

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

ENGINEERING

UNIT - 1

PYTHON – SBI1605

INTRODUCTION TO PYTHON

2

 INTRODUCTION TO PYTHON

Program

A program performs a task in the computer. But, in order to be

executed, a program must be written in the machine language of the

processor of a computer. Unfortunately, it is extremely difficult for

humans to read or write a machine language program. This is because a

machine language is entirely made up of sequences of bits. However, high

level languages are close to natural languages like English and only use

familiar mathematical characters, operators and expressions. Hence,

people prefer to write programs in high level languages like C, C++, Java,

or Python. A high level program is translated into machine language by

translators like compiler or interpreter.

ABOUT PYTHON

Python is a high level programming language that is translated by

the python interpreter. As is known, an interpreter works by translating

line-by-line and executing. It was developed by Guido-van-rossum in

1990, at the National Research Institute for Mathematics and Computer

Science in Netherlands. Python doesn‟t refer to the snake but was named

after the famous British comedy troupe, Monty Python‟s Flying Circus.

The following are some of the features of Python:

 Python is an Open Source: It is freely downloadable,

3

from the link “http:// python.org/”

 Python is portable: It runs on different operating systems / platforms

 Python has automatic memory management

 Python is flexible with both procedural oriented and object

oriented programming

 Python is easy to learn, read and maintain

It is very flexible with the console program, Graphical User Interface

(GUI) applications, Web related programs etc.

POINTS TO REMEMBER WHILE WRITING A PYTHON

PROGRAM

 Case sensitive : Example - In case of print statement use

only lower case and not upper case, (See the snippet below)

 Punctuation is not required at end of the statement

 In case of string use single or double quotes i.e. „ ‟ or “ ”

 Must use proper indentation: The screen shots given below show,

how the value of “i” behaves with indentation and without

indentation.

4

 Fig 1.1 With and without Indentation

 Special characters like (,), # etc. are used

 () -> Used in opening and closing parameters of functions

 # -> The Pound sign is used to comment a line

TWO MODES OF PYTHON PROGRAM

Python Program can be executed in two different modes:

5

(i) Interactive Mode Programming

It is a command line shell which gives immediate output for each

statement, while keeping previously fed statements in active memory. This

mode is used when a user wishes to run one single line or small block of

code. It runs very quickly and gives instant output. A sample code is

executed using interactive mode as below.

Interactive mode can also be opened using the following ways:

i) From command prompt c :> users\\...>python

 Fig 1.2 Command Prompt

The symbol “>>>” in the above screen indicates that the Python

environment is in interactive mode.

ii) From the start menu select Python (As shown below)

Ø Interactive mode programming

Ø Script mode programming

6

Fig 1.3 Python in Start Menu

(ii) Script Mode Programming

When the programmer wishes to use more than one line of code or a

block of code, script mode is preferred. The Script mode works the

following way:

iii) Open the Script mode

iv) Type the complete program. Comment, edit if required.

v) Save the program with a valid name.

vi) Run

vii) Correct errors, if any, Save and Run until

proper output The above steps are described in detail

below:

i) To open script mode, select the menu “IDLE (Python 3.7

32-bit)” from start menu

7

Fig 1.4 IDLE in Start Menu

ii) After clicking on the menu “IDLE (Python 3.7 32-bit)” , a

new window with the text Python 3.7.3 shell will be opened

as shown below:

Fig 1.5 Python 3.7.3 Shell

iii) Select File New, to open editor. Type the complete

program.

iv) Select File again; Choose Save.

This will automatically save the file with an extension “.py”.

v) Select Run Run Module or Short Cut Key F5 (As shown

in the screen below)

8

Fig 1.6 Run Module

The output of the program will be displayed as below:

>> Sum of a and b is: 30

9

References:

1. Hetland., “Beginning Python”, Apress, 2008

2. Mark Pilgrim, “Drive Into Python”, Apress, 2004

3. Martin C. Brown, “ Python: The Complete Reference

(English)”, McGraw-Hill/Osborne Media, 2001.

4. Mark Summerfiled, “Programming in Python 3”, 2nd ed

(PIP3), Addison Wesley.

5. https://www.academia.edu/41039821/Python_Tutorial_Releas

e_3_7_0_Guido_van_Rossum_and_the_Python_development

_team

UNIT - 1

PART – A

1. Define statement. List its types.

2. Write the pseudo code to calculate the sum and product of two numbers

and display it.

3. Compare machine language, assembly language and high-level language.

4. What is meant by interpreter?

5. How will you invoke the python interpreter?

6. What is meant by interactive mode of the interpreter?

7. Write a snippet to display “Hello World” in python interpreter.

8. Define a variable and write down the rules for naming a variable.

9. Define keyword and enumerate some of the keywords in Python.

10. Define statement and what are its types?

11. What do you mean by an operand and an operator? Illustrate your answer

with relevant example.

12. Illustrate the use of * and + operators in string with example.

13. What is the symbol for comment? Give an example.

14. What is a local variable?

15. Explain the concept of floor division.

16. Write a math function to perform √2 / 2.

17. What are the different types of operators?

18. Explain modulus operator with example.

19. Explain relational operators.

20. Explain Logical operators

PART – B

1. Describe Arithmetic Operators, Assignment Operators, Comparison

Operators, Logical Operators and Bitwise Operators in detail with examples.

2. Explain the Identifiers, Keywords, Statements, Expressions, and Variables in

Python programming language with examples.

3. Explain the basic data types available in Python with examples.

4. Write Python Program to reverse a number and also find the Sum of digits

in the reversed number. Prompt the user for input.

5. Write Pythonic code to check if a given year is a leap year or not.

6. Write Python program to find the GCD of two positive numbers.

7. Write Python code to determine whether the given string is a Palindrome or

not using slicing.

8. Explain the use of join() and split() string methods with examples. Describe

why strings are immutable with an example.

9. Write Python program to count the total number of vowels, consonants and

blanks in a String.

10. Discuss the relation between tuples and lists, tuples and dictionaries in

detail.

11. Write Python program to swap two numbers without using

Intermediate/Temporary variables. Prompt the user for input.

12. Write a program that accepts a sentence and calculate the number of

digits, uppercase and lowercase letters.

13. Illustrate interpreter and interactive mode in python with example.

14. Explain the data types in python

15. Write short notes on types of operators in python with appropriate

example

16. Explain briefly constant, variables, expression, keywords and statements

available in python

17. What is String? How do u create a string in Python?

18. How to perform a user input in Python? Explain with example.

19. Write short note on following

I. Write a program to check whether entered string is palindrome or

not.

II. Illustrate a program to display different data types using variables

and literal constants.

III. Show how an input and output function is performed in python with

an example.

20. i)Discuss the difference between tuples and list

21. ii) Discuss the various operation that can be performed on a tuple and Lists

(minimum 5)with an example program.

22. i)What is membership and identity operators.

ii) Write a program to perform addition, subtraction, multiplication, integer

division, floor division and modulo division on two integer and float.

23. I) Define methods in a string with an example program using at least five

methods.

ii) How to access characters of a string?

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

ENGINEERING

UNIT - 2

PYTHON – SBI1605

VARIABLES AND DATA TYPES

2

VARIABLES AND DATA TYPES

VARIABLES

Variable is the name given to a reserved memory locations to store values.

It is also known as Identifier in python.

Need for variable:

Sometimes certain parameters will take different values at different time.

Hence, in order to know the current value of such parameter we need to

have a temporary memory which is identified by a name that name is called

as variable. For example, our surrounding temperature changes frequently.

In order to know the temperature at a particular time, we need to have a

variable.

Naming and Initialization of a variable

1. A variable name is made up of alphabets (Both upper and lower

cases) and digits

2. No reserved words

3. Initialize before calling

4. Multiple variables initialized

5. Dynamic variable initialization

3

i. Consist of upper and lower case alphabets, Numbers (0-9). E.g. X2

In the above example, a memory space is assigned to variable

X2. The value of X2 is stored in this space.

Fig 2.1 Memory space assigned to a variable

ii. Reserved words should not be used as variables names.

Fig 2.2 No Reserved words as variable names

In the above example “and” is a reserved word, which leads to Syntax

error

iii. Variables must be initialized before it called , else it reports “is not

defined ” error message as below E.g.: a = 5 print(a)

4

Fig 2.3 Name Error

In the above example “a” is called before it initialized. Hence, the python

interpreter generates the error message: NameError: „a‟ is not defined.

iv. Multiple variables can be initialized with a common value. E.g. : x = y

= z = 25

Fig 2.4 Multiple Variables

In the above three variables x, y, z is assigned with same value 25.

v. Python also supports dynamic variable initialization. E.g.: x, y, z = 1, 2, 3

5

Fig 2.5 Dynamic Variable Initialization

Proper spacing should be given

· print (10+20+30) bad style

· print (20 + 30 + 10) good style

Expression:

An expression is a combination of variables, operators, values and calls to

functions. Expressions need to be evaluated.

Need for Expression:

Suppose if you wish to calculate area. Area depends on various

parameters in different situations. E.g. Circle, Rectangle and so on…

Fig 2.6 Need for Expression

In order to find area of circle, the expression π * r * r must be evaluated and for

the rectangle the expression is w * l in case of rectangle. Hence, in this case a

variable / value / operator are not enough to handle such situation. So

expressions are used. Expression is the combination of variables, values and

operations.

A simple example of an expression is 10 + 15. An expression can be broken

down into operators and operands. Few valid examples are given below.

Fig 2.7 Example of and Expression

Invalid Expression:

Always values should be assigned in the right hand side of the variable, but in

the below example, the value is given in the left hand side of the variable, which

is an invalid syntax for expression.

Fig 2.8 Invalid Expression

DATA TYPES

A Data type indicates which type of value a variable has in a program. However

a python variables can store data of any data type but it is necessary to identify

the different types of data they contain to avoid errors during execution of

program. The most common data types used in python are str(string),

int(integer) and float (floating-point).

Strings: Sequence of characters inside single quotes or double quotes.

E.g. myuniv = “Sathyabama !..”

Integers: Whole number values such as 50, 100,-3

Float: Values that use decimal point and therefore may have fractional point

E.g.: 3.415, -5.15

By default when a user gives input it will be stored as string. But strings cannot

be used for performing arithmetic operations. For example while attempting to

perform arithmetic operation add on string values it just concatenates (joins

together) the values together rather performing addition. For example : „25‟ +

„20‟ = „45‟ (As in the below Example)

Fig 2.9 Arithmetic operation without casting

Fortunately python have an option of converting one date type into another data

type (Called as “Casting”) using build in functions in python. The build function

int() converts the string into integer before performing operation to give the

right answer. (As in the below Program)

Fig 2.10 Arithmetic operation with casting

Compound Data Types in Python:

i) List

The List is an ordered sequence of data items . It is one of the flexible and very

frequently used data type in Python. All the items in a list are not necessary to

be of the same data type.

Declaring a list is straight forward methods. Items in the list are just separated by

commas and enclosed within brackets [].

Methods used in list

Table 2.1 List Method

list1.append(x) To add item x to the end of the list “list1”

list1.reverse() Reverse the order of the element in the list “list1”

list1.sort() To sort elements in the list

list1.reverse() To reverse the order of the elements in list1.

ii) Tuple

Tuple is also an ordered sequence of items of different data types like list. But,

in a list data can be modified even after creation of the list whereas Tuples are

>>> list1 = [3.141, 100, ‘CSE’, ‘ECE’, ‘IT’, ‘EEE’]

immutable and cannot be modified after creation.

The advantages of tuples is to write-protect data and are usually very fast when

compared to lists as a tuple cannot be changed dynamically.

The elements of the tuples are separated by commas and are enclosed inside

open and closed brackets.

Table : 2.2 List Vs Tuple

List Tupl

e

>>> list1[12,45,27] >>> t1 = (12,45,27)

>>> list1[1] = 55 >>> t1[1] = 55

>>> print(list1)

>>> [12,55,27]

>>> Generates Error

 Message # Because Tuples

are immutable

iii) Set

The Set is an unordered collection of unique data items. Items in a set are not

ordered, separated by comma and enclosed inside { } braces. Sets are helpful in

performing operations like union and intersection. However, indexing is not

done because sets are unordered.

>>> t = (50,'python', 2+3j)

Table : 2.3 List Vs Set

List Set

>>> L1 = [1,20,25] >>> S1= {1,20,25,25}

>>> print(L1[1]) >>> print(S1)

>>> 20 >>> {1,20,25}

 >>> print(S1[1])

 >>> Error , Set object does not
support

 indexing.

iv) Dictionary

The Python Dictionary is an unordered collection of key-value pairs.

Dictionaries is optimized for retrieving data when there is huge volume of data.

They provide the key to retrieve the value.

In Python, dictionaries are defined within braces {} with each item being a pair

in the form key: value. Key and value can be of any type.

>>> d1 = {1:'value','key':2}

>>> type(d)

References:

1. Hetland., “Beginning Python”, Apress, 2008

2. Mark Pilgrim, “Drive Into Python”, Apress, 2004

3. Martin C. Brown, “ Python: The Complete Reference (English)”,

McGraw-Hill/Osborne Media, 2001.

4. Mark Summerfiled, “Programming in Python 3”, 2nd ed (PIP3),

Addison Wesley.

5. https://www.academia.edu/41039821/Python_Tutorial_Release_3_

7_0_Guido_van_Rossum_and_the_Python_development_team

UNIT - 2

PART – A

1. What is List?

2. What is tuple?

3. What is Dictionary?

4. What is sets?

5. What are string methods?

6. Compare string and string slices.

7. Explain about string module.

8. Mention a few string functions.

9. Solve a)[0] * 4 and b) [1, 2, 3] * 3.

10. Let list = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]. Find a) list[1:2] b) list[:3] c) list[2:] .

11. Mention any 5 list methods.

12. State the difference between lists and dictionary.

13. What is List mutability in Python? Give an example.

14. Write a program in Python to delete first element from a list.

15. Write a program in Python to delete last element from a list.

16. What is the benefit of using tuple assignment in Python?

17. Define dictionary with an example.

PART – B

1. What are the basic list operations that can be performed in Python?

2. Explain each operation with its syntax and example.

3. What is Dictionary? Explain Python dictionaries in detail discussing its

operations and methods.

4. Explain the features of a dictionary.

5. What is the difference between lists, tuples and dictionaries? Give an

example for their usage.

6. Demonstrate the various expressions in python with suitable examples.

7. Describe the following

a) Creating the List

b) Accessing values in the Lists

c) Updating the Lists

d) Deleting the list Elements

8. Explain the basic List Operations in details with necessary programs

9. Write a Python program to multiply two Matrices.

10. Illustrate List Comprehension with suitable examples

11. Write a python program to concatenate two lists

12. What is a Python Tuple? What are the Advantages of Tuple over List?

13. “Tuples are immutable”. Explain with Examples

14. Illustrate the ways of creating the tuple and the tuple assignment with

suitable programs

15. What are the accessing elements in a tuple? Explain With suitable

Programs.

16. Explain the properties of Dictionary keys with examples

17. Illustrate the python Dictionary Comprehension with example.

18. Explain the use of slice operator for accessing elements of a tuple.

19. What are the different methods for adding elements to a list? Give example

for each method.

20. What is exception handling? How does it work?

21. Write a program to sort a dictionary in ascending and descending order of

values.

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

ENGINEERING

UNIT - 3

PYTHON – SBI1605
REGULAR EXPRESSION

2

REGULAR EXPRESSIONS

A regular expression is a special sequence of characters that helps you
match or find other strings or sets of strings, using a specialized syntax held
in a pattern. Regular expressions are widely used in UNIX world.

The Python module re provides full support for Perl-like regular expressions
in Python. The re module raises the exception re.error if an error occurs
while compiling or using a regular expression.

We would cover two important functions, which would be used to handle
regular expressions. But a small thing first: There are various characters,
which would have special meaning when they are used in regular expression.
To avoid any confusion while dealing with regular expressions, we would
use Raw Strings as r'expression'.

The match Function

This function attempts to match RE pattern to string with

optional flags. Here is the syntax for this function −

re.match(pattern, string, flags=0)

Here is the description of the parameters −

Sr.No. Parameter & Description

1

pattern

This is the regular expression to be matched.

2
String

This is the string, which would be searched to match the pattern at the beginning
of string.

3
Flags

You can specify different flags using bitwise OR (|). These are modifiers, which
are listed in the table below.

The re.match function returns a match object on success, None on failure.
We usegroup(num) or groups() function of match object to get matched
expression.

3

Sr.No. Match Object Method &

Description

1
group(num=0)

This method returns entire match (or specific subgroup num)

2
groups()

This method returns all matching subgroups in a tuple (empty if there weren't any)

Example

When the above code is executed, it produces following result −

matchObj.group() : Cats are smarter than dogs
matchObj.group(1) : Cats
matchObj.group(2) : smarter

The search Function

This function searches for first occurrence of RE pattern within string with
optional flags.

Here is the syntax for this function −

re.search(pattern, string, flags=0) Here is the

description of the parameters –

Sr.No. Parameter &

Description

1
pattern

#!/usr/bin/python

import re

line = "Cats are smarter than dogs"

matchObj = re.match(r'(.*) are (.*?) .*', line, re.M|re.I)

if matchObj:

print "matchObj.group() : ", matchObj.group()

print "matchObj.group(1) : ", matchObj.group(1)

print "matchObj.group(2) : ", matchObj.group(2)

else:

print "No match!!"

4

The re.search function returns a match object on success, none on failure. We use
group(num) or groups() function of match object to get matched expression.

Sr.No

.

Match Object Methods

& Description

1
group(num=0)

This method returns entire match (or specific subgroup num)

2
groups()

This method returns all matching subgroups in a tuple (empty if there weren't
any)

Example

When the above code is executed, it produces following result −

searchObj.group() : Cats are smarter than dogs
searchObj.group(1) : Cats
searchObj.group(2) : smarter

#!/usr/bin/python

import re

line = "Cats are smarter than dogs";

searchObj = re.search(r'(.*) are (.*?) .*', line, re.M|re.I)

if searchObj:

print "searchObj.group() : ", searchObj.group()
print "searchObj.group(1) : ", searchObj.group(1)

print "searchObj.group(2) : ", searchObj.group(2)

else:
print "Nothing found!!"

This is the regular expression to be matched.

2 string

This is the string, which would be searched to match the pattern anywhere in the string.

3 flags

You can specify different flags using bitwise OR (|). These are modifiers, which are listed
in the table below.

5

Matching Versus Searching

Python offers two different primitive operations based on regular expressions: match

checks for a match only at the beginning of the string, while search checks for a match
anywhere in the string (this is what Perl does by default).

Example

When the above code is executed, it produces the following result −

No match!!
search --> searchObj.group() : dogs

Search and Replace

One of the most important re methods that use regular expressions is sub.

Syntax

re.sub(pattern, repl, string, max=0)

This method replaces all occurrences of the RE pattern in string with repl, substituting all
occurrences unless max provided. This method returns modified string.

Example

#!/usr/bin/python

import re

#!/usr/bin/python

import re

line = "Cats are smarter than dogs";

matchObj = re.match(r'dogs', line, re.M|re.I)

if matchObj:

print "match --> matchObj.group() : ", matchObj.group()

else:

print "No match!!"

searchObj = re.search(r'dogs', line, re.M|re.I)

if searchObj:

print "search --> searchObj.group() : ", searchObj.group()

else:

print "Nothing found!!"

6

When the above code is executed, it produces the following result −

Phone Num : 2004-959-559
Phone Num : 2004959559

Regular Expression Modifiers: Option Flags

Regular expression literals may include an optional modifier to control various aspects of
matching. The modifiers are specified as an optional flag. You can provide multiple modifiers
using exclusive OR (|), as shown previously and may be represented by one of these −

Sr.No. Modifier & Description

1
re.I

Performs case-insensitive matching.

2
re.L

Interprets words according to the current locale. This interpretation affects the
alphabetic group (\w and \W), as well as word boundary behavior(\b and \B).

3
re.M

Makes $ match the end of a line (not just the end of the string) and makes ^ match
the start of any line (not just the start of the string).

4

re.S

Makes a period (dot) match any character, including a newline.

5
re.U

Interprets letters according to the Unicode character set. This flag affects the
behavior of
\w, \W, \b, \B.

phone = "2004-959-559 # This is Phone Number"

Delete Python-style comments

num = re.sub(r'#.*$', "", phone)

print "Phone Num : ", num

Remove anything other than digits

num = re.sub(r'\D', "", phone)

print "Phone Num : ", num

7

Regular Expression Patterns

Except for control characters, (+ ? . * ^ $ () [] { } | \), all characters match themselves. You

can escape a control character by preceding it with a backslash.

Following table lists the regular expression syntax that is available in Python –

Sr.No. Pattern & Description

1
^

Matches beginning of line.

2
$

Matches end of line.

3
.

Matches any single character except newline. Using m option allows it to match
newline as well.

4
[...]

Matches any single character in brackets.

5
[^...]

Matches any single character not in brackets

6
re*

Matches 0 or more occurrences of preceding expression.

7
re+

Matches 1 or more occurrence of preceding expression.

6 re.X

Permits "cuter" regular expression syntax. It ignores whitespace (except inside a set [] or
when escaped by a backslash) and treats unescaped # as a comment marker.

8

8 re?

Matches 0 or 1 occurrence of preceding expression.

9 re{ n}

Matches exactly n number of occurrences of preceding expression.

10 re{ n,}

Matches n or more occurrences of preceding expression.

11 re{ n, m}

Matches at least n and at most m occurrences of preceding expression.

12

a| b

Matches either a or b.

13 (re)

Groups regular expressions and remembers matched text.

14 (?imx)

Temporarily toggles on i, m, or x options within a regular expression. If in
parentheses, only that area is affected.

15 (?-imx)

Temporarily toggles off i, m, or x options within a regular expression. If in
parentheses, only that area is affected.

16 (?: re)

Groups regular expressions without remembering matched text.

17 (?imx: re)

Temporarily toggles on i, m, or x options within parentheses.

18 (?-imx: re)

Temporarily toggles off i, m, or x options within parentheses.

9

19 (?#...)

Comment.

20 (?= re)

Specifies position using a pattern. Doesn't have a range.

21 (?! re)

Specifies position using pattern negation. Doesn't have a range.

22 (?> re)

Matches independent pattern without backtracking.

23

\w

Matches word characters.

24 \W

Matches nonword characters.

25 \s

Matches whitespace. Equivalent to [\t\n\r\f].

26 \S

Matches nonwhitespace.

27 \d

Matches digits. Equivalent to [0-9].

28 \D

Matches nondigits.

29 \A

Matches beginning of string.

10

Regular Expression Examples

Literal characters

Sr.No. Example & Description

30 \Z

Matches end of string. If a newline exists, it matches just before newline.

31 \z

Matches end of string.

32 \G

Matches point where last match finished.

33 \b

Matches word boundaries when outside brackets. Matches backspace

(0x08) when inside brackets.

34 \B

Matches nonword boundaries.

35 \n, \t, etc.

Matches newlines, carriage returns, tabs, etc.

36 \1...\9

Matches nth grouped subexpression.

37 \10

Matches nth grouped subexpression if it matched already. Otherwise refers
to the octal representation of a character code.

11

1

python

Match "python".

12

Character classes

Sr.No. Example & Description

1
[Pp]ython

Match "Python" or "python"

2

rub[ye]

Match "ruby" or "rube"

3
[aeiou]

Match any one lowercase vowel

4
[0-9]

Match any digit; same as [0123456789]

5
[a-z]

Match any lowercase ASCII letter

6
[A-Z]

Match any uppercase ASCII letter

7
[a-zA-Z0-9]

Match any of the above

8
[^aeiou]

Match anything other than a lowercase vowel

9
[^0-9]

Match anything other than a digit

13

Special Character Classes

Sr.No. Example & Description

1
.

Match any character except newline

2
\d

Match a digit: [0-9]

3
\D

Match a nondigit: [^0-9]

4

\s

Match a whitespace character: [\t\r\n\f]

5
\S

Match nonwhitespace: [^ \t\r\n\f]

6
\w

Match a single word character: [A-Za-z0-9_]

7
\W

Match a nonword character: [^A-Za-z0-9_]

Repetition Cases

Sr.No. Example & Description

1
ruby?

Match "rub" or "ruby": the y is optional

14

2
ruby*

Match "rub" plus 0 or more ys

15

Nongreedy repetition

This matches the smallest number of repetitions −

Sr.No. Example &

Description

1
<.*>

Greedy repetition: matches "<python>perl>"

2
<.*?>

Nongreedy: matches "<python>" in "<python>perl>"

Grouping with Parentheses

Sr.No. Example & Description

1
\D\d+

No group: + repeats \d

3 ruby+

Match "rub" plus 1 or more ys

4 \d{3}

Match exactly 3 digits

5 \d{3,}

Match 3 or more digits

6 \d{3,5}

Match 3, 4, or 5 digits

16

2

(\D\d)+

Grouped: + repeats \D\d pair

17

This matches a previously matched group again −

Sr.No. Example & Description

1
([Pp])ython&\1ails

Match python&pails or Python&Pails

2

(['"])[^\1]*\1

Single or double-quoted string. \1 matches whatever the 1st group matched. \2
matches whatever the 2nd group matched, etc.

Alternatives

Sr.No. Example & Description

1
python|perl

Match "python" or "perl"

2
rub(y|le))

Match "ruby" or "ruble"

3
Python(!+|\?)

"Python" followed by one or more ! or one ?

3
([Pp]ython(,)?)+

Match "Python", "Python, python, python", etc.

18

Anchors

This needs to specify match position.

Sr.No. Example &

Description

1 ^Python

Match "Python" at the start of a string or internal line

2 Python$

Match "Python" at the end of a string or line

3 \APython

Match "Python" at the start of a string

4 Python\Z

Match "Python" at the end of a string

5

\bPython\b

Match "Python" at a word boundary

6 \brub\B

\B is nonword boundary: match "rub" in "rube" and "ruby" but not alone

7 Python(?=!)

Match "Python", if followed by an exclamation point.

8 Python(?!!)

Match "Python", if not followed by an exclamation point.

19

Special Syntax with Parentheses

Sr.No. Example & Description

1
R(?#comment)

Matches "R". All the rest is a comment

2
R(?i)uby

Case-insensitive while matching "uby"

3 R(?i:uby)

Same as above

4 rub(?:y|le))

Group only without creating \1 backreference

20

References:

1. Hetland., “Beginning Python”, Apress, 2008

2. Mark Pilgrim, “Drive Into Python”, Apress, 2004

3. Martin C. Brown, “ Python: The Complete Reference (English)”, McGraw-Hill/Osborne

Media, 2001.

4. Mark Summerfiled, “Programming in Python 3”, 2nd ed (PIP3), Addison Wesley.

5. https://www.academia.edu/41039821/Python_Tutorial_Release_3_7_0_Guido_van_Rossum_a

nd_the_Python_development_team

 UNIT - 3

PART – A

1. Which module in Python supports regular expressions?

2. What does the function re.match do?

3. What does the function re.findall do?

4. What does the function re.split do?

5. What does the function re.sub do?

6. Define metacharacter?

7. Define modifier.

8. Express the importance of Pattern in Regular expression?

9. Why do you need regular expressions in Python?

10. Discuss the search() methods supported by compiled regular expression

objects.

11. Discuss the match() methods supported by compiled regular expression

objects.

12. Discuss the findall() methods supported by compiled regular expression

objects.

PART – B

1. Discuss the following methods supported by compiled regular expression

objects.

a) search() b) match() c) findall()

2. Why do you need regular expressions in Python? Consider a file “ait.txt”.

Write a Python program to read the file and look for lines of the form X-

DSPAM-Confidence: 0.8475 X-DSPAM-Probability: 0.458 Extract the number

from each of the lines using a regular expression. Compute the average of

the numbers and print out the average.

3. Write Pythonic code to read the file and extract email address from the

lines starting from the word “From”. Use regular expressions to match

email address.

4. Explain replace () and split () methods of regular expression with suitable

examples.

5. Explain match () and findall () methods of regular expression with suitable

examples.

6. Explain group (),span (),string () and sub () methods of regular expression

with suitable examples.

7. What is regular expression ? What are diffrent type of regular expression?

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

ENGINEERING

UNIT - 4

PYTHON – SBI1605

CONTROL STATEMENTS

2

CONDITIONAL STATEMENTS

When there is no condition placed before any set of statements, the

program will be executed in sequential manure. But when some condition is

placed before a block of statements the flow of execution might change depends

on the result evaluated by the condition. This type of statement is also called

decision making statements or control statements. This type of statement may

skip some set of statements based on the condition.

Logical Conditions Supported by Python

 Equal to (==) Eg : a == b

Not Equal (!=)Eg : a != b

 Greater than (>) Eg : a > b

 Greater than or equal to (>=) Eg : a >= b

 Less than (<) Eg : a < b

 Less than or equal to (<=) Eg : a <= b

Indentation

To represent a block of statements other programming languages like C,

C++ uses “{ …}” curly – brackets , instead of this curly braces python uses

indentation using white space which defines scope in the code. The example

3

given below shows the difference between usage of Curly bracket and white

space to represent a block of statement.

Table 4.1 : C- Program Vs Python

C Program Python

x = 500
y = 200
if (x > y)
{

printf("x is greater than y")
}
else if(x == y)
{

printf("x and y are equal")
}
else
{

printf("x is less than y")

x = 500
y = 200
if x > y:

print("x is greater than y")
elif x == y:

print("x and y are equal")
else:

print("x is less than y")

Indentation (At least one White

Space instead of curly bracket)

 }

Without proper Indentation:

In the above example there is no proper indentation after if statement which will

lead to Indentation error.

 If statement:

The „if‟ statement is written using “if” keyword, followed by a condition. If

the condition is true the block will be executed. Otherwise, the control will be

x = 500

y = 200

if x > y:

print("x is greater than y")

4

x = 200

y = 100

if x > y:

print("X is greater than Y")

print(“End”)

transferred to the first statement after the block.

Syntax :

if <Boolean>:

<block>

In this statement, the order of execution is purely based on the evaluation of

boolean expression.

Example:

Output :

X is greater than

Y End

In the above the value of x is greater than y , hence it executed the print

statement whereas in the below example x is not greater than y hence it is not

executed the first print statement.

5

 Output :

End

Elif

The elif keyword is useful for checking another condition when one condition is

false.

Example :

x = 100

y = 200

if x > y:

print("X is greater than Y")

print(“End”)

mark = 55

if (mark >=75):

print("FIRST CLASS")

elif mark >= 50:

print("PASS")

23

Output :

Fig 4.1 Output

In the above the example, the first condition (mark >=75) is false then the

control is transferred to the next condition (mark >=50), Thus, the keyword elif

will be helpful for having more than one condition.

 Else

The else keyword will be used as a default condition. i.e. When there are many

conditions, when the if-condition is not true and all elif-conditions are also not

true, then else part will be executed..

24

Example :

Output:

 Fig 4.2 Output

In the example above, condition 1 and condition 2 fail. None of the preceding

condition is true. Hence, the else part is executed.

ITERATIVE STATEMENTS

Sometimes certain section of the code (block) may need to be repeated again

and again as long as certain condition remains true. In order to achieve this,

the iterative statements are used. The number of times the block needs to be

repeated is controlled by the test condition used in that statement. This type of

mark = 10

if mark >= 75:

print("FIRST CLASS")

elif mark >= 50:

print("PASS")

else:

print("FAIL")

25

statement is also called as the “Looping Statement”. Looping statements add a

surprising amount of new power to the program.

Need for Looping / Iterative Statement

Suppose the programmer wishes to display the string “Sathyabama !...” 150

times. For this, one can use the print command 150 times.

The above method is somewhat difficult and laborious. The same result can be

achieved by a loop using just two lines of code. (As below)

Types of looping statements

1) for loop

2) while loop

print(“Sathyabama
!...”)

print(“Sathyabama
!...”)
…..
…..

150 times

for count in
range(1,150) :

print (“Sathyabama

26

The ‘for’ Loop

The for loop is one of the powerful and efficient statements in

python which is used very often. It specifies how many times the body of

the loops needs to be executed. For this reason it uses control variables

which keep tracks, the count of execution. The general syntax of a „for‟

loop looks as below:

Flow Chart:

Fig 4.3 Flow Chart

for <variable> in range (A,B):

<body of the loop >

27

Example: To compute the sum of first n numbers (i.e. 1 + 2 + 3 + ……. + n)

Note: Why (n+1)? Check in table given below.

Output:

Fig 4.4 Output

In the above program, the statement total = total + i is repeated again and again

„n‟ times. The number of execution count is controlled by the variable „i‟. The

range value is specified earlier before it starts executing the body of loop. The

initial value for the variable i is 1 and final value depends on „n‟. You may

Sum.py

total = 0

n = int (input ("Enter a Positive Number"))

for i in range(1,n+1):

total = total + i

print ("The Sum is ", total)

28

also specify any constant value.

The range() Function:

The range() function can be called in three different ways based on the number

of parameters. All parameter values must be integers.

Table 4.2 : Categories of range function

Type Example Explanation

range(end) for i in range(5):

print(i)

Output :

0,1,2,3,4

This is begins at 0. Increments

by 1. End just before the value

of end parameter.

range(begin, end) for i in range(2,5):

print(i)

Output :

2,3,4

Starts at begin, End before

end value, Increment by 1

range(begin,end,step) for i in range(2,7,2)

print(i)

Output

:

2,4,6

Starts at begin, End before

end value, increment by step

value

Example : To compute Harmonic Sum (ie: 1 + ½ + 1/3 + ¼ + …..1/n)

harmonic.py

total = 0

n= int(input("Enter a Positive Integer:"))

for i in range(1,n+1):

total+= 1/i

print("The Sum of range 1 to ",n, "is", total)

29

Output:

Fig 4.5 Output

Example :

Factorial of a number “n"

n= int(input("Enter a Number :"))

factorial = 1

Initialize factorial value by 1

To verify whether the given number is negative / positive / zero

if n < 0:

print("Negative Number , Enter valid Number !...")

elif n == 0:

print("The factorial of 0 is 1")

else:

for i in range(1, n + 1):

factorial = factorial*i

print("The factorial of" ,n, "is", factorial)

30

Output:

Fig 4.5 Output

The while Loop

The while loop allows the program to repeat the body of a loop, any

number of times, when some condition is true.

The drawback of while loop is that, if the condition is not proper it

may lead to infinite looping.

So the user has to carefully choose the condition in such a way that it will

terminate at a particular stage.

31

Flow Chart:

Fig 4.6 Flow Chart

Syntax:

In this type of loop, The execution of the loop body is purely based on the

output of the given condition. As long as the condition is TRUE or in other

while (condition):

<body of the loop>

32

words until the condition becomes FALSE the program will repeat the body

of loop.

Valid Example Invalid Example

i =

10

while i<15

: print(i)
i = i + 1

i = 10

while i<15 :

print(i)

Output :

10,11,12,13,14

Output :

10,10,10,10…

 Indeterminat

e
number of times

33

Example: Program to display Fibonacci Sequence

Program to Display Fibonacci Sequence based on number of terms n

n = int(input("Enter number of terms in the sequence you want to display"))

n1 represents -- > first term and n2 represents --> Second term

n1 = 0

n2 = 1

count = 0

count -- To check number of terms

if n <= 0: # To check whether valid number of terms

print ("Enter a positive integer")

elif n == 1:

print("Fibonacci sequence up to ", n,":")

print(n2)

else:

print("Fibonacci sequence of ",n, “ terms :”)

while count < n:

print(n1,end=' , ')

nth = n1 + n2

n1 = n2

n2 = nth

count = count + 1

34

References:

1. Hetland., “Beginning Python”, Apress, 2008

2. Mark Pilgrim, “Drive Into Python”, Apress, 2004

3. Martin C. Brown, “ Python: The Complete Reference (English)”,

McGraw-Hill/Osborne Media, 2001.

4. Mark Summerfiled, “Programming in Python 3”, 2nd ed (PIP3),

Addison Wesley.

5. https://www.academia.edu/41039821/Python_Tutorial_Release_3_

7_0_Guido_van_Rossum_and_the_Python_development_team

UNIT - 4

PART – A

1. What is conditional execution?

2. What is alternative execution?

3. What are chained conditionals?

4. Explain if loop with example.

5. Explain while loop with example.

6. Explain nested loop with example.

7. What is a break statement?

8. What is a continue statement?

9. What is a pass statement?

10. Define List Comprehension.

11. Write the syntax for list comprehension.

PART – B

1. Explain the syntax and flow chart of the following loop statements

(i) for loop

(ii) while loop

2. Explain the syntax and flow chart of the following loop statements

(i) Nested loop

(ii) continue inside if loop

3. (i). Illustrate the flow chart and syntax of if-elif- else statements

4. (ii). Develop a program to find the largest among three numbers

5. Which are two types of else clauses in Python, define them?

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT - 5

PYTHON – SBI1605

FUNCTIONS AND MODULES

2

FUNCTIONS AND MODULES

FUNCTIONS

A function is a block of organized, reusable code that is used to perform a single, related action.

Functions provide better modularity for your application and a high degree of code reusing.

As you already know, Python gives you many built-in functions like print(), etc. but you can also

create your own functions. These functions are called user-defined functions.

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to define a

function in Python.

· Function blocks begin with the keyword def followed by the function name and

parentheses (()).

· Any input parameters or arguments should be placed within these parentheses. You can

also define parameters inside these parentheses.

· The first statement of a function can be an optional statement - the documentation string

of the function or docstring.

· The code block within every function starts with a colon (:) and is indented.

· The statement return [expression] exits a function, optionally passing back an expression

to the caller. A return statement with no arguments is the same as return None.

Syntax

def functionname(parameters):

 "function_docstring"

 function_suite

 return [expression]

By default, parameters have a positional behavior and you need to inform them in the same order

that they were defined.

Example

The following function takes a string as input parameter and prints it on standard screen.

def printme(str):

 "This prints a passed string into this function"

 print str

 return

3

Calling a Function

Defining a function only gives it a name, specifies the parameters that are to be included in the

function and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it from another

function or directly from the Python prompt. Following is the example to call printme() function

−

#!/usr/bin/python

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

printme("I'm first call to user defined function!")

printme("Again second call to the same function")

When the above code is executed, it produces the following result −

I'm first call to user defined function!

Again second call to the same function

Pass by reference vs value

All parameters (arguments) in the Python language are passed by reference. It means if you

change what a parameter refers to within a function, the change also reflects back in the calling

function. For example −

#!/usr/bin/python

Function definition is here

def changeme(mylist):

 "This changes a passed list into this function"

 mylist.append([1,2,3,4]);

 print "Values inside the function: ", mylist

 return

Now you can call changeme function

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

Here, we are maintaining reference of the passed object and appending values in the same object.

So, this would produce the following result −

4

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]

Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

There is one more example where argument is being passed by reference and the reference is

being overwritten inside the called function.

#!/usr/bin/python

Function definition is here

def changeme(mylist):

 "This changes a passed list into this function"

 mylist = [1,2,3,4]; # This would assig new reference in mylist

 print "Values inside the function: ", mylist

 return

Now you can call changeme function

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

The parameter mylist is local to the function changeme. Changing mylist within the function does

not affect mylist. The function accomplishes nothing and finally this would produce the following

result −

Values inside the function: [1, 2, 3, 4]

Values outside the function: [10, 20, 30]

Function Arguments

You can call a function by using the following types of formal arguments −

· Required arguments

· Keyword arguments

· Default arguments

· Variable-length arguments

Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here, the

number of arguments in the function call should match exactly with the function definition.

To call the function printme(), you definitely need to pass one argument, otherwise it gives a

syntax error as follows −

#!/usr/bin/python

Function definition is here

def printme(str):

5

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

printme()

When the above code is executed, it produces the following result −

Traceback (most recent call last):

 File "test.py", line 11, in <module>

 printme();

TypeError: printme() takes exactly 1 argument (0 given)

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a

function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter is

able to use the keywords provided to match the values with parameters. You can also make

keyword calls to the printme() function in the following ways −

#!/usr/bin/python

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

printme(str = "My string")

When the above code is executed, it produces the following result − My string

The following example gives more clear picture. Note that the order of parameters does not

matter.

#!/usr/bin/python

Function definition is here

def printinfo(name, age):

 "This prints a passed info into this function"

 print "Name: ", name

 print "Age ", age

 return;

Now you can call printinfo function

6

printinfo(age=50, name="miki")

When the above code is executed, it produces the following result –

Name: miki

Age 50

Default arguments

A default argument is an argument that assumes a default value if a value is not provided in the

function call for that argument. The following example gives an idea on default arguments, it

prints default age if it is not passed −

#!/usr/bin/python

Function definition is here

def printinfo(name, age = 35):

 "This prints a passed info into this function"

 print "Name: ", name

 print "Age ", age

 return;

Now you can call printinfo function

printinfo(age=50, name="miki")

printinfo(name="miki")

When the above code is executed, it produces the following result −

Name: miki

Age 50

Name: miki

Age 35

Variable-length arguments

You may need to process a function for more arguments than you specified while defining the

function. These arguments are called variable-length arguments and are not named in the function

definition, unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is this −

def functionname([formal_args,] *var_args_tuple):

 "function_docstring"

 function_suite

 return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword variable

arguments. This tuple remains empty if no additional arguments are specified during the function

call. Following is a simple example −

7

#!/usr/bin/python

Function definition is here

def printinfo(arg1, *vartuple):

 "This prints a variable passed arguments"

 print "Output is: "

 print arg1

 for var in vartuple:

 print var

 return;

Now you can call printinfo function

printinfo(10)

printinfo(70, 60, 50)

When the above code is executed, it produces the following result −

Output is:

10

Output is:

70

60

50

The Anonymous Functions

These functions are called anonymous because they are not declared in the standard manner by

using the def keyword. You can use the lambda keyword to create small anonymous functions.

· Lambda forms can take any number of arguments but return just one value in the form of

an expression. They cannot contain commands or multiple expressions.

· An anonymous function cannot be a direct call to print because lambda requires an

expression

· Lambda functions have their own local namespace and cannot access variables other than

those in their parameter list and those in the global namespace.

· Although it appears that lambda's are a one-line version of a function, they are not

equivalent to inline statements in C or C++, whose purpose is by passing function stack

allocation during invocation for performance reasons.

Syntax

The syntax of lambda functions contains only a single statement, which is as follows −

lambda [arg1 [,arg2,.....argn]]:expression

Following is the example to show how lambda form of function works −

8

#!/usr/bin/python

Function definition is here

sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function

print "Value of total : ", sum(10, 20)

print "Value of total : ", sum(20, 20)

When the above code is executed, it produces the following result −

Value of total : 30

Value of total : 40

The return Statement

The statement return [expression] exits a function, optionally passing back an expression to the

caller. A return statement with no arguments is the same as return None.

All the above examples are not returning any value. You can return a value from a function as

follows −

#!/usr/bin/python

Function definition is here

def sum(arg1, arg2):

 # Add both the parameters and return them."

 total = arg1 + arg2

 print "Inside the function : ", total

 return total;

Now you can call sum function

total = sum(10, 20);

print "Outside the function : ", total

When the above code is executed, it produces the following result −

Inside the function : 30

Outside the function : 30

Scope of Variables

All variables in a program may not be accessible at all locations in that program. This depends

on where you have declared a variable.

The scope of a variable determines the portion of the program where you can access a particular

identifier. There are two basic scopes of variables in Python −

· Global variables

9

· Local variables

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those defined outside

have a global scope.

This means that local variables can be accessed only inside the function in which they are

declared, whereas global variables can be accessed throughout the program body by all functions.

When you call a function, the variables declared inside it are brought into scope. Following is a

simple example −

#!/usr/bin/python

total = 0; # This is global variable.

Function definition is here

def sum(arg1, arg2):

 # Add both the parameters and return them."

 total = arg1 + arg2; # Here total is local variable.

 print "Inside the function local total : ", total

 return total;

Now you can call sum function

sum(10, 20);

print "Outside the function global total : ", total

When the above code is executed, it produces the following result −

Inside the function local total : 30

Outside the function global total : 0

10

MODULES

A module allows you to logically organize your Python code. Grouping related code into a

module makes the code easier to understand and use. A module is a Python object with arbitrarily

named attributes that you can bind and reference.

Simply, a module is a file consisting of Python code. A module can define functions, classes and

variables. A module can also include runnable code.

Example

The Python code for a module named aname normally resides in a file named aname.py. Here's

an example of a simple module, support.py

def print_func(par):

 print "Hello : ", par

 return

The import Statement

You can use any Python source file as a module by executing an import statement in some other

Python source file. The import has the following syntax −

import module1[, module2[,... moduleN]

When the interpreter encounters an import statement, it imports the module if the module is

present in the search path. A search path is a list of directories that the interpreter searches before

importing a module. For example, to import the module support.py, you need to put the following

command at the top of the script −

#!/usr/bin/python

Import module support

import support

Now you can call defined function that module as follows

support.print_func("Zara")

When the above code is executed, it produces the following result −

Hello : Zara

A module is loaded only once, regardless of the number of times it is imported. This prevents the

module execution from happening over and over again if multiple imports occur.

The from...import Statement

Python's from statement lets you import specific attributes from a module into the current

namespace. The from...import has the following syntax −

from modname import name1[, name2[, ... nameN]]

11

For example, to import the function fibonacci from the module fib, use the following statement −

from fib import fibonacci

This statement does not import the entire module fib into the current namespace; it just introduces

the item fibonacci from the module fib into the global symbol table of the importing module.

The from...import * Statement

It is also possible to import all names from a module into the current namespace by using the

following import statement −

from modname import *

This provides an easy way to import all the items from a module into the current namespace;

however, this statement should be used sparingly.

Locating Modules

When you import a module, the Python interpreter searches for the module in the following

sequences −

· The current directory.

· If the module isn't found, Python then searches each directory in the shell variable

PYTHONPATH.

· If all else fails, Python checks the default path. On UNIX, this default path is normally

/usr/local/lib/python/.

The module search path is stored in the system module sys as the sys.path variable. The sys.path

variable contains the current directory, PYTHONPATH, and the installation-dependent default.

The PYTHONPATH Variable

The PYTHONPATH is an environment variable, consisting of a list of directories. The syntax of

PYTHONPATH is the same as that of the shell variable PATH.

Here is a typical PYTHONPATH from a Windows system −

set PYTHONPATH = c:\python20\lib;

And here is a typical PYTHONPATH from a UNIX system −

set PYTHONPATH = /usr/local/lib/python

Namespaces and Scoping

Variables are names (identifiers) that map to objects. A namespace is a dictionary of variable

names (keys) and their corresponding objects (values).

12

A Python statement can access variables in a local namespace and in the global namespace. If a

local and a global variable have the same name, the local variable shadows the global variable.

Each function has its own local namespace. Class methods follow the same scoping rule as

ordinary functions.

Python makes educated guesses on whether variables are local or global. It assumes that any

variable assigned a value in a function is local.

Therefore, in order to assign a value to a global variable within a function, you must first use the

global statement.

The statement global VarName tells Python that VarName is a global variable. Python stops

searching the local namespace for the variable.

For example, we define a variable Money in the global namespace. Within the function Money,

we assign Money a value, therefore Python assumes Money as a local variable. However, we

accessed the value of the local variable Money before setting it, so an UnboundLocalError is the

result. Uncommenting the global statement fixes the problem.

#!/usr/bin/python

Money = 2000

def AddMoney():

 # Uncomment the following line to fix the code:

 # global Money

 Money = Money + 1

print Money

AddMoney()

print Money

The dir() Function

The dir() built-in function returns a sorted list of strings containing the names defined by a

module.

The list contains the names of all the modules, variables and functions that are defined in a

module. Following is a simple example −

#!/usr/bin/python

Import built-in module math

import math

content = dir(math)

print content

When the above code is executed, it produces the following result −

['__doc__', '__file__', '__name__', 'acos', 'asin', 'atan',

13

'atan2', 'ceil', 'cos', 'cosh', 'degrees', 'e', 'exp',

'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log',

'log10', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh',

'sqrt', 'tan', 'tanh']

Here, the special string variable __name__ is the module's name, and __file__ is the filename

from which the module was loaded.

The globals() and locals() Functions

The globals() and locals() functions can be used to return the names in the global and local

namespaces depending on the location from where they are called.

If locals() is called from within a function, it will return all the names that can be accessed locally

from that function.

If globals() is called from within a function, it will return all the names that can be accessed

globally from that function.

The return type of both these functions is dictionary. Therefore, names can be extracted using the

keys() function.

The reload() Function

When the module is imported into a script, the code in the top-level portion of a module is

executed only once.

Therefore, if you want to reexecute the top-level code in a module, you can use

the reload() function. The reload() function imports a previously imported module again. The

syntax of the reload() function is this −

reload(module_name)

Here, module_name is the name of the module you want to reload and not the string containing

the module name. For example, to reload hello module, do the following −

reload(hello)

Packages in Python

A package is a hierarchical file directory structure that defines a single Python application

environment that consists of modules and subpackages and sub-subpackages, and so on.

Consider a file Pots.py available in Phone directory. This file has following line of source code −

#!/usr/bin/python

def Pots():

 print "I'm Pots Phone"

14

Similar way, we have another two files having different functions with the same name as above

−

· Phone/Isdn.py file having function Isdn()

· Phone/G3.py file having function G3()

Now, create one more file __init__.py in Phone directory −

· Phone/__init__.py

To make all of your functions available when you've imported Phone, you need to put explicit

import statements in __init__.py as follows −

from Pots import Pots

from Isdn import Isdn

from G3 import G3

After you add these lines to __init__.py, you have all of these classes available when you import

the Phone package.

#!/usr/bin/python

Now import your Phone Package.

import Phone

Phone.Pots()

Phone.Isdn()

Phone.G3()

When the above code is executed, it produces the following result −

I'm Pots Phone

I'm 3G Phone

I'm ISDN Phone

In the above example, we have taken example of a single functions in each file, but you can keep

multiple functions in your files. You can also define different Python classes in those files and

then you can create your packages out of those classes.

References:

1. Hetland., “Beginning Python”, Apress, 2008

15

2. Mark Pilgrim, “Drive Into Python”, Apress, 2004

3. Martin C. Brown, “ Python: The Complete Reference (English)”, McGraw-

Hill/Osborne Media, 2001.

4. Mark Summerfiled, “Programming in Python 3”, 2nd ed (PIP3), Addison Wesley.

5. https://www.academia.edu/41039821/Python_Tutorial_Release_3_7_0_Guido_v

an_Rossum_and_the_Python_development_team

UNIT - 5

PART – A

1. What is a function?

2. What is function call?

3. What is the function of raise statement? What are its two arguments?

4. How does try and execute work?

5. How do you handle the exception inside a program when you try to open a

non-existent file?

6. What are modules?

7. What is a package?

8. What is the special file that each package in Python must contain?

PART – B

1. What are packages? Give an example of package creation in Python

2. Write a program to enter a number in Python and print its octal and

hexadecimal equivalent.

3. What are modules in Python? Explain.

4. Explain about the import statement in modules.

5. Explain about the different types of Exceptions in Python.

6. Describe about Handling Exceptions in detail with examples.

7. Explain in detail about Python Files, its types, functions and operations that

can be performed on files with examples.

i) Discuss the need and importance of function in python.

a. Illustrate a program to exchange the value of two variables with

temporary variables

8. Briefly discuss in detail about function prototyping in python. With suitable

example program

9. i)Explain with an example program to return the average of its argument

ii) Explain the various features of functions in python.

