, get more information from every sample and optimize your sequencing 

resources. Roche Sample Prep Solutions offer an integrated approach to sample preparation, 

addressing all of the steps required to convert a sample to a sequencing-ready library. From 

sample collection to library quantification, we offer sample prep solutions for different 

sample types and sequencing applications that are proven, simple and complete. 

 

Library construction for WGS starts with fragmenting DNA to the appropriate size, after 

which platform-specific adapters are added. PCR-free workflows are preferred for WGS, but 

in cases where input DNA is limited or is of poor quality, library amplification is required. 

WGS library construction protocols typically include a size-selection step as a narrow library 

fragment distribution facilitates data analysis. Quantification and QC of sequencing-ready 

libraries are important to ensure optimal clonal amplification on NGS platforms. After 

sequencing, sequence reads are aligned against a reference genome (reference-guided 

sequence assembly), or when no such reference is available, compared to each other and 

assembled into long contiguous segments (de novo sequencing). This general workflow 

applies to the sequencing of both simple (e.g. bacterial) and complex (e.g. human) genomes, 

but these applications pose very different challenges. 

Advantages of Whole-Genome Sequencing 

 Provides a high-resolution, base-by-base view of the genome 

 Captures both large and small variants that might be missed with targeted approaches 

 Identifies potential causative variants for further follow-up studies of gene expression 

and regulation mechanisms 

 Delivers large volumes of data in a short amount of time to support assembly of novel 

genomes 

An Uncompromised View of the Genome 

Unlike focused approaches such as exome sequencing or targeted resequencing, which analyze 

a limited portion of the genome, whole-genome sequencing delivers a comprehensive view of 

https://sequencing.roche.com/en/products-solutions/solutions/sample-prep-solutions.html
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the entire genome. It is ideal for discovery applications, such as identifying causative variants 

and novel genome assembly. 

Whole-genome sequencing can detect single nucleotide variants, insertions/deletions, copy 

number changes, and large structural variants. Due to recent technological innovations, the 

latest genome sequencers can perform whole-genome sequencing more efficiently than ever. 

Introduction to Large Whole-Genome Sequencing 

Sequencing large genomes (> 5 Mb) can provide valuable information for disease and 

population-level studies. Researchers often use large whole-genome sequencing to analyze 

tumors, investigate causes of disease, select plants and animals for agricultural breeding 

programs, and identify common genetic variations among populations. 

Advantages of Large Whole-Genome Sequencing 

 Provides a high-resolution, base-by-base view of the genome 

 Combines short inserts and longer reads to allow characterization of any genome 

 Reveals disease-causing alleles that might not have been identified otherwise 

 Identifies potential causative variants for further follow-on studies of gene expression 

and regulation mechanisms 

A Comprehensive View of Genetic Variation 

Analyzing the whole genome using next-generation sequencing (NGS) delivers a base-by-base 

view of all genomic alterations, including single nucleotide variants (SNV), insertions and 

deletions, copy number changes, and structural variations. Paired-end whole-genome 

sequencing involves sequencing both ends of a DNA fragment, which increases the likelihood 

of alignment to the reference and facilitates detection of genomic rearrangements, repetitive 

sequences, and gene fusions. 

Introduction to Small Whole-Genome Sequencing 

Small genome sequencing (≤ 5 Mb) involves sequencing the entire genome of a bacterium, 

virus, or other microbe, and then comparing the sequence to a known reference. Sequencing 

small microbial genomes can be useful for food testing in public health, infectious disease 

surveillance, molecular epidemiology studies, and environmental metagenomics. 

Advantages of Small Genome Sequencing 

 Allows investigation of all genes from single organism culture 

 Sequences thousands of organisms in parallel 

 Provides comprehensive analysis of the microbial or viral genome 

 Aids discovery of new biomarkers within a microbial or viral sample by providing 

distinct gene information from homologous chromosomes, supporting haplotyping 
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Fast, Culture-Free Microbial Analysis 

Unlike traditional approaches, small whole-genome sequencing (WGS) studies using next-

generation sequencing (NGS) do not rely on labor-intensive cloning steps. NGS also enables 

biologists to sequence hundreds of organisms simultaneously via multiplexing. NGS can 

identify low-frequency variants, genomic rearrangements, and other genetic changes that might 

be missed or are too costly to identify using other methods. For small genomes, DNA libraries 

can be prepared, sequenced, and analyzed in as little as 2 days. 

What Is De Novo Sequencing? 

De novo sequencing refers to sequencing a novel genome where there is no reference sequence 

available for alignment. Sequence reads are assembled as contigs, and the coverage quality 

of de novo sequence data depends on the size and continuity of the contigs (ie, the number of 

gaps in the data). 

Next-generation sequencing (NGS) allows faster, more accurate characterization of any species 

compared to traditional methods, such as Sanger sequencing. Illumina NGS technology offers 

rapid, comprehensive, accurate characterization of any species. 

Advantages of De Novo Sequencing 

 Generates accurate reference sequences, even for complex or polyploid genomes 

 Provides useful information for mapping genomes of novel organisms or finishing 

genomes of known organisms 

 Clarifies highly similar or repetitive regions for accurate de novo assembly 

 Identifies structural variants and complex rearrangements, such as deletions, inversions, 

or translocations 

Accurate De Novo Genome Assembly 

When sequencing a genome for the first time, a combined approach can yield higher-quality 

assemblies. For example, combining short-insert, paired-end and long-insert, mate pair 

sequences is an ideal way to maximize coverage. The short reads, sequenced at higher depths, 

can fill in gaps not covered by the long inserts. 

This combination enables detection of a broad range of structural variant types and is essential 

for accurate identification of complex rearrangements. 

 

Introduction to Phased Sequencing 

Historically, whole-genome sequencing generated a single consensus sequence without 

distinguishing between variants on homologous chromosomes. Phased sequencing, or genome 
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phasing, addresses this limitation by identifying alleles on maternal and paternal chromosomes. 

This information is often important for understanding gene expression patterns for genetic 

disease research. 

Benefits of Phased Sequencing 

Next-generation sequencing (NGS) enables whole-genome phasing without relying on trio 

analysis or statistical inference. By identifying haplotype information, phased sequencing can 

inform studies of complex traits, which are often influenced by interactions among multiple 

genes and alleles. Phasing can also provide valuable information for genetic disease research, 

as disruptions to alleles in cis or trans positions on a chromosome can cause some genetic 

disorders. 

Phasing can help researchers to: 

 Analyze compound heterozygotes 

 Measure allele-specific expression 

 Identify variant linkage 

Applications of WGS: Case Studies 

De novo Genome Assembly 

Generally a genome is assembled from NGS sequence data by aligning to a reference 

genome. For most organisms however, this is not possible since no reference is available. In 

these cases de novo genome assembly is preformed. 

When assembling a genome without a reference it is essential to have a way to correlate 

sequences long range, otherwise the assembly will be inaccurate. There are two ways to 

achieve this. Often a library of fosmids is constructed and sequenced by Sanger Sequencing 

in parallel to NGS. While sequencing the fosmids does not provide the coverage of NGS, it 

gives very long reads and so allows the correlation of sequences that are far from each other. 

The drawback is that the large amount of Sanger Sequencing required is both expensive and 

time consuming. More recently a new approach has been taken that relies entirely on 

illumina‟s short sequencing reads. Here many libraries are generated, some with very long 

lengths. The libraries are then undergo paired-end sequencing to generate mate-paired 

sequences with correlated short reads and a gap of known length but unknown sequence. 

These mate-pairs allow long range correlation between sequences, allowing a more accurate 

genome assembly. 

This approach was used recently to sequence the genome of the flax plant (Linum 

usitatissimum) by an international collaboration. Flax is an important crop for both food and 

textile production. Sequencing its genome will help agronomists develop better varieties and 
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better understand the domestication of this crop. The authors generated seven libraries with 

varying lengths from 300 bp to 10 kb and sequenced them using paired-end illumine (Figure 

1). This generated mate-pair and paired-end reads with 44-100 bp of known sequence and a 

spacer of defined length (Figure 1). The use of mate-paired reads with thousands of bases 

between them allowed the alignment of sequences long range, enhancing the accuracy of the 

assembly. 

 

 

 

 

Figure 1 – For flax genome assembly libraries of 300 bp to 10 kb were prepared. These were 

sequenced as paired-end reads 

The first step in assembly was to remove low quality reads, after which the coverage 

was determined to be 69x.  After filtering, the reads were aligned to each other to generate 

116,602 contigs (Figure 2). The contigs were further aligned to generate 88,384 scaffolds, 

132 of which contained 50% of the assembly and were longer than 693.5 kb (Figure 2). The 

longest scaffold was 3.09 Mb. The assembly was found represent 85% of the genome with an 

average of 45x coverage.   
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Figure 2 – Reads are aligned to make contigs and contigs are then aligned to make scafolds. 

 

 

 

Expressed sequence tags (ESTs) are short sequences obtained from cDNA libraries. 

They represent expressed regions of the genome and so can be used to find genes. In this 

study the known ESTs of flax were aligned to the scaffolds. Ninety-three percent of the flax 

ESTs aligned to the WGS scaffolds with >95% sequence identity indicating the assembled 

genes were highly accurate. This study also preformed many different analyses including 

comparison of the assembled flax genome to the genome of other plants. For more 

information please see the original paper.   

Pathogen Tracking 

Whole Genome Sequencing can also be used to track pathogen outbreaks. At present, 

the gold standard for analyzing strains of pathogenic bacteria is pulsed-field gel 

electrophoresis (PFGE), which compares the banding pattern between genomes digested by a 

selected restriction enzyme. This approach is limited however, since significant mutations 

can be easily hidden when they don‟t affect the restriction sites or relative size of the genomic 
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fragments. At the same time a single nucleotide mutation can result in the gain or loss of a 

restriction site and so can give a different PFGE pattern between closely related strains. This 

proof of concept study by Revez et al investigates WGS as a replacement for PFGE. 

Campylobacter jejuni is among the leading causes of food born illness in the world. It is 

naturally found in the guts of birds and cows. Humans are most likely to become infected by 

injecting contaminated water. C. jejuni infection is debilitating, but rarely fatal. In this study 

samples from a Campylobacter jejuni outbreak in Europe in 2012 were reanalyzed by WGS 

and compared to the conclusions drawn from standard methodologies, to decide if WGS has 

similar or enhanced ability to track pathogen source and evolution during an outbreak 

situation. 

Based on the PGFE patterns observed during the outbreak it was concluded that there 

was a contamination event involving one strain and one water source. However WGS 

revealed that this was not the case (Figure 3). Of the two human isolates shown here, one 

was found to be highly similar to the waterborne strain. The other human isolate is highly 

divergent, too much so to be the result of genetic drift during the course of the outbreak. In 

light of the WGS data the authors conclude that either a single source of water was 

contaminated by multiple divergent strains or that there were multiple sources of 

contamination. These results highlight the importance of more accurate WGS data during 

pathogen outbreaks, since conventional methodology misidentified a patient strain, 

potentially missing other sources of contamination. 

 

 

Figure 3 – The relationships between strains determined by WGS was more accurate than 

those that could be observed by PFGE. For example IHV116260 and 6237/12 are 

indistinguishable by PFGE but WGS revealed that they are highly divergent. 
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Molecular Evolution 

Whole genome sequencing is also an essential tool for studying molecular evolution. 

This study uses WGS to study the molecular evolution of the Ithica New York honeybee 

population in response to the introduction of the mite Varroa destructor. Specimens collected 

in 2010 were compared to museum specimens collected in 1977, before the introduction of 

the mite. Honeybees, Apis mellifera, are essential to human agriculture. Both feral and 

domestic populations exist in North America. Honey bees are a eusocial species; each colony 

contains a sexually mature queen bee, a few thousand haploid males and tens of thousands of 

sterile female worker bees (Figure 4). The mite Varroa destructor feeds on the hemolymph 

of the adult worker bees, weakening them and making them more susceptible to disease 

(Figure 4). It has been associated with colony collapse. 

 

Figure 4 

 

 

 

 

The authors found a drastic loss of mitochondrial haplotypes between 1977 and 2010, 

with an entire clade going extinct (Figure 5). This loss indicates a population bottleneck 

upon the introduction of Varroa destructor. However they also found no decrease in nuclear 
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genetic diversity. This finding indicates that the modern population is descended from a small 

number of queens through high rates of outbreeding and polyandry. The ancestry of the 

modern bee population is similar to the museum bees with a few variants. In the modern bees 

there is traces of African and Arabian ancestry that was absent in the museum bees (Figure 

5). The authors also found some genes that were under selection pressure in the modern 

population relative to the museum bees which may play a role in resistance to the Varroa 

destructor parasite. For more details please see the original paper. This study demonstrates 

that WGS is a powerful tool for studying the molecular evolution of a population over time. 

 

 

Figure 5 

Whole-Genome Sequencing Methods 

Sequencing technologies are unable to sequence the entire human genome at once. Thus, the 

genome must be broken into smaller chunks of DNA, sequenced and then put back together 

in the correct order using bioinformatics approaches. There are several methods of DNA 

sequencing, including clone-by-clone and whole-genome shotgun methods. For more 

information on whole-genome sequencing as it relates to field of immuno-oncology, see the 

section "Types of Molecular Testing -- Research." 

Clone-by-clone 

 

This method requires the genome to have smaller sections copied and inserted into bacteria. 

The bacteria then can be grown to produce identical copies, or “clones,” containing 

approximately 150,000 base pairs of the genome that is desired to be sequenced. Then, the 

inserted DNA in each clone is further broken down into smaller, overlapping 500 base pair 

chunks. These smaller inserts are sequenced. After sequencing is performed, the overlapping 

portions are used to reassemble the clone. This approach was used to sequence the first 

https://www.healio.com/hematology-oncology/learn-immuno-oncology/basic-principles-of-tumor-immunotherapy/types-of-molecular-testing-research
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human genome using Sanger sequencing. This approach is time-consuming and costly, but it 

is reliable. 

Whole-genome shotgun 

 

As the name implies, “shotgun” sequencing is a method that breaks DNA into small random 

pieces for sequencing and reassembly. The pieces of DNA are also cloned into bacteria for 

growth, isolation and subsequent sequencing. Because the pieces are random, there are 

overlapping sequences that aid in reassembly into the original DNA order. This approach was 

originally used in Sanger sequencing but is now also used in next-generation sequencing 

methods providing rapid genome sequencing with lower costs. It is only good for shorter 

“reads” (ie, sequencing on shorter DNA fragments to be put back together again). Because it 

is reassembled based on overlapping regions and has shorter read lengths, it is best utilized 

when a reference genome is available, and it requires sophisticated computational approaches 

to reassemble the sequence. It also can be challenging for genomes with many repetitive 

regions. 

Assembly of sequencing reads 

 

Because genomes are sequenced in varying lengths of DNA fragments, the resulting 

sequences must be put back together. This is referred to as “assembly,” or “reassembly.” Two 

common approaches are de novo assembly and assembly by reference mapping. 

De novo assembly is performed by identifying overlapping regions in the DNA sequences, 

aligning the sequences and putting them back together to form the genome. This is done 

without any sequence with which to compare. Mapping to a reference genome uses another 

genome to align new sequencing data to as a comparator. 

Although de novo assembly can be challenging, this approach is the only one available for 

sequencing new organisms. Additionally, de novo assembly introduces results with less bias 

than mapping to a reference genome. Mapping to a reference genome is easier and requires 

less contiguous reads, but new or unexpected sequences can be lost. The sequence results 

obtained by this method is only as good as the reference genome chosen; however, it can 

provide better identification of single nucleotide polymorphisms (SNPs). Multiple institutions 

and genomic sequencing companies have invested considerable time and effort into creating 

improved reference genomes. Single nucleotide polymorphisms are known to vary by race 

and ethnicity, thus, multiple reference genomes have been created for various 

races/ethnicities. 
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Examples of next-generation sequencing platforms 

 

Several companies focus on development and marketing of next-generation sequencing 

machines (often referred to as “platforms”) for use in whole-genome (and other) sequencing. 

Illumina is considered by many as the leader because of the number of users that utilize its 

systems. Illumina has multiple platforms depending on the need. The Illumina HiSeq is one 

of the more common sequencers found in laboratories, including major research institutions, 

companies providing next-generation sequencing services for clinics and labs, and pathology 

laboratories. It has a high throughput, capable of sequencing many genomes rapidly with 

reasonable costs. This instrument also can be used to look at copy number variation, as well 

as mutations and other alterations, and RNA expression levels to do transcriptomics. Because 

of the popularity in the clinic of targeted sequencing panels, which are much smaller with 

clinics requiring faster turnaround times for treatment of patients, Illumina created the MiSeq, 

which can provide same-day sequencing results for very small panels. Illumina also produced 

multiple variations to provide sequencers for each disease area optimizing output, turnaround 

time and costs for specific use cases. 

Thermo Fisher Scientific‟s Ion Torrent or Ion Proton uses a completely different technology 

based on detection of pH differences and was once expected to provide better utility for 

clinical applications because it was easier to use, cost less and provided faster turnaround 

time. However, Illumina countered with new machines to fit these needs. Consequently, both 

are found in research and clinical laboratories. 

Other technologies developed recently use different novel approaches. A few examples are 

provided below. 

Oxford Nanopore Technologies introduced the MinION, which enables anyone to sequence 

on a desktop computer using a USB device. The DNA is passed through a protein nanopore 

membrane for sequencing and detection by creation of an ionic current that varies based on 

the nucleotide. 

Pacific Biosciences introduced its single molecule, real-time technology with the longest 

reads to date, with average read lengths of more than 10,000 base pairs compared with more 

than 150 base pairs. Single molecule, real-time technology uses a chip with single DNA 

molecules attached. Zero-mode waveguide technology enables isolation of a single 

nucleotide for the DNA polymerase to add fluorescent labels for detection of each base. The 

error rate of this instrument is still higher than some of the prior technologies, but a lot of 
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interest has been generated, and there is hope that speed and costs can be further optimized 

with the new approach. 

Coverage breadth and depth 

 

Coverage refers to the number of reads that show a specific nucleotide in the reconstructed 

DNA sequence. A read is a string of A, T, C, G bases that correspond to the reference DNA. 

There are millions of reads in a sequencing run. Increased coverage depth results in increased 

confidence in variant identification. 

For the human genome, a 10- to 30-times coverage depth is acceptable for detecting 

mutations, SNPs and rearrangements. A next-generation sequencing approach that provides a 

coverage depth of 30 times is considered to have high coverage. However, as coverage depth 

increases, coverage breadth decreases (Figure 1). 
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Figure 1. Relationship between coverage breadth vs. coverage depth. 
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Whole-Genome vs. Whole-Exome Sequencing vs. Targeted Sequencing Panels 

Whole-genome sequencing determines the order of the nucleotides (A, C, G, T) in the entire 

genome that makes up an organism. The goal of whole-genome sequencing is, typically, to 

look for genetic aberrations (eg, single nucleotide variants, deletions, insertions and copy 

number variants). Because the entire genome is being sequenced, changes in the noncoding 

sections of DNA within genes, called introns, can also be determined. Under normal 

conditions, introns are removed by RNA splicing during a post-transcriptional process, and 

alterations in these regions can be important to whether the DNA is transcribed into RNA or 

potentially result in a truncated, non-functional protein. 

An alternative approach is to sequence only the exomes, called whole-exome sequencing. 

Exomes are the part of the genome formed by exons, or coding regions, which when 

transcribed and translated become expressed into proteins. Exomes compose only about 2% 

of the whole genome. Because the genome is so much larger, exomes are able to be 

sequenced at a much greater depth (number of times a given nucleotide is sequenced) for 

lower cost. This greater depth provides more confidence in low frequency alterations. 

Sequencing depth can become even greater for lower cost by using a targeted or “hot-spot” 

sequencing panel, which has a select number of specific genes, or coding regions within 

genes that are known to harbor mutations that contribute to pathogenesis of disease, and may 

include clinically-actionable genes of interest (eg, diagnostic, theranostic, etc.). These are 

often used in clinical care to provide greater confidence as well as keep the cost down and 

provide better opportunity for insurance reimbursement. However, whole-exome sequencing 

and targeted panels only see part of the story as they focus on reduced areas of the genome. 

Consequently, for some research projects or genetics testing, whole-genome sequencing may 

be advantageous. 

Strengths and Limitations of Next-Generation Sequencing 

Strengths 

The major strength of next-generation sequencing is that the method can detect abnormalities 

across the entire genome (whole-genome sequencing only), including substitutions, deletions, 

insertions, duplications, copy number changes (gene and exon) and chromosome 

inversions/translocations. A major strength of next-generation sequencing is that it can detect 

all of those abnormalities using less DNA than required for traditional DNA sequencing 

approaches. Next-generation sequencing is also less costly and has a faster turnaround time. 
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Limitations 

 

There are several limitations to using next-generation sequencing. Next-generation 

sequencing provides information on a number of molecular aberrations. For many of the 

identified abnormalities, the clinical significance is currently unknown. Next-generation 

sequencing also requires sophisticated bioinformatics systems, fast data processing and large 

data storage capabilities, which can be costly. Although many institutions may have ability to 

purchase next-generation sequencing equipment, many lack the computational resources and 

staffing to analyze and clinically interpret the data. 

Time and costs 

 

The time to perform most next-generation sequencing methods and receive results has been 

greatly reduced. Starting from the day the laboratory receives the tumor specimen, it takes 

approximately 10 days for a physician to receive a whole-genome sequencing report. 

Costs of sequencing the whole human genome have decreased significantly over the last 

decade. In 2006, the cost was approximately $20 million to $25 million. In 2016, the cost to 

sequence the human genome is generally less than $1,000. 

Importance of Bioinformatics 

The field of computer science called bioinformatics is used to analyze whole-genome 

sequencing data. This involves algorithm, pipeline and software development, and analysis, 

transfer and storage/database development of genomics data. 

A typical whole-genome sequencing workflow contains the following steps: 

1. quality control and data grooming; 

2. genome assembly and/or variant calling; and 

3. post-assembly analysis. 

The volume of data that is produced from next-generation sequencing platforms is massive. 

Data collected pertains not only to the DNA sequencing results but also on the sequencing 

performance to assist with detection of errors or repetitive sequencing. This presents data 

management and storage issues. Additionally, special software and fast computing systems 

are required to process the immense data. Specialized, trained bioinformaticists are essential 

to the analysis of data generated by next-generation sequencing, as well as the continued 

success and growth of precision medicine. 
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Introduction to Targeted Gene Sequencing 

Targeted gene sequencing panels are useful tools for analyzing specific mutations in a given 

sample. Focused panels contain a select set of genes or gene regions that have known or 

suspected associations with the disease or phenotype under study. Gene panels can be purchased 

with preselected content or custom designed to include genomic regions of interest. 

Next-generation sequencing (NGS) offers the scalability, speed, and resolution to evaluate 

targeted genes of interest. Multiple genes can be assessed across many samples in parallel, 

saving time and reducing costs associated with running multiple separate assays. Targeted gene 

sequencing also produces a smaller, more manageable data set compared to broader approaches 

such as whole-genome sequencing, making analysis easier. 

Targeted sequencing offers unique insights into specific regions of interest in the genome. It 

is a powerful application for investigating a variety of disease areas, such as oncology, 

inherited diseases, immunology and infectious diseases. This application allows targeting of 

specific genes, coding regions, even segments of chromosomes with precision and efficiency. 

Targeted sequencing is more cost-effective than whole genome sequencing (WGS). It also 

enables deeper analysis of results than WGS and other survey approaches. In addition, it 

allows for deeper sequencing, and the depth of coverage helps in avoiding false 

interpretations of sequencing data. Because of this sensitivity, targeted sequencing provides 

tremendous advantage in variant calling in cancer research, identification of disease-

associated mutations, single gene disorders and in gene expression studies. Targeted 

sequencing of specific regions also enables the discovery of causative genes for rare diseases. 

The focused approach of targeted sequencing provides the possibility of its use in targeted 

therapy applications and in personalized medicine efforts. For example, targeted 

resequencing of the polymorphic human leucocyte antigen (HLA) gene helps in HLA typing, 

which is crucial for matching in hematopoietic stem cell or solid organ transplantation.  

 

Advantages of Targeted Gene Sequencing 

 Sequences key genes or regions of interest to high depth (500–1000× or higher), 

allowing identification of rare variants 

 Provides cost-effective findings for studies of disease-related genes 

 Delivers accurate, easy-to-interpret results, identifying variants at low allele frequencies 

(down to 5%) 

 Enables confident identification of causative novel or inherited mutations in a single 

assay 
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 Allows detection and quantification of rare and low-frequency variants 

 Enables higher coverage, deeper sequencing and straightforward data analysis 

 Provides cost effectiveness, time and resource savings, and precision 

 Offers a more manageable dataset for subsequent bioinformatics analysis 

 Allows more samples to be analyzed than whole genome sequencing 

  

Predesigned Targeted Gene Panels 

Predesigned panels contain important genes or gene regions associated with a disease or 

phenotype, selected from publications and expert guidance. By focusing on the genes most 

likely to be involved, these panels conserve resources and minimize data analysis 

considerations. Predesigned panels are available for research on various diseases, such as cancer, 

inherited disorders, cardiac conditions, and autism. 

Custom Targeted Gene Sequencing Solutions 

With custom designs, researchers can target regions of the genome relevant to their specific 

research interests. Custom targeted sequencing is ideal for examining genes in specific 

pathways, or for follow-up experiments from genome-wide association studies or whole-genome 

sequencing. 

Illumina supports two methods for targeted sequencing: target enrichment and amplicon 

generation. 

 Target enrichment: Regions of interest are captured by hybridization to biotinylated 

probes and then isolated by magnetic pulldown. Target enrichment captures 20 kb–62 

Mb regions, depending on the experimental design. 

 Amplicon sequencing: Regions of interest are amplified and purified using highly 

multiplexed oligo pools. This method allows researchers to sequence a few genes to 

hundreds of genes in a single run, depending on the library preparation kit used. 

DesignStudio Software: An easy-to-use online software tool that provides dynamic feedback to 

optimize probe designs. 

AmpliSeq for Illumina Custom Panels: Create custom targeted sequencing panels optimized for 

content of interest. 

Disease to Gene Finder Tool: Search by disease and find a ranked list of associated genes to help 

you design your custom panel or microarray. 

Nextera Rapid Capture Custom Enrichment Kit: Custom assay for enriching genomic regions of 

interest, with add-on functionality. 

How does targeted sequencing work? 

https://sapac.illumina.com/content/illumina-marketing/spac/en_AU/techniques/sequencing/dna-sequencing/targeted-resequencing/target-enrichment.html
https://sapac.illumina.com/content/illumina-marketing/spac/en_AU/techniques/sequencing/dna-sequencing/targeted-resequencing/amplicon-sequencing.html
https://sapac.illumina.com/content/illumina-marketing/spac/en_AU/informatics/sample-experiment-management/custom-assay-design.html
https://sapac.illumina.com/content/illumina-marketing/spac/en_AU/products/by-brand/ampliseq/custom-panels.html
https://disease2gene.illumina.com/
https://sapac.illumina.com/content/illumina-marketing/spac/en_AU/products/by-type/sequencing-kits/library-prep-kits/nextera-rapid-capture-custom-enrichment.html
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The sample preparation workflow for targeted sequencing requires an additional step of target 

enrichment. It uses user-defined probe sets to enrich specific genomic regions of interest, thus 

causing only that region to be sequenced. The two methods for target enrichment are based 

on hybridization or amplification. While hybridization-based method uses probes to capture 

regions of interest, amplicon-based method uses PCR for target enrichment. 

  

The hybridization-based target enrichment method 

In the hybrid capture method, the process starts as a standard library preparation workflow. 

DNA is fragmented by shearing or using enzymes. Then adapters specific for the sequencing 

platform are added. Next, they are incubated with pools of biotinylated oligonucleotide 

probes designed to target specific regions of interest within a DNA fragment library. Finally, 

streptavidin-coated magnetic beads are used to attract the biotinylated probe/target hybrids. 

This method results in a sequencing-ready library that is highly enriched for the targeted 

DNA. 

  

The PCR-based target enrichment method 

In PCR-based methods, both uniplex and multiplex PCR reactions can be used. In multiplex 

PCR several primers targeted toward different target genes are used to generate multiple 

amplicons in a single reaction. After amplification, a normalization step is carried out for 

normalizing the concentration of the multiple PCR products. Then the pooled products are 

sequenced. While this method is efficient and easy to use, it is not ideal for targeting large 

genomic regions due to the cost of reagents for multiple reactions. Failure of targets to 

amplify and PCR bias are other drawbacks associated with PCR-based enrichment methods. 

Our Roche offering 

Robust target enrichment and construction of libraries with maximum molecular complexity 

and minimal bias is critical for targeted sequencing applications. Roche offers performance-

optimized hybridization-based probes, both as fixed designs and custom panels. 

In addition, Roche also offers an integrated approach to sample preparation using its 

validated sample preparation solutions encompassing all the steps required (from sample 

collection to quantification) to convert a sample to a sequencing-ready library.   

6) Base Quality Score Recalibration 

Variant calling algorithms rely heavily on the quality score assigned to the individual base 

calls in each sequence read. This is because the quality score tells us how much we can trust 

that particular observation to inform us about the biological truth of the site where that base 

https://sequencing.roche.com/en/products-solutions/solutions/sample-prep-solutions.html
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aligns. If we have a basecall that has a low quality score, that means we‟re not sure we 

actually read that A correctly, and it could actually be something else. So we won‟t trust it as 

much as other base calls that have higher qualities. In other words we use that score to weigh 

the evidence that we have for or against a variant allele existing at a particular site. 

[https://software.broadinstitute.org/gatk/best-practices/bp_3step.php?case=GermShortWGS] 

Refresher: What are quality scores? 

 Per-base estimates of error emitted by the sequencer 

 Expresses the level of confidence for each base called 

 Use standard Pred scores: Q20 is a general cutoff for high quality and represents 99% 

certainty that a base was called correctly 

 99% certainty means 1 out of 100 expected to be wrong. Let‟s consider a small dataset of 1M 

reads with a read length of 50, this means 50M bases. With 99% confidence, this means 

50,000 possible erroneous bases. 

The image below shows an example of average quality score at east position in the read, for 

all reads in a library (output from FastQC) 

 

The image below shows individual quality scores (blue bars) for each position in a single 

read. The horizontal blue line represents the Q20 phred score value. 

 

 

https://software.broadinstitute.org/gatk/best-practices/bp_3step.php?case=GermShortWGS
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Quality scores emitted by sequencing machines are biased and inaccurate 

Unfortunately the scores produced by the machines are subject to various sources of 

systematic technical error, leading to over- or under-estimated base quality scores in the data. 

Some of these errors are due to the physics or the chemistry of how the sequencing reaction 

works, and some are probably due to manufacturing flaws in the equipment. Base quality 

score recalibration (BQSR) is a process in which we apply machine learning to model these 

errors empirically and adjust the quality scores accordingly. This allows us to get more 

accurate base qualities, which in turn improves the accuracy of our variant calls. 

[https://software.broadinstitute.org/gatk/best-practices/bp_3step.php?case=GermShortWGS] 

How BQSR works 

1. You provide GATK Base Recalibrator with a set of known variants. 

2. GATK Base Recalibrator analyzes all reads looking for mismatches between the read and 

reference, skipping those positions which are included in the set of known variants (from step 

1). 

3. GATK Base Recalibrator computes statistics on the mismatches (identified in step 2) based 

on the reported quality score, the position in the read, the sequencing context (ex: preceding 

and current nucleotide). 

4. Based on the statistics computed in step 3, an empirical quality score is assigned to each 

mismatch, overwriting the original reported quality score. 

As an example, pre-calibration a file could contain only reported Q25 bases, which seems 

good. However, it may be that these bases actually mismatch the reference at a 1 in 100 rate, 

so are actually Q20. These higher-than-empirical quality scores provide false confidence in 

the base calls. Moreover, as is common with sequencing-by-synthesis machines, base 

mismatches with the reference occur at the end of the reads more frequently than at the 

beginning. Also, mismatches are strongly associated with sequencing context, in that the 

dinucleotide AC is often much lower quality than TG. 

[http://gatkforums.broadinstitute.org/gatk/discussion/44/base-quality-score-recalibration-

bqsr] 

https://software.broadinstitute.org/gatk/best-practices/bp_3step.php?case=GermShortWGS
http://gatkforums.broadinstitute.org/gatk/discussion/44/base-quality-score-recalibration-bqsr
http://gatkforums.broadinstitute.org/gatk/discussion/44/base-quality-score-recalibration-bqsr
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2.3. Use and design of panels for targeted sequencing  

2.3.1. Targeted panel construction  

The term targeted panel is used here to refer to the collection of genomic coordinates that are 

of interest to the user. An important difference between WES panels and targeted panels, is 

that TS is not constrained to canonical gene targets and can target other regions, such as 

promoters [28] or breakpoints [29]. There are commercially available targeted gene panels, 

usually designed for research [30,31] or clinical purposes [32,33]. They are designed to 

amplify genomic regions that are known to be of interest within cancer, or specific cancer 

subtypes. Using these panels greatly speeds up the process of the sequencing as they have 

already been designed, tested and validated. Commonly, however, users design their own 

customised panels dependent on their research questions, although thorough target validation 

of these panels is needed before use. Customised panels are often generated by a thorough 

review of the current literature and cross referencing publicly available cancer mutation 

resources such as TCGA, ICGC, CbioPortal, and Catalogue of Somatic Mutations in Cancer 

(COSMIC) (http://cancer.sanger.ac.uk) databases [34–38], selecting genes that are frequently 

mutated, and targets that have been functionally validated in that cancer. In many cancer 

studies, an initial discovery cohort has been initially profiled with WGS or WES to the 

identify significantly mutated genes (via algorithms like MutSigCV [39], dNdScv [40], 

oncodriveFM [41]). These genes are then selected for TS with higher depth in the validation 

cohort(s) to establish their validity and frequencies [42– 45]. Examples of the applications of 

these panels are included in the next section.  

2.3.2. Applications of targeted gene panels in cancer studies There are a large body of clinical 

studies that utilise genomic TS for research on clinical samples. Some recent examples have 

been listed in Table 4 [17,43–50], with targeted panels ranging from as few as 25 genes [44] 

to 122 genes [49]. These studies illustrate that a wide range of TS platforms, sequencing 

depths, data processing and variant calling methods were used.  

3. Guidance for analysis of targeted genomic sequencing  

In this section we provide detailed guidance for the analysis of TS, from initial quality control 

(QC) and data pre-processing, to variant calling, annotation and filtering (Fig. 2). Commonly 

used methods and software in each step and important parameters/filters are discussed, 

aiming to provide readers a comprehensive overview of the whole analytical process from 

raw reads to highconfidence annotated calls. We further focus on PCR duplication 

marking/removal and variant filtering in greater depth, as these are crucial steps to ensure the 

best quality variant calls. Key steps of TS data analysis and commonly used software are 

listed in Table 5.  

3.1. Quality control and data pre-processing  

3.1.1. QC and alignment  

The first step of all NGS pipelines is to assess the quality of the sequenced reads, using 

FastQC (http://www.bioinformatics.bbsrc. ac.uk/projects/fastqc). It summarises and 



Whole genome sequencing 

25 
 

visualises base quality score for every base pair sequenced, which allows users to have an 

overview of the read quality and decide whether a trimming step is needed, especially at the 

30 end where the base quality is often lower. FastQC also produces summarised information 

of adapter fragment contamination and GC content within all reads. This analysis determines 

whether adapter fragments have been incorporated into the reads and need to removed using 

software such as CutAdapt [51]. The GC content of the reads is useful to indicate whether the 

sample is contaminated with DNA from another organism, as this would likely lead to a 

secondary peak due to the different GC content of that genome [63]. Next, raw or trimmed 

reads are aligned to the reference genome to generate Sequence Alignment Map (SAM) or 

Binary Alignment Map (BAM) files for each sample. Commonly used aligners include the 

Burrows-Wheeler Aligner (BWA) [53] and Bowtie2 [54]. Ion TorrentTM also have their own 

customised aligner specifically for working on data generated from their platform. Within 

alignment files the mapping quality score (i.e., the likelihood of a read mapping to multiple 

locations in the genome) is recorded for each read, in addition to their mapped coordinates. It 

should be noted that the experimental and web-lab quality of TS experiments is also a key 

determinant of the sequencing data quality, such as how fragmented the DNA is, and the 

amount of input DNA. Low quantity of input DNA will require more PCR cycles, leading to 

a high level of PCR duplicates and limiting the achievable depth of coverage of the 

experiment. Monitoring the experimental quality of TS is always part of good laboratory 

practice, ensuring the highest quality of sequencing data in the downstream analyses. It is 

also important to check for germline/tumour mix-ups and contamination whilst running the 

pipeline. Whilst these errors are very difficult to determine from the FASTQ files alone, they 

may become more apparent in the later analytic stages, such as variant calling and VAFs, e.g. 

a large number of variants called in the germline that are absent in the tumour sample.  

3.1.2. Assessment of off-target reads  

Various QC steps should always take place to ensure the best quality of TS data. As TS 

focuses on regions of interest in the design panel, we expect the majority of reads generated 

should come from targeted regions, however, off-target reads are a common occurrence. 

After alignment, the percentage of reads that cover targeted regions can be assessed using 

software such as bedtools [52], and the GATK coverage module. A high proportion of off-

target reads may indicate that the TS experiment has failed, or the targeted regions contain 

too many repeat sequences. This could be possibly adjusted by making the capture or library 

preparation process more efficient, e.g., adjust input DNA to beads ratio, and wash more 

stringently. With a large panel of hundreds of targeted genes, roughly >70% of the reads 

aligning to the targeted regions is a positive indicator of a good quality TS data set [26].  

3.1.3. Marking and removal of PCR duplicates  

PCR duplicates are sequence reads that align to the same genomic coordinates and typically 

arise during PCR steps in the library preparation. The duplication rate tends to be much 

higher for fragmented DNA of low quality, e.g. FFPE and ctDNA, reaching ~50–60% for 

some cases, while for FF DNA, this rate is usually less than 20%. These PCR duplicates need 

to be marked and removed before any downstream analysis, as including them will lead to 
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overestimation of coverage in targeted regions, and more importantly result in incorrect allele 

frequency estimation. A number of software are used to search for PCR duplicates within 

aligned NGS data. A commonly used program is the MarkDuplicates function within Picard 

Tools (http://broadinstitute.github.io/picard/). This tool looks for reads with the same start 

and end coordinates and then add tags to the bam files that mark these reads as duplicates. 

Another tool, SAMtools rmdup, simply outright removes the duplicate reads retaining the 

read with the highest mapping quality [55]. However, these software based attempts cannot 

discriminate between two unique reads that happen to align in the same position by chance 

and actual duplicates [64]. There are additional molecular techniques, such as Unique 

Molecular Identifiers or Molecular Barcodes (MBC), available to ensure only unique reads 

are measured in the downstream analysis. These are exemplified by the Nonacus Cell3TM 

Target, Agilent HaloplexHS and SureSelectXT platforms.  

3.1.4. Realignment, base score recalibration and estimation of sequencing coverage  

Next, filtered alignments are further processed to improve the alignment quality, including 

local realignment around indels and base quality score recalibration using GATK. The step of 

local realignment is to improve the alignment quality for bases around known and suspected 

indel positions to reduced false positive calls. Base score recalibration is carried out to 

recalculate base quality scores for all sequenced reads based on known polymorphisms (e.g., 

SNPs from 1000G Project). The base and mapping quality scores are used to filter reads 

during variant calling and the fine-tuning that occurs in this step is important to ensure only 

high-confidence variants are called. Base coverage information is another important 

parameter to assess the overall quality of TS data. Using recalibrated BAM files, one can 

further calculate the coverage/depth for bases within the targeted regions, using Bedtools or 

GATK coverage. Depending on the quality of DNA and total number of reads generated, 

several hundred times depth per base is often expected, although some regions may have 

much higher coverage or targeted rates than others. However, for ultra-deep sequencing, the 

depth of tens of thousands of reads is often required to detect very low frequency clones.  

3.2. Variant calling  

Once all TS pre-processing steps are completed, these highquality alignment data are ready 

for variant calling. Variant calling is the process of comparing the aligned reads to a reference 

genome or matched normal DNA sequences to identify base pair variations. Here we describe 

the procedure for samples with matched normal and without matched normal separately. We 

then focus on variant calling parameters and filters which can be tuned accordingly to achieve 

the best outcome. 

Variant calling parameters and filtering  

A set of important parameters need to be considered for variant calling and filtering for high-

quality calls. These include, Number of total reads: this parameter can be used to ensure there 

is sufficient coverage over the position for variants to be called. Often a minimum of 20-30x 

depth is required for TS [71–75]. Number of variant supporting reads: this parameter should 

be set in order to limit variants with very few supporting reads being considered. The value 
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can be tuned based on the average coverage of the samples. Usually the minimum value 

ranges from 4 to 10 reads [26,47,76]. Minimum base and mapping quality score: Setting a 

threshold for base and mapping quality scores stops poorly sequenced or aligned reads from 

being considered in the variant calling. F. Bewicke-Copley et al. / Computational and 

Structural Biotechnology Journal 17 (2019) 1348–1359 1355 The default minimum values of 

many programmes are set as 20–30 as these correspond to an accuracy of 99% and 99.9% 

respectively 

Minimum allele frequency for called variants:  

Like the number of variant supporting reads, this can be used to eliminate variant positions 

with low levels of support. Often, a relatively low threshold (e.g., 3% with a depth of 200x) is 

initially used to include most of the variants, and further filtering and refinement are 

performed via testing a range of threshold values to choose the best cutoff value for VAF. For 

FFPE samples, the final threshold is set as at least 10% or even 20% across many studies 

[77,78]. For FF samples this threshold can be much lower depending on overall sequencing 

depth [46,50]. One should note that the tumour purity of clinical samples is often highly 

heterogeneous. Thus, filtering simply based on an observed VAF cutoff may not provide the 

most accurate way to include high-quality or exclude low-quality calls. One way to overcome 

this is to further adjust VAF values based on the estimates of tumour purity of clinical 

samples, and apply the threshold on these adjusted VAFs to filter calls for the downstream 

analyses. When an accurate measurement of tumour purity is not available, VAFs of 

mutations in many known clonal driver genes (e.g., KRAS and TP53 for many solid tumours) 

could be used to derive a rough estimate.  

Additional parameters also include:  

Strandedness of variant supporting reads: 

 If a variant occurs within a sample, paired sequencing should show evidence of this variant 

on both strands. Therefore if the majority of the reads for a variant occur on only one strand 

(i.e., strand bias), it could suggest that variant reads are artefacts [58,76]. In many 

programmes, at least one supporting read is required to be present on each strand for the 

called variants. In VarScan2, it is possible to require that a maximum of 90% of all reads 

(across reference and alternative alleles) are found on one strand, meaning positions that have 

a strand bias will be ignored.  

Significance score for a statistical test:  

Many variant callers will calculate a statistical evaluation of the likelihood of a variant 

differing from the reference allele [47,76]. VarScan2 for example provides the user with a p 

value for a Fisher‟s Exact Test on the observed and expected variant reads. This can be used 

to further eliminate low-quality calls. 

3.3. Annotation and further filtration of variants. Following variant calling, the next step is to 

annotate the variants in relation to genes (e.g., within or outside a gene), codon and amino 

acid positions, and classify types of variants, such as nonsense, missense, exonic deletions 
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and synonymous variants. This allows for greater understanding of their functional 

consequences on genes they relate to. 

Pooled sequencing 

 Cost reduced  

 Producing tens of thousands of genomes, or so-called „ will revolutionize the 

study of population diversity and help us to genetic basis of health and disease 

better 

 The main challenge exists in individually amplifying and creating sequencing 

libraries for thousands of samples. To efficiently use the capacity of sequencer 

and reduce the cost of sequencing library construction for large-scale 

sequencing, multiple individuals could be pooled together and sequenced, called 

pooled sequencing (pool-seq). 

 Pool-seq could provide a cost-effective alternative to sequencing individuals 

separately, since pool-seq uses a single library for the entire sample, whereas 

sequencing of individuals requires a separate library to be prepared for each 

sample 

 Pool-seq could save tremendously on sample prepara-tions, especially for 

targeted sequencing projects, sincethe cost for target capturing is proportional 

to the numberof samples (i.e., number of individuals without pooling vs. number 

of pools in pool-seq) 

 multiple populations or generations 
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• The main limitation of the naive pool-seq strategy is its inability to obtain the 

information for each individual sample participated in the pool. However, 

multiplexing using sequencing barcodes could overcome the drawback, where the 

DNA in each sample is cut into short fragments suitable for sequencing and ligated 

with a short, sample-specific DNA sequence i.e. barcode [8]. After sequencing, reads 

belonging to each individual could be assigned precisely based on the barcode 

signature. 

• effective in SNP discovery and could provide more accurate allele frequency 

estimates at a lower cost than sequencing of individuals, even when taking sequencing 

errors into account  

• Mainly applied in genome-wide association studies (GWAS), population genetics, 

reverse ecology, genome evolution studies  

• In 2009, Pattersonet al. proposed the concept of the combination between 

combinatorics and pooled sequencing, defined as combinatorial pooled sequen-cing 

which allows the sequencing results to be decoded to identify the reads belonging to 

samples that are unique or rare among the population without barcodes. Using ideas 

from a branch of mathematics called combinatorics, thousands of samples are pooled 

and sequenced at the same time in the combinatorial pooled sequencing.  

• in many applications, such as identifying rare variants carriers and rare haplotype 

carriers, assembling complex genome, single individual haplotyping, sequencing of 

multiple viral samples.  

• 
DNA barcoding, DNA Sudoku, comparing the estimated allele frequencies between 

cases and controls without actually inferring individual genotypes.  

• The savings on cost and time come from two sources. The first is that estimating the 

allele frequency requires much less depth of coverage per individual than that 
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required for calling the genotype of each individual. The second is the reduced efforts 

in library preparation for a large number of DNA samples. 

Advantages 

• accurate estimate of the allele frequency,  

• potential to detect rare variants 

Prerequisites for the pooling of customer libraries are:  

• all libraries were generated using the same protocol and are PCR amplified 

• the library fragment sizes have to be similar for all libraries(and within Illumina 

specs) as demonstrated by Bioanalyzer traces (or gel images if correct balancing is not 

that critical) 

• have uniquely indexed adapters 

• all libraries have DNA concentrations in the same range 

• PCR-amplified libraries can be quantified based on fluorometric measurements (e.g. 

Qubit), but PCR-free libraries are best quantified by qPCR. 

Resequencing  

• Resequencing of candidate genes or other genomic regions of interest in patients and 

controls is a key step in detection of mutations associated with various congenital 

diseases.  

• Resequencing techniques can be divided into those which test for known mutations 

(genotyping) and those which scan for any mutation in a given target region (variation 

analysis).  

• Typical mutations being tested are substitution 

(SNP), insertion and deletion mutations. 

Electrophoresis-based resequencing. 

• One of most advanced resequencing techniques based on electrophoresis is 

capillary electrophoresis.  

• VariantSEQr™ system created by Applied Biosystems successfully integrates 

capillary electrophoresis, PCR and state-of-the-art automated data analysis techniques 

for quick and accurate resequencing of specific human genes. 

• Capillary electrophoresis is a separation technique in which charged species are 

separated, based on charge and size, by their different rates of migration in an electric 

field. The capillary is made of negatively charged fused silica inner wall which forms 

an electrical double layer with cations in the running buffer. 

https://www.ncbi.nlm.nih.gov/probe/docs/glossary
https://www.ncbi.nlm.nih.gov/probe/docs/applvariation
https://www.ncbi.nlm.nih.gov/probe/docs/applvariation
https://www.ncbi.nlm.nih.gov/probe/docs/glossary
https://www.ncbi.nlm.nih.gov/probe/docs/glossary
https://www.ncbi.nlm.nih.gov/probe/docs/glossary
https://www.ncbi.nlm.nih.gov/probe/docs/projvariantseqr
https://www.ncbi.nlm.nih.gov/probe/docs/projvariantseqr
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Array-based high-throughput resequencing strategies. 

I. The gain of hybridization signal approach. 

• In the gain of hybridization signal approach, relative hybridization to allele-specific 

probes complementary to each of the four possible nucleotides at interrogated 

nucleotide position is used for genotype analysis.  

• Disadvantage: analysis requires large amount of carefully designed probes, for 

example, interrogating both target strands of length N for all possible insertions of 

length X requires 2(4
X
)N probes. 

II. The loss of hybridization signal approach 

• In the loss of hybridization signal approach, decreased hybridization of red-labeled 

test target relative to green-labeled reference target to perfect match probes 

interrogating the area of interest indicates the presence of a sequence change.  

• Disadvantage: the mutation cannot be discerned; the identity of the sequence change 

must be established by subsequent dideoxysequencing of the region surrounding the 

loss of signal signature.  

III. The minisequencing approach. 

• In the minisequencing approach unlabeled target is hybridized to perfect match probes 

(attached through a 5' linkage to the array to leave an exposed 3'-OH group) 

interrogating the nucleotide position of interest. Fluorescently tagged ddNTPs are 

used in subsequent enzymatic primer extension reactions to extend the hybridized 

primers. The identity of the extended ddNTP is used in sequence analysis.  

• Disadvantage: designing and validating primers can be a long, tedious process that 

often leads to experimental delays and defective PCR products; data analysis requires 

not only a high level of expertise but also substantial time commitment.  

 

 



Whole genome sequencing 

33 
 

Whole Genome Resequencing 

• The goal of a WGR experiment is usually to identify the differences between the 

genome of specific individuals and that of a so called, reference genome. 

• By comparing the sequenced genomes to the reference, a catalog of mutations specific 

to each sequenced individual is obtained, usually single nucleotide polymorphisms 

(SNPs) and insertions- deletions (indels), which can provide an extremely valuable 

insight into the genetic background of the individuals. Often this is associated with 

specific phenotypes based on which the individual are selected. Additionally, with 

specifically planned experiments, large rearrangements (e.g., translocations, 

inversions, large copy number variations) can be also pinpointed through WGR. 

Whole Exome sequencing 

• Whole-exome sequencing is a widely used next-generation sequencing (NGS) method 

that involves sequencing the protein-coding regions of the genome. The human exome 

represents less than 2% of the genome, but contains ~85% of known disease-related 

variants,
1
 making this method a cost-effective alternative to whole-genome 

sequencing. 

• Exome sequencing using exome enrichment can efficiently identify coding variants 

across a broad range of applications, including population genetics, genetic disease, 

and cancer studies. 

Advantages of Exome Sequencing 

• Identifies variants across a wide range of applications 

• Achieves comprehensive coverage of coding regions 

• Provides a cost-effective alternative to whole-genome sequencing (4–5 Gb of 

sequencing per exome compared to ~90 Gb per whole human genome) 

• Produces a smaller, more manageable data set for faster, easier data analysis 

compared to whole-genome approaches 

Exome sequencing detects variants in coding exons, with the capability to expand targeted 

content to include untranslated regions (UTRs) and microRNA for a more comprehensive 

view of gene regulation. DNA libraries can be prepared in as little as 1 day and require only 

4–5 Gb of sequencing per exome. 
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Array-based capture 

• Microarrays contain single-stranded oligonucleotides with sequences from the human 

genome to tile the region of interest fixed to the surface. Genomic DNA is sheared to 

form double-stranded fragments. The fragments undergo end-repair to produce blunt 

ends and adaptors with universal priming sequences are added. These fragments are 

hybridized to oligos on the microarray. Unhybridized fragments are washed away and 

the desired fragments are eluted. The fragments are then amplified using PCR 

In-solution capture 

• To capture genomic regions of interest using in-solution capture, a pool of 

custom oligonucleotides (probes) is synthesized and hybridized in solution to a 

fragmented genomic DNA sample. The probes (labeled with beads) selectively 

hybridize to the genomic regions of interest after which the beads (now including the 

DNA fragments of interest) can be pulled down and washed to clear excess material. 

The beads are then removed and the genomic fragments can be sequenced allowing 

for selective DNA sequencing of genomic regions (e.g., exons) of interest. 

• Magnetic bead is a kind of magnetic nanoparticles which contain functional chemical 

components to combine target substances. In this case, magnetic beads which could 

bind exome are used. 

  

https://en.wikipedia.org/wiki/Microarray
https://en.wikipedia.org/wiki/Polymerase_chain_reaction
https://en.wikipedia.org/wiki/Oligonucleotides
https://en.wikipedia.org/wiki/DNA_sequencing
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RNA Sequencing 

 

Introduction  

The central dogma of molecular biology outlines the flow of information that is stored in genes 

as DNA, transcribed into RNA, and finally translated into proteins (Crick 1958; Crick 1970). 

The ultimate expression of this genetic information modified by environmental factors 

characterizes the phenotype of an organism. The transcription of a subset of genes into 

complementary RNA molecules specifies a cell's identity and regulates the biological activities 

within the cell. Collectively defined as the transcriptome, these RNA molecules are essential for 

interpreting the functional elements of the genome and understanding development and disease. 

The transcriptome has a high degree of complexity and encompasses multiple types of coding 

and noncoding RNA species. Historically, RNA molecules were relegated as a simple 

intermediate between genes and proteins, as encapsulated in the central dogma of molecular 

biology. Therefore, messenger RNA (mRNA) molecules were the most frequently studied RNA 

species because they encoded proteins via the genetic code.  

In addition to protein coding mRNA, there is a diverse group of noncoding RNA (ncRNA) 

molecules that are functional. Previously, most known ncRNAs fulfilled basic cellular functions, 

such as ribosomal RNAs and transfer RNAs involved in mRNA translation, small nuclear RNA 

(snRNAs) involved in splicing, and small nucleolar RNAs (snoRNAs) involved in the 

modification of rRNAs (Mattick and Makunin 2006). More recently, novel classes of RNA have 

been discovered, enhancing the repertoire of ncRNAs. For instance, one such class of ncRNAs is 

small noncoding RNAs, which include microRNA (miRNA) and piwi-interacting RNA 

(piRNA), both of which regulate gene expression at the posttranscriptional level (Stefani and 

Slack 2008). Another noteworthy class of ncRNAs is long noncoding RNAs (lncRNAs). As a 

functional class, lncRNAs were first described in mice during the largescale sequencing of 

cDNA libraries (Okazaki et al. 2002). A myriad of molecular functions have been discovered for 

lncRNAs, including chromatin remodeling, transcriptional control, and posttranscriptional 

processing, although the vast majority are not fully characterized (Guttman et al. 2009; Mercer et 

al. 2009; Wilusz et al. 2009).  

Initial gene expression studies relied on low-throughput methods, such as northern blots and 

quantitative polymerase chain reaction (qPCR), that are limited to measuring single transcripts. 

Over the last two decades, methods have evolved to enable genome-wide quantification of gene 

expression, or better known as transcriptomics. The first transcriptomics studies were performed 

using hybridization-based microarray technologies, which provide a high-throughput option at 

relatively low cost (Schena et al. 1995). However, these methods have several limitations: the 

requirement for a priori knowledge of the sequences being interrogated; problematic cross-
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hybridization artifacts in the analysis of highly similar sequences; and limited ability to 

accurately quantify lowly expressed and very highly expressed genes (Casneuf et al. 2007; 

Shendure 2008). In contrast to hybridizationbased methods, sequence-based approaches have 

been developed to elucidate the transcriptome by directly determining the transcript sequence. 

Initially, the generation of expressed sequence tag (EST) libraries by Sanger sequencing of 

complementary DNA (cDNA) was used in gene expression studies, but this approach is 

relatively low-throughput and not ideal for quantifying transcripts (Adams et al. 1991, 1995; Itoh 

et al. 1994).  

To overcome these technical constraints, tag-based methods such as serial analysis of gene 

expression (SAGE) and cap analysis gene expression (CAGE) were developed to enable higher 

throughput and more precise quantification of expression levels. By quantifying the number of 

tagged sequences, which directly corresponded to the number of mRNA transcripts, these tag-

based methods provide a distinct advantage over measuring analogstyle intensities as in array-

based methods (Velculescu et al. 1995; Shiraki et al. 2003). However, these assays are 

insensitive to measuring expression levels of splice isoforms and cannot be used for novel gene 

discovery. In addition, the laborious cloning of sequence tags, the high cost of automated Sanger 

sequencing, and the requirement for large amounts of input RNA have greatly limited its use. 

The development of high-throughput next-generation sequencing (NGS) has revolutionized 

transcriptomics by enabling RNA analysis through the sequencing of complementary DNA 

(cDNA) (Wang et al. 2009). This method, termed RNA sequencing (RNA-Seq), has distinct 

advantages over previous approaches and has revolutionized our understanding of the complex 

and dynamic nature of the transcriptome. RNA-Seq provides a more detailed and quantitative 

view of gene expression, alternative splicing, and allele-specific expression. Recent advances in 

the RNA-Seq workflow, from sample preparation to sequencing platforms to bioinformatic data 

analysis, has enabled deep profiling of the transcriptome and the opportunity to elucidate 

different physiological and pathological conditions. In this article we will provide an 

introduction to RNA sequencing and analysis using nextgeneration sequencing methods and 

discusses how to apply these advances for more comprehensive and detailed transcriptome 

analyses. 

Transcriptome Sequencing  

The introduction of high-throughput next-generation sequencing (NGS) technologies 

revolutionized transcriptomics. This technological development eliminated many challenges 

posed by hybridization-based microarrays and Sanger sequencing-based approaches that were 

previously used for measuring gene expression. A typical RNA-Seq experiment consists of 

isolating RNA, converting it to complementary DNA (cDNA), preparing the sequencing library, 

and sequencing it on an NGS platform (Fig. 1). However, many experimental details, dependent 

on a researcher's objectives, should be considered before performing RNA-Seq. These include 

the use of biological and technical replicates, depth of sequencing, and desired coverage across 

the transcriptome. In some cases, these experimental options will have minimal impact on the 
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quality of the data. However, in many cases the researcher must carefully design the experiment, 

placing a priority on the balance between high-quality results and the time and monetary 

investment. 

Isolation of RNA  

The first step in transcriptome sequencing is the isolation of RNA from a biological sample. To 

ensure a successful RNA-Seq experiment, the RNA should be of sufficient quality to produce a 

library for sequencing. The quality of RNA is typically measured using an Agilent Bioanalyzer, 

which produces an RNA Integrity Number (RIN) between 1 and 10 with 10 being the highest 

quality samples showing the least degradation. The RIN estimates sample integrity using gel 

electrophoresis and analysis of the ratios of 28S to 18S ribosomal bands. Note that the RIN 

measures are based on mammalian organisms and certain species with abnormal ribosomal ratios 

(i.e., insects) may erroneously generate poor RIN numbers. Lowquality RNA (RIN < 6) can 

substantially affect the sequencing results (e.g., uneven gene coverage, 3′–5′ transcript bias, etc.) 

and lead to erroneous biological conclusions. Therefore, high-quality RNA is essential for 

successful RNA-Seq experiments. Unfortunately, highquality RNA samples may not be available 

in some cases, such as human autopsy samples or paraffin embedded tissues, and the effect of 

degraded RNA on the sequencing results should be carefully considered 

Library Preparation Methods  

Following RNA isolation, the next step in transcriptome sequencing is the creation of an RNA-

Seq library, which can vary by the selection of RNA species and between NGS platforms. The 

construction of sequencing libraries principally involves isolating the desired RNA molecules, 

reverse-transcribing the RNA to cDNA, fragmenting or amplifying randomly primed cDNA 

molecules, and ligating sequencing adaptors. Within these basic steps, there are several choices 

in library construction and experimental design that must be carefully made depending on the 

specific needs of the researcher (Table 1). Additionally, the accuracy of detection for specific 

types of RNAs is largely dependent on the nature of the library construction. Although there are 

a few basic steps for preparing RNA-Seq libraries, each stage can be manipulated to enhance the 

detection of certain transcripts while limiting the ability to detect other transcripts.  

Selection of RNA Species— 

Before constructing RNA-Seq libraries, one must choose an appropriate library preparation 

protocol that will enrich or deplete a ―total‖ RNA sample for particular RNA species. The total 

RNA pool includes ribosomal RNA (rRNA), precursor messenger RNA (pre-mRNA), mRNA, 

and various classes of noncoding RNA (ncRNA). In most cell types, the majority of RNA 

molecules are rRNA, typically accounting for over 95% of the total cellular RNA. If the rRNA 

transcripts are not removed before library construction, they will consume the bulk of the 

sequencing reads, reducing the overall depth of sequence coverage and thus limiting the 

detection of other less-abundant RNAs. Because the efficient removal of rRNA is critical for 
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successful transcriptome profiling, many protocols focus on enriching for mRNA molecules 

before library construction by selecting for polyadenylated (poly-A) RNAs. In this approach, the 

3′ poly-A tail of mRNA molecules is targeted using poly-T oligos that are covalently attached to 

a given substrate (e.g., magnetic beads). Alternatively, researchers can selectively deplete rRNA 

using commercially available kits, such as RiboMinus (Life Technologies) or RiboZero 

(Epicentre). This latter method facilitates the accurate quantification of noncoding RNA species, 

which may be polyadenylated and thus excluded from poly-A libraries. Lastly, highly abundant 

RNA can be removed by denaturing and re-annealing double-stranded cDNA in the presence of 

duplex-specific nucleases that preferentially digest the most abundant species, which re-anneal as 

double-stranded molecules more rapidly than lessabundant molecules (Christodoulou et al. 

2011). This method can also be used to remove other highly abundant mRNA transcripts in 

samples, such as hemoglobin in whole blood, immunoglobulins in mature B cells, and insulin in 

pancreatic beta cells.  

A comprehensive understanding of the technical biases and limitations surrounding each 

methodological approach is essential for selecting the best method for library preparation. For 

example, poly-A libraries are the superior choice if one is solely interested in coding RNA 

molecules. Conversely, ribo-depletion libraries are a more appropriate choice for accurately 

quantifying noncoding RNA as well as pre-mRNA that has not been posttranscriptionally 

modified. Furthermore, moderate differences exist between ribodepletion protocols, such as the 

efficiency of rRNA removal and differential coverage of small genes, which should be 

investigated before selecting a method (Huang et al. 2011).  

In addition to the selective depletion of specific RNA species, new approaches have been 

developed to selectively enrich for regions of interest. These approaches include methods 

employing PCR-based approaches, hybrid capture, in-solution capture, and molecular inversion 

probes (Querfurth et al. 2012). The hybridization-based in solution capture involves a set of 

biotinylated RNA baits transcribed from DNA template oligo libraries that contain sequences 

corresponding to particular genes of interest. The RNA baits are combined with the RNA-Seq 

library where they hybridize to RNA sequences that are complementary to the baits, and the 

bounded complexes are recovered using streptavidincoated beads. The resulting RNA-Seq 

library is now enriched for sequences corresponding to the baits and yet retains its gene 

expression information despite the removal of other RNA species (Levin et al. 2009). The 

approach enables researchers to reduce sequencing costs by sequencing selected regions in a 

greater number of samples.  

Selection of Small RNA Species— 

Complementing the library preparation protocols discussed above, more specific protocols have 

been developed to selectively target small RNA species, which are key regulators of gene 

expression. Small RNA species include microRNA (miRNA), small interfering RNA (siRNA), 

and piwi-interacting RNA (piRNA). Because small RNAs are lowly abundant, short in length 
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(15–30 nt), and lack polyadenylation, a separate strategy is often preferred to profile these RNA 

species (Morin et al. 2010). Similar to total RNA isolation, commercially available extraction 

kits have been developed to isolate small RNA species. Most kits involve isolation of small 

RNAs by size fractionation using gel electrophoresis. Size fractionation of small RNAs requires 

involves running the total RNA on a gel, cutting a gel slice in the 14–30 nucleotide region, and 

purifying the gel slice. For higher concentrations of small RNAs, the excised gel slice can be 

concentrated by ethanol precipitation. An alternative to gel electrophoresis is the use of silica 

spin columns, which bind and elute small RNAs from a silica column. After isolation of small 

RNAs species from total RNA, the RNA is ready for cDNA synthesis and primer ligation. 

 cDNA Synthesis— 

Universal to all RNA-Seq preparation methods is the conversion of RNA into cDNA because 

most sequencing technologies require DNA libraries. Most protocols for cDNA synthesis create 

libraries that were uniformly derived from each cDNA strand, thus representing the parent 

mRNA strand and its complement. In this conventional approach, the strand orientation of the 

original RNA is lost as the sequencing reads derived from each cDNA strand are 

indistinguishable in an effort to maximize efficiency of reverse transcription. However, strand 

information can be particularly valuable for distinguishing overlapping transcripts on opposite 

strands, which is critical for de novo transcript discovery (Parkhomchuk et al. 2009; Vivancos et 

al. 2010; Mills et al. 2013). Therefore, alternative library preparation protocols have since been 

developed that yield strand-specific reads. One strategy to preserve strand information is to ligate 

adapters in predetermined directions to single-stranded RNA or the first-strand of cDNA (Lister 

et al. 2008). Unfortunately, this approach is laborious and results in coverage bias at both the 5′ 

and 3′ ends of cDNA molecules. The preferred strategy to preserve strandedness is to incorporate 

a chemical label such as deoxy-UTP (dUTP) during synthesis of the second-strand cDNA that 

can be specifically removed by enzymatic digestion (Parkhomchuk et al. 2009). During library 

construction, this facilitates distinguishing the second-strand cDNA from the first strand. 

Although this approach is favored, the validity of antisense transcripts near highly expressed 

genes should be measured with caution because a small amount of reads (∼1%) have been 

observed from the opposite strand (Zeng and Mortazavi 2012). 

 Multiplexing—  

Another consideration for constructing cost-effective RNA-Seq libraries is assaying multiple 

indexed samples in a single sequencing lane. The large number of reads that can be generated per 

sequencing run (e.g., a single lane of an Illumina HiSeq 2500 generates up to 750 million paired-

end reads) permits the analysis of increasingly complex samples. However, increasingly high 

sequencing depths provide diminishing returns for lower complexity samples, resulting in 

oversampling with minimal improvement in data quality (Smith et al. 2010). Therefore, an 

affordable and efficient solution is to introduce unique 6-bp indices, also known as ―barcodes,‖ 

to each RNA-Seq library. This enables the pooling and sequencing of multiple samples in the 
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same sequencing reaction because the barcodes identify which sample the read originated from. 

Depending on the application, adequate transcriptome coverage can be attained for 2–20 samples 

(Birney et al. 2007; Blencowe et al. 2009). To detect transcripts of moderate to high abundance, 

∼30–40 million reads are required to accurately quantify gene expression. To obtain coverage 

over the fullsequence diversity of complex transcript libraries, including rare and lowly-

expressed transcripts, up to 500 million reads is required (Fu et al. 2014). As such, for any given 

study it is important to consider the level of sequencing depth required to answer experimental 

questions with confidence while efficiently using NGS resources. 

Quantitative Standards 

Although RNA-Seq is a widely used technique for transcriptome profiling, the rapid 

development of sequencing technologies and methods raises questions about the performance of 

different platforms and protocols. Variation in RNA-Seq data can be attributed to an assortment 

of factors, ranging from the NGS platform used to the quality of input RNA to the individual 

performing the experiment. To control for these sources of technical variability, many 

laboratories use positive controls or ―spike-ins‖ for sequencing libraries. The External RNA 

Controls Consortium (ERCC) developed a set of universal RNA synthetic spike-in standards for 

microarray and RNA-Seq experiments (Jiang et al. 2011; Zook et al. 2012). The spike-ins consist 

of a set of 96 DNA plasmids with 273–2022 bp standard sequences inserted into a vector of 

∼2800 bp. The spike-in standard sequences are added to sequencing libraries at different 

concentrations to assess coverage, quantification, and sensitivity. These RNA standards serve as 

an effective quality control tool for separating technical variability from biological variability 

detected in differential transcriptome profiling studies.  

Selection of Tissue or Cell Populations 

When beginning an RNA-Seq experiment, one of the initial considerations is the choice of 

biological material to be used for library construction and sequencing. This choice is not trivial 

considering there are hundreds of cell types in over 200 different tissues that make up greater 

than 50 unique organs in humans alone. In addition to spatial (e.g., cell- and tissuetype) 

specificity, gene expression shows temporal specificity, such that different developmental stages 

will show unique expression signatures. Ultimately, the biological material chosen will be 

dependent on both the experimental goals and feasibility. For example, the tissue of choice for an 

investigation of unique gene expression signatures in colon cancer, the tissue choice is clear. 

However, for research studies investigating variation in gene expression across individuals in a 

population, the choice of biological material is less apparent and will likely depend on the 

feasibility of obtaining the biological samples (e.g., blood draws are less invasive and easier to 

perform than tissue biopsies). 

Handling Tissue Heterogeneity— 
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Another consideration when selecting the biological source of RNA is the heterogeneity of 

tissues. The accuracy of gene expression quantification is dependent on the purity of samples. In 

fact, the heterogeneity can substantially impact estimations of transcript abundances in samples 

composed of multiple cell types. Most tissue samples isolated from the human body are 

heterogeneous by nature. Furthermore, pathological tissue samples are often composed of 

disease-state cells surrounded by normal cells. To isolate distinct cell types, experimental 

methods have been developed, including laser-capture microdissection and cell purification. 

Laser-capture microdissection enables the isolation of cell types that are morphologically 

distinguishable under direct microscopic visualization (Emmert-Buck et al. 1996). Although this 

technique yields high-quality RNA, the total yield is low and requires PCR amplification, 

thereby introducing amplification biases and creating less distinguishable expression profiles 

across different cell types (Kube et al. 2007). Cell purification and enrichment protocols are also 

available, such as differential centrifugation and fluorescence-activated cell sorting (Cantor et al. 

1975). In conjunction with RNA-Seq, these experimental methods have overcome previous 

technical limitations and enable researchers to uncover unique expression signatures across 

specific cell-types and developmental stages (Moran et al. 2012; Nica et al. 2013). In addition to 

these experimental methods, in silico probabilistic models can be applied in downstream analysis 

to differentiate the transcript abundances of distinct cells from RNA-Seq data of heterogeneous 

tissue samples (Erkkila et al. 2010; Li and Xie 2013). Interestingly, in some cases, the sample 

heterogeneity can have advantages in transcriptome profiling by identifying novel pathways, 

implicating cellular origins of disease, or identifying previously unknown pathological sites 

(Alizadeh et al. 2000; Khan et al. 2001; Sorlie et al. 2001).  

Single-Cell Transcriptomics— 

Beyond tissue heterogeneity, considerable evidence indicates that cell-to-cell variability in gene 

expression is ubiquitous, even within phenotypically homogeneous cell populations (Huang 

2009). Unfortunately, conventional RNA-Seq studies do not capture the transcriptomic 

composition of individual cells. The transcriptome of a single cell is highly dynamic, reflecting 

its functionality and responses to ever-changing stimuli. In addition to cellular heterogeneity 

resulting from regulation, individual cells show transcriptional ―noise‖ that arises from the 

kinetics of mRNA synthesis and decay (Yang et al. 2003; Sun et al. 2012). Furthermore, genes 

that show mutually exclusive expression in individual cells may be observed as genes showing 

co-expression in expression analyses of bulk cell populations. To uncover cell-to-cell variation 

within populations, significant efforts have been invested in developing single-cell RNA-Seq 

methods. The biggest challenge has been extending the limits of library preparation to 

accommodate extremely low input RNA. A human cell contains RNA-to-cDNA conversion is 

imperfect, estimated to be as low as 5%–25% of all transcripts (Islam et al. 2012). In addition, 

PCR amplification methods do not linearly amplify transcript and are prone to introduce biases 

based on the nucleic acid composition of different transcripts, ultimately altering the relative 

abundance of these transcripts in the sequencing library. Methods that avoid PCR amplification 
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steps, such as CEL-Seq, through linear in vitro amplification of the transcriptome can avoid these 

biases (Hashimshony et al. 2012). In addition, the use of nanoliter-scale reaction volumes with 

microfluidic devices as opposed to microliter-scale reactions can reduce biases that arise during 

sample preparation (Wu et al. 2014). Although single-cell methods are still under active 

development, quantitative assessments of these techniques indicate that obtaining accurate 

transcriptome measurements by single-cell RNA-Seq is possible after accounting for technical 

noise (Brennecke et al. 2013; Wu et al. 2014). These methods will undoubtedly be important for 

uncovering oscillatory and heterogeneous gene expression within single-cell types, as well as 

identifying cell-specific biomarkers that further our understanding of biology across many 

physiological and pathological conditions.  

Sequencing Platforms for Transcriptomics 

When designing an RNA-Seq experiment, the selection of a sequencing platform is important 

and dependent on the experimental goals. Currently, several NGS platforms are commercially 

available and other platforms are under active technological development (Metzker 2010). The 

majority of high-throughput sequencing platforms use a sequencingby-synthesis method to 

sequence tens of millions of sequence clusters in parallel. The NGS platforms can often be 

categorized as either ensemble-based (i.e. sequencing many identical copies of a DNA molecule) 

or single-molecule-based (i.e. sequencing a single DNA molecule). The differences between 

these sequencing techniques and platforms can affect downstream analysis and interpretation of 

the sequencing data. In recent years, the sequencing industry has been dominated by Illumina, 

which applies an ensemble-based sequencing-by-synthesis approach (Bentley et al. 2008). Using 

fluorescently labeled reversible-terminator nucleotides, DNA molecules are clonally amplified 

while immobilized on the surface of a glass flowcell. Because molecules are clonally amplified, 

this approach provides the relative RNA expression levels of genes. To remove potential PCR-

amplification biases, PCR controls and specific steps in the downstream computational analysis 

are required. One major benefit of ensemble-based platforms is low sequencing error rates (<1%) 

dominated by single mismatches. Low error rates are particularly important for sequencing 

miRNAs, whose relatively small sizes result in misalignment or loss of reads if error rates are too 

high. Currently, the Illumina HiSeq platform is the most commonly applied next-generation 

sequencing technology for RNA-Seq and has set the standard for NGS sequencing. The platform 

has two flow cells, each providing eight separate lanes for sequencing reactions to occur. The 

sequencing reactions can take between 1.5 and 12 d to complete, depending on the total read 

length of the library. Even more recently, Illumina released the MiSeq, a desktop sequencer with 

lower throughput but faster turnaround (generates ∼30 million paired-end reads in 24 h). The 

simplified workflow of the MiSeq instrument offers rapid turnaround time for transcriptome 

sequencing on a smaller scale. 
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Single-molecule-based platforms such as PacBio enable single-molecule real-time (SMRT) 

sequencing (Eid et al. 2009). This approach uses DNA polymerase to perform uninterrupted 

template-directed synthesis using fluorescently labeled nucleosides. As each base is 

enzymatically incorporated into a growing DNA strand, a distinctive pulse of fluorescence is 

detected in real-time by zero-mode waveguide nanostructure arrays. An advantage of SMRT is 

that it does not include a PCR amplification step, thereby avoiding amplification bias and 

improving uniform coverage across the transcriptome. Another advantage of this sequencing 

approach is the ability to produce extraordinarily long reads with average lengths of 4200 to 

8500 bp, which greatly improves the detection of novel transcript structures (Au et al. 2013; 

Sharon et al. 2013). A critical disadvantage of SMRT is a high rate of errors (∼5%) that are 

predominately characterized by insertions and deletions (Carneiro et al. 2012); the high error rate 

results in misalignment and loss of sequencing reads due to the difficulty of matching erroneous 

reads to the reference genome.  

Another important consideration for choosing a sequencing platform is transcriptome assembly. 

Transcriptome assembly, which is discussed in greater detail later, is necessary to transform a 

collection of short sequencing reads into a set of full-length transcripts. In general, longer 

sequencing reads make it simpler to accurately and unambiguously assemble transcripts, as well 

as identify splicing isoforms. The extremely long reads generated by the PacBio platform are 

ideal for de novo transcriptome assembly in which the reads are not aligned to a reference 

transcriptome. The longer reads will facilitate an accurate detection of alternative splice 

isoforms, which may not be discovered with shorter reads. Moleculo, a company acquired by 

Illumina, has developed long-read sequencing technology capable of producing 8500 bp reads. 

Although it has yet to be widely adopted for transcriptome sequencing, the long reads aid 

transcriptome assembly. Lastly, Illumina has developed protocols for its desktops MiSeq to 

sequence slightly longer reads (up to 350 bp). Although much shorter than PacBio and Moleculo 

reads, the longer MiSeq reads can also be used to improve both de novo and reference 

transcriptome assembly 

Transcriptome Analysis  

Gene expression profiling by RNA-Seq provides an unprecedented high-resolution view of the 

global transcriptional landscape. As the sequencing technologies and protocol methodologies 

continually evolve, new informatics challenges and applications develop. Beyond surveying gene 

expression levels, RNA-Seq can also be applied to discover novel gene structures, alternatively 

spliced isoforms, and allele-specific expression (ASE). In addition, genetic studies of gene 

expression using RNA-Seq have observed genetically correlated variability in expression, 

splicing, and ASE (Montgomery et al. 2010; Pickrell et al. 2010; Battle et al. 2013; Lappalainen 

et al. 2013). This section will introduce how expression data are analyzed to provide greater 

insight into the extensive complexity of transcriptomes.  

RNA-Sequencing Data Analysis Workflow 
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The conventional pipeline for RNA-Seq data includes generating FASTQ-format files contains 

reads sequenced from an NGS platform, aligning these reads to an annotated reference genome, 

and quantifying expression of genes (Fig. 2). Although basic sequencing analysis tools are more 

accessible than ever, RNA-Seq analysis presents unique computational challenges not 

encountered in other sequencing-based analyses and requires specific consideration to the biases 

inherent in expression data. 

Read Alignment—Mapping RNA-Seq reads to the genome is considerably more challenging 

than mapping DNA sequencing reads because many reads map across splice junctions. In fact, 

conventional read mapping algorithms, such as Bowtie (Langmead et al. 2009) and BWA (Li and 

Durbin 2009), are not recommended for mapping RNA-Seq reads to the reference genome 

because of their inability to handle spliced transcripts. One approach to resolving this problem is 

to supplement the reference genome with sequences derived from exon–exon splice junctions 

acquired from known gene annotations (Mortazavi et al. 2008). A preferred strategy is to map 

reads with a ―splicing-aware‖ aligner that can recognize the difference between a read aligning 

across an exon–intron boundary and a read with a short insertion. As RNA-Seq data have 

become more widely used, a number of splicing-aware mapping tools have been developed 

specifically for mapping transcriptome data. The more commonly used RNA-Seq alignment 

tools include GSNAP (Wu and Nacu 2010), MapSplice (Wang et al. 2010a), RUM (Grant et al. 

2011), STAR (Dobin et al. 2013), and TopHat (Trapnell et al. 2009) (Table 2). Each aligner has 

different advantages in terms of performance, speed, and memory utilization. Selecting the best 

aligner to use depends on these metrics and the overall objectives of the RNA-Seq study. Efforts 

to systematically evaluate the performance of RNA-Seq aligners have been initiated by 

GENCODE's RNASeq Genome Annotation Assessment Project3 (RGASP3), which has found 

major performance difference between alignments tools on numerous benchmarks, including 

alignment yield, basewise accuracy, mismatch and gap placement, and exon junction discovery 

(Engstrom et al. 2013).  

Transcript Assembly and Quantification— 

After RNA-Seq reads are aligned, the mapped reads can be assembled into transcripts. The 

majority of computational programs infer transcript models from the accumulation of read 

alignments to the reference genome (Trapnell et al. 2010; Li et al. 2011; Roberts et al. 2011a; 

Mezlini et al. 2013) (Table 2). An alternative approach for transcript assembly is de novo 

reconstruction, in which contiguous transcript sequences are assembled with the use of a 

reference genome or annotations (Robertson et al. 2010; Grabherr et al. 2011; Schulz et al. 

2012). The reconstruction of transcripts from short-read data is a major challenge and a gold 

standard method for transcript assembly does not exist. The nature of the transcriptome (e.g., 

gene complexity, degree of polymorphisms, alternative splicing, dynamic range of expression), 

common technological challenges (e.g., sequencing errors), and features of the bioinformatics 

workflow (e.g., gene annotation, inference of isoforms) can substantially affect transcriptome 

assembly quality. RGASP3 has initiated efforts to evaluate computational methods for 
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transcriptome reconstruction and has found that most algorithms can identify discrete transcript 

components, but the assembly of complete transcript structures remains a major challenge 

(Steijger et al. 2013). 

A common downstream feature of transcript reconstruction software is the estimation of gene 

expression levels. Computational tools such as Cufflinks (Trapnell et al. 2010), FluxCapacitor 

(Montgomery et al. 2010; Griebel et al. 2012), and MISO (Katz et al. 2010), quantify expression 

by counting the number of reads that map to full-length transcripts (Table 2). Alternative 

approaches, such as HTSeq, can quantify expression without assembling transcripts by counting 

the number of reads that map to an exon (Anders et al. 2013). To accurately estimate gene 

expression, read counts must be normalized to correct for systematic variability, such as library 

fragment size, sequence composition bias, and read depth (Oshlack and Wakefield 2009; Roberts 

et al. 2011b). To account for these sources of variability, the reads per kilobase of transcripts per 

million mapped reads (RPKM) metric normalizes a transcript's read count by both the gene 

length and the total number of mapped reads in the sample. For paired end-reads, a metric that 

normalizes for sources of variances in transcript quantification is the paired fragments per 

kilobase of transcript per million mapped reads (FPKM) metric, which accounts for the 

dependency between paired-end reads in the RPKM estimate (Trapnell et al. 2010). Another 

technical challenge for transcript quantification is the mapping of reads to multiple transcripts 

that are a result of genes with multiple isoforms or close paralogs. One solution to correct for this 

―read assignment uncertainty‖ is to exclude all reads that do not map uniquely, as in Alexa-Seq 

(Griffith et al. 2010). However, this strategy is far from ideal for genes lacking unique exons. An 

alternative strategy used by Cufflinks (Trapnell et al. 2012), and MISO (Katz et al. 2010) is to 

construct a likelihood function that models the sequencing experiment and estimates the 

maximum likelihood that a read maps to a particular isoform. 

Considerations for miRNA Sequencing Analysis— 

The general approach for analysis of miRNA sequencing data is similar to approaches discussed 

for mRNA. To identify known miRNAs, the sequencing reads can be mapped to a specific 

database, such as miRBase, a repository containing over 24,500 miRNA loci from 206 species in 

its latest release (v21) in June 2014 (Kozomara and Griffiths-Jones 2014). In addition, several 

tools have been developed to facilitate analysis of miRNAs including the commonly used tools 

miRanalyzer (Hackenberg et al. 2011) and miRDeep (An et al. 2013). MiRanalyzer can detect 

known miRNAs annotated on miRBase as well as predict novel miRNAs using a machine-

learning approach based on the random forest method with a broad range of features. Similarly, 

miRDeep is able to identify known miRNAs and predict novel miRNAs using properties of 

miRNA biogenesis to score the compatibility of the position and frequency of sequenced RNA 

from the secondary structure of precursor miRNAs. Although miRDeep and miRanalyzer contain 

modules for target prediction, expression quantification, and differential expression, the methods 

developed for mRNA quantification and differential expression can also be applied to miRNA 

data (Eminaga et al. 2013).  
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Quality Assessment and Technical Considerations 

At each stage in the RNA-Seq analysis pipeline, careful consideration should be applied to 

identifying and correcting for various sources of bias. Bias can arise throughout the RNA-Seq 

experimental pipeline, including during RNA extraction, sample preparation, library 

construction, sequencing, and read mapping (Kleinman and Majewski 2012; Lin et al. 2012; 

Pickrell et al. 2012; 't Hoen et al. 2013). First, the quality of the raw sequence data in FASTQ-

format files should be evaluated to ensure high-quality reads. User-friendly software tools 

designed to generate quality overviews include the FASTX-toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit), the FastQC software 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc), and the RobiNA package (Lohse et 

al. 2012). Several important parameters that should be evaluated include the sequence diversity 

of reads, adaptor contamination, base qualities, nucleotide composition, and percentage of called 

bases. These technical artifacts can arise at the sequencing stage or during the construction of the 

RNA-Seq. For example, the 5′ read end, derived from either end of a double-stranded cDNA 

fragment, shows higher error rate due to mispriming events introduced by the random oligos 

during the RNA-Seq library construction protocol (Lin et al. 2012). If possible, actions to correct 

for these biases should be performed, such as trimming the ends of reads, to expedite the speed 

and improve the quality of the read alignments. After aligning the reads, additional parameters 

should be assessed to account for biases that arise at the read mapping stage. These parameters 

include the percentage of reads mapped to the transcriptome, the percentage of reads with a 

mapped mate pair, the coverage bias at the 5′- and 3′-ends, and the chromosomal distribution of 

reads.  

One of the most common sources of mapping errors for RNA-Seq data occurs when a read spans 

the splicing junction of an alternatively spliced gene. A misalignment can be easily introduced 

due to ambiguous mapping of the read end to one of the two (or more) possible exons and is 

especially common when reads are mapped to a reference transcriptome that contains an 

incomplete annotation of isoforms (Kleinman and Majewski 2012; Pickrell et al. 2012). If 

genotype information is available, the integrity of the samples should also be evaluated by 

investigating the correlation of single-nucleotide variants (SNVs) between the DNA and RNA 

reads ('t Hoen et al. 2013). The concordance between the DNA and RNA sequencing data may 

provide insight into sample swaps or sample mixtures caused accidentally as a result of 

personnel or equipment error. In the case of a swapped sample, more discordant variants would 

be observed between the DNA and RNA sequencing data. In the case of a mixture of samples, 

more significant patterns of allele-specific expression would be observed than expected for a 

single individual as a result of more combinations of heterozygous and homozygous sites that 

would skew the alleles beyond the expected 1:1 allelic ratio. 

Differential Gene Expression  
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A primary objective of many gene expression experiments is to detect transcripts showing 

differential expression across various conditions. Extensive statistical approaches have been 

developed to test for differential expression with microarray data, where the continuous probe 

intensities across replicates can be approximated by a normal distribution (Cui and Churchill 

2003; Smyth 2004; Grant et al. 2005). Although in principle these approaches are also applicable 

to RNA-Seq data, different statistical models must be considered for discrete read counts that do 

not fit a normal distribution. Early RNA-Seq studies suggested that the distribution of read 

counts across replicates fit a Poisson distribution, which formed the basis for modeling RNA-Seq 

count data (Marioni et al. 2008). However, further studies indicated that biological variability is 

not captured by the Poisson assumption, resulting in high falsepositive rates due to 

underestimation of sampling error. Hence, negative binomial distribution models that take into 

account overdispersion or extra-Poisson variation have been shown to best fit the distribution of 

read counts across biological replicates. 

To model the count-based nature of RNA-Seq data, complex statistical models have been 

developed to handle sources of variability that model overdispersion across technical and 

biological replicates. One source of variability is differences in sequencing read depth, which can 

artificially create differences between samples. For instance, differences in read depth will result 

in the samples appearing more divergent if raw read counts between genes are compared. To 

correct for this, it is advantageous to transform raw read count data to FPKM or RPKM values in 

differential expression analyses. Although this correction metric is commonly used in place of 

read counts, the presence of several highly expressed genes in a particular sample can 

significantly alter the RPKM and FPKM values. For example, a highly expressed gene can 

―absorb‖ many reads, consequently repressing the read counts for other genes and artificially 

inflating gene expression variation. To account for this bias, several statistical models have been 

proposed that use the highly expressed genes as model covariates (Robinson and Oshlack 2010). 

Another source of variability that has been observed is that the distribution of sequencing reads 

is unequal across genes. Therefore, a two-parameter generalized Poisson model that 

simultaneously considers read depth and sequencing bias as independent parameters was 

developed and shown to improve RNA-Seq analysis (Srivastava and Chen 2010). 

 More complex normalization methods have also been developed to account for hidden 

covariates without removing significant biological variability. For example, the probabilistic 

estimation of expression residuals (PEER) framework (Stegle et al. 2012) and the hidden 

covariates with prior (HCP) framework (Mostafavi et al. 2013) are methods that use a Bayesian 

approach to infer hidden covariates and remove their effects from expression data. To detect 

differential expression, a variety of statistical methods have been designed specifically for RNA-

Seq data. A popular tool to detect differential expression is Cuffdiff, which is part of the Tuxedo 

suite of tools (Bowtie, Tophat, and Cufflinks) developed to analyze RNA-Seq data (Trapnell et 

al. 2013). In addition to Cuffdiff, several other packages support testing differential expression, 

including baySeq (Hardcastle and Kelly 2010), DESeq (Anders and Huber 2010), DEGseq 
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(Wang et al. 2010b), and edgeR (Robinson et al. 2010) (Table 2). Although these packages can 

assign significance to differentially expressed transcripts, the biological observations should be 

carefully interpreted. Each model makes specific assumptions that may be violated in the context 

of the observed data; therefore, an understanding of the model parameters and their constraints is 

critical for drawing meaningful and accurate biological conclusions (Bullard et al. 2010). 

Furthermore, replicates in RNA-Seq experiments are crucial for measuring variability and 

improving estimations for the model parameters (Tarazona et al. 2011; Glaus et al. 2012). 

Biological replicates (e.g., cells grown on two different plates under the same conditions) are 

preferred to technical replicates (e.g., one RNA-Seq library sequenced on two different lanes), 

which show little variation. Although the number of replicates required per condition is an open 

research question, a minimum of three replicates per sample has been suggested (Auer and 

Doerge 2010). In many cases, multiplexed RNA-Seq libraries can be used to add biological 

replicates without increasing sequencing costs (if sequenced at a lower depth) and will greatly 

improve the robustness of the experimental design (Liu et al. 2014). Additionally, the accuracy 

of measurements of differential gene expression can be further improved by using ERCC spike-

in controls to distinguish technical variation from biological variation. 

Allele-Specific Expression 

A major advantage of RNA-Seq is the ability to profile transcriptome dynamics at a 

singlenucleotide resolution. Therefore, the sequenced transcript reads can provide coverage 

across heterozygous sites, representing transcription from both the maternal and paternal alleles. 

If a sufficient number of reads cover a heterozygous site within a gene, the null hypothesis is that 

the ratio of maternal to paternal alleles is balanced. Significant deviation from this expectation 

suggests allele-specific expression (ASE). Potential mechanisms for ASE include genetic 

variation (e.g., single-nucleotide polymorphism in a cis-regulatory region upstream of a gene) 

and epigenetic effects (e.g., genomic imprinting, methylation, histone modifications, etc.). Early 

studies showed that allele-specific differences can affect up to 30% of loci within an individual 

(Ge et al. 2009) and are caused by both common and rare genetic variants (Pastinen 2010). 

Studies have also applied ASE to identify expression modifiers of protein-coding variation 

(Lappalainen et al. 2011; Montgomery et al. 2011), effects of loss-of-function variation 

(MacArthur et al. 2012), and differences between pathogenic and healthy tissues (Tuch et al. 

2010). Furthermore, ASE studies using singlecell transcriptomics have uncovered a stochastic 

pattern of allelic expression that may contribute to variable expressivity, a novel perspective 

which may have fundamental implications for variable disease penetrance and severity (Deng et 

al. 2014).  

Conventional workflows to detect ASE involve counting reads containing each allele at 

heterozygous sites and applying a statistical test, such as the binomial test or the Fisher's exact 

test (Degner et al. 2009; Rozowsky et al. 2011; Wei and Wang 2013). However, more rigorous 

statistical approaches are necessary to overcome technical challenges involved in ASE detection. 

These challenges include read-mapping bias, sampling variance, overdispersion at extreme read 
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depths, alternatively spliced alleles, insertions and deletions (indels), and genotyping errors. To 

account for overdispersion, one approach is to model allelic read counts using a beta-binomial 

distribution at individual loci (Sun 2012); however, accurate estimation of the overdispersion 

parameter requires replicates and, in our experience, major source of bias come from site-

specific mapping differences. Another strategy is to use a hierarchical Bayesian model that 

combines information across loci, as well as across replicates and technologies, to make global 

and site-specific inferences for ASE (Skelly et al. 2011). To assess reference-allele mapping bias, 

the number of mismatches in reads containing the nonreference allele should be assessed as 

increased bias is observed with greater sequence divergence between alleles (Stevenson et al. 

2013). To correct for read-mapping bias, an enhanced reference genome can be constructed that 

masks all SNP positions or includes the alternative alleles at polymorphic loci (Degner et al. 

2009; Satya et al. 2012). Statistical methods to better address these technical biases are under 

active development and are expected to foster further improvements in ASE detection 

Expression Quantitative Trait Loci 

Another prominent direction of RNA-Seq studies has been the integration of expression data 

with other types of biological information, such as genotyping data. The combination of RNA-

Seq with genetic variation data has enabled the identification of genetic loci correlated with gene 

expression variation, also known as expression quantitative trait loci (eQTLs). This expression 

variation caused by common and rare variants is postulated to contribute to phenotypic variation 

and susceptibility to complex disease across individuals (Majewski and Pastinen 2011). The goal 

of eQTL analysis is to identify associations that will uncover underlying biological processes, 

discover genetic variants causing disease, and determine causal pathways. Initial eQTL studies 

using RNA-Seq data identified a greater number of statistically significant eQTLs than had been 

identified by microarray studies (Montgomery et al. 2010; Pickrell et al. 2010). Most of the 

eQTLs identified directly influenced gene expression in an allele-specific manner and were 

located near transcriptional start sites, indicating that eQTLs could modulate expression directly, 

or in cis. Later studies identified trans-eQTLs, which are variants that affect the expression of a 

distant gene (>1 Mb) by modifying the activity or expression of upstream factors that regulate 

the gene (Fehrmann et al. 2011; Battle et al. 2013; Westra et al. 2013). Although trans-eQTLs 

show weaker effects and present validation difficulties, they can potentially reveal previously 

unknown pathways in gene regulation networks.  

RNA-Seq has revolutionized QTL analyses because it enables association analyses of more than 

just gene expression levels alone. For example, RNA-Seq provides unprecedented opportunity to 

investigate variations in splicing by profiling alternately spliced isoforms of a gene. This has 

enabled the identification of variants influencing the quantitative expression of alternatively 

spliced isoforms commonly referred to as splicing-QTLs (sQTLs) (Lalonde et al. 2011). In 

addition, specific RNA-Seq library constructions (e.g., ribo-depleted) have enabled the detection 

of eQTLs affecting other RNA species; recent studies have identified variants affecting the 

expression of various ncRNAs, including long intergenic noncoding RNAs (Montgomery et al. 
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2010; Gamazon et al. 2012; Kumar et al. 2013; Popadin et al. 2013). The expanding potential of 

RNA-Seq to associate phenotypic variations with genetic variation offers an enhanced 

understanding of gene regulation.  

Traditional eQTL mapping methods that were developed for microarray data use linear models 

such as linear regression and ANOVA to associate genetic variants with gene expression 

(Kendziorski and Wang 2006). These methods have been directly applied to RNA-Seq data 

following appropriate normalization of total read counts. Most eQTL studies perform separate 

testing for each transcript-SNP pair using linear regression and ANOVA models to detect 

significant association. Nonlinear approaches have also been developed to test associations, such 

as generalized linear and mixed models, Bayesian regression (Servin and Stephens 2007). 

Alternative models, such as Merlin, have also been developed to detect eQTLs from expression 

data that include related individuals using pedigree data (Abecasis et al. 2002). In addition, 

several methods have been developed to simultaneously test the effect of multiple SNPs on the 

expression of a single gene using Bayesian methods (Lee et al. 2008). To further improve on the 

detection of causal regulatory variants, several studies have integrated ASE information with 

eQTL analysis. These studies showed that genetic variants showing allele-specific effects and 

identified as eQTLs show higher enrichment in functional annotations and provide stronger 

evidence of cis-regulatory impact (Battle et al. 2013; Lappalainen et al. 2013; Sun and Hu 2013). 

Because high-throughput sequencing has created genotype data sets featuring millions of SNPs 

and expression data sets featuring tens of thousands of transcripts, the task of testing billions of 

transcript-SNP pairs in eQTL analysis can be computationally intensive. To mitigate this 

computational burden, software has been developed such as Matrix eQTL to efficiently test the 

associations by modeling the effect of genotype as either additive linear (least squares model) or 

categorical (ANOVA model) (Shabalin 2012). Because of the large number of tests performed, it 

is important to correct for multiple-testing by calculating the false discovery rate (Benjamini and 

Hochberg 1995; Yekutieli and Benjamini 1999) or resampling using bootstrap or permutation 

procedures (Karlsson 2006; Zhang et al. 2012).  

However, the design and interpretation of eQTL studies is not straightforward. Many 

complications result from the complexity of gene regulation, which shows both spatial (cell and 

tissue location) specificity as well as temporal (developmental stage) specificity. For instance, 

several studies have performed eQTL analysis across multiple tissues, indicating that genetic 

regulatory elements can have tissue-specific effects (Petretto et al. 2006; Schadt et al. 2008; 

Dimas et al. 2009; Kwan et al. 2009; Grundberg et al. 2012; Flutre et al. 2013). Therefore, future 

eQTL analyses should test for SNP-transcript associations in well-defined cell types that are 

relevant to the trait of interest (Lonsdale et al. 2013). For example, a study detecting eQTLs in 

cardiovascular disease should use heart tissue while a study interested in autoimmune disease 

should use whole blood. Another major consideration for eQTL studies is accounting for 

population structure and elucidating the causal variants (Stranger et al. 2012). The structure of 

genomic variation can vary significantly between populations and will influence the resolution of 
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any genetic association study (Frazer et al. 2007; Altshuler et al. 2010). Furthermore, if 

substantial linkage disequilibrium (LD) exists within the genome, the associated genetic variant 

is often ―tagging‖ the causal variant rather than acting as the causal regulatory variant itself. As 

eQTL studies integrate data across different populations and use population-scale genome 

sequencing, the ability to elucidate causal variants will greatly improve 
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Chromatin immunoprecipitation followed by sequencing (ChIPseq) analysis is a key technology 

in epigenomic research. This method uses an antibody for a specific DNA-binding protein or a 

histone modification to identify enriched loci within a genome [1,2]. Histone modifications are 

used in the ChIP-seq analysis field to dissect the characteristics and the biological functions of 

epigenetic signatures. Advances in next-generation sequencing (NGS) technology and 

computational analysis enable us to systematically understand how the epigenomic landscape 

contributes to cell identity [3], development [4], lineage specification [5–8], cancer [9], and other 

diseases [10,11].  

Five “core histone marks”, proposed by Roadmap Epigenomics Consortium [12], are widely 

used for ChIP-seq analysis: 

 H3 lysine 4 monomethylation (H3K4me1) or H3 lysine 27 acetylation (H3K27ac), which 

is associated with enhancer regions;  

 H3 lysine 4 trimethylation (H3K4me3), which is associated with promoter regions;  

 H3 lysine 36 trimethylation (H3K36me3), which is associated with transcribed regions in 

gene bodies;  

 H3 lysine 27 trimethylation (H3K27me3), which is associated with Polycomb repression; 

and 

 H3 lysine 9 trimethylation (H3K9me3), which is associated with heterochromatin. 

 

In addition to genome-wide identification of specific epigenome marks (e.g., enhancers) in a 

specific cell-line, core histone mark enrichment profiles are used to segment and annotate whole-

genome regions into distinct “chromatin states,” which represent more detailed characteristic 

epigenetic signatures (e.g., weak transcription and poised promoter). Maturation of high-quality 

ChIP-seq databases by large consortia such as ENCODE, the Roadmap Epigenomics 

Consortium, and the International Human Epigenome Consortium (IHEC) accelerate chromatin 

state annotation for various cell lines and tissues. Many studies leverage the accumulated 

epigenomic information to infer additional genome dynamics using machine-learning 

approaches. 

In this review, we first address the major steps in a typical ChIP-seq computational analysis 

workflow. Because there are numerous important studies in this field, we focus on outlining the 

concept for each step by referencing previous important reviews instead of describing each 

method. Next, we introduce several advanced ChIP-seq applications for histone modifications, 

including prediction of gene expression level and enhancer-promoter looping, and data 

imputation. Finally, we discuss recently developed methodologies for single-cell ChIP-seq 

(scChIP-seq) analysis that elucidate the cellular diversity within complex tissues and cancers. 
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congregate multiple enhancer sites close together. Music [25] can estimate the average sample 

peak width to be investigated.  

 Read mapping 

The sequenced reads (FASTQ or CSFSATQ format) are mapped using tools such as Bowtie 

[26], Bowtie2 [27], or BWA [28]. Bowtie2 and BWA can consider indels (insertions and 

deletions) by gapped alignments, which is appropriate for long and/or paired-end reads (see [29] 

for a comparison of mapping tools and parameters). There are several output formats for map 

files, such as SAM, BAM, CRAM and tagAlign. While the BAM format is the most widely used 

so far, the more spaceefficient CRAM format is maturing and will likely be the next standard 

(https://www.ga4gh.org/cram/). After alignment, reads mapped to the same genomic positions 

are filtered as redundant reads, and the remaining nonredundant reads are used for analysis. 

Peak calling 

The peak-calling step identifies significantly enriched loci (peaks) in the genome. Peak-calling 

results are generally returned in BED format. Although ChIP-seq peaks do not have strand 

information, it can be estimated from the gene information when focusing on the histone marks 

that are enriched around TSS, for instance. While MACS2 [30] is the most commonly used peak-

calling tool, numerous peak-calling tools were recently developed (see [16,31,32] for reviews). 

However, no tool can achieve 100% accuracy. Therefore, a practical strategy is to obtain a large 

number of peaks with a relaxed threshold that contain true positives and noise, and then extract 

subgroups using another way to improve specificity, e.g. selecting consistent signal among 

biological replicates using the Irreproducible Discovery Rate (IDR) 

ChIP-seq data quality assessment 

Quality check (QC) of ChIP-seq samples is critical to judge whether sequencing data are of high 

quality and suitable for further analyses. Various quantitative QC measures have been developed 

[16,20]. Among them, the particularly important metrics are: 

 Mapping ratio, which reflects read quality and the proportion of sequenced reads that are 

derived from true genomic DNA. For example, the mapping ratio for samples sequenced 

by Illumina HiSeq System (e.g., Hiseq2500) should be over 80%. The exception is a 

sample for non-DNA-binding proteins such as IgG, which often has a lower mapping 

ratio (∼60%).  

 Read depth (the number of nonredundant mapped reads). Sufficient read depth depends 

on the genome size and the antibody S/N ratio [1]. The ENCODE consortium suggested 

at least 10 million uniquely mapped reads as a minimum to analyze sharp-mode peaks of 

human samples [20]. Broad histone marks often have weaker S/N and require more reads 

(e.g., > 40 million for human) as a practical minimum for peak calling [33].  
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 Library complexity (the proportion of nonredundant reads). It ranges from 0 to 1.0, and 

the ENCODE consortium suggested the complexity > 0.8 for 10 million mapped reads 

[20]. Lower values (less than 0.6) indicate excessive PCR amplification from a small 

amount of initial DNA [16].  

 The normalized strand coefficient (NSC, obtained by SSP [34]), a S/ N indicator for both 

sharp and broad marks (phantompeakqualtools [20] can only calculate NSC for sharp 

marks). In-depth validation using > 1,000 publicly available ChIP-seq datasets for 

multiple species suggested that the recommended threshold value is NSC > 5.0 and NSC 

> 1.5 for sharp and broad marks, respectively [34]. Input samples should have a low S/N 

and therefore NSC values should be < 2.0. 

 Background uniformity (Bu) [34]. Bu reflects the read distribution bias in background 

regions and ranges from 0 to 1.0. Low values (less than 0.8) suggest that the read 

distribution is more congregated or biased than expected, resulting in numerous false 

positives in obtained peaks [35]. For the genome that has extensive copynumber 

variations (e.g., MCF-7 cells), a relaxed threshold value (> 0.6) is desirable. 

 GC summit bias, reflecting biases during immunoprecipitation and PCR amplification 

[35]. In general, the GC summit of typical ChIPseq data becomes similar to the reference 

genome (e.g., ∼50% for human [19]). Unexpected GC-rich summit (e.g., over 60% for 

human) is often manifested due to PCR amplification biases [35] and/or false-positive 

peaks derived from 'hyper-ChIPable' regions associated with CpG islands 

Visualization  

Having developed various statistical methods and quality metrics for ChIP-seq data, visual 

inspection of read distribution is effective to intuitively assess and analyze the obtained data, 

e.g., detecting suspicious peaks derived from hyper-ChIPable regions [36]. For that, 

interactive visualization tools such as Integrated Genome Viewer (IGV) [38] or SeqMonk 

(https://www.bioinformatics.babraham.ac.uk/projects/ seqmonk/) are available. Several web 

servers (e.g. UCSC genome browser [39] and WashU Epigenome Browser [40]) can 

integrate the obtained ChIP-seq results with other annotation data, such as evolutionary 

conservation and gene expression in various tissues. 

Normalization for comparative analysis 

Read normalization is essential to mitigate technical variance before comparative analysis 

[35]. Simple total read normalization is commonly used, which scales the sample read 

number to be the same. The underlying assumption is that the difference in mapped reads 

among samples is sufficiently smaller than the total read number. This assumption is not 

always satisfied, and therefore, several methods have been developed to identify 

differentially enriched regions between two conditions, some of which are specifically 

designed for histone modification data [41,42]. Since the obtained results vary considerably 

among tools due to the underlying statistical assumptions, the choice of method will crucially 
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impact the outcome [43]. Quantitative comparison across more than two groups is more 

complicated. When the expected S/N value is similar among samples, statistical methods for 

differential gene expression analysis can be used [44]. It is also possible to utilize quantile 

normalization [19] when the S/N for most common peaks is similar among samples (e.g., a 

single antibody for all samples). If the S/N highly varies among samples (e.g., between with 

and without stimulation), consider spike-in analysis (also called calibration analysis) [45,46]. 

This method is a wet-based solution that adds the same amount of DNA from a different 

species to all samples before or after immunoprecipitation and estimates the weight 

coefficient based on the number of derived reads. In contrast to computational normalization 

methods that are limited to relative differences, spike-in ChIP-seq enables investigation of 

absolute-level differences [16]. However, quantitative ChIP-seq comparisons are still often 

confounded by intrinsic noisiness and variability caused by multi-step sample preparation, 

even after normalization [43]. In this case, simple binary comparisons (identifying common 

or unique peaks) might be desirable, though some false positiveS/Negatives will likely occur 

in the obtained results. 

Functional analysis 

Motif analysis investigates the sequence specificity inherent in called peaks or specific 

epigenome regions (e.g., enhancer sites), and estimates the likely transcription factor binding 

sites within identified regions [57]. Generally, motif analysis methods can be classified into 

two types: de novo motif discovery that identifies potential new binding motifs for unknown 

factors appearing in a large fraction of peaks [58]; and motif scanning that estimates and 

ranks the similarity of supplied DNA sequences against all known canonical motifs within a 

database [59]. ChIP-seq peaks can also be used in functional enrichment analysis. This 

analysis binarily labels or quantitatively ranks nearby genes as potential targets and groups 

them by gene ontology or KEGG pathway 

Chromatin-state annotation 

Chromatin-state annotation, also called semi-automated genomic annotation (SAGA), 

classifies all genomic regions by characteristic epigenomic patterns, such as promoters, 

enhancers, transcribed regions, and repressed regions, using an unsupervised machine-

learning approach [63]. Obtained clusters are manually annotated as chromatin states. 

Typical region-specific analysis (e.g., enhancer analyses [19,64]) narrows down the target 

genomic regions to be investigated. In contrast, chromatin-state annotation segments the 

genome and assigns chromatin states to whole-genome regions using a hidden Markov model 

[65–67] or a dynamic Bayesian network [68]. In this analysis, the biologically optimal 

number of states is unknown and must be experimentally defined. That is, more abundant 

states cause difficulty when interpreting obtained clusters. In fact, numerous states may not 

capture sufficiently distinct epigenetic characters [69]. Thus, up to 15 states may be 

appropriate. The obtained chromatin states are further extended for various downstream 
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analyses. For example, ChromDiff [70], EpiCompare [71], and ChromDet [72] combine and 

cluster derived epigenomic landscapes across multiple cell types to explore tissue or cell 

typespecific epigenomic regions. A probabilistic clustering approach is also adopted to 

capture chromatin state dynamics across multiple cell lines [73] or time points [18,74]. 

Graph-based regularization (GBR) integrates chromatin interaction information for 

chromatin-state annotation [63]. Generated chromatin state information is then used to 

interpret individual genetic variations [75,76] and understand epigenetic variation in 

evolution. 

Advanced applications 

Because abundant ChIP-seq data are available for several well-studied cell types, it is useful 

to leverage information from these cell types to infer genome dynamics or to annotate the 

epigenetic landscape of other cell types with fewer additional experiments. Increasing 

evidence suggests that epigenetic information is highly correlated with, and can be used to 

predict, gene expression and chromosomal conformation. In this section, we briefly describe 

tools for advanced applications of ChIPseq analysis for histone modifications, which are 

more experimental and theoretical than the tools introduced in section 2. 

Gene expression prediction from the epigenome 

Various machine learning-based approaches have been developed to quantitatively infer gene 

expression levels based on the epigenetic information obtained by ChIP-seq experiments. For 

instance, Karlic et al. applied a linear regression model to histone modification enrichments 

at promoter sites to predict gene expression in CD4 + T-cells [78]. They utilized nineteen 

histone modifications and suggested that as few as three promoter site modifications are 

sufficient to model gene expression [78]. Dong et al. used non-linear models, such as 

multivariate adaptive regression splines (MARS) and random forests, to map eleven histone 

modifications and DNase I hypersensitivity in seven human cell lines [79] and successfully 

predicted gene expression level (Pearson coefficient r = 0.83 with observed data). These 

models simply consider the epigenetic pattern at promoter sites and do not account for 

enhancer site information. In contrast, DeepExpression [80] utilizes HiChIP data [81], a 

high-throughput technique for capturing proteincentric chromosome loops, to consider 

enhancers and enhancer-promoter interactions. There are also several tools that use 

convolutional neural networks (CNN) to predict gene expression [82] or differential gene 

regulation patterns [83]. See reference [82] for a detailed discussion regarding the 

comparison of these gene expression prediction programs. Considering that the preparation 

of a single RNA-seq sample requires relatively lower cost compared with that of ChIP-seq 

samples of multiple histone modifications and HiChIP data, the main purpose of these studies 

is to elucidate the combinatorial roles of histone modifications in gene regulation, rather than 

the prediction of gene expression level itself. 
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Prediction of chromatin interactions from epigenome data 

Because recent evidence suggests that single nucleotide polymorphisms (SNPs) in enhancers 

can cause genetic diseases and cancer [84,85], there is a great demand for genome-wide 

analysis to characterize the role of enhancers in specific cell lines. However, genomewide 

pairing of enhancers and target genes is not a trivial task. Indeed, enhancers do not 

necessarily regulate the nearest genes, and some enhancers are distant from TSSs [86]. While 

Chromosome Conformation Capture (3C) assays, such as Hi-C [87], HiChIP [81], and ChIA-

PET [88], are available to quantify spatial proximity across an entire genome, computational 

tools for pairing enhancers and target genes keep evolving. Hariprakash and Ferrari classified 

gene-enhancer pairing tools into four categories [89]: correlation-based, supervised learning-

based, regression-based, and score-based. The key differences are “whether multiple 

enhancers are considered for each gene” and whether multiple epigenetic data are considered 

for each enhancer/ promoter site”. Correlation-based methods estimate the interaction 

strength for all-by-all enhancer-promoter pairs, while regression-based methods assume that 

multiple enhancers contribute to a single gene. Supervised learning-based and score-based 

methods can combine multiple ChIP-seq datasets and other information types for each site 

(e.g., evolutionary conservation). While these tools focus on enhancerpromoter interactions, 

there are many other chromatin interactions, such as enhancer-enhancer loops and weak 

chromatin aggregation via phase separation [90]. In contrast, CITD [91] and DRAGON [92] 

comprehensively decipher three-dimensional genome organization from epigenetic data 

using wavelet transformation and potential energy functions, respectively. These statistical 

approaches aim to find consistent patterns in epigenetic data associated with spatial 

chromatin contacts and predict them without any previous knowledge of genomic 

architecture. The limitation of these methods is that genomic interactions are considered as 

qualitative, rather than quantitative, despite their dynamic nature [93]. It was also reported 

that the current methods involve a training bias due to sharing information of genomic 

architecture between training and validation datasets [94]. Nevertheless, because the number 

of tools is rapidly growing, future methods might achieve sufficient accuracy that identifying 

enhancer-promoter interactions via 3C-based data will be unnecessary 

Data imputation: Reconstruction and denoising ChIP-seq data 

One analytical challenge in large-scale ChIP-seq analysis arises from biases and batch effects 

in ChIP-seq data. Because machine-learning approaches are sensitive to noise in training 

data, it is unavoidable that some ChIP-seq samples will be identified as moderate quality or 

rejected as low-quality data (resulting in missing data), especially in cases where multiple 

laboratories were responsible for data acquisition (e.g., the large consortium project). If 

biological samples are precious (e.g. primary cells and clinical samples), it might be 

practically difficult to collect more samples. In this case, “data imputation” methods may be 

appropriate. These methods utilize many epigenetic data from other closely related cell types 

for data de-noising or reconstruction. “Data de-noising” aims to improve existing ChIP-seq 



ChIP seq 

10 
 

sample quality by identifying and removing noise from the data. For example, Coda [95] 

encodes a generative noise process and recovers signals in ChIPseq data using convolutional 

neural networks. “Data reconstruction” aims to generate missing ChIP-seq data from the 

large dataset in silico. ChromImpute [96] is a pioneering tool that trains a regression tree to 

infer signal from each missing experiment using the ten most correlated cell types. 

PREDICTD [97] and Avocado [98] leverage tensor decomposition to impute multiple ChIP-

seq data simultaneously. Several prediction tools for transcription factor binding sites are 

also proposed [99–101]. These data imputation approaches are potential computational 

alternatives to real ChIP-seq experiments, and might open the way to collect epigenomic data 

for all possible cell types and environmental conditions that are clearly impossible in biology. 

At the present stage, there are the limitations for the prediction of sample-specific signals that 

do not correlate with the other samples and for the incorporation of genetic variation [96]. 

Because „a prior expectation of signal‟ by the imputation across the genome is informative 

even when high-quality datasets are available [96], the combined use of observed and 

imputed data is a practically good strategy. Although this approach is computationally 

challenging, publicly available high-quality data from diverse cell types (Table 1) encourages 

to accomplish that. 

Single-cell ChIP-seq analysis  

Recent evidence suggests many cells types, including normal immune cells, serve an 

essential accessory function in complex tissues and tumors [102]. To elucidate this cellular 

heterogeneity and cell fate trajectories in developmental processes, various single-cell assays 

have been developed [103]. Among them, scChIP-seq enables genome-wide profiling of 

histone modifications and other chromatin-binding proteins at single-cell resolution from 

low-input samples. Recently, multiple approaches for single-cell labeling and ChIP-seq 

library preparation have been developed (Table 2) which use microfluidic systems, Tn5 

transposase tagmentation, and ChIP-free strategies. 

Microfluidic system-based analysis 

The first scChIP-seq method, scDrop-ChIP [104], uses microfluidic systems for cell labeling 

combined with canonical ChIP methods to generate ∼ 800 non-duplicated reads per cell. The 

more recently developed droplet microfluidic method [105] provides higher resolution, 

producing ∼ 10,000 non-duplicated reads per cell. The limitation of these methods is that the 

specialized microfluidic devices are not usually available for most laboratories. 

Tagmentation-based analysis  

Tagmentation-based library preparation using Tn5 transposase has been widely used for 

various NGS assays, including ChIP-seq. sc-itChIPseq [106] employs tagmentation for 

single-cell labeling and library preparation before the canonical ChIP experiment. This 

method generates ∼ 9000 non-duplicated reads per cell. Because the experimental procedure 
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is similar to the canonical ChIP-seq method, this method is much easier to use than scDrop-

ChIP. 

ChIP-free methods   

Several ChIP-free strategies have been developed for scChIP-seq. Single-cell chromatin 

immunocleavage sequencing (scChIC-seq) [107] and single-cell uliCUT&RUN [108] are 

based on the CUT&RUN method [109] that employs MNase and protein A fusion proteins to 

detect cleaved target sites with a specific antibody. These methods generate ∼ 4,100 non-

duplicated reads per cell and require several canonical steps for library preparation. However, 

these methods are limited by low read-mapping rates (∼6%). Three similar methods, called 

CUT& Tag [110], ACT-seq [111], and CoBATCH [112], have been developed. These 

methods use a Tn5 transposase and protein A fusion protein. During library preparation, the 

primary antibody is captured by the fusion protein after binding the target protein on 

chromosomes. Then, Tn5 transposase is activated for tagmentation at the protein binding 

sites. The advantage of these methods is that protein binding site detection and library 

preparation are performed simultaneously, which drastically reduces experimental 

procedures and time. Further, these methods are less subject to technical biases introduced by 

an immunoprecipitation step. Moreover, these methods show ∼ 97% mapping rates and 

generate ∼ 12,000 non-duplicated reads per cell. Thus, this ChIP-free method has potential 

for high-throughput and highquality scChIP-seq analysis. Finally, chromatin integration 

labelling followed by sequencing (ChIL-seq) [113] is another ChIP-free method that is based 

on immunostaining rather than ChIP. The method uses a secondary antibody probe 

conjugated with dsDNA, which contains a T7 RNA polymerase promoter, an NGS adapter 

sequence, and a Tn5 binding sequence. After capturing the first antibody, the probe DNA 

sequence is integrated into the target binding sites by Tn5 transposase. Then, the integrated 

regions are amplified by in situ transcription, followed by RNA purification and library 

preparation. The method can be used for single-cell analysis, but likely needs several 

optimizations to achieve high-throughput sequencing. Additional scChIP-seq methods will be 

developed in future, such as simultaneous detection of multiple histone modifications and/or 

other chromatin-binding proteins. These advances will enable to capture colocalization of 

gene-regulating factors on chromosomes in each cell. 
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RNA SEQUENCING 

RNA-seq is a next generation sequencing (NGS) procedure of the entire 

transcriptome by which one can measure the expression of several features such 

as gene expression, allelic expression, and intragenic expression.The number of 

reads mapped to a given gene or transcript is considered to be the estimate of the 

expression level of that feature using this technology .Understanding the 

transcriptome is key if we are to connect the information on our genome with its 

functional protein expression.RNA-seq can tell us which genes are turned on in a 

cell, what their level of expression is, and at what times they are activated or shut 

off. 

Microarray technology v/s RNA Seq 

RNA-seq is believed to have a wider range of signal detection.The resolution of 

microarray expression measures cannot go beyond the probe level.RNA-seq can 

be evaluated at single-base resolution. Moreover, in microarray technology one 

needs to have knowledge of the target sequences to construct the probe sets. 

Hence, RNA-seq is more suitable for the discovery of novel transcripts.  

Overview of RNA Seq: 
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DIFFERENTIALLY EXPRESSED GENE 

A gene is declared differentially expressed if a difference or change observed in 

read counts or expression levels/index between two experimental conditions is 

statistically significant.Such genes are selected based on a combination of 

expression change threshold and score cutoff, which are usually generated by 

statistical modeling.The correct identification of differentially expressed genes 

(DEGs) between specific conditions is a key in the understanding phenotypic 

variation. 

Methods for DGE analysis 

1.Parametric  

Parametric methods capture all information about the data within the parameters. 

In these cases, it is possible to predict the value of unknown data from observing 
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the adopted model and its parameters.Poisson or negative binomial (edgeR & 

baySeq) uses parametric approach. 

2.Non-parametric.  

Non-parametric methods can capture more details about the data distribution, i.e., 

not imposing a rigid model to be fitted.Non-parametric models take into 

consideration that data distribution cannot be defined from a finite set of 

parameters, thus the amount of information about the data can increase with its 

volume.Software tools, such as NOIseq and SAMseq adopt non-parametric 

methods.   

Software for Differential Expression in RNA-seq Data 

Several R packages are available for expression analysis, like DEGseq.The 

Bioconductor software package edgeR has been developed to examine replicated 

gene count data using an overdispersed Poisson model.The statistical tests based 

on negative binomial distributions (DESeq, edgeR, and baySeq) had notably good 

control of false-positive errors with comparable specificity and sensitivity resulted 

from the tests. 

Challenges: 

The challenge in analyzing RNA-seq data, particularly in the detection of 

differential expression, has three primary sources. 

1. The inherent problem with the technology. 

2. The laboratory or experimental errors causing technical variation across 

samples.  
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3. The third and the most important challenge is that current costs of 

producing RNA-seq data are prohibitive to the generation of many 

biological replicates, which poses a problem for statistical data analysis.  

Case Study:Identification of Differentially Expressed Genes in RNA-seq Data 

of Arabidopsis thaliana: A Compound Distribution Approach 

Abstract: 

In the present study, the focus is mainly to investigate the differential gene 

expression analysis for sequence data based on compound distribution model. 

This approach was applied in RNA-seq count data of Arabidopsis thaliana and it 

has been found that compound Poisson distribution is more appropriate to capture 

the variability as compared with Poisson distribution.Thus, fitting of appropriate 

distribution to gene expression data provides statistically sound cutoff values for 

identifying differentially expressed genes. RNA-seq data of Arabidopsis 

thaliana have been considered for this investigation because of its small 

size,simplicity,convenience and abundance,susceptibility to T-DNA 

insertion,short generation time,large number of progeny per plant and small 

genome of A. thaliana make it attractive for molecular genetic analysis. 

Why compound distribution approach? 

Compound distributions represent a useful way of describing heterogeneity in the 

distribution of a variable.In the present study, the focus is mainly to investigate 

the differential gene expression analysis for sequence count data based on 

compound distribution model as this model is able to capture extra 

variation.Compound mixture of Poisson–gamma distribution is used. The joint 

likelihood density function is obtained and the parameters of the model are 

estimated. 
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Steps involved: 

1. The expression data under the two conditions (hrcC and mock) for    

different genes are arranged. 

2. The difference in read counts is taken over two conditions and is plotted. 

3. The positive values are up-regulated gene expression values and the 

negative values are down-regulated gene expression values. 

4. The compound Poisson distribution is fitted to both these values 

separately, and accordingly the parameters of the distribution are 

estimated. 

5. The goodness-of-fit of the model is tested and the fitted distribution is 

compared with the single-component Poisson distribution using likelihood 

ratio test. 

Methods: 

• It is very important to find statistical distribution to approximate the nature 

of differential gene expression data,Poisson distribution is most commonly 

used. 

POISSON DISTRIBUTION: 

• Poisson distribution occurs when there are events that do not occur as 

outcomes of a definite number of trials of an experiment but that occur at 

random points of time and space wherein the interest lies only in the 

number of occurrences of the event, not in its nonoccurrences. 

ADVANTAGES: 

 Major advantage is it’s simplicity. 
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 Has only one parameter. 

DISADV: 

 It constrains the variance of the modeled variable to be equal to the mean. 

  Assumptions of Poisson distribution are too restrictive: it predicts smaller 

variations that are observed in data. 

 Therefore, the resulting statistical test does not control type 1 error (the 

probability of false discoveries).  

 Overdispersion problem was solved in count data by using negative 

binomial distribution. 

NEGATIVE BINOMIAL DISTRIBUTION 

• The negative binomial distribution has two parameters, the mean and the 

dispersion, and hence allows modeling of more general mean–variance 

relationships. 

DISADV:  

 The number of replicates in the data set of interest is normally too small to 

estimate both the parameters mean and variance reliably for each gene 

COMPOUND DISTRIBUTION: 

• The Poisson parameter is itself a random variable, distributed according to 

a gamma distribution. The negative binomial distribution is thus here a 

mixture of a family of Poisson distributions with gamma mixing weights 

• Negative binomial as compound Poisson is more capable of capturing the 

variability as compared with Poisson distribution and hence identified 

more differentially expressed genes in case of RNA-seq data 
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Results: 

 

 

 

1.Plot of up-regulated gene expression.                       2. Poisson fitting to up-

regulated gene expression. 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=4827276_fig-2.jpg
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=4827276_fig-3.jpg
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3. Compound Poisson fitting to up-regulated gene expression 

Conclusion: 

• In case of up-regulated genes, out of 10,483 genes, 9649 genes were 

identified as differentially expressed based on the probability value cutoff 

with respect to Poisson distribution and 2081 were identified with 

compound Poisson distribution.  

• Out of a total of 11,607 down-regulated genes, 10,357 were identified as 

differentially expressed by fitting Poisson distribution, whereas only 1954 

were identified with compound Poisson distribution. 

• Hence, it can be seen that compound Poisson distribution, which is a 

mixture of Poisson and gamma, is able to identify the differentially 

expressed genes more accurately. 

 

  

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=4827276_fig-4.jpg
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Read Mapping 

Data analysis of ChIP-seq relies on read mapping. It is important to check the 

quality of the mapping process. The percentage of mapped reads is a global 

indicator of the overall sequencing accuracy. This Read Mapping is performed 

using a reference genome and subsequent identification of signals associated with 

protein-binding or attachments of modified histones  

Most ChIP-seq experiments do not require gapped alignments that consider 

insertions and deletions (indels) because the sequenced reads do not contain them, 

unlike exon junctions in RNA-seq analyses. 

An important issue concerns the inclusion of multiple mapped. Allowing for 

multiple mapped reads increases the number of usable reads and the sensitivity of 

peak detection. However, the number of false positives may also increase. In 

general, uniquely mapped reads are sufficient to analyze typical TFs, except for 

in-repeat analyses.  

Considering the percentage of mapped reads is important, and desirable rate 

depends on the species and the read lengths. 

Mapping considerations: 

Single end reads 
 

Paired end reads 
 

Only one end of fragment is 

known 

 

Both ends of fragment are 

known 

Bowtie can be used 

 

This can done using bowtie2 

 

Up to 50bp 

 

More than 50bp 

 

MACs guess fragment length 

 

MACS now knows mean 

fragment length 

 

 

Mapping Tools:  

The sequence reads were aligned are in FASTQ or CSFASTQ format from 

Quality Check. These reads are mapped using any of these tools: 

i. Bowtie 

ii. Bowtie 2 
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iii. BWA 

BOWTIE 

• Among the genome aligners, bowtie is one of a most popular mostly 

because it can achieve fast alignment.  

• Although, the mapping strategy differs between version 1 and 2, the 

overall pipeline is identical.  

• Bowtie uses a "seed and extend" strategy meaning that it will first try to 

find matches for 5' ends of the reads in the reference genome. In the 

second step, it will try to extend these matches using dynamic 

programming. 

• In the case of ChIP-Seq analysis, one crucial issue is to control for multi-

reads (reads that map to several positions onto the reference genome) that 

may produce artificial peaks. 

• Additionally, flag is set in –m1, that means 1 read only maps to one 

location (uniquely mapped reads) 

BOWTIE 2 

• Bowtie 2 combines the strengths of the full-text minute index with the 

flexibility and speed of hardware accelerated dynamic programming 

algorithms to achieve a combination of high speed, sensitivity and 

accuracy 

• -m1 flag is no longer existed here 

• Another filtering strategies are required 

• Post mapping filtering is also done here 

• To check the reads if they are uniquely mapped or not, both read quality 

and concordancy can be checked using sam tools, flags are shown here,  

i. -f2 for concordancy 

ii. -q30 for read quality 

Difference between BOWTIE AND BOWTIE 2 

The chief differences between Bowtie 1 and Bowtie 2 are:  
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• For reads longer than about 50 bp Bowtie 2 is generally faster, more 

sensitive, and uses less memory.  

• For relatively short reads, less than 50 bp Bowtie 1 is sometimes faster 

and/or more sensitive. 

BWA (Burrows-Wheeler Algorithm) 

BWA is a software package for mapping low-divergent sequences based on a 

Burrows-Wheeler index against a large reference genome, such as the human 

genome. It consists of three algorithms:  

i. BWA-backtrack 

ii. BWA-SW 

iii. BWA-MEM 

The first algorithm is designed for Illumina sequence reads up to 100bp, while the 

rest two for longer sequences ranged from 70bp to 1Mbp.  

BWA-MEM and BWA-SW share similar features such as long-read support and 

split alignment 

BWA-MEM, which is the latest, is generally recommended for high-quality 

queries as it is faster and more accurate. 

Few BWA parameter 

• Command mem works for both single end and paired end reads 

• Parameters for long visits are  

i. -t : for number of threads we require 

ii. -k : minimum seed length (will not match shorter than this length) 

iii. -w : band width (longer than this number will not be found) 

iv. -T : threshold (regulates BWA that not to generate output lower than the 

given threshold ) 
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Read Mapping 

 

After mapping 

• There are several output formats for map files, such as SAM, BAM, 

CRAM and tagAlign. 

• While the BAM format is the most widely used so far, the more space-

Efficient.  

• After alignment, reads mapped to the same genomic positions are filtered 

as redundant reads, and the remaining non-redundant reads are used for 

analysis. 

Peak calling 

• The computational analysis is heavily dependent on the detection of 

“peaks”, regions of the genome where multiple reads align that are 

indicative of protein binding. 

• It is a method used to identify areas in a genome that have been enriched 

with aligned reads, areas where a protein interacts with DNA. 

• numerous peak-calling tools were recently developed for review. 

However, no tool can achieve 100% accuracy.  
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• ChIP-seq peaks do not have strand information, it can be estimated from 

the gene information when focusing on the histone marks that are enriched 

around TSS (transcription start site). 

Peak calling software’s 

 

MACS2 (Model-based Analysis of ChIP-Seq) 

• Most widely used peak caller 

• Identifies genome-wide locations of TF binding, histone modification 

from ChIP-seq. 

• Can be used without a control 

• Controls eliminate bias due to GC content, mappability or DNA repeats.  

• Can call narrow and broad peaks.  

• Many settings for optimizing results. 

• It uses a method called standard cross correlation, it looks for the regions 

where fragments are clustered in the genome more than the input 

fragments are in the same region.  

• MACS also uses a dynamic Poisson distribution to effectively capture 

local biases in the genome. 

• Results is given out in BedGraph format or WIG format 
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Peak calling in MACS2 

STEP 1: Estimate fragment length d and adjust read position  

STEP 2: Identify local noise 

STEP 3: Identify enriched (peak) regions 

STEP 4: Estimate FDR (FDR= negative read/positive reads) 
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Data Statistical Considerations In Analysis Of Rare Variants: 

 

What is Statistics? 

It is the science of learning from data.  

● Statistical knowledge helps you use the proper methods to collect the data, 

employ the correct analyses, and effectively present the results.  

● Helps in making decisions based on data and makes predictions.  

● Statistics allows you to understand a subject much more deeply 

In short: 

•Producing reliable data. 

•Analyzing the data appropriately. 

•Drawing reasonable conclusions. 

What are Rare variants? 

•A rare functional variant is a genetic variant which alters gene function, and 

which occurs at low frequency in a population. Rare variants may play a 

significant role in complex disease, as well as some Mendelian conditions. 



Applications of NGS 

17 
 

•Rare variants are alternative forms of a gene that are present with a minor allele 

frequency (MAF) of less than 1%. (MAF-minor allele frequency) 

CaseStudy: 

https://www.frontiersin.org/articles/10.3389/fgene.2019.00434/full- 

 

 

 

Introduction and Background: 

 

•Autism spectrum disorder (ASD) is genetically and phenotypically 

heterogeneous. Former genetic studies suggested that both common and rare 

genetic variants play a role in etiology. In this study, they aimed to analyze rare 

variants detected by next generation sequencing (NGS) in an autism cohort from 

Hungary. 

•Autism spectrum disorder (ASD) is a neurological and developmental disorder 

that begins early in childhood and lasts throughout a person's life. It affects how a 

person acts and interacts with others, communicates, and learns. 

•ASD has an estimated heritability of 64–91% , suggesting a strong genetic effect, 

but the genetic background is highly heterogeneous . 

•Common risk variants and rare variants both play a role and mutation types range 

from single nucleotide variants to large chromosomal aberrations, as well as 

variations in regulatory DNA elements 

Patients: 

https://www.frontiersin.org/articles/10.3389/fgene.2019.00434/full
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● Patients Autism spectrum disorder patients were recruited from the 

Vadaskert Child and Adolescent Psychiatry Hospital and Outpatient 

Clinic. 

● Detailed clinical examinations consisting of a general medical 

examination and neurological assessment  were performed. 

● A diagnosis of ASD was made by a qualified psychologist  using the ADI-

R (Autism Diagnostic Interview-Revised) and ADOS (Autism Diagnostic 

Observation Schedule). 

Materials and Methods: 

1. Genetic analysis 

•DNA was isolated from peripheral blood samples from all participants using the 

QIAamp DNA blood kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions 

 

•QIAamp DNA blood kit -For DNA purification from whole blood, plasma, 

serum, buffy coat, lymphocytes, dried blood spot, body fluids, cultured cells, 

swabs, and tissue. 

•The 101 ASD-associated genes were investigated with NGS, which was 

performed on a MiSeq (Illumina, San Diego, CA, United States) using the 

TruSight Autism Rapid Capture Kit (Illumina, San Diego, CA, United States) and 

the SureSelect QXT Kit (Agilent Technologies, Santa Clara, CA, United States) 

according to the manufacturer’s instructions. 

 

2.Bioinformatical and Statistical analysis: 

 

 1. Raw sequences were filtered with Picard tools and quality filtered reads were 

aligned to the hg19 reference genome with BWA-mem using default parameters 

. 

 2. Variant calling was performed using GATK HaplotypeCaller (version 3.3-0) 
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 3. Variant quality was assessed by GATK, and only variants, which were flagged 

as PASS (Read depth >10, Mapping quality >40, quality by depth >2) were 

analyzed. 

 

 4. To filter potentially causal single-gene Mendelian variations on a case-by-case 

level, we used the VariantAnalyzer software developed at the Budapest 

University of Technology and Economics. This software application annotates 

SNPs and short INDELs with several types of annotations 

 

 5. Finally, mutations were prioritized based on their predicted effects. Exonic 

frameshifts, stop mutations and canonical splice site variants were considered 

damaging, whereas the effects of missense mutations were predicted using 

multiple prediction tools: SIFT ,Polyphen2 , CADD , Radial SVM. 

 

Statistical Considerations Used In Analysis: 

 

 For the analysis of rare variants in a multifactorial hypothesis framework on a 

cohort level, the following methods were used: 

 1. We tested whether the total number of detected rare missense or loss of 

function (stop, canonical splice site, and frameshift) variants in a given gene is 

greater than expected, with the method described by Rao and Nelson (2018). We 

filtered rare variants, with a MAF cut-off of 5% in the 1000 Genome European 

dataset, and in our internal exome database of 200 patients. 

 .P-value was calculated with the associated software: SORVA3 . 

       

1. The level of statistical significance is often expressed as a p-value between 

0 and 1. The smaller the p-value, the stronger the evidence that you should 

reject the null hypothesis. A p-value less than 0.05 (typically ≤ 0.05) is 

statistically significant. 
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 2. For the calculation of rare variant burden, genes were normalized according to 

genetic intolerance to mutation. 

  They used the inverse RVIS percentile [1–(RVIS percentile÷100)] to give a 

weight to every gene . 

 -http://genic-intolerance.org/ 

●  Residual Variation Intolerance Score (RVIS). An RVIS < 0 means that a 

gene has fewer common functional mutations that expected; an RVIS > 0 

indicates that a given gene has a comparatively high frequency of 

mutations that affect function. 

● Linear regression was used then to test for correlation between rare variant 

burden and autism severity, and rare variant burden vs. minor 

malformation burden. 

 

Linear regression: 

 

         Linear regression attempts to model the relationship between two 

variables by fitting a linear equation to observed data. One variable is considered 

to be an explanatory variable, and the other is considered to be a dependent 

variable. 

 

http://genic-intolerance.org/
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●  For comparison of rare variant burden in males versus females, and the 

number of minor malformations in syndromic versus non-syndromic cases 

two-tailed T-test was used. 

 

 Two tailed t tests: 

 

 In statistics, a two-tailed test is a method in which the critical area of a 

distribution is two-sided and tests whether a sample is greater than or less than a 
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certain range of values. It is used in null-hypothesis testing and testing for 

statistical significance. 

 

Eg for t test: 

 

 

If the p value is less than 0.05 or alpha value, we can reject the null hypothesis 

and take the alternative hypothesis 

 

 3. For the analysis of rare variant association with potential autism 

subphenotypes they assessed, whether such subphenotypes can be created based 

solely on the clinical data. They have used  clinical questionnaire containing 149 

questions about family history, concomitant diseases, drugs, physical examination 



Applications of NGS 

23 
 

(neurologic and screening of minor malformations), and psychological status for 

cluster analysis. 

●  Cluster analysis or clustering is the task of grouping a set of objects in 

such a way that objects in the same group (called a cluster) are more 

similar (in some sense) to each other than to those in other groups 

(clusters). 

●  It is also called as subjective segmentation 

 

Eg for cluster analysis: 
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●  For the phenotypic cluster analysis, given our sample size and the low 

expected number of clusters, we utilized  two kernel-based methods, 

namely kernel PCA and spectral clustering. 

●   kernel methods are a class of algorithms for pattern analysis, whose best 

known member is the support vector machine. The general task of pattern 

analysis is to find and study general types of relations in datasets. 

  

●  Kernel methods have the additional benefit of being non-linear, i.e., able 

to identify non-linear combinations of clinical variables as relevant 

features. Any linear model can be turned into a non-linear model by 

applying the kernel trick to the model 
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Result of the phenotypic cluster analysis. The three-dimensional figure (A) shows 

the result of kernel PCA with the identified phenotypic clusters. The histogram 

(B) represents the relative frequency of the 10 most common features in the given 

clusters. 

● To assess the correlation between the subphenotypes and genetics, we 

investigated whether detected rare variants of a candidate gene occur more 

frequently in either of the resulting clusters using ANOVA and pairwise 

T-tests 
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 Anova- Analysis of Variance: 

●  ANOVA test is a way to find out if survey or experiment results are 

significant. In other words, they help you to figure out if you need to reject 

the null hypothesis or accept the alternate hypothesis. 

●  Basically, you’re testing groups to see if there’s a difference between 

them.  

● Examples of when you might want to test different groups: 

 

•A group of psychiatric patients are trying three different therapies: counseling, 

medication and biofeedback. You want to see if one therapy is better than the 

others. 

•Students from different colleges take the same exam. You want to see if one 

college outperforms the other. 

 

● If there is more than one categorical we use anova,  if one categorical 

and one numerical we can use t tests. 
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Figure 1. Total number of minor malformations, and the percentage of different 

minor malformations in the cohort. The Figure represents the total number of 

minor malformations/given individuals as a histogram (A), and the prevalence of 

different minor malformations, as a percentage of the total cohort (N = 174) (B). 

 

Results and conclusion: 

 Results:  

We have diagnosed 13 molecularly proven syndromic autism cases. Strongest 

indicators of syndromic autism were intellectual disability, epilepsy or other 

neurological plus symptoms. Rare variant analysis on a cohort level confirmed the 

association of five genes with autism (AUTS2, NHS, NSD1, SLC9A9, and 

VPS13). We found no correlation between rare variant burden and number of 

minor malformation or autism severity. We identified four phenotypic clusters, 

but no specific gene was enriched in a given cluster. 

Conclusion:  
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Our study indicates that NGS panel gene sequencing can be useful, where the 

clinical picture suggests a clinically defined syndromic autism. In this group, 

targeted panel sequencing may provide reasonable diagnostic yield. Unselected 

NGS panel screening in the clinic remains controversial, because of uncertain 

utility, and difficulties of the variant interpretation. However, the detected rare 

variants may still significantly influence autism risk and subphenotypes in a 

polygenic model, but to detect the effects of these variants larger cohorts are 

needed.  

 

WHAT IS GWAS? 

GENOME-WIDE ASSOCIATION STUDY (GWAS) IS AN APPROACH USED IN GENETICS 

RESEARCH TO ASSOCIATE SPECIFIC GENETIC VARIATIONS WITH PARTICULAR 

DISEASES.  

THIS METHOD INVOLVES SCANNING THE GENOMES FROM MANY DIFFERENT PEOPLE 

AND LOOKING FOR GENETIC MARKERS THAT CAN BE USED TO PREDICT THE 

PRESENCE OF A DISEASE. 

ONCE SUCH GENETIC MARKERS ARE IDENTIFIED, THEY CAN BE USED TO 

UNDERSTAND HOW GENES CONTRIBUTE TO THE DISEASE AND DEVELOP BETTER 

PREVENTION AND TREATMENT STRATEGIES. 

 

GENERAL WORK FLOW OF GWAS 
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FEW TOOLS FOR GWAS 

• GAPIT 

GAPIT (GENOME ASSOCIATION AND PREDICTION INTEGRATED TOOL) IS A TOOL FOR 

GWAS.THE GAPIT ALGORITHM USES THE MIXED LINEAR MODEL (MLM) 

• GWAS CATALOG 

IS A CATALOG OF PUBLICLY AVAILABLE, MANUALLY CURATED, AND PUBLISHED 

GENOME-WIDE ASSOCIATION STUDY (GWAS) DATA, CONTAINING OVER 100K 

SINGLE-NUCLEOTIDE POLYMORPHISMS (SNPS) AND TRAIT ASSOCIATIONS. 

• GARFIELD 

GARFIELD IS AN R TOOL THAT USES GENOME-WIDE ASSOCIATION STUDY (GWAS) 

DATA TOGETHER WITH ANNOTATIONS TO FIND APPROPRIATE PHENOTYPES. 

ADVANTAGE AND DISADVANTAGE OF GWAS 

https://bioinformaticshome.com/tools/gwas/descriptions/GAPIT.html
https://bioinformaticshome.com/tools/gwas/descriptions/GWAScatalog.html
https://bioinformaticshome.com/tools/gwas/descriptions/GWAScatalog.html
https://bioinformaticshome.com/tools/gwas/descriptions/garfield.html
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ADVANTAGE    

• HAS LESS FALSE POSITIVE RATE  

• DISEASE PREDICATION 

• DISCOVERY OF NOVEL GENES 

DISADVANTAGE 

GWAS HAVE MANY LIMITATIONS, SUCH AS THEIR INABILITY TO FULLY EXPLAIN 

THE GENETIC/FAMILIAL RISK OF COMMON DISEASES; THE INABILITY TO ASSESS 

RARE GENETIC VARIANTS; THE SMALL EFFECT SIZES OF MOST ASSOCIATIONS; 

THE DIFFICULTY IN FIGURING OUT TRUE CAUSAL ASSOCIATIONS; AND THE POOR 

ABILITY OF FINDINGS TO PREDICT DISEASE RISK. 

IN THIS REGARD, WE REVIEW BASIC CONCEPTS REGARDING GWAS, THE 

TECHNOLOGIES USED FOR CAPTURING GENETIC VARIATION, THE MISSING 

HERITABILITY PROBLEM, THE NEED FOR EFFICIENT STUDY DESIGN ESPECIALLY 

FOR REPLICATION EFFORTS, REDUCING THE BIAS INTRODUCED INTO A DATASET, 

AND HOW TO UTILIZE NEW RESOURCES AVAILABLE, WE ALSO LOOK TO WHAT 

LIES AHEAD FOR THE FIELD, AND THE APPROACHES THAT CAN BE TAKEN TO 

REALIZE THE FULL POTENTIAL OF GWAS. TO OVERCOME THESE LIMITATIONS WE 

USE A TECHNOLOGY CALLED NGS-GWAS TECHNOLOGY. 

GWAS-NGS TECHNOLOGY 

GENOME-WIDE ASSOCIATION STUDIES (GWASS) HAVE BEEN PLAYING AN 

IMPORTANT ROLE ON HUMAN COMPLEX DISEASES. GENERALLY SPEAKING, 

GWAS TRIES TO DETECT THE RELATIONSHIP BETWEEN GENOME-WIDE GENETIC 

VARIANTS AND MEASURABLE TRAITS IN THE POPULATION LEVEL. ALTHOUGH 

FRUITFUL, GWASS STILL EXIST SOME PROBLEMS, FOR EXAMPLE, THE SO-CALLED 

MISSING HERITABILITY--SIGNIFICANTLY ASSOCIATED SNPS CAN ONLY EXPLAIN A 

SMALL PART OF PHENOTYPIC VARIATION. OTHER PROBLEMS INCLUDE THAT, IN 

SOME TRAITS, SIGNIFICANTLY ASSOCIATED SNPS IN ONE STUDY ARE HARD TO BE 

REPEATED BY OTHER STUDIES; AND THAT THE FUNCTIONS OF SIGNIFICANTLY 

ASSOCIATED SNPS ARE OFTEN DIFFICULT TO INTERPRET. HIGH-THROUGHPUT 

SEQUENCING, ALSO KNOWN AS NEXT-GENERATION SEQUENCING (NGS), COULD 

BE ONE OF THE MOST PROMISING TECHNOLOGIES TO SOLVE THOSE PROBLEMS BY 

QUICKLY PRODUCING ACCURATE VARIATIONS IN A HIGH-THROUGHPUT WAY. 

NGS-BASED GWASS (NGS-GWAS), TO SOME EXTENT, PROVIDE A BETTER 

SOLUTION COMPARED WITH TRADITIONAL GWASS. WE SYSTEMATICALLY 

REVIEW THE STRATEGIES AND METHODS FOR NGS-GWASS, PICK OUT THE MOST 
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FEASIBLE AND EFFICIENT STRATEGIES AND METHODS FOR NGS-GWASS, AND 

DISCUSS THEIR APPLICATIONS IN PERSONALIZED MEDICINE. 

 

CASE STUDY ON THE IMPACT OF GWAS-NGS METHOD ON CARDIOVASCULAR 

DISEASE RESEARCH 

ABSTRACT 

IN RECENT YEARS, HUNDREDS OF GENE LOCI ASSOCIATED WITH MULTIPLE 

CARDIOVASCULAR PATHOLOGIES AND TRAITS HAVE BEEN IDENTIFIED THROUGH 

GWAS-NGS TECHNOLOGY. 

THIS SUMMARIZES THE MAIN STRATEGIES OF CV RESEARCH WITH NGS AND 

GWAS AT THE LEVEL OF GENOMICS, TRANSCRIPTOMICS, EPIGENETICS, AND 

PROTEOMICS(HOWEVER, BECAUSE OF THE COMPLEXITY OF CVDS, IT IS 

INSUFFICIENT TO FOCUS ON THE DNA LEVEL ALONE). 

 

INTRODUCTION 

• CARDIOVASCULAR DISEASE (CVD) IS A CLASS OF COMPLEX PATHOLOGIES OF 

THE HEART AND BLOOD VESSELS, INCLUDING CORONARY ARTERY DISEASE 

(HEART ATTACK), CEREBROVASCULAR DISEASE (STROKE), ELEVATED BLOOD 

PRESSURE (HYPERTENSION), PERIPHERAL ARTERY DISEASE, RHEUMATIC 

HEART DISEASE, CONGENITAL HEART DISEASE AND HEART FAILURE.  
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• IT'S USUALLY ASSOCIATED WITH A BUILD-UP OF FATTY DEPOSITS INSIDE THE 

ARTERIES (ATHEROSCLEROSIS) AND AN INCREASED RISK OF BLOOD CLOTS. 

RISK FACTORS: OBESITY; TOBACCO SMOKING; HYPERTENSION. 

• SEQUENCING OF THE ENTIRE HUMAN GENOME HAS EXPONENTIALLY 

EXPANDED THE UNDERSTANDING OF GENETIC CONTRIBUTIONS TO 

CARDIOVASCULAR DISEASE. HOWEVER, THESE RESEARCH HAS 

DEMONSTRATED THAT STATIC VARIATIONS OF DNA SEQUENCE CAN EXPLAIN 

ONLY A FRACTION OF THE INHERITED PHENOTYPE AND THIS REQUIRED 

SEQUENCING AND PROCESSING OF TREMENDOUS AMOUNT OF DATA. THESE 

DATA SUGGEST THAT ADDITIONAL EPIGENETIC AND GENE EXPRESSION 

MECHANISMS ARE NECESSARY TO EXPLAIN THE EXPRESSION OF CV DISEASE 

IN BOTH EXPERIMENTAL AND CLINICAL SETTINGS 

• THIS HAS BECOME POSSIBLE WITH HIGH-THROUGHPUT TECHNOLOGIES, LIKE 

NGS. FOR EXAMPLE, EXOME-CAPTURE AND WHOLE-GENOME SEQUENCING 

COULD IDENTIFY RARE AND NOVEL GENETIC VARIANTS ASSOCIATED WITH 

CVDS.  

• EVENTUALLY, A COMPREHENSIVE APPROACH LIKE GWAS-NGS WILL BE 

NEEDED TO INTEGRATE THE ACCUMULATED MULTILEVEL DATA. 

NGS-GWAS STRATEGY TO IDENTIFY SUSCEPTIBILITY/CAUSATIVE GENES 

• THE WIDE APPLICATION OF GWAS HAS LED TO AN ENORMOUS BOOST IN THE 

DISCOVERY OF SUSCEPTIBILITY GENES FOR CVDS. MULTIPLE NOVEL GENETIC 

LOCI HAVE BEEN IDENTIFIED IN COMMON CARDIOVASCULAR CONDITIONS, 

INCLUDING MYOCARDIAL INFARCTION, HYPERTENSION, HEART FAILURE, 

STROKE AND HYPERLIPIDEMIA. UP TO NOW, 26 RISK LOCI HAVE BEEN 

IDENTIFIED BY GWAS TO BE ASSOCIATED WITH CORONARY ARTERY 

DISEASES.  HOWEVER, ONLY A SMALL FRACTION OF THE HERITABLE RISK 

FOR CVDS CAN BE EXPLAINED BY THE VARIANTS IDENTIFIED BY CURRENT 

GWAS. 

• GWAS IS BASED ON THE COMMON DISEASE-COMMON VARIANT HYPOTHESIS, 

AND COULD PROVIDE INFORMATION ON HOW COMMON GENETIC 

VARIABILITY CONFERS RISK FOR THE COMMON DISEASES WHILE NGS COULD 

PINPOINT NOVEL GENES THAT CONTAIN MUTATIONS UNDERLYING THE 

PHENOTYPE. 
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• THE STRATEGY OF NGS-GWAS COMBINES NEXT-GENERATION SEQUENCING 

AND GENOTYPING TO UNCOVER NOVEL CAUSATIVE GENETIC VARIANTS OF 

COMPLEX DISEASES. COMPARED WITH TRADITIONAL GWAS, IT CAN PROVIDE 

MORE DETAILED INFORMATION, INCLUDING NOT ONLY COMMON SNPS, BUT 

ALSO RARE VARIANTS. 

• THE IDENTIFIED SUSCEPTIBILITY LOCI WILL BE VERIFIED IN MOLECULAR 

AND PHYSIOLOGICAL STUDIES TO DETERMINE THE MECHANISMS THROUGH 

WHICH THESE LOCI CONFER SUSCEPTIBILITY 

 

COMBINING CHIP-BASED GWAS AND RNA SEQUENCING TO IDENTIFY DISEASE-

RELATED GENES 
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CONCLUSION 

CONSIDERABLE PROGRESS HAS BEEN MADE IN THE FIELD OF GENOME RESEARCH 

RELATED TO CVD AND HUNDREDS OF LOCI ASSOCIATED WITH CARDIOVASCULAR 

PATHOLOGIES HAVE BEEN IDENTIFIED. 

GWAS IS BASED ON THE COMMON DISEASE-COMMON VARIANT HYPOTHESIS, AND 

COULD PROVIDE INFORMATION ON HOW COMMON GENETIC VARIABILITY 

CONFERS RISK FOR THE COMMON DISEASES WHILE NGS COULD PINPOINT NOVEL 

GENES THAT CONTAIN MUTATIONS UNDERLYING THE PHENOTYPE. 

THE INTEGRATION OF MULTI-OMICS DATA WILL ENABLE CLEARER 

UNDERSTANDING OF DISEASE-ASSOCIATED LOCI. 

HENCE, WITH THE NGS-GWAS STRATEGY 100’S LOCI ASSOCIATED WITH CV WERE 

IDENTIFIED EFFICIENTLY. 
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Chip sequencing Data Analysis 

 

• The ChIP-seq combines chromatin immunoprecipitation (ChIP) with 
massively parallel DNA sequencing to identify the binding sites of 
DNA-associated proteins.   

• It can be used to map global binding sites precisely for any protein of 
interest. Previously, Chip-on-chip was the most common technique 
utilized to study these protein–DNA relations  

Steps Involved in the Data Analysis  

1. Mapping the reads back to reference genome  

2. Background Estimation  

3. Peak calling 

 4. Peak annotation  

5. Denovo motif Analysis  

  

 

 

1. Mapping the reads back to reference genome  

 

1) From the Immuno precipitant DNA fragments, the reads covering those 
fragments are obtained as shown by mapping them to the reference 

genome(Blue).  
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2) In this step our goal is to identify, for each short read in the dataset, all the 
locations in a reference genome that show perfect or near perfect matches to 
the read.  

3) Likewise we also get the background datasets or the other DNA present in 
the genome or Noise which are to be cleared in the further steps.  

  

2. Background Estimation  

 

1) In any ChIP-seq datasets, a considerable fraction of the reads may not 
have originated from these ChIP fragments (Black) .  

2) For example the antibody might target proteins other than the one 
studied, therefore capturing nonspecific fragments.  Other factors that 
may induce such extraneous reads include library contamination, PCR 
amplification selection, linker/adapter contamination, and image 
processing errors.   

3) We call a read a true signal read if it falls into the called peak regions 

Otherwise, we call it a background read .  
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3. Peak Calling  

 

1)The most critical task in the ChIP-seq data analysis pipeline. This is to identify 
the ChIP signal enriched genomic regions. In other words, where did the TF 

bind?  

2) Plotting this to find out the how many reads are covering each genomic 
position, we find the peaks in the curve where the coverage is higher than other 
places in the background.  

3) These peaks correspond to the position of the IP fragments. This crucial 
step in the data analysis is called as the “peak calling”.  

                  

 4. Peak Annotation  

1) After we obtain a list of peak coordinates, it is important to study the 

biological implications of the protein–DNA bindings.  

2) The number of peaks annotates the quality of the Chip sequencing 

process.  

  Good – More peaks.  

  Bad – Less peaks and forms blocks in case of complete failure.    

3) The peak calling identifies the binding sites of the proteins of interest.  

4) We can identify what genes are near those peaks that are potentially 

effected by the protein of interest. And this process is called as “Peak 

Annotation”.  
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5. Denovo motif Analysis  

 

1. Another important task in the analysis of the predicted peak regions is de novo motif 
discovery. In some studies, the exact sequence to which the TF binds is known, or 
even better, a set of validated binding sites is available. However, if this information is 
not available, we will need to recover the binding motifs from the peak sequences as 
well as from their orthologous sequences.  

2. Show above is a software called TOMTOM where a specific motif can be given as 
input in a text format and it matches the motifs to the selected databases and gives out 
the similar motif results.  

3. Motif occupancy and enrichment in peak regions and motif conservation scores offer 
additional means for assessments.  

An Overview  
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Metagenomics 

Metagenomics is the study of metagenome, genetics material, recovered directly from 

environmental sample such as soil, water , organisms,etc.The term metagenomics first used by Jo 

Handelsman, Jon Clarly, Robert M. Goodman and first appeared in publication in 1998. 

Metagenomics is based on the genomics analysis of microbial DNA directly from the 

communities present in samples.Metagenomics can unlock the massive uncultured microbial 

diversity present in the environment for new molecule for therapeutic and biotechnological 

application. 

The science of metagenomics, only a few years old, will make it possible to investigate microbes 

in their natural environments, the complex communities in which they normally live. 

Metagenomics defined as “the genomics analysis of microorganism by direct extraction and 

cloning DNA from a collection of microorganism.”Metagenomics technology – genomics on a 

large scale will probably lead to great advances in medicine, agriculture, energy production and 

bioremediation. 

HISTORICAL EVENTS IN METAGENOMICS 

 In 1985 Pace and coworker introduced the idea a cloning DNA directly from 

environmental samples.  

 In 1991 Schmidt and coworker cloning of DNA from Picoplankton in a phase vector 

subsequent 16S rRNA gene sequence analyses. 

 In 1995, Healy reported first successful function driven metagenomics library was 

screened and termed that Zoolibraies.  

 In 2002, Mya Breitbart and Forest Rohwer, used shotgun sequencing to show that 200 

liters of seawater contain over 5000 different viruses. 

Why metagenomics?? 

Science of metagenomics make it possible to investigate resource for the development of novel 

genes, enzymes and chemical compounds for use in biotechnology.Microbes, as communities, 

are key players in maintaining environmental stability.  

Investigate microbes in their natural environment, the complex communities in which they 

normally live in.  

High-throughput gene-level studies of communities. 
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Steps in Metagenomics 

 

Sampling and Processing 

Sample processing is the first and most crucial step in metagenomics. 

DNA extracted should be representative of all cells present in the sample and sufficient amounts 

of high quality nucleic acids must be obtained for subsequent library production and sequencing.  

Sample fractionation steps should be checked to ensure that sufficient enrichment of the target is 

achieved and that minimal contamination of non-target material occurs. 
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Physical separation and isolation of cells from the samples might also be important to maximize 

DNA yield or avoid co-extraction of enzymatic inhibitors that might interfere with subsequent 

processing.  

Some type of sample such as biopsies or ground water often yield very small amounts of DNA 

but in library production for most sequencing technologies require high amounts of DNA (ng or 

µg ), and hence amplification of starting material might be required. 

Multiple displacement amplification (MDA) using random hexamers and phage phi29 

polymerase is one option employed to increase DNA yields, this method has been widely used in 

single-cell genomics and to a certain extent in metagenomics. 

Types of metagenomics 

There are two basic types of Metagenomics studies  

       I. Sequence-based Metagenomics - involves sequencing and analysis of DNA from 

environmental samples. 

      II. Function-based Metagenomics - involves screening for a particular function or activity. 

Sequence-based metagenomics studies can be used to assemble genomes, identify genes, find 

complete metabolic pathways, and compare organisms of different communities 

Sequence-based metagenomics can also be used to establish the degree of diversity and the 

number of different bacterial species existing in a particular sample. 

Functional metagenomics involves isolating DNA from microbial communities to study 

the functions of encoded proteins. It involves cloning DNA fragments, expressing genes in a 

surrogate host, and screening for enzymatic activities. 

DNA SEQUENCING 

DNA sequencing is one of the most important platforms for the study of biological systems 

today.  

A. Next generation DNA sequencing 

I. 454 life sciences or pyrosequencing 

II. Solexa/Illumina  

III. Sequencing by ligation (SOLiD technology)  

IV. Ion Torrent 

Pyrosequencing 

 Pyrosequencing is based on the sequencing-by-synthesis principle 

 Pyrosequencing has the potential advantages of accuracy, flexibility, parallel processing, 

and can be easily automated. 
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 Pyrosequencing is a method of DNA sequencing (determining the order of nucleotides in 

DNA), in which the sequencing is performed by detecting the nucleotide incorporated by 

a DNA polymerase. 

Illumina/Solex 

 Immobilizes random DNA fragments on a surface and then performs solid-surface PCR 

amplification, resulting in clusters of identical DNA fragments. 

 Some of the datasets will show the bad errors at the tail ends of reads , we can remove the 

errors by clipping the reads by using aligners. 

 Important factor to consider is run time. 

SOLiD technology 

 Extensively used, for example, in genome resequencing. 

 SOLiD advantage is it provides lowest error rate of any current NGS sequencing 

technology, however it does not achieve reliable read length beyond 50 nucleotides.   

 This will limit its applicability for direct gene annotation of unassembled reads or for 

assembly of large contigs.   

Ion Torrent 

 Ion Personal Genome Machine (PGM) based on the principle that protons released during 

DNA polymerization can detect nucleotide incorporation. 

 This system promises read lengths of > 100 bp and throughput on the order of magnitude 

of the 454/Roche sequencing systems. 

ASSEMBLY 

Two strategies can be employed for metagenomics samples: reference-based assembly (co-

assembly) and de novo assembly. 

Reference-based assembly can be done with software packages such as Newbler (Roche), 

AMOS ,or MIRA. These software packages include algorithms that are fast and memory-

efficient. 

Reference-based assembly works well, if the metagenomic dataset contains sequences where 

closely related reference genomes are available. 

De novo assembly typically requires larger computational resources. Thus, a whole class of 

assembly tools based on the de Bruijn graphs was specifically created to handle very large 

amounts of data. 

Machine requirements for the de Bruijn assemblers Velvet or SOAP. 

BINNING 
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Binning is the process of grouping reads or contigs into individual genomes and assigning the 

group to specific species, subspecies or genus. 

More innovative binning approaches include co-abundance gene segregation across a series of 

metagenomic sample thus facilating the assembly of microbial genomes without the need for 

reference sequences. 

Important considerations for using any binning algorithm are the type of input data available and 

the existence of a suitable training dataset. 

Binning methods can be characterized in two different ways depending on information contained 

within a given DNA sequence. 

1.Composition based binning  

2. Similarity or homology based binning 

Composition based binning is based on the observation that individual genomes have a unique 

distribution of k-mer sequence is known as genomic signatures. 

Compositional based binning algorithms include phylopythia, successor phylopythiaS, S-GSOM, 

PCAHIER, TACAO, TETRA, ESOM and ClaMS. 

Similarity based binning refer to the process of using alignment algorithms such as BLAST or 

profile hidden markov models (pHMMs) to obtain similarity information about specific 

sequences/ genes from publically available databases. 

Similarity based binning algorithms include IMG/M, MG-RAST, MEGAN, CARMA, Sort-

ITEMS and Metaphyler. 

ANNOTATION 

Annotation is the process of assigning functional, positional, and species of-origin information to 

the genes in a database.  

Annotation of metagenome is specifically designed to work with mixtures of genomes and contig 

of varying length.  

Steps in Annotation 

a) Trimming of low quality reads 

b) Masking of low complexity reads-performed using tool such as DUST.  

c) De-replication step  

d) Screening  

Storage and sharing of data 

NCBI is mandated to store all metagenomic data, however, the sheer volume of data being 

generated means there is an urgent need for appropriate ways of storing vast amounts of 

sequences. 
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Tools such as IMG/MER, CAMERA, MGRAST, and EBI metagenomics (which also 

incorporates QIIME) provide an integrated environment for analysis, management, storage, and 

sharing of metagenome projects. 

A suite of standard languages for metadata is currently provided by the Minimum Information 

about any (x) Sequence checklists (MIxS) 

Applications of metagenomics 

Metagenomics can improve strategies for monitoring the impact of pollutants on ecosystems and 

for cleaning up contaminated environments.  

Recent progress in mining the rich genetic resource of nonculturable microbes has led to the 

discovery of new gene, enzymes and natural products. The impact of metagenomics is witnessed 

in the development of commodity and fine chemicals, agrochemicals and pharmaceuticals where 

the benefit of enzyme catalyzed chiral synthesis is increasingly recognized.  

Metagenomics libraries are, indeed, an essential tool for the discovery of new enzymatic 

activities, facilitating genetic tracking for all biotechnological applications of interest for the 

future.  

Metagenomics sequencing is being used to characterize the microbial communities.  

Functional metagenomics strategies are being used to explore the interactions between plants and 

microbes through cultivation-independent study of the microbial communities. 

 

Limitations 

 To much data.  

 Most gene are not identifiable  

 Contamination, chimeric clone sequences  

 Extraction problem   

 Requires proteomics or expression studies to demonstrate phenotypic characteristics  
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 Need a standard method for annotating genomes  

 Can only progress as library technology progresses, including sequencing technology.  

 Requires high throughput instrumentation not readily available to most institutions. 

Case study 

Encephalitis diagnosis using metagenomics: application of next generation sequencing for 

undiagnosed cases. 

Next generation sequencing (NGS) methods are powerful tools with the potential for 

comprehensive and unbiased detection of pathogens in clinical samples. 

The use of this new technology for the diagnosis of suspected infectious encephalitis, and discuss 

the feasibility for introduction of NGS methods as a frontline diagnostic test. 

The review identified 25 articles reporting 44 case reports of patients with suspected encephalitis 

for whom NGS was used as a diagnostic tool.  

Hundreds of pathogens have been associated with encephalitis, with the most frequently 

identified including Herpes simplex virus (HSV), Varicella zoster virus (VZV), enteroviruses, 

Measles morbillivirus, Mumps virus, Japanese encephalitis virus (JEV), influenza viruses, 

adenoviruses and Mycoplasma pneumoniae. 

The main alternative etiology to infection is immune mediated, for which management includes 

immune suppression.  

Diagnostics for encephalitis and the role of modern technologies 

A laboratory will perform targeted tests for a disease. These are largely confined to specific 

polymerase chain reaction (PCR) or serological assays.  

A method which has recently been applied to pathogen detection in cases of encephalitis is 

metagenomic analysis using next generation sequencing (NGS).  

NGS, also known as deep sequencing, generates a single sequence from each fragment of DNA, 

or cDNA, present in a specimen. Downstream analysis allows differentiation between the origin 

of sequence fragments, for instance human, a specific bacterial species or a particular virus. This 

means mixed specimens, that contain host and microbial sequences, can be resolved. 
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Once sequences are generated, complex downstream bioinformatic analysis is required to 

identify the presence of any pathogen sequences.  

In brief, any reads mapping to the human genome are removed, after which all remaining non-

human sequences are compared to a database of known sequences to identify the provenance of 

the unknown sequences. 
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Results 

Twenty-five articles were identified from the search. All the included articles were case reports, 

or case series of 1–7 patients. Altogether 44 cases were reported in which NGS provided a 

diagnosis. 

Of the 22 cases that reported immune status of the patient, 73% (16/22) were 

immunocompromised. There was uniformly poor reporting of encephalitis or 

meningoencephalitis case definitions, and limited explanation of diagnostic assays performed 

and algorithms used for testing.  

In 16 of the 44 known cases, causes of encephalitis were detected by rapid and specific primary 

screening methods such as PCR. Organisms included HSV, coxsackievirus A9, measles virus, 

VZV, mumps virus, Epstein-Barr virus, JC virus and Mycobacterium tuberculosis.  

In the remaining 28 cases novel (18/44), rare (5/44) or unexpected (5/44) organisms were 

detected which could not been detected using specific PCR assays. 

The five cases in which rare causes of encephalitis were identified were Brucella melitensis, 

Candida tropicalis, Leptospira santarosai and two cases of Balamuthia mandrillaris. 

Advantage of using NGS for the diagnosis of encephalitis is that, aside from pathogen 

identification, in instances where virus titre and read depth is high enough it is possible to 

generate partial or full genome sequences for the pathogen.  
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Temporal trends in the Publication of Encephalitis Cases involving Next-Generation Sequencing 

in the last Decade. 

 

 

 

 

 

 


