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1.1 Introduction to Systems biology

Systems biology has been responsible for some of the most important developments in the
science of human health and environmental sustainability. It is a holistic approach to
deciphering the complexity of biological systems that starts from the understanding that the
networks that form the whole of living organisms are more than the sum of their parts. It
is collaborative, integrating many scientific disciplines — biology, computer science,
engineering, bioinformatics, physics and others — to predict how these systems change over
time and under varying conditions, and to develop solutions to the world’s most pressing health
and environmental issues.

This ability to design predictive, multiscale models enables our scientists to discover new
biomarkers for disease, stratify patients based on unique genetic profiles, and target drugs and
other treatments. Systems biology, ultimately, creates the potential for entirely new kinds of
exploration, and drives constant innovation in biology-based technology and computation.

1.2 Modeling in biology

Mathematical, computational and physical methods have been applied in biology and medicine
to study phenomena at a wide range of size scales, from the global human population all the
way down to the level of individual atoms within a biomolecule. Concomitant with this range
of sizes between global to atomistic, the relevant modeling methods span time scales varying
between years and picoseconds, depending on the area of interest (from evolutionary to
atomistic effects) and relevance. This review will cover some of the most common and useful
mathematical and computational methods. Firstly, we outline the maximum entropy principle
as an inference tool for the study of phenomena at different scales, from gene evolution and
gene networks to protein-drug molecular interactions, followed with a survey of the methods
used for large scale systems—populations, organisms, and cells—and then zooming down to
the methods used to study individual biomolecules—proteins and drugs. To study the large
systems, the most common and reliable mathematical technique is to develop systems of
differential equations. At the molecular scale, molecular dynamics is often used to model
biomolecules as a system of moving Newtonian particles with interactions defined by a force
field, with various methods employed to handle the challenge of solvent effects. In some cases,
pure guantum mechanics methods can and should be used, which describe molecules using
either wave functions or electron densities, although computational costs in time and resources
may be prohibitive, so hybrid classical-quantum methods are often more appropriate. Quantum
methods can be particularly valuable in the study of enzymes and enzymatic reactions.

1.3 System State

An important notion in dynamical systems theory is the state. The state of a system is a snapshot
of the system at a given time that contains enough information to pre- dict the behavior of the
system for all future times. The state of the system is de- scribed by the set of variables that

School of Bio and Chemical Engineering



SATHY,

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

must be kept track of in a model. Different modeling approaches have different representations
of the state: in a dif- ferential equation model for a metabolic network, the state is a list of
concentrations of each chemical species. In the respective stochastic model, it is a probability
distribution and/or a list of the current number of molecules of a species. In a Boolean model
of gene regulation, the state is a string of bits indicating for each gene whether it is expressed
(1) or not expressed (“0”). Thus, each model defines what it means by the state of the system.
Given the current state, the model predicts which state or states can occur next, thereby
describing the change of state.

Steady States

The concept of stationary states is important for the modeling of dynamical systems. Stationary
states (other terms are steady states or fixed points) are determined by the fact that the values
of all state variables remain constant in time. The asymptotic be- havior of dynamic systems,
i.e., the behavior after a sufficiently long time, is often stationary. Other types of asymptotic
behavior are oscillatory or chaotic regimes.

The consideration of steady states is actually an abstraction that is based on a se- paration of
time scales. In nature, everything flows. Fast and slow processes — ranging from formation and
release of chemical bonds within nanoseconds to growth of individuals within years — are
coupled in the biological world. While fast processes often reach a quasi-steady state after a
short transition period, the change of the value of slow variables is often negligible in the time
window of consideration. Thus each steady state can be regarded as a quasi-steady state of a
system that is embedded in a larger non-stationary environment. Although the concept of
stationary states is a mathematical idealization, it is important in kKinetic modeling since it
points to typical behavioral modes of the investigated system and the respective mathematical
problems are frequently easier to solve.

1.4 Variables, parameters and constants

The quantities involved in a model can be classified as variables, parameters, and constants. A
constant is a quantity with a fixed value, such as the natural number e or Avogadro’s number
NA =6.02 7 1023 (number of molecules per mole). Parameters are quantities that are assigned
a value, such as the Km value of an enzyme in a reaction. This value depends on the method
used and on the experimental conditions and may change. Variables are quantities with a
changeable value for which the model establishes relations. The state variables are a set of
variables that describe the system behavior completely. They are independent of each other
and each of them is neces- sary to define the system state. Their number is equivalent to the
dimension of the system. For example, diameter d and volume V of a sphere obey the relation
V = p d3/6. p and 6 are constants and V and d are variables, but only one of them is a state
variable, since the mentioned relation uniquely determines the other one.

Whether a quantity is a variable or a parameter depends on the model. The en- zyme
concentration is frequently considered a parameter in biochemical reaction Ki- netics. That is
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no longer valid if, in a larger model, the enzyme concentration may change due to gene
expression or protein degradation.

1.5 Model behaviour

There are two fundamental causes that determine the behavior of a system or its changes: (1)
influences from the environment (input) and (2) processes within the system. The system
structure, i.e., the relation among variables, parameters, and constants, determines how
endogenous and exogenous forces are processed. It must be noted that different system
structures may produce similar system behavior (out- put). The structure determines the
behavior, not the other way around. Therefore, the system output is often not sufficient to
predict the internal organization. Generally, system limits are set such that the system output
has no impact on the input.

1.6 Advantages of computational modelling

Models gain their reference to reality from comparison with experiments, and their benefits
are, therefore, somewhat dependent on experimental performance. Never- theless, modeling
has a lot of advantages. Modeling drives conceptual clarification. It requires that verbal
hypotheses be made specific and conceptually rigorous. Modeling also highlights gaps in
knowl- edge or understanding. During the process of model formulation, unspecified com-
ponents or interactions have to be determined.

Modeling provides independence of the modeled object. Time and space may be stretched or
compressed ad libitum. Solution algorithms and computer programs can be used independently
of the concrete system. Modeling is cheap compared to experiments. Models exert by
themselves no harm on animals or plants and help to reduce it in experiments. They do not
pollute the environment. Models interact neither with the environment nor with the modeled
system.

Modeling can assist experimentation. With an adequate model one may test differ- ent
scenarios that are not accessible by experiment. One may follow time courses of compounds
that cannot be measured in an experiment. One may impose perturba- tions that are not feasible
in the real system. One may cause precise perturbations with- out directly changing other
system components, which is usually impossible in real systems. Model simulations can be
repeated often and for many different conditions. Model results can often be presented in
precise mathematical terms that allow for gen- eralization. Graphical representation and
visualization make it easier to understand the system. Finally, modeling allows for making
well-founded and testable predictions.
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1.7 Model development

1. Formulation of the problem: Before establishing an initial model, it must be clear which
questions shall be answered with the approach. A distinct verbal statement about
background, problem, and hypotheses is a helpful guide in further analysis.

2. Verification of available information: As a first step, the existing gquantitative and
structural knowledge has to be checked and collected. This concerns information about
the included components and their interactions as well as experimental re- sults with
respect to phenotypic changes such as growth and shape after system perturbations such
as knockout experiments, RNAI, and variation of environmen- tal conditions.

3. Selection of model structure: Based on the available information and on the prob- lem
to solve, the general type of the model is determined: (1) the level of descrip- tion as
macroscopic or microscopic, (2) the choice of a deterministic or stochastic approach,
(3) the use of discrete or continuous variables, and (4) the choice of steady-state,
temporal, or spatio-temporal description. Furthermore, it must be decided what the
determinants for system behavior (external influences, internal structure) are. The
system variables must be assigned.

4. Establishing a simple model: The first model can be expressed in words, schema-
tically, or in mathematical formulation. It serves as general test and allows refined
hypotheses.

5. Sensitivity analysis: Mathematical models typically contain a number of parameters,
and the simulation result can be highly sensitive to parameter changes. It is recom-
mendable to verify the dependence of the model results on the parameter choice.

6. Experimental tests of the model predictions: This is a hard task. Experimental de- sign
in biology is usually hypothesis-driven. In fact, hypotheses that state general relations
can rarely be verified, but only falsified. These predictions usually con- cern
relationships between different cellular states or biochemical reactions. On the other
hand, hypothesis about the existence of items are hard to falsify. The choice of
parameters to be measured, how many measurements are to be per- formed, and at what
time intervals is not uniquely defined but depends on the re- searcher’s opinion. These
selections are largely based on experience and, in new areas in particular, on intuition.

7. Stating the agreements and divergences between experimental and modeling re- sults:
Although the behavior of the model and the experimental system should eventually
agree, disagreement drives further research. It is necessary to find out whether the
disagreement results from false assumptions, tampering simplifica- tions, wrong model
structure, inadequate experimental design, or other inade- quately represented factors.

8. Iterative refinement of model: The initial model will rarely explain all features of the
studied object and usually leads to more open questions than answers. After comparing
the model outcome with the experimental results, model structure and parameters may
be adapted.
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As stated above, the choice of a model approach is not unique. Likewise, the possi-

ble outcome of models differs. Satisfactory results could be the solution to the initi- ally stated
problem, the establishment of a strategy for problem solution, or reason- able suggestions for
experimental design.

1.8 Typical aspects of biological systems and corresponding models

A number of notions have been introduced or applied in the context of systems biol- ogy or
computational modeling of biological systems. Their use is often not unique, but we will
present here some interpretations that are helpful in understanding re- spective theories and
manuscripts.

Network Versus Elements

A system consists of individual elements that interact and thus form a network. The elements
have certain properties. In the network, the elements have certain relations to each other (and,
if appropriate, to the environment). The system has properties that rely on the individual
properties and relations between the elements. It may show additional systemic properties and
dynamic characteristics that often cannot be deduced from the individual properties of the
elements.

Modularity

Modules are subsystems of complex molecular networks that can be treated as func- tional
units, which perform identifiable tasks (Lauffenburger 2000). Typical exam- ples for
assignment of modules are (1) the DNA-mRNA-enzyme-metabolism cascade and (2) signal
transduction cascades consisting of covalent modification cycles. The reaction networks at
each level are separated as modules by the criterion that mass transfer occurs internally but not
between the modules, and they are linked by means of catalytic or regulatory effects from a
chemical species of one module to a reaction in another module (Hofmeyr and Westerhoff
2001). Consideration of mod- ules has the advantage that modeling can be performed in a
hierarchical, nested, or sequential fashion. The properties of each module can be studied first
in isolation and subsequently in a comprehensive, integrative attempt. The concept is appealing
since it allows thinking in terms of classes of systems with common characteristics that can be
handled with a common set of methods. The disadvantage is that a mod- ular approach has to
ignore or at least reduce the high level of connectivity in cellular networks — in particular the
variety of positive and negative feedback and feed-for- ward regulatory loops — which actually
contradicts the basic idea of systems biology.
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Robustness and Sensitivity are Two Sides of the Same Coin

Robustness is an essential feature of biological systems. It characterizes the insensi- tivity of
system properties to variations in parameters, structure, and environment or to other
uncertainties. Robust systems maintain their state and functions despite ex- ternal and internal
perturbations. An earlier notion for this observation is homeosta- sis. Robustness in biological
systems is often achieved by a high degree of complex- ity involving feedback, modularity,
redundancy, and structural stability (Kitano 2002). On the one hand, biological systems must
protect their genetic information and their mode of living against perturbations; on the other
hand, they must adapt to changes, sense and process internal and external signals, and react
precisely depend- ing on the type or strength of a perturbation. Sensitivity or fragility
characterizes the ability of living organisms for adequately reacting on a certain stimulus. Note
that in some areas sensitivity is more rigorously defined as the ratio of the change of a vari-
able by the change of a quantity that caused the change in the variable.

1.9 Bottom-up and top-down approaches of complex system

Systems biology is a computational field that has been used for several years across different
scientific areas of biological research to uncover the complex interactions occurring in living
organisms. Applications of systems concepts at the mammalian genome level are quite
challenging, and new complimentary computational/experimental techniques are being
introduced. Most recent work applying modern systems biology techniques has been conducted
on bacteria, yeast, mouse, and human genomes. However, these concepts and tools are equally
applicable to other species including ruminants (e.g., livestock). In systems biology, both
bottom-up and top-down approaches are central to assemble information from all levels of
biological pathways that must coordinate physiological processes. A bottom-up approach
encompasses draft reconstruction, manual curation, network reconstruction through
mathematical methods, and validation of these models through literature analysis (i.e.,
bibliomics). Whereas top-down approach encompasses metabolic network reconstructions
using ‘omics' data (e.g., transcriptomics, proteomics) generated through DNA microarrays,
RNA-Seq or other modern high-throughput genomic techniques using appropriate statistical
and bioinformatics methodologies. In this review we focus on top-down approach as a means
to improve our knowledge of underlying metabolic processes in ruminants in the context of
nutrition. We also explore the usefulness of tissue specific reconstructions (e.g., liver and
adipose tissue) in cattle as a means to enhance productive efficiency.

1.10 Mathematical representation of cell - biological system Time and space

Mathematical and computational models are increasingly used to help interpret biomedical data
produced by high-throughput genomics and proteomics projects. The application of advanced
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computer models enabling the simulation of complex biological processes generates
hypotheses and suggests experiments. Appropriately interfaced with biomedical databases,
models are necessary for rapid access to, and sharing of knowledge through data mining and
knowledge discovery approaches.

Revolutions in biotechnology and information technology have produced enormous amounts
of data and are accelerating the process of knowledge discovery of biological systems. These
advances are changing the way biomedical research, development and applications are
conducted. Clinical data complements biological data, enabling detailed descriptions of both
healthy and diseased states, as well as disease progression and response to therapies. The
availability of data representing various biological states, processes and their time
dependencies enables the study of biological systems at various levels of organization, from
molecules to organism and even up to the population level. Multiple sources of data support a
rapidly growing body of biomedical knowledge, however, our ability to analyze and interpret
this data lags far behind data generation and storage capacity. Mathematical and computational
models are increasingly used to help interpret biomedical data produced by high-throughput
genomics and proteomics projects. The application of advanced computer models enabling the
simulation of complex biological processes generates hypotheses and suggests experiments.
Computational models are set to exploit the wealth of data stored on biomedical databases
through text mining and knowledge discovery approaches.

Modeling is the human activity consisting of representing, manipulating and communicating
real-world daily life objects. As one can easily realize, there are many ways to observe an
object or, equivalently, there are many different observers for the same object. Any observer
has ‘different views’ of the same object, i.e. ‘there is no omniscient observer with special access
to the truth’. Each different observer collects data and generates hypothesis that are consistent
with the data. This logical process is called ‘abduction’. Abduction is not infallible, though;
with respect to a scientific unknown, we are all blind.

A system is a collection of interrelated objects. For example, a biological system could be a
collection of different cellular compartments (e.g. cell types) specialized for a specific
biological function (e.g. white and red blood cells have very different commitments). An object
is some elemental unit upon which observation can be made but whose internal structure is
either unknown or does not exist. The choice of the elemental unit defines the representation
scale of the system. A model is a description of a system in terms of constitutive objects and
the relationships among them, where the description itself is, in general, decodable or
interpretable by humans.

Generally speaking, a system is an unknown ‘black box’ (S) which, under a specific external
stimulus (input E) produces a response (output R). Using this general definition, one can
identify three primary scientific uses of models: (i) synthesis or knowledge discovery; to use
the knowledge of inputs E and outputs R to infer system characteristics; (ii) analysis and
prediction; to use the knowledge of the parts and their stimuli (i.e. the inputs E) to account for
the observed response (i.e. the output R) and eventually, to predict response to different stimuli.

School of Bio and Chemical Engineering



@

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

(ii1) Instrumentation or device; to design an ‘alternative system’ (i.e. hardware or software),
able to reproduce the input—output relationship with the best possible adherence to the studied
system.

Secondary uses of models account for conceptual frameworks to design new experiments,
methods to summarize or synthesize large quantities of data, tools to discover relationships
among objects.

Here, we analyze models and modeling processes specific for the biology. We mainly focus on
the use of models aiming at the points (i) and (ii) as tools for knowledge discovering in biology.

The mathematical methods used in modeling biological systems vary according to different
steps of the process. We focus on the mathematical representation of the system. However,
other important steps in the modeling processes are parameters fitting and model selection. We
will not analyze the mathematical methods in those two important aspects as these would
require separate review papers. Methods for parameters fitting refer to wide area of
mathematical optimization, whereas methods for model selection mainly use statistical
techniques. On top of these, sensitivity analysis and phase—space analysis of the models may
be required. Interested readers may find more information in these references.

Models for technical use are formal models, but the strategy for building them is quite different
and therefore, we leave them out of the present discussion. In the following we will refer to
this type of models as Black Box Models (BBM). It is worth pointing out that, as we will
mention later on, alternative systems can be considered parts of a large model to account for
effects whose origin can be neglected without compromising the understanding of the whole
phenomena.

1.11 Future of systems biology - Experimental

In the last 65 years of biology, we have witnessed three changes in the dominant paradigm
employed to make progress in the life sciences; the systems biology of organisms (300 BC to
1950 AD), molecular biology and genetics employing a reductionist approach (1950 to 2000),
and the systems biology of molecules, cells, organs, organisms, and populations (2000 into the
future) that requires scientists trained in the more quantitative sciences so as to extract
information from large datasets of experiments and create hypotheses and models that can and
are then tested experimentally in a laboratory or the environment. The future of systems
biology is clearly linked to testing ideas in the laboratory and in natural populations, employing
the tools of molecular biology. The structure of the biological sciences will become like
physics, with theorists and experimentalists working together to solve problems.
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Systems Biology is an extremely broad topic and it is likely that the multiple subfields will
develop in different directions, potentially only a subset of them fulfilling our current hopes.
As such, the list below is incomplete and we don’t know whether things will turn out as
planned:

e Personalised Medicine: At the moment patients receive treatment based on
inspections of the symptoms and measurements like a full blood exam. But often a
treatment successfully given to one patient does not work for another one with almost
identical symptoms. So physicians use a trial-and-error approach: they test treatments
until one is (hopefully) successful. The idea of personalised medicine is to use DNA
sequencing to gain insights into diseases like cancer; telling us what the origin of the
disease is. This information can then guide doctors to a drug that is most efficient for
this particular patient. One of the first patient who’s cancers DNA was sequenced was
Steve Jobs. Unfortunately, it did not help to overcome the disease but we are optimistic
for the future and the first of these approaches were successful for some diseases.

o Synthetic Biology: By understanding the biological systems we might be

able to create new artificial biological systems like proteins that do not exist

in nature but have beneficial purposes. For example, we are already able to

create synthetic antibodies, which are a body’s natural way fight external

bacteria.
The examples above are focussed on the pharmaceutical implications of systems biology
research. To reach these goals many different other questions will need to be answered: relation
between genotype and phenotype, epigenetics, metabolomics, mutliscale modelling, and most
importantly how they all relate to each other, because this is the systems part: we can not
understand the body and its function by looking just at one level of biological processes but
have to look at them in an integrated way.

1.12 Planning in the Systems Biology Phase of Biological Research

The systems biology phase of biological and medical research will change the way we plan
and carry out experiments to probe the complex networks of processes; our ability to predict
must be greatly improved in order to help to solve these types of problems.

Experimental planning and data generation in the recent, pre-genomic phase of biological
research has, at least in principle, been guided by hypotheses (hypothesis- driven research, a
principle that has, however, been mitigated by the many unex- pected observations that often
contribute more to our understanding of biology than the hypothesis-driven research originally
planned). In the genomic phase, this has been replaced largely by the systematic analysis of all
components of a process and, ideally, of all components that an organism has or is able to
produce (all genes, all transcripts, all proteins, all protein complexes, all metabolites, etc.). The
systems biol- ogy phase of biological research might represent a synthesis of both principles.

School of Bio and Chemical Engineering



~— o

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

Since our knowledge (or hypothesis) about a process is defined by the model or models we can
formulate about the process as well as the exact parameters we use in this model- ing (initial
concentrations, Kinetic constants etc.), we can use computational and mathematical techniques
to compare these models, to identify key experiments, and to program robotic systems to carry
out these experiments. Such a strategy has, for example, been used recently to carry out an
analysis of yeast mutations (The Robot Scientist; King et al. 2004), in which the experimental
planning and control of the robots actually carrying out the experiments were performed by a
computer program.
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UNIT 2 BASIC MATHEMATICAL CONCEPTS
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2.6 Ordinary Differential Equations — Notions
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2.10 Difference Equations
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2.1 Linear Algebra & Linear Equations
Linear Algebra

In the modeling of biochemical systems, many relations do not hold just for one
quantity but also for several. For example, all metabolites of a pathway have concen-
trations that may be concisely represented in a vector of concentrations. These meta-
bolites are involved in a subset of the reactions occurring in this pathway; the respec-
tive stoichiometric coefficients may be presented in a matrix. Using techniques of
linear algebra helps us to understand properties of biological systems. In Sec-
tion 3.1.1 we will briefly recall the classical problem of how to solve a system of
linear equations, since the solution algorithm represents a basic strategy. Afterwards
we will introduce our notions for vectors, matrices, rank, null space, eigenvalues,
and eigenvectors.

Linear Equations
Linear Equations
A linear equation of n variables x,, x;, ..., x,, is an equation of the form
mxi+amxr+...+a,x,=bh, (3-1)
where a,, a,, ..., a,, b are real numbers. For example, 2x; + 5x; = 10 describes a line

passing through the points (x;, x;) = (5,0) and (x,, x;) = (0,2). A system of m linear
equations of n variables x,, x,, ..., x,, is a system of linear equations as follows
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a1 X +ax +...+amx, =bh

G1% +apx)+...+ayx, =b
(3-2)

Am1 X1 + Gm2 X2+ ... + Gpn X = by, .

If by=b,=...=b,, =0, the system is homogeneous. We wish to determine whether
the system in Eq. (3-2) has a solution, i.e., if there exist numbers x;, x,, ..., x,,, which
satisfy each of the equations simultaneously. We say that the system is consistent if it
has a solution. Otherwise the system is called inconsistent.

In order to find the solution, we employ the matrix formalism (Section 3.1.2).
The matrix A, is the coefficient matrix of the system and has the dimension m x n,
while the matrix 4, of dimension m x n+ 1 is called the augmented matrix of the
system:

a1 @12 ... O1a @ 61 ... Guw|b
Ay G2 ... Oyy @y Gy ... Gy |b

A = . . . . A, = . . . . . (3-3)
ami @m2 ... Omn Gm1  @m2 ... Omn bm

The solution of a single linear equation with one unknown is easy. A system of lin-
ear equations can be solved using the Gaussian elimination algorithm. The follow-
ing terms are needed. A matrix is in row-echelon form if (1) all zero rows (if any) are
at the bottom of the matrix and (2) if two successive rows are nonzero, the second
row starts with more zeros than the first (moving from left to right).

Example 3-1

Matrix B, is in row-echelon form and matrix B, in non-row-echelon form:

0 0
2 2
0 0

= O N O
NOoONO

3 1 3 1
0 3 0 3
0 4 0 4
0 0 0 0

A matrix is in reduced row-echelon form if (1) it is in row-echelon form, (2) the
leading (leftmost nonzero) entry in each nonzero row is 1, and (3) all other elements
of the column in which the leading entry 1 occurs are equal to zero.
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2.2 Systematic Solution of Linear Systems

Suppose a system of m linear equations of n unknowns x,, x,, ..., x,, has the augmen-
ted matrix 4 and A4 is row-equivalent to the matrix B, which is in reduced row-eche-
lon form. A and B have the dimension m x (n + 1). Suppose that B has r nonzero
rows and that the leading entry 1 in row i occurs in column number C; for1 =i=<r
Then

I1=G<G<..<C=n+1. (3-8)

The system is inconsistent if C,= n + 1. The last nonzero row of B has the form
(0,0,..., 0, 1). The corresponding equation is

O0x;+0x, +...4+0x,=1. (3-9)
This equation has no solution. Consequently, the original system has no solution.
The system of equations corresponding to the nonzero rows of B is consistent if

C, < n. Itholds thatr < n.
Ifr=nthen C;=1,C, =2, ..., C, = n, and the corresponding matrix is
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(1 0 0 d1\
0 0| d,
B=|0 0 1|d, (3-10)
0 0 00
\0 0 ... 0|0/

There is a unique solution x; = dy, x; = d,, ..., x,, = d,,, which can be directly read
off from B.

If r <n, the system is underdetermined. There will be more than one solution (in
fact, infinitely many solutions). To obtain all solutions, take x¢ , ..., X as dependent
variables and use the r equations corresponding to the nonzero rows of B to express
these variables in terms of the remaining independent variables x¢_, ..., xc , which
can assume arbitrary values:

xc, = biny1 — bic,,, xc,,, — ... — bic, xc,
(3-11)
xc, = b1 —bc,,, %c,,, —... — by, %c, -

In particular, taking xc =0, ..., xc_ =0 and xc =0 or xc_= 1 produces at least
two solutions.
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2.3 Matrices - Basic Notions

3.1.2.1 Basic Notions
Let us consider the space of real numbers ). A scalar is a quantity whose value can
be expressed by a real number, i.e., by an element of ). It has a magnitude, but no
direction. A vector is an element of the space )", It contains numbers for each coor-
X1
X7
dinate of this space, e.g., x =
X,
A matrix is a rectangular array of m x n elements of % in m rows and n columns,
such as

@11 12 ... Oqp
an a2 ... (O

A=\ . . .| =lau]. (3-14)
Am1 Am2 ce. Omn

Here and below, it holds thati=1, .., mand k=1, ..., n.

For our purposes, a vector can be considered as a matrix comprising only one col-
umn (m x 1).

In a zero matrix 0 all elements are zero (a;, = 0 for all i, k). The matrix is a square
matrix if it holds that m = n. A square matrix is a diagonal matrix if a; =0 for all
i # k. A diagonal matrix is called an identity matrix I, if it holds that a;, =1, for

1 0 ... 0
) 0 1 0
i=korl,= . .
0 0 1
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2.4 Linear Dependency

3.1.2.2 Linear Dependency

The vectors xy, ..., x,,, of type n x 1 are said to be linearly dependent if scalars o, ..., ,,
exist, not all zero, such that o;x, + ... + %,,x,, = 0. In other words, one of the vectors
can be expressed as a sum over certain scalar multiples of the remaining vectors, or
one vector is a linear combination of the remaining vectors. If oy, + ... + %,,x,, =0
has only the trivial solution o) = ... =, =0, the vectors are linearly independent.
A set of m vectors of type n x 1 is linearly dependent if m > n. Equivalently, a linearly
independent set of m vectors must have m < n.

2.5 Basic Matrix Operations

The transpose A" of a matrix A is obtained by interchanging rows and columns:
A" = [ag])" = [aw). (3-15)

The sum of two matrices 4 and B of the same size m x nis
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A+ B = [ay] + [bi] = [ai + bit]. (3-16)

The matrix product of matrix 4 with sizes m x n and matrix B with size n x pis

A.B = [Z a - bjk]. (3-17)
j=1

A scalar multiple of a matrix A4 is
o-A=o-[ag] =[x ay]. (3-18)

Subtraction of matrices is composed of scalar multiplication with -1 and summa-
tion:

A—B=A+(-1)-B. (3-19)

Division of two matrices is not possible. However, for a square matrix 4 of size
n x n, one may in some cases find the inverse matrix 4™, fulfilling

AA Y =A"A=1,. (3-20)
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If the respective inverse matrix A4 " exists, then 4 is called nonsingular (regular)
and invertible. If the inverse matrix A~' does not exist, then A is called singular. The
inverse matrix of an invertible matrix is unique. For invertible matrices it holds that:

A=A (3-21)
and
(AB) '=B1lAa". (3-22)

Matrix inversion: for the inverse of a 1 x 1 matrix, it holds that (a,,)™" = (a7}); the
inverse of a 2 x 2 matrix is calculated as:

a b\ 1 d —b
(r.' d) _ad—bc(—c (J)' (3-23)

In general the inverse of an n x n matrix is given as

An An ... An
1 Ay Apn ... Ap
-1 _ 24
A =paa| : (3-24)
Aln Aln v Ann

where A;, are the adjoints of A. For DetA, see below.
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If a square matrix A is invertible, its rows (or columns) are linearly independent.
In this case, the linear equation system A.x = 0 with x = (x,, ..., x,,) " has only the tri-
vial solution x = 0. If A4 is singular, i.e., rows (or columns) are linearly dependent,
then the linear equation system A.x = 0 has a nontrivial solution.

The determinant of A (DetA) is a real or complex number that can be assigned to
every square matrix. For the 1 x 1 matrix (a1), it holds that Det4 = a,,. Fora 2 x 2
matrix, it is calculated as

Det (011 012) _
21 062

The value of a determinant of higher order can be obtained by an iterative proce-

dure, i.e., by expanding the determinant with respect to one row or column: sum up

every element of this row (or column) multiplied by the value of its adjoint. The ad-

joint A;; of element a;; is obtained by deleting the i-th row and the k-th column of

the determinant (forming the (i,k) minor of A), calculating the value of the (i,k)
minor and multiplying by (-1)"**. For example, a determinant of third order is

a1 an

= a1 a2 —apzay . (3-25)
421 an

an a1z 0613
a1 axp ap|=anAn +apAn +aiAs
asy a4z asz

an G2
az;  asp

an a3

2 |G &
=an -(=1)" -
a3 aiz

N4 an-(=1) - +ap - (=1)*- (3-26)
A3y Aazz

= a1 - (a2 33 — a3 az2) — a1z - (@21 @33 — a3 as) + a1z - (@ az; — a2 a31).

The value of a determinant is zero (1) if it contains a zero row or a zero column or
(2) if one row (or column) is a linear combination of the other rows (or columns). In
this case, the respective matrix is singular.

2.6 Ordinary Differential Equations — Notions
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An important problem in the modeling of biological systems is to characterize the
dependence of certain properties on time and space. One frequently applied strategy
is the description of the change of state variables by differential equations. If only
temporal changes are considered, ordinary differential equations (ODEs) are used.
For changes in time and space, partial differential equations are appropriate. In this
section we will deal with solutions, analysis, numerical integration of ordinary differ-
ential equations, and basic concepts of dynamical systems theory as state space, tra-
jectory, steady states, and stability.

The time behavior of biological systems in a deterministic approach can be de-
scribed by a set of differential equations

——=x=fi(x,..., Xps Pro- - p.t) i=1,..., n, (3-30)

where x; represents the variables, e.g., concentrations, p; represents the parameters,
e.g., enzyme concentrations or kinetic constants, and t is the time. We will use the
notions ’ and x interchangeably. In vector notation, Eq. (3-30) reads

%x:.‘é:f(x.p. ), (3-31)

with x = (xy, ..., x,) %, f= (fi, ...,f;)T, andp=(py, ... p,)T.
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2.7 Solution of Linear ODE Systems

We may be interested in two different types of problems: describing the temporal
evolution of the system and finding its steady state. The problem of finding the
steady state x of a linear ODE system x = 0 implies that Ax + z = 0. The solution ne-
cessitates inversion of the system matrix 4:

Xx=-A"z. (3-40)
The time course solution of homogeneous linear ODEs is described below. The
systems can be solved using an exponential function as approach. In the simplest

case n =1, we have

axy
dt

=1 X (3-41)
Introducing the approach x, (t) = b, ¢” with constant b, into Eq. (3-41) yields:

bl /8”1 = a1 bl 8;'! . (3-42)
Equation (3-42) is true if 4 = a;,. This leads to the general solution

x1 () = by e™". (3-43)

To find a particular solution, we must specify the initial conditions x (t = 0) = x7 =
by €""'|,0 = by. Thus, the solution is
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x (1) = x§ et (3-44)

For a linear homogeneous system of n differential equations, x = Ax, the approach
is x = be”. This gives x = bie”" = Abe’". The scalar factor ¢** can be cancelled out,
leading to b/ = Ab or the characteristic equation

(A—i1,)b=0. (3-45)

The solution of this equation is described in Section 3.1.2.

For homogeneous linear systems, the superposition principle holds: if x; and x;,
are solutions of this ODE system, then their linear combination is also a solution.
This leads to the general solution of the homogeneous linear ODE system:

x(t)=Y cbVeH, (3-46)
i=1

where b'" are the eigenvectors of the system matrix A corresponding to the eigenva-
lues /;. A particular solution specifying the coefficients ¢; can be found considering

n .
the initial conditions x(t=0) =x"=Y ¢ b". This constitutes an inhomogeneous
i=1
linear equation system to be solved for ¢;.

For the solution of inhomogeneous linear ODEs, the system x = Ax + z can be trans-
formed into a homogeneous system by the coordination transformation X =x —x.
: d_ , d. . :
Since il Ax +z =0, it holds that T = Ax. Therefore, we can use the solution
algorithm for homogeneous systems for the transformed system.
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2.8 Maltus law
Malthus believed that through preventative checks and positive checks, the population

would be controlled to balance the food supply with the population level. These checks
would lead to the Malthusian catastrophe.

AQuantity

Population

Malthusian catastrophe
P Production of food

Time

Malthusianism is the idea that population growth is potentially exponential while the
growth of the food supply or other resources is linear, which eventually reduces living
standards to the point of triggering a population die off. It derives from the political and
economic thought of the Reverend Thomas Robert Malthus, as laid out in his 1798
writings, An Essay on the Principle of Population. Malthus believed there were two
types of ever-present "checks" that are continuously at work, limiting population
growth based on food supply at any given time:

preventive checks, such as moral restraints or legislative action — for example the
choice by a private citizen to engage in abstinence and delay marriage until their
finances become balanced, or restriction of legal marriage or parenting rights for
persons deemed "deficient” or "unfit" by the government.
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positive checks, such as disease, starvation, and war, which lead to high rates of
premature death — resulting in what is termed a Malthusian catastrophe. The adjacent
diagram depicts the abstract point at which such an event would occur, in terms of
existing population and food supply: when the population reaches or exceeds the
capacity of the shared supply, positive checks are forced to occur, restoring balance.
(In reality the situation would be significantly more nuanced due to complex regional
and individual disparities around access to food, water, and other resources.)

Such a catastrophe inevitably has the effect of forcing the population (quite rapidly, due
to the potential severity and unpredictable results of the mitigating factors involved, as
compared to the relatively slow time scales and well-understood processes
governing unchecked growth or growth affected by preventive checks) to "correct"
back to a lower, more easily sustainable level. Malthusianism has been linked to a
variety of political and social movements, but almost always refers to advocates
of population control.

2.9 Stability of Steady States

If a system is at steady state it should stay there, at least until an external perturba-
tion occurs. Depending on systems behavior after perturbation, their steady states
are

e stable (the system returns to this state),
e unstable (the system leaves this state), or
e metastable (the system behavior is indifferent).

A steady state is asymptotically stable if it is stable and nearby initial conditions
tend to this state for t — oo. Local stability describes the behavior after small pertur-
bations, global stability after any perturbation.

To investigate whether a steady state x of the ODE system x = f(x) is asymptoti-
cally stable, we consider the linearized system &= A& (Section 3.2.1.2) with &(f) =
x (t) = x. The steady state x is asymptotically stable if the Jacobian 4 has n eigenva-
lues with strictly negative real parts each. The steady state is unstable if at least one
eigenvalue has a positive real part. This will be explained in more detail for one- and
two-dimensional systems.
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We start with one-dimensional systems, i.e.,, n=1. Without a loss of generality

- Y i i ‘ a
%1 =0 or x; = &;. To the system x; = fj (x;) belongs the linearized system x; = % .
11%
) a
Xy = ay1%;. The Jacobian matrix 4 = {a,,} has only one eigenvalue, 7, = a;, = % o
1 1%

The solution is x; (t) = xJe™". It is obvious that ¢* increases for 4, > 0 and that the
system runs away from the steady state. For /4, < 0, the deviation from steady state
decreases and x; (t) — %, fort — . For 4; = 0, consideration of the linearized system
allows no conclusion about stability of the original system.

Consider the two-dimensional case n = 2. To the system

x1 = f; (x1.%2)

‘ 3-4
% = f; (x1,%2) (3-47)
belongs the linearized system
a a
xl — i ) xl + L xz ﬂ . ﬂ )
8x1 x sz x or x= 3'%'1 x 8x2 x e (au alZ)x:Ax (3-48)
ad a a d a; a2
oy | O | 9|
0xy | %) | Oxy |z 0x) |z
To find the eigenvalues of 4, we have to solve the characteristic polynomial
A — (@11 + an) 4+ a11 62 — a8 =0 (3-49)
Trace A Det A
and get
Trace A Trace A)’
hip = m‘; + \/ ( mi“’ N Deta. (3-50)

The eigenvalues are either real for (Trace A)*/4 — Det A = 0) or complex (other-
wise). For complex eigenvalues, the solution contains oscillatory parts.

For stability it is necessary that Trace 4 <0 and Det A > 0. Depending on the sign
of the eigenvalues, steady states of a two-dimensional system may have the following
characteristics:
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1.4, <0, /3 <0, both real: stable node;

2.74 >0, 43 > 0, both real: unstable node;

3./1 >0, 4, <0, both real: saddle point, unstable;

4.Re (/1) <0, Re(4,) <0, both complex with negative real parts: stable focus;
5.Re (1) > 0, Re(/;) > 0, both complex with positive real parts: unstable focus; or
6.Re(/,) =0, Re(/;) = 0, both complex with zero real parts: center, unstable.

Graphical representation of stability depending on trace and determinant is given
in Fig. 3.2.

Up to now we have considered only the linearized system. For the stability of the
original system, the following holds. If the steady state of the linearized system is
asymptotically stable, then the steady state of the complete system is also asymptoti-
cally stable. If the steady state of the linearized system is a saddle, an unstable node,
or an unstable focus, then the steady state of the complete system is also unstable.
This means that statements about the stability remain true, but the character of the
steady state is not necessarily kept. No statement about the center is possible.

The Routh-Hurwitz theorem (Bronstein and Semendjajew 1987) states: For sys-
tems with n > 2 differential equations, it holds that the characteristic polynomial

G A"+ Ay A"+t Aitag=0 (3-51)

is a polynomial of degree n, which frequently cannot be solved analytically (at least
for n < 4). We can use the Hurwitz criterion to test whether the real parts of all eigen-
values are negative. We have to form the Hurwitz matrix H, containing the coeffi-
cients of the characteristic polynomial:
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TrA

A
2, >0,4,>0, real:
unstable node

X
4, >0,1,<0, real:

unstable saddle

Re(A )=Re(h,)=0, <
complex: center

4Det A=(Tr A)

Re(A,)=0, Re( 4,)=0, complex:
unstable focus

@+

Re(X)<0, Re( 4,)<0, complex:
stable focus

» Det A

A, <0,2,=0, real:
unstable saddle

~

A, <0,4,<0, real:
stable node

Fig. 3.2 Stability of steady states in two-dimensional systems. The
character of steady-state solutions is represented depending on the
value of the determinant (x-axis) and the trace (y-axis) of the Jaco-
bian matrix. Phase plane behavior of trajectories in the different
cases is schematically represented.

2.10 Difference Equations

Modeling with difference equations employs a discrete timescale, in contrast to the
continuous timescale in ODEs. For some processes, the value of the variable x at a
discrete time point t depends directly on the value of this variable at a former time
point. For example, the actual number of individuals in a population of birds in one
year can be related to the number of individuals last year.
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A general (first-order) difference equation takes the form
xi =f (t,x;_1) forallt. (3-56)
We can solve such an equation by successive calculation: given x,, we have

x1 = f (1, x0)
x =f(2,%)=f(2.f(1,x)). (3-57)

In particular, given any value xo, there exists a unique solution path x;, x,, ... For
simple forms of the function f, we can also find general solutions.

Example 3-13

Consider the exponential growth of a bacterial population with a doubling of the
population size x; in each time interval. The recursive equation x;=2x;, is
equivalent to the explicit equation x; = x, - 2° and also to the difference equation
X=X q =A% =x_4.

The difference equation expresses the relation between values of a variable at dis-
crete time points. We are interested in the dynamics of the variable. For the gen-
eral case x; = rx;_,, it can be easily shown that x; = ¥ x,. This corresponds to the
law of exponential growth (Malthus’ law). The dynamic behavior depends on the

parameter r:

l<r: exponential growth

r=1: x remains constant, steady state
0<r<1: exponential decay

-1<r<0: alternating decay

r=-1: periodic solution

r<-1: alternating increase

Example time courses are shown in Fig. 3.4.
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A difference equation of the form

Xk =f (Kigks - - -5 Xit1> %i) (3-58)

is a k-th order difference equation. Like ODEs, difference equations may have sta-
tionary solutions that might be stable or unstable, which are defined as follows. The
value x is a stationary solution or fix point of the difference equation (Eq. (3-58)) if
X =f(x). A fix point is stable (or unstable), if there is a neighborhood N = {x:|x -
X| < &} such that every series that begins in N converges against x (leaves N). The fol-
lowing sentence is practically applicable: the fix point is stable under the condition

df (%)

dx

< 1.

X

that fis continuously differentiable if

» | Fig.3.4 Temporal behavior of a difference equa-
tion describing exponential growth for various va-
lues of parameter r (r drops with the gray level).
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Example 3-14

The simplest form of the logistic equation, which plays a role in population dy-
namics, is X,41 = rx, (1 — %), with f(x) = rx (1 — x) where r is a positive valued

1
parameter. This difference equation has two fix points, ¥ =0 and X, =1 — =

Stability analysis yields that fix point X, is stable if f ( )

df (x)
dx

=r < 1 and fix point
#

=[2—-rl <1;hence,1<r<3.
*2
For r > 3 there are stable oscillations of period 2, i.e., successive generations alter-
nate between two values. Finding the steady states ¥, and ¥, is enabled by the
new function g(x)=f (f(x)). The equation g(x)=x has the two solutions

Fr2=1 R (3 —nlr+1) . They are stable if gdi x)

(), (45,

X2
higher period occur, which can be treated in a manner analogous to oscillations of
period 2. For r > r.;, chaos arises, i.e., albeit a deterministic description, the sys-
tem trajectories in fact cannot be reliably predicted and may differ remarkably for
close initial conditions. The points r=1, r= 3, and r= 3.3 are bifurcation points
since the number and stability of steady states change. A graphical representation
is given in Fig. 3.5.

X, is stable if

< | holds fori=1,2 or

&

<1, i.e, for 3<r<3.3. For r> 3.3, oscillations of

2.11 Graph and Network Theory

Many kinds of data arising in systems biology applications can be represented as
graphs (metabolic pathways, signaling pathways, or gene regulatory networks).
Other examples are taxonomies, e.g., of enzymes or organisms; protein interaction
networks; DNA, RNA, or protein sequences; chemical structure graphs; or gene
co-expression. In this section we give a brief overview of the formalization of graph
problems (Section 3.5.1) and introduce specifically the framework of gene regula-

tory networks (Section 3.5.2) that are essential for the analysis of transcriptome

data.

tory networks (Section 3.5.2) that are essential for the analysis of transcriptome

data.
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The degree of a vertex i, d (i), in an undirected graph is the number of edges con-
nected to i, d(i) = H(i.j) € Ej=1,.., n” The degree of a vertex i in a directed
graph is defined as the sum of its in-degree and out-degree. The in-degree of vertex i
is defined as the number of edges entering vertex i, and the out-degree is the num-
ber of edges leaving it. The degree of a vertex i can be computed from the adjacency
matrix as the sum of the i-th row (out-degree) and the i-th column sums (in-degree).

Topological properties of interaction graphs are commonly used in applications to
characterize biological function (Jeong et al. 2001; Stelling et al. 2002; Przulj et al.
2004). For example, lethal mutations in protein-protein interactions are defined by
highly connected parts of a protein interaction graph whose removal disrupts the
graph structure.

A path of length [ from a vertex v, to a vertex v; in a graph G (V, E) is a sequence of
vertices vy, ..., v; such that (v,y, v;)e Efori=1, ..., I. A path is a cycle if | = 1 and
vo = . A directed graph that contains no cycle is called a directed acyclic graph. The
weight of a path in a weighted directed graph is the sum of the weights of all edges
constituting the path. The shortest path from vertex v, to vertex v; is the path with
the minimal weight. If all weights are equal, then the shortest path is the path from
vertex vy to vertex v; with the minimal number of edges.

An important practical problem consists of the identification of substructures of a
given graph. An undirected graph is connected when a path exists for each pair of
vertices. If a subset of a graph is connected, it is called a connected component.

2.12 Regulatory Networks

Regulatory networks are graph-based models for a simplified view on gene regula-
tion (cf. Chapter 8). Transcription factors are stimulated by upstream signaling cas-
cades and bind on cis-regulatory positions of their target genes. Bound transcription
factors promote or inhibit RNA polymerase assembly and thus determine whether
and to what extent the target gene is expressed. The modeling of gene regulation via
genetic networks has been widely used in practice (for a review, see de Jong 2002).
We give here a brief introduction to some basic principles.

2.13 Linear, Boolean, Bayesian Networks.
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The general model of gene regulation assumes that the change of gene expression of
gene x; at time t can be described by the following equation

dx.:it( Lnf (i wij % (1) + Xm: Vik v (8) + bi) —Aix (1), (3-100)
J=1 k=1
where

f is the activation function,

x;(t) is the gene expression of gene i at time t,

t is the reaction rate of gene i,

w;;  is the weight that determines the influence of gene j on gene i,

u. (t) are the external inputs (e. g., a chemical compound) at time ¢,

v is the weight that determines the influence of external compound k on gene i,
b; is a lower base level of gene i, and

4i  is the degradation constant for gene i.

The activation function, f, is a monotone function, assuming that the concentra-
tion of the gene is monotonically dependent on the concentrations of its regulators.
Often, these functions have sigmoid form, such as f(z) = (1 + ¢ ). If this function
is the identity, i.e., f (z) = z, then the network is linear. Additionally, common simpli-
fications include constancy in the reaction rates, no external influence, and no degra-
dation, so that Eq. (3-100) reduces to

dx;t(t) = “wyx () + b (3-101)

j=1

These models have been investigated, for example, by D’Haeseleer et al. (1999).
The interesting parameters are the weights w;;, which are estimated by statistical
methods (cf. Section 3.4.4).

ij

3.5.2.2 Boolean Networks
Boolean networks are qualitative descriptions of gene regulatory interactions. Gene
expression has two states: on (1) and off (0) (Kauffman 1993; Akutsu et al. 1999,
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2000, Cormen et al. 2001). Let x be an n-dimensional binary vector representing the
state of a system of n genes. Thus, the state space of the system consists of 2"possi-
ble states. Each component, x;, determines the expression of the i-th gene. With
each gene i we associate a Boolean rule, b;. Given the input variables for gene i at
time t, this function determines whether the regulated element is active or inactive
attime t+1,i.e,

xi(t+1) =bi(x(),1<i=<n. (3-102)

Equation (102) describes the dynamics of the Boolean network. The practical feasi-
bility of Boolean networks is heavily dependent on the number of input variables, k,
for each gene. The number of possible input states of k inputs is 2*. For each such
combination, a specific Boolean function must determine whether the next state
would be on or off. Thus, there are 2% possible Boolean functions (or rules). This
number rapidly increases with the connectivity. For k = 2 we have four possible input
states and 16 possible rules; for k = 3, we have eight possible input states and 256
possible rules, etc.
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In a Boolean network each state has a deterministic output state. A series of states
is called a trajectory. If no difference occurs between the transitions of two states,
i.e., output state equals input state, then the system is in a point attractor. Point at-
tractors are analogous to steady states (cf. Section 3.2.3). If the system is in a cycle of
states, then we have a dynamic attractor. The Boolean rules for one and two inputs
as well as examples for the dynamic behavior of Boolean networks are given in Chap-
ter 10, Section 10.3.3.

There have been algorithms to reconstruct or reverse engineer (cf. Chapter 9)
Boolean networks from time series of gene expression data, i.e., from a limited
number of states. Among the first was REVEAL developed by Liang et al. (1999). Ad-
ditionally, properties of random Boolean networks were intensively investigated by
Kauffman (1993), e.g., global dynamics, steady states, connectivity, and the specific
types of Boolean functions.

3.5.2.3 Bayesian Networks

Bayesian networks are probabilistic descriptions of the regulatory network (Hecker-
man 1998; Friedman et al. 2000; Jensen 2001). A Bayesian network consists of (1) a
directed acyclic graph, G (V, E) (cf. Section 3.5.1), and (2) a set of probability distribu-
tions. The n vertices (n genes) correspond to random variables x;, 1 < i < n. For ex-
ample, in regulatory networks the random variables describe the gene expression le-
vel of the respective gene. For each x;, a conditional probability p (x;| L (x;)) is defined,
where L(x;) denotes the parents of gene i, i.e., the set of genes that have a direct reg-
ulatory influence on gene i. Figure 3.11 gives an example of a Bayesian network con-
sisting of five vertices.

The set of random variables is completely determined by the joint probability dis-
tribution. Under the Markov assumption, i.e., the assumption that each x; is condi-
tionally independent of its non-descendants given its parents, this joint probability
distribution can be determined by the factorization via
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Fig. 3.11 Bayesian network. The network structure
@ @ determines, e.g., the conditional independencies
i (1, x2), 0(x3, X4 |x1). i(xs,x3|x4). The joint probability
distribution has the form

px) = ]ip(xilL(m)). (3-103)

Here, conditional independence of two random variables x; and x; given a random
variable x, means that p (xi. xj|x) = p (xi|x) p (xjl%) or, equivalently, p (xi|x;, xi) =
p (xi|x). The conditional distributions given in Eq. (3-103) are typically assumed to
be linearly normally distributed, i.e., p(xi‘L(xi)) ~ N> arx. 0, where x; is in

k

the parent set of x;. Thus, each x; is assumed to be normally distributed around a
mean value that is linearly dependent on the values of its parents.

The typical application of Bayesian networks is learning from observations. Given
a training set T of independent realizations of the n random variables x! .. ¥ the
problem is to find a Bayesian network that best matches T. A common solution is
to assign a score to each calculated network using the a posteriori probability of the
calculated network, N, given the training data (cf. Section 3.4.1) by log P(N|T) =
log w =log P(T|N) + log P(N) + const, where the constant is indepen-
dent of the calculated network and P(T|N)= [P (T|N,®)P(O|N)dO is the mar-
ginal likelihood that averages the probability of the data over all possible parameter
assignments to the network. The choice of the a priori probabilities P(N) and
P(©|N) determines the exact score. The optimization of the a posteriori probability is
beyond the scope of this introduction. For further reading, see e.g., Friedman et al.
2000; Jensen 2001; and Chickering 2002.
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UNIT 3 STANDARD MODELS AND APPROACHES
3.1 Metabolism

Living cells require energy and material for building membranes, storing molecules,
replenishing enzymes, replication and repair of DNA, movement, and many other processes.
Through metabolism cells acquire energy and use it to build new cells. Metabolism is the means
by which cells survive and reproduce. Metabolism is the general term for two kinds of
reactions: (1) catabolic reactions (breakdown of com- plex compounds to get energy and
building blocks) and (2) anabolic reactions (con- struction of complex compounds used in
cellular functioning). Metabolism is a highly organized process. It involves thousands of
reactions that are catalyzed by en- zymes.

Metabolic networks consist of reactions transforming molecules of one type into molecules of
another type. In modeling terms, the concentrations of the molecules and their rates of change
are of special interest. The basic concepts of reaction net- works, which are outlined here, may
also be applied for other types of cellular reac- tion networks, e. g., signal transduction
pathways. In this chapter metabolism will be studied on three levels of abstraction:

1. Enzyme kinetics investigates the dynamic properties of the individual reactions in
isolation.

2. The network character of metabolism is studied with stoichiometric analysis con-
sidering the balance of compound production and degradation.

3. Metabolic control analysis quantifies the effect of perturbations in the network
employing the individual dynamics of concentration changes and their integration in
the network.

Note that most modeling approaches for individual biochemical reactions or net-

works of such reactions that are presented in this chapter also apply for other types of networks,
such as signaling cascades or binding of transcription factors to DNA. Since the modeling of
metabolic networks is the most elaborate, it is subsumed here.

In order to illustrate the theoretical concepts, we will apply a running example throughout this
chapter. This example comprises a subset of reactions of glycolysis in yeast as represented by
Hynne and colleagues (2001). You can also find the com- plete model and many other models
in modeling databases (Snoep and Olivier 2002).
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Example 1

We will consider the first four reactions from the upper part of glycolysis as well as
reactions balancing the energy currency ATP and ADP as represented in Fig. 5.1.

ADP
v
- ATP

ATP

ATP ADP
v Vy Vy
Glucose M Gluc-6-P ¥ Fruc-6-P 5—4

Va Vy
ADP—» ATP ATP —» ADP
Fig. 5.1 Schematic representation of the

upper part of glycolysis, i.e., the degradation
of glucose in order to yield energy and building
blocks for cellular processes. Abbreviations:
Gluc6P: glucose-6-phosphate; Fruc6P: fruc-
tose-6-phosphate; Frucl,6P;: fructose-1,6-bi-
sphosphate; ATP: adenosine-triphosphate;

ADP v
Fruc-16-P, —p

Vi
ATP + AMP 4— 2ADP

sine-monophosphate. Reactions: vy: hexoki-
nase; v;: consumption of glucose-6-phosphate
in other pathways; v;: phosphoglucoisome-
rase; v4: phosphofructokinase; vs: aldolase; vg:
ATP production in lower glycolysis; v7: ATP
consumption in other pathways; vg: adenylate
kinase.

ADP: adenosine-diphosphate: AMP: adeno-

The ODE system for this reaction system is given by

d
EGIchPz VI —Vy— 1

d
— Fruc6P = vy — v
dt V3 4

d
Echl,GPz =g — Vs

4 a1p =

-V — V2 — V4 + Vg — V7 — I
it 1 2 4 6 7 )

d
EADP=P1+v2+v4—v5+V7+2va

iAMPz —g.

dt (1)

Abbreviations are explained in the legend of Fig. 5.1. The individual rate expres-
sions read
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3.2 Enzyme Kinetics and Thermodynamics

This chapter deals with the deterministic kinetic modeling of individual biochemical
reactions. The basic quantities are the concentration S of a substance S (ie., the
number n of molecules of this substance per volume V) and the rate v of a reaction
(i.e., the change of concentration S per time t). This type of modeling is macroscopic
or phenomenological compared to the microscopic approach, where single mole-
cules and their interactions are considered.

Chemical and biochemical kinetics rely on the assumption that the reaction rate v
at a certain point in time and space can be expressed as a unique function of the con-
centrations of all substances at this point in time and space. Classical enzyme ki-
netics assumes for simplicity’s sake a spatial homogeneity (the “well-stirred” test
tube) and no direct dependency of the rate on time:

(t) = v(S(H). (5-10)

In more advanced modeling approaches moving towards whole-cell modeling,
spatial inhomogeneities are taken into account, paying tribute to the fact that many
components are membrane-bound or that cellular structures hinder the free move-
ment of molecules. However, in most cases one can assume that diffusion is rapid
enough to allow for an even distribution of all substances in space.

Enzymes catalyze biochemical reactions. Enzymes are proteins, often in complex
with cofactors (Chapter 2, Section 2.1). They have a catalytic center, are usually
highly specific, and remain unchanged by the reaction. One enzyme molecule cata-
lyzes about a thousand reactions per second (the so-called turnover number ranges
from 10s™ to 10”s™"). This leads to a rate acceleration of about 10° to 10'*-fold
compared to the uncatalyzed, spontaneous reaction.
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3.3 The Law of Mass Action

Biochemical kinetics is based on the mass action law, introduced by Guldberg and
Waage in the 19th century (Waage and Guldberg 1864; Guldberg and Waage 1867,
1879). It states that the reaction rate is proportional to the probability of a collision of
the reactants. This probability is in turn proportional to the concentration of reac-
tants to the power of the molecularity, i.e., the number in which they enter the speci-
fic reaction. For a simple reaction like

S,+S, == 2P, (5-11)
the reaction rate reads
v=v, —v_ =k S S —k_P*. (5-12)

vis the net rate, v, the rate of the forward reaction, v_ the rate of the backward reac-
tion, and k, and k_ are the respective proportionality factors, the so-called kinetic or rate
constants. The molecularity is 1 for each substrate of the forward reaction and 2 for the
backward reaction. If we measure the concentration in moles per liter (mol - L™ or M)
and the time in seconds (s), then the rates have the unit M - s, Accordingly, the rate
constants for bimolecular reactions have the unit M - s™'. Rate constants of monomole-
cular reactions have the dimension s™'. The general mass action rate law for a reaction
with substrate concentrations S; and product concentrations P, reads

I

v=v, —ve =k [IS -k TP, (5-13)
J

where m; and m; denote the respective molecularities of S; and P; in this reaction
(Heinrich and Schuster 1996).

The equilibrium constant K, (we will also use the simpler symbol g) characterizes
the ratio of substrate and product concentrations in equilibrium (S, and P, i.e.,
the state with equal forward and backward rates. The rate constants are related to K,
in the following way:

R S |

(5-14)
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The relation between the thermodynamic description and the kinetic description
of biochemical reactions will be outlined in Section 5.1.2.

The dynamics of the concentrations for Eq. (5-11) is described by the ODEs

d

—P=2v. 5-15
0 (5-15)
The time course of S, S, and P is obtained by integration of these ODEs.

Example 5-2
The kinetics of a simple decay such as

§ - (5-16)

d
is described by v=kS and ES= —kS. Integration of this ODE from time t=0
with the initial concentration S, to an arbitrary time t with concentration S(t),

5 :
i d—SS= — [ kdt,yields the temporal expression S (t) = Spe™.

So 1=0
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3.4 Reaction Kinetics and Thermodynamics

An important purpose of metabolism is to extract energy from nutrients, which is nec-
essary for the synthesis of molecules, for growth, and for proliferation. We distinguish
between energy-supplying reactions, energy-demanding reactions, and energetically
neutral reactions. The principles of reversible thermodynamics and their application
to chemical reactions allow understanding of energy circulation in the cell. This is
eased by the assumption that biological reactions usually occur in hydrous solution at
constant pressure and constant temperature with negligible volume changes.

Whether a reaction occurs spontaneously or not, in which direction a reaction pro-
ceeds, and the position of the equilibrium are important characteristics of a bio-
chemical process. The first law of thermodynamics, i.e., the law of energy conserva-
tion, tells us only that the total energy of a system remains constant during any pro-
cess. The second law of thermodynamics declares that a process occurs sponta-
neously only if it increases the total entropy of the system. Unfortunately, entropy is
usually not directly measurable. A more suitable measure is the Gibbs free energy
G, which is the energy capable of carrying out work under isotherm-isobar condi-
tions, i.e., at constant temperature and constant pressure. The change of the free en-
ergy 1s given as

AG = AH — TAS, (5-17)
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where AH is the change in enthalpy, A4S is the change in entropy, and T is the abso-
lute temperature in Kelvin. 4G is a measure for the driving force, the spontaneity of
a chemical reaction. If AG <0 then the reaction proceeds spontaneously under re-
lease of energy (exergonic process). If 4G > 0 then the reaction is energetically not
favorable and will not occur spontaneously (endergonic process). 4G = 0 means that
the system has reached its equilibrium. Endergonic reactions may proceed if they ob-
tain energy from a strictly exergonic reaction by energetic coupling. Free energy is
usually given for standard conditions (41G°), i.e., for a concentration of the reaction
partners of 1 M, temperature T = 298 K, and, for gaseous reactions, a pressure of p =
98.1 kPa = 1 atm. The unit is k] mol". For the free energy difference, a set of rela-
tions holds as follows. The free energy difference is related to redox potential E,.q 0y

AG = —nF - Ergfox » (5-18)
where n is the number of transferred charges and F is the Faraday constant (96,500

coulomb). The free energy difference for a reaction can be calculated from the differ-
ence of the sums of free energies of its products P and its substrates S:

AG =Y Gp—Y Gg. (5-19)
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The enzyme cannot change the free energies of the substrates and products of a
reaction, nor their differences, but it changes the so-called reaction path, thereby
lowering the activation energy for the reaction. The transition state theory explains
this (Haynie 2001). It has been observed that many substances or mixtures are ther-
modynamically unstable, since AG < 0 (see Tab. 5.1). Nevertheless, they can be
stored under normal conditions for a long time. The reason is that during the course
of a reaction, the metabolites must pass one or more transition states of maximal
free energy, in which bonds are solved or newly formed. The transition state is un-
stable; the respective molecule configuration is called an activated complex. It has a
lifetime of around one molecule vibration, 107'*...10"* s, and it can hardly be ex-
perimentally verified. The difference AG™ of free energy between the reactants and

Tab.5.1 Values of 4G” for some important reactions

Reaction AG® /(k] mol™")
IH, + 0, — 2 H,0 -474

2H,0, » 2H,0 + 0, —99

PP, + H,0 — 2 P, ~33.49

ATP + H,0 — ADP + P, -30.56
Glucose-6-phosphate + H,0 — Glucose + P; -13.82
Glucose + P; — Glucose-6-phosphate + H,0 +13.82
Glucose-1-phosphate — Glucose-6-phosphate -7.12
Glucose-6-phosphate — Fructose-6-phosphate +1.67
Glucose + 6 0, — 6 CO, + 6 H,0 -2890

Source: Lehninger 1975
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Transition State Fig. 5.3 Presentation of the change of free
. energy along the course of reaction. The sub-
Activated complex strate and the product are situated in local

minima of the free energy; the active complex
is assigned to the local maximum. The en-
zyme may change the reaction path and
thereby lower the barrier of free energy.

without Enzyme

Free Energy

Substrate o I

Reaction coordinate

the activated complex determines the dynamics of a reaction: the higher this differ-
ence, the lower the probability that the molecules may pass this barrier and the lower
the rate of the reaction. The value of AG” depends on the type of altered bonds, on
steric, electronic, or hydrophobic demands, and on temperature.

Figure 5.3 presents a simplified view of the reaction course. The substrate and the
product are situated in local minima of the free energy; the active complex is as-
signed to the local maximum. The free energy difference AG is proportional to the
logarithm of the equilibrium constant of the respective reaction:

AG = —RTIn K, (5-20)

(R - gas constant, 8.314 ] mol ' K™"). The value of AG” corresponds to the kinetic
constant k, of the forward reaction (Eqs. (12)-(14)) by AG” = = RT In k,, while AG”
+ AG is related to the rate constant k_ of the backward reaction.

The interaction of the reactants with an enzyme may alter the reaction path and
thereby lead to lower values of AG”. Furthermore, the free energy may assume
more local minima and maxima along the path of reaction. They are related to un-
stable intermediary complexes. Values for the difference of free energy for some bio-
logically important reactions are given in Tab. 5.1.

The detailed consideration of enzyme mechanisms by applying the mass action
law for single events has led to a number of standard kinetic descriptions, which will
be explained in the following sections.
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3.5 Review of network concepts

We are surrounded by systems that are hopelessly complicated. Consider for example
the society that requires cooperation between billions of individuals, or
communications infrastructures that integrate billions of cell phones with computers
and satellites. Our ability to reason and comprehend our world requires the coherent
activity of billions of neurons in our brain. Our biological existence is rooted in
seamless interactions between thousands of genes and metabolites within our cells.

These systems are collectively called complex systems, capturing the fact that it is
difficult to derive their collective behavior from a knowledge of the system’s
components. Given the important role complex systems play in our daily life, in science
and in economy, their understanding, mathematical description, prediction, and
eventually control is one of the major intellectual and scientific challenges of the 21st
century.

The emergence of network science at the dawn of the 21st century is a vivid
demonstration that science can live up to this challenge. Indeed, behind each complex
system there is an intricate network that encodes the interactions between the system’s
components:

The network encoding the interactions between genes, proteins, and metabolites
integrates these components into live cells. The very existence of this cellular
network is a prerequisite of life.

The wiring diagram capturing the connections between neurons, called the neural
network, holds the key to our understanding of how the brain functions and to our
consciousness.

The sum of all professional, friendship, and family ties, often called the social network,
is the fabric of the society and determines the spread of knowledge, behavior and
resources.

Communication networks, describing which communication devices interact with each
other, through wired internet connections or wireless links, are at the heart of the
modern communication system.

The power grid, a network of generators and transmission lines, supplies with energy
virtually all modern technology.

Trade networks maintain our ability to exchange goods and services, being responsible
for the material prosperity that the world has enjoyed since WWII.

Networks are also at the heart of some of the most revolutionary technologies of the 21st
century, empowering everything from Google to Facebook, CISCO, and Twitter. At the end,
networks permeate science, technology, business and nature to a much higher degree than it
may be evident upon a casual inspection. Consequently, we will never understand complex
systems unless we develop a deep understanding of the networks behind them.
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The exploding interest in network science during the first decade of the 21st century is rooted
in the discovery that despite the obvious diversity of complex systems, the structure and the
evolution of the networks behind each system is driven by a common set of fundamental laws
and principles. Therefore, notwithstanding the amazing differences in form, size, nature, age,
and scope of real networks, most networks are driven by common organizing principles. Once
we disregard the nature of the components and the precise nature of the interactions between
them, the obtained networks are more similar than different from each other. In the following
sections we discuss the forces that have led to the emergence of this new research field and its
impact on science, technology, and society.

3.6 Properties and modelling of feedback/feedforward system

Feed forward loop (FFL) motif is one of the most significant one in both E. coliand yeast. The
FFL is composed of a transcription factor X, which regulates a second transcription factor Y.
X and Y both bind the regulatory region of target gene Z and jointly modulate its transcription
rate. The FFL has three transcription interactions. Each of these can be either positive
(activation) or negative (repression). There are therefore eight possible structural
configurations of activator and repressor interactions. Four of these configurations are termed
“coherent”: the sign of the direct regulation path (from X to Z) is the same as the overall sign
of the indirect regulation path (from X through Y to Z). The other four structures are termed
“incoherent”: the signs of the direct and indirect regulation paths are opposite. Mathematical
modeling indicates that FFLs can serve as a novel mechanism for accelerating the expression
of the target genes.

Feedback is defined as the information gained about a reaction to a product, which will allow
the modification of the product. Feedback loops are therefore the process whereby a change to
the system results in an alarm which will trigger a certain result. This result will either increase
the change to the system or reduce it to bring the system back to normal. A few questions
remain: How do these systems work? What is a positive feedback? What is negative feedback?
Where do we find these systems in nature?

Biological systems operate on a mechanism of inputs and outputs, each caused by and causing
a certain event. A feedback loop is a biological occurrence wherein the output of a system
amplifies the system (positive feedback) or inhibits the system (negative feedback). Feedback
loops are important because they allow living organisms to maintain homeostasis.
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3.7 Reaction kinetics
Reaction Kinetics and Thermodynamics

An important purpose of metabolism is to extract energy from nutrients, which is nec-
essary for the synthesis of molecules, for growth, and for proliferation. We distinguish
between energy-supplying reactions, energy-demanding reactions, and energetically
neutral reactions. The principles of reversible thermodynamics and their application
to chemical reactions allow understanding of energy circulation in the cell. This is
eased by the assumption that biological reactions usually occur in hydrous solution at
constant pressure and constant temperature with negligible volume changes.

Whether a reaction occurs spontaneously or not, in which direction a reaction pro-
ceeds, and the position of the equilibrium are important characteristics of a bio-
chemical process. The first law of thermodynamics, i.e., the law of energy conserva-
tion, tells us only that the total energy of a system remains constant during any pro-
cess. The second law of thermodynamics declares that a process occurs sponta-
neously only if it increases the total entropy of the system. Unfortunately, entropy is
usually not directly measurable. A more suitable measure is the Gibbs free energy
G, which is the energy capable of carrying out work under isotherm-isobar condi-
tions, i.e., at constant temperature and constant pressure. The change of the free en-
ergy is given as

AG = AH - TAS, (5-17)
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where AH is the change in enthalpy, A4S is the change in entropy, and T is the abso-
lute temperature in Kelvin. AG is a measure for the driving force, the spontaneity of
a chemical reaction. If 4G <0 then the reaction proceeds spontaneously under re-
lease of energy (exergonic process). If AG > 0 then the reaction is energetically not
favorable and will not occur spontaneously (endergonic process). AG = 0 means that
the system has reached its equilibrium. Endergonic reactions may proceed if they ob-
tain energy from a strictly exergonic reaction by energetic coupling. Free energy is
usually given for standard conditions (4G"), i.e., for a concentration of the reaction
partners of 1 M, temperature T = 298 K, and, for gaseous reactions, a pressure of p =
98.1 kPa = 1 atm. The unit is k] mol~’. For the free energy difference, a set of rela-
tions holds as follows. The free energy difference is related to redox potential E,.;/o.:

AG = —nF - Erdjox . (5-18)
where n is the number of transferred charges and F is the Faraday constant (96,500

coulomb). The free energy difference for a reaction can be calculated from the differ-
ence of the sums of free energies of its products P and its substrates S:
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AG=Y Gp—Y Gs. (5-19)

The enzyme cannot change the free energies of the substrates and products of a
reaction, nor their differences, but it changes the so-called reaction path, thereby
lowering the activation energy for the reaction. The transition state theory explains
this (Haynie 2001). It has been observed that many substances or mixtures are ther-
modynamically unstable, since 4G < 0 (see Tab.5.1). Nevertheless, they can be
stored under normal conditions for a long time. The reason is that during the course
of a reaction, the metabolites must pass one or more transition states of maximal
free energy, in which bonds are solved or newly formed. The transition state is un-
stable; the respective molecule configuration is called an activated complex. It has a
lifetime of around one molecule vibration, 10°** .10 s, and it can hardly be ex-
perimentally verified. The difference AG™ of free energy between the reactants and

Tab. 5.1 Values of AG” for some important reactions

Reaction AG® J(k] mol™)
2H, + 0, - 2H,0 474

2H,0, -2 H,0 +0, -99

PP, + H,0 —» 2 P, -33.49

ATP + H,0 — ADP + P, -30.56
Glucose-6-phosphate + H,0 — Glucose + P; -13.82
Glucose + P; — Glucose-6-phosphate + H,0 +13.82
Glucose-1-phosphate — Glucose-6-phosphate -7.12
Glucose-6-phosphate — Fructose-6-phosphate +1.67
Glucose + 6 0; —+ 6 CO; + 6 Hi0 -2890

Source: Lehninger 1975
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Transition State Fig. 5.3 Presentation of the change of free
s energy along the course of reaction. The sub-
Activated complex strate and the product are situated in local

minima of the free energy; the active complex
is assigned to the local maximum. The en-
zyme may change the reaction path and
thereby lower the barrier of free energy.

Free Energy

Reaction coordinate

the activated complex determines the dynamics of a reaction: the higher this differ-
ence, the lower the probability that the molecules may pass this barrier and the lower
the rate of the reaction. The value of AG” depends on the type of altered bonds, on
steric, electronic, or hydrophobic demands, and on temperature.

Figure 5.3 presents a simplified view of the reaction course. The substrate and the
product are situated in local minima of the free energy; the active complex is as-
signed to the local maximum. The free energy difference AG is proportional to the
logarithm of the equilibrium constant of the respective reaction:

AG = —RTInK,,, (5-20)

(R — gas constant, 8.314 ] mol 'K '). The value of AG” corresponds to the kinetic
constant k, of the forward reaction (Egs. (12)—(14)) by AG” =—-RTIn k,, while AG”
+ AG is related to the rate constant k_ of the backward reaction.

The interaction of the reactants with an enzyme may alter the reaction path and
thereby lead to lower values of AG”. Furthermore, the free energy may assume
more local minima and maxima along the path of reaction. They are related to un-
stable intermediary complexes. Values for the difference of free energy for some bio-
logically important reactions are given in Tab. 5.1.

The detailed consideration of enzyme mechanisms by applying the mass action
law for single events has led to a number of standard kinetic descriptions, which will
be explained in the following sections.
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3.8 competitive inhibition

A common characteristic of enzymatic reactions is the increase of the reaction rate
with increasing substrate concentration S up to the maximal velocity V4. But in
some cases, a decrease of the rate above a certain value of Sis recorded. A possible rea-
son for this is the binding of a further substrate molecule to the enzyme-substrate com-
plex, yielding the complex ESS, which cannot form a product. This kind of inhibition is
reversible if the second substrate can be released. The rate equation can be derived
using the scheme of uncompetitive inhibition by replacing the inhibitor by another
substrate. It reads,

v=kyEs = —— =% (5-4
Kn+S (1 + E)
This expression has a maximum at
Sopt = VK Ki  with vop = Your (5-45)
14 2VKa/K;

The dependence of v on S is shown in Fig. 5.6. A typical example for substrate in-
hibition is the binding of two succinate molecules to malonate dehydrogenase,
which possesses two binding pockets for the carboxyl group. This is schematically re-
presented in Fig. 5.6.

1
2
o8 CO*-CH,
06 CO*-CH,
=
04
02 CO*-CH, =CH,-CO*
0
] 1 2 3 4 COT_ “CH? =CH2 ‘Coz-
S

Fig.5.6 Plot of reaction rate v against substrate substrate inhibition. The enzyme (gray object)
concentration S for the case of substrate inhibi-  has two binding pockets to bind different parts
tion. The upper curve shows Michaelis-Menten  of a substrate molecule (upper scheme). In the
kinetics without inhibition, and the lower curves case of high substrate concentration, two differ-
show kinetics for the indicated values of binding ent molecules may enter the binding pockets,
constant K;. Parameter values: Vimax= 1, K, = 1. thereby preventing the specific reaction (lower
The left part visualizes a possible mechanism for scheme).
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3.9 co-operativity
Positive Homotropic Cooperativity and the Hill Equation

Consider a dimeric protein with two identical binding sites. The binding to the first

ligand facilitates the binding to the second ligand:

E,;+S ¥% E,S
E,S4S . ES, .

where E is a monomer and E; a dimer. The fractional saturation is given by

Y — ES+2ES; . E;S54+ ES;
" 2B 2E42ES+2ES,

(5-53)

(5-54)

If the affinity to the second ligand is strongly increased by binding to the first
ligand, then E,S will react with S as soon as it is formed, and the concentration of E,S
can be neglected. In the case of complete cooperativity, i.e., every protein is either

empty or fully bound, Eq. (5-53) reduces to
[":_5'1‘25 — E_‘;Sz.
The binding constant reads

E;S
E,-§*°

Kg =

and the fractional saturation is

v_2BS _ BS _ K
2E0a B2+ ES; 1+KgS

Generally, for a protein with n subunits it holds that

th' KB S "

v=Vpr Y = —— .
14 KpsS"
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This is the general form of the Hill equation. It implies complete homotropic coop-
erativity. Plotting the fractional saturation Y versus substrate concentration S yields a
sigmoid curve with the inflection point at 1/Kjp. The quantity n (often “h” is used in-
stead) is termed the Hill coefficient.

The derivation of this expression was based on experimental findings concerning
the binding of oxygen to hemoglobin (Hb) (Hill 1910, 1913). In 1904 Bohr and co-
workers found that the plot of the fractional saturation of Hb with oxygen against
the oxygen partial pressure had a sigmoid shape. Hill (1909) explained this with in-
teractions between the binding sites located at the hem subunits. At this time it was
already known that every subunit hem binds one molecule of oxygen. Hill assumed
complete cooperativity and predicted an experimental Hill coefficient of 2.8. Today it
is known that hemoglobin has four binding sites but that the cooperativity is not
complete. The sigmoidal binding characteristic has the advantage that Hb binds
strongly to oxygen in the lung with a high oxygen partial pressure, while it can re-
lease O, easily in the body with low oxygen partial pressure.

3.10 Hyperbolic and sigmoidal responses

In 1965 Monod and colleagues presented a model explaining sigmoidal enzyme ki-
netics taking into account the interaction of subunits of an enzyme (Monod et al.
1965). A more comprehensive model has been presented by Koshland et al. (1966).
The model of Monod et al. uses the following assumptions: (1) the enzyme consists
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of n identical subunits, (2) each subunit can assume an active (R) or an inactive (T)
conformation, (3) all subunits change their conformations at the same time (con-
certed change), and (4) the equilibrium between the R and the T conformations is
given by an allosteric constant:

L= E . (5-59)
Ry
The index i for T; and R; denotes the number of bound substrate molecules. The
binding constants for the active and inactive conformations are given by Ky and Kr,
respectively. If substrate molecules can bind only to the active form, i.e., if Kr=0,
then the rate can be given as

VinaxKrS 1

V=(1+KRS)(1+ i )
1+ KzS)"

(5-60)

Vumx KRS
(1+ KgS)

I -1
while the factor (1 -~ m) is a regulatory factor.

where the factor corresponds to the Michaelis-Menten rate expression,

For L =0 the plot v versus S is a hyperbola as in Michaelis-Menten kinetics. For
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L> 0 one gets a sigmoid curve shifted to the right. A typical value for the allosteric
constant is L =~ 10*.
In the case that the substrate can also bind to the inactive state (K # 0), one gets

14 KrS\"*!
K KL | ——
Vmaxs L (1+KRS)

" (1+KgS) (1 i1 (1 - KTS)")

1+ Ki$S
Up to now we have considered only homotropic and positive effects in the model
of Monod, Wyman, and Changeux. But this model is also well suited to explain the
dependence of the reaction rate on activators and inhibitors. Activators A bind only
to the active conformation, and inhibitors I bind only to the inactive conformation.

This shifts the equilibrium to the respective conformation. Effectively, the binding to
effectors changes L:

(5-61)

: (1+K D"
=L AT KA (5-62)
K;and K, denote binding constants. The interaction with effectors is a heterotro-
pic effect. An activator weakens the sigmoidity, while an inhibitor strengthens it as
shown in Figure 5.7.
As an example, the kinetics of the enzyme phosphofructokinase, which catalyzes
the transformation of fructose-6-phosphate and ATP to fructose-1,6-bisphosphate,

T 0 102 Fig. 5.7 Model of Monod, Wyman, and Chan-
. \ N — — _ geux: Dependence of the reaction rate on sub-
08 g . strate concentration for different values of the
06 allosteric constant L, according to Eq. (5-60).
> y ) o Parameters: Vmax=1,n=4, Kg =2, Kr=0.The
04 / \\ activation value of L is indicated at the curves. Obviously,
02 o Mot increasing the value of L causes stronger sig-
inhibition moidity. The influence of activators or inhibi-
0 —~- tors (compare Eq. (5-62)) is illustrated with the
0 2 4 6 8 10 dotted line for Kjl = 2 and with the dashed line
S for KsA = 2 (L= 10" in both cases).

can be described by the model of Monod, Wyman, and Changeux. AMP, NH,, and
K+ are activators, while ATP is an inhibitor (see Example 5-1).

3.11 Michaelis-Menten Kinetics
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Brown (1902) proposed the first enzymatic mechanism for the reaction of invertase,
which holds for all one-substrate reactions without backward reaction and without

effectors in general:

k, k,
E+S === ES—> E+P.

It comprises a reversible formation of an enzyme-substrate complex ES from the
free enzyme E and the substrate S and an irreversible release of the product P from
the enzyme E. The respective system of ODEs for the dynamics of this reaction reads

as follows:

ds
—=—k{E-S+k_ES
i 1 + K1
dES
dt
d_E
dt
dpP

=k E-S—(k_1+ky)ES

— —k E-S+(k_, +k)ES

The rate of the reaction is equal to the negative rate of decay of the substrate as

well as to the rate of product formation:
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ds _ dp
dt — dt

V=

(5-26)

This ODE system (Egs. (5-22)—(5-26)) cannot be solved analytically. Assumptions
have been used to simplify this system in a satisfactory way. Michaelis and Menten
(1913) assumed that the conversion of E and S to ES and vice versa is much faster
than the decomposition of ES into E and P (so-called quasi-equilibrium between the
free enzyme and the enzyme-substrate complex), or in terms of the constants

kiky > ky. (5-27)

Briggs and Haldane (1925) assumed that during the course of reaction a state is
reached where the concentration of the ES complex remains constant. This assump-
tion is justified only if the initial concentration of the substrate is much larger than
the concentration of the enzyme, S(t = 0) > E; otherwise, this steady state will never

be reached. They suggested the more general assumption of a quasi-steady state of
the ES complex:

dES
——o. 5-28
i (5-28)

An expression for the reaction rate will be derived using the ODE system in Egs.
(5-22)—(5-25) and the assumption of a quasi-steady state for ES. Adding Egs. (5-23)
and (5-24) results in

dES  dE

o+ =0 or Eaa=E+ES. (5-29)
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In this reaction, enzyme is neither produced nor consumed; it may be free or in-
volved in the complex, but its total concentration remains constant.

Introducing Eq. (5-29) into Eq. (5-23) under the steady-state assumption (Eq. (5-28))
yields

ki Eips1 S Eiu S
_ES — 1 Ltotal — total ) (5.30}
kiS+k_1+k; k-1 + kz
S+———
k1
For the reaction rate, this yields
_ ka Eiotal S (5-31)
- .
S+ Lkz
ki

In enzyme kinetics it is convention to present Eq. (5-31) in a simpler form, which
is important in both theory and practice:

_ VaxS
- S+K,

v (5-32)
Equation (5-32) is the expression for Michaelis-Menten kinetics. The parameters
have the following meaning: the maximal velocity,

Viax = k2 Eiaul (5-33)

is the maximal rate that can be attained when the enzyme is completely saturated
with substrate. The Michaelis constant,

Km — @ . (5-34)
ky

is equal to the substrate concentration that yields the half-maximal reaction rate. For
the quasi-equilibrium assumption (Eq. (5-27)), it holds that K,, = k_;/ki. The mean-
ing of the parameters can be seen from the plot of rate versus substrate concentra-
tion (Fig. 5.4). The plot has a hyperbolic shape.

Reaction vy, Eq. (5-2), is described with Michaelis-Menten kinetics.

School of Bio and Chemical Engineering



SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

3.12 Metabolic Networks
In this section we will discuss basic structural and dynamic properties of metabolic
networks. We will introduce a stoichiometric description of networks and learn how
moieties and fluxes are balanced within networks.

The basic elements of a metabolic network model are (1) the substances with their
concentrations and (2) the reactions or transport processes changing the concentra-
tions of the substances. In biological environments, reactions are usually catalyzed
by enzymes, and transport steps are carried out by transport proteins or by pores.
Thus they can be assigned to identifiable biochemical compounds.

Stoichiometric coefficients denote the proportion of substrate and product molecules
involved in a reaction. For example, for the reaction depicted in Eq. (5-11), the stoi-
chiometric coefficients of S;, S,, and P are —1, —1, and 2. The assignment of stoichio-
metric coefficients is not unique. We could also argue that for the production of one
mole P, half a mole of each S, and S, have to be used and therefore choose —1/2,
-1/2, and 1. Oy, if we change the direction of the reaction, then we may choose 1, 1,
and -2.

The change of concentrations in time can be described using ODEs. For the reac-
tion depicted in Eq. (5-11) and the first choice of stoichiometric coefficients, we have

das, as, P

i el and E_Zv. (5-63)

This means that the degradation of S; with rate v is accompanied by the degrada-
tion of S, with the same rate and by the production of P with the double rate.
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3.13 Systems Equations
For a metabolic network consisting of m substances and r reactions, the systems dy-
namics is described by systems equations (or balance equations, since the balance of
substrate production and degradation is considered):

ds; d .
5 = Z n; v for i=1..m (5-64)
=1

(Glansdorff and Prigogine 1971; Reder 1988). The quantities n;; are the stoichio-
metric coefficients of metabolite i in reaction j. Here, we assume that the reactions
are the only reason for concentration changes and that no mass flow occurs due to
convection or to diffusion. The balance equations (Eq. (5-64)) can also be applied if
the system consists of several compartments. In this case, every compound in differ-
ent compartments has to be considered as an individual compound, and transport
steps are formally considered as reactions transferring the compound belonging to
one compartment into the same compound belonging to the other compartment.
The stoichiometric coefficients n;; assigned to the substances S; and the reactions

vj can be combined into the so-called stoichiometric matrix
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N={n;} for i=1,.m and j=1 ..r, (5-65)

where each column belongs to a reaction and each row to a substance.

Example 5-4

For the simple network

Iv, (5-66)

1 -1 0 -1
N=|o 2 -1 o|. (5-67)
0 0 0 1

Note that in Eq. (5-66) all reactions may be reversible. In order to determine the
signs of N, the direction of the arrows is artificially assigned as positive “from left
to right” and “from the top down.” If, for example, the net flow proceeds from S;
to S,, the value of rate v, is negative.

Altogether, the mathematical description of the metabolic system consists of a vec-
tor §= (S, Sy, ..., Sn)Tof concentration values, a vector v = (vy, vy, ..., vr}Tof reaction
rates, a parameter vector p = (py, Pz, ..., Pm) » and the stoichiometric matrix N. If the
system is in steady state, we can also consider the vector J= (], /5, ..., J,)" containing
the steady state fluxes. With these notions, the balance equation reads

= = Nv. 5-68
T iid (5-68)
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For our running example (Example 5-1) of the upper glycolysis model, the con-
centration vector is

[ GlucsP
Fruc6P

Frucl,6P,
ATP ’
ADP

\ AMP

(5-69)

the vector of reaction rates is v = (vy, V5, ..., vg)", the parameter vector is given by

= (GIMOSE, Vmax.1- Katp.1. KGlucose,1- k2. V;,Eax';, Vimax 30 Kciuesp, 3, Krrucsp.3»

I
Vmax.4. Krep.4, K4, ks, ks, k7., kg, kSr) , (5-70)
and the stoichiometric matrix reads

/1 -1 -1 0 0 0 0
0 0 1 -1 0 0 0 0
0 0 0 0 0

-1 -1 0 -1 0 1
1 1 0 1 0 -1 1 2

L0 0 0 0 0 0 0 -1)

3.14 Information Contained in the Stoichiometric Matrix N
The stoichiometric matrix contains important information about the structure of the
metabolic network. Using the stoichiometric matrix, we can calculate which combi-
nations of individual fluxes are possible in steady state (i.e., calculate the admissible
steady-state flux space). We may easily discover dead ends and unbranched reaction
pathways. In addition, we may find out the conservation relations for the included re-
actants.

(5-71)
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In steady state it holds that

as
I =Nv=20 (5-72)

(Reder 1988). The right equality sign denotes a linear equation system for determi-
nation of the rates v. This equation has nontrivial solutions only for Rank N<r
(Chapter 3, Section 3.1). The kernel matrix K fulfilling

NK =0 (5-73)

can express the respective linear dependencies (Heinrich and Schuster 1996). The
choice of the kernel is not unique. It can be determined using the Gauss algorithm
described in Chapter 3 (Section 3.1). It contains as columns r— Rank N basis vectors.
Every possible set of steady-state fluxes can be expressed as a linear combination of
the columns k; of K

r—RankN

J = Z o - ki . (5-74]
i=1
The coefficients must have respective units (M - s™' or mol - L' - s7%).

3.15 Flux Balance Analysis

Flux balance analysis (FBA) (Varma and Palsson 1994a, 1994b; Edwards and Pals-
son 2000a, 2000b; Ramakrishna et al. 2001) investigates the theoretical capabilities
and operative modes of metabolism by involving further constraints in the stoichio-
metric analysis. The first constraint is set by the assumption of a steady state (Egs.
(5-72) and (5-73)). The second constraint is of a thermodynamic nature, respecting
the irreversibility of reactions as considered in the concept of extreme pathways. The
third constraint may result from the limited capacity of enzymes for metabolite con-
version. For example, in the case of a Michaelis-Menten-type enzyme (Eq. (5-32)),
the reaction rate is limited by the maximal rate, i.e., 0 < v < V4. In general, the
constraints imposed on the magnitude of individual metabolic fluxes read

o <y < ﬂi . (5‘83)
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Further constraints may be imposed by biomass composition or other external
conditions. The constraints confine the steady-state fluxes to a feasible set but
usually do not yield a unique solution. The determination of a particular metabolic
flux distribution has been formulated as a linear programming problem. The idea is
to maximize an objective function Z that is subject to the stoichiometric and capacity
constraints:

,
Z =3 ¢v— max. (5-84)
i=1
where c; represents weights for the individual rates. Examples of such objective func-
tions are maximization of ATP production, minimization of nutrient uptake, maxi-
mal yield of a desired product, maximal growth rate, or a combination thereof.

3.16 Signal Transduction
Throughout intercellular communication or cellular stress response, the cell senses
extracellular signals. They are commuted to intracellular signals and sequences of
reactions. Different external changes or events may stimulate signaling. Typical sig-
nals are hormones, pheromones, heat, cold, light, osmotic pressure, and appearance
or concentration change of substances such as glucose, K", Ca™, or cAMP.

On a molecular level, signaling involves the same type of processes as metabo-
lism: production or degradation of substances, molecular modifications (mainly
phosphorylation, but also methylation and acetylation), and activation or inhibition
of reactions. From a modeling point of view, there are some important differences
between signaling and metabolism. First, signaling pathways serve for information
processing and transfer of information, while metabolism provides mainly mass
transfer. Second, the metabolic network is determined by the present set of enzymes
catalyzing the reactions. Signaling pathways involve compounds of different types,
and they may form highly organized complexes and may assemble dynamically
upon occurrence of the signal. Third, the quantity of converted material is high in
metabolism (amounts are usually given in concentrations on the order of uM or
mM) compared to the number of molecules involved in signaling processes (the typi-
cal abundance of proteins in signal cascades is on the order of 10 to 10* molecules
per cell). Finally, the different amounts of components have an effect on the concen-
tration ratio of catalysts and substrates. In metabolism this ratio is usually low; the
enzyme concentration is much lower than the substrate concentration, which gives
rise to the quasi-steady-state assumption used in Michaelis-Menten kinetics (Chapter
5, Section 5.1). In signaling processes, amounts of catalysts and their substrates are
frequently in the same order of magnitude.
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Modeling of the dynamic behavior of signaling pathways is often not straightfor-
ward. Knowledge about components of the pathway and their interaction is still lim-
ited and incomplete. The interpretation of experimental data is context- and knowl-
edge-dependent. Furthermore, the effect of a signal often changes the state of the
whole cell, and this implies difficulties for determination of system limits. But in
many cases we may apply the same tools as introduced in Chapter 5.

3.17 Function and Structure of Intra- and Intercellular Communication
Cells have a broad spectrum of receiving and processing signals; therefore, not all
of them can be considered here. A typical sequence of events in signaling pathways
is shown in Fig. 6.1 and proceeds as follows. The “signal” (a substance acting as a
ligand or a physical stimulus) approaches the cell surface. Cells have developed two
different modes of importing a signal. First, the stimulus may penetrate the cell
membrane and bind to a respective receptor in the cell interior. Another possibility
is that the signal is perceived by a transmembrane receptor. If the target of the sig-
nal is a receptor, it does not cross the membrane. Instead, the receptor changes its
own state from susceptible to active and then triggers subsequent processes within
the cell. The active receptor stimulates an internal signaling cascade. This cascade
frequently includes a series of changes in protein phosphorylation states. The se-
quence of state changes crosses the nuclear membrane. Eventually, a transcription
factor is activated or deactivated. The transcription factor changes its binding prop-
erties to regulatory regions on the DNA upstream of a set of genes, and the tran-
scription rate of these genes is altered (typically increased). Either the newly pro-
duced proteins or the changes in protein concentration cause the actual response
of the cell to the signal. In addition to this downstream program, signaling path-

ways are regulated by a number of control mechanisms including feedback and

feed-forward modulation.

This is the typical picture; however, many pathways may work in a completely dif-
ferent manner. As an example, an overview of signaling pathways that are stimulated
in yeast stress response is given in Fig. 6.2.
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Fig. 6.1 Visualization of the signaling paradigm scription factors are activated or deactivated.
(for description, see text). The receptor is stimu- The transcription factors regulate the transcrip-
lated by a ligand or another kind of signal, and it tion rate of a set of genes. The absolute amount
changes its own state from susceptible to active. or the relative changes in protein concentrations
The active receptor initiates the internal signal-  alter the state of the cell and trigger the actual

ing cascade, including a series of protein phos-  response to the signal.
phorylation state changes. Subsequently, tran-

3.18 Structural Components of Signaling Pathways

Signaling pathways constitute often highly complex networks, but it has been discov-
ered that they are frequently composed of typical building blocks. These components
include Ras proteins, G protein cycles, phosphorelay systems, and MAP kinase cas-
cades. In this chapter we will discuss their general composition and function as well

as modeling approaches.

3.19 G Proteins, Ras Proteins
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G proteins are essential parts of many signaling pathways. The reason for their
name is that they bind the guanine nucleotides GDP and GTP. They are heterotri-
mers, i.e., they consist of three different subunits. G proteins are associated to cell
surface receptors with a heptahelical transmembrane structure, the so-called G pro-
tein—coupled receptors (GPCR). Signal transduction cascades involving (1) such a
transmembrane surface receptor, (2) an associated G protein, and (3) an intracellular
effector that produces a second messenger play an important role in cellular com-
munication and are well studied (Neer 1995; Dohlman 2002). In humans, such G
protein—coupled receptors mediate responses to light, flavors, odors, numerous hor-
mones, neurotransmitters, and other signals (Blumer and Thorner 1991; Dohlman
et al. 1991; Buck 2000). In unicellular eukaryotes, receptors of this type mediate sig-
nals that affect such basic processes as cell division, cell-cell fusion (mating), mor-
phogenesis, and chemotaxis (Blumer and Thorner 1991; Banuett 1998; Dohlman et
al. 1998; Wang and Heitman 1999).

The cycle of G protein activation and inactivation is shown in Fig. 6.6. When GDP
is bound, the G protein o subunit (Ga) is associated with the G protein Py heterodi-
mer (GPy) and is inactive. Agonist binding to a receptor promotes guanine nucleo-
tide exchange; Gu releases GDP, binds GTP, and dissociates from Gfy. The disso-
ciated subunits Ga or Gy, or both, are then free to activate target proteins (down-
stream effectors), which initiates signaling. When GTP is hydrolyzed, the subunits
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are able to re-associate. Gy antagonizes receptor action by inhibiting guanine nu-
cleotide exchange. RGS (regulator of G protein signaling) proteins bind to G, sti-
mulate GTP hydrolysis, and thereby reverse G protein activation. This general
scheme can also be applied to the regulation of small monomeric Ras-like GTPases,
such as Rho. In this case, the receptor, Gy, and RGS are replaced by GEF and GAP
(see Section 6.3.2).

Direct targets include different types of effectors, such as adenylyl cyclase, phos-
pholipase C, exchange factors for small GTPases, some calcium and potassium
channels, plasma membrane Na®/H™ exchangers, and certain protein kinases (Neer
1995; Offermanns 2000; Dohlman and Thorner 2001; Meigs et al. 2001). Typically,
these effectors produce second messengers or other biochemical changes that lead
to stimulation of a protein kinase or a protein kinase cascade (or, as mentioned, are
themselves a protein kinase). Signaling persists until GTP is hydrolyzed to GDP and
the Ga and GPy subunits re-associate, completing the cycle of activation. The
strength of the G protein-initiated signal depends on (1) the rate of nucleotide ex-
change, (2) the rate of spontaneous GTP hydrolysis, (3) the rate of RGS-supported
GTP hydrolysis, and (4) the rate of subunit re-association. RGS proteins act as
GTPase-activating proteins (GAPs) for a variety of different Ga classes and thereby
shorten the lifetime of the activated state of a G protein and contribute to signal de-
sensitization. Furthermore, they may contain additional modular domains with sig-
naling functions and contribute to diversity and complexity of the cellular signaling
networks (Dohlman and Thorner 1997; Siderovski et al. 1999; Burchett 2000; Ross
and Wilkie 2000).

Ras Proteins

Small G proteins are monomeric G proteins with molecular weight of 20-40 kDa.
Like heterotrimeric G proteins, their activity depends on the binding of GTP. More
than 100 small G proteins have been identified. They belong to five families: Ras,
Rho, Rab, Ran, and Arf. They regulate a wide variety of cell functions as biological
timers that initiate and terminate specific cell functions and determine the periods
of time (Takai et al. 2001).

Ras proteins cycle between active and inactive states (Fig. 6.8). The transition
form GDP-bound to GTP-bound states is catalyzed by a guanine nucleotide ex-
change factor (GEF), which induces exchange between the bound GDP and the cellu-
lar GTP. The reverse process is facilitated by a GTPase-activating protein (GAP),
which induces hydrolysis of the bound GTP (Schmidt and Hall 2002).

School of Bio and Chemical Engineering



5

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

Ras-Protein

GEF
GTP l GDP
GDPRaS GTPRas
}—/ Fig. 6.8 The Ras activation cycle. GEF supports the transition from
t GDP-bound to GTP-bound states to activate Ras, while GAP induces
'~ GAP hydrolysis of the bound GTP, resulting in Ras deactivation.

Mutations of the Ras proto-oncogenes (H-Ras, N-Ras, K-Ras) are found in many
human tumors. Most of these mutations result in the abolishment of normal
GTPase activity of Ras. The Ras mutants can still bind to GAP, but they cannot cata-
lyze GTP hydrolysis. Therefore, they stay active for a long time.

3.20 MAP Kinase Cascades

Mitogen-activated protein kinases (MAPKs) are a family of serine/threonine kinases
that transduce signals from the cell membrane to the nucleus in response to a wide
range of stimuli. Independent or coupled kinase cascades participate in many differ-
ent intracellular signaling pathways that control a spectrum of cellular processes, in-
cluding cell growth, differentiation, transformation, and apoptosis. MAPK cascades
are widely involved in eukaryotic signal transduction, and these pathways are con-
served from yeast to mammals.
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A general scheme of a MAPK cascade is depicted in Fig. 6.11. This pathway
consists of several levels (usually three), where the activated kinase at each level
phosphorylates the kinase at the next level down the cascade. The MAP kinase
(MAPK) is at the terminal level of the cascade. It is activated by the MAPK kinase
(MAPKK) by phosphorylation of two sites: conserved threonine and tyrosine resi-
dues. The MAPKK is itself phosphorylated at serine and threonine residues by the
MAPKK kinase (MAPKKK). Several mechanisms are known to activate MAPKKKs
by phosphorylation of a tyrosine residue. In some cases the upstream kinase may
be considered a MAPKKK kinase (MAPKKKK). Dephosphorylation of either resi-
due is thought to inactivate the kinases, and mutants lacking either residue are al-
most inactive. At each cascade level, protein phosphatases can inactivate the corre-
sponding kinase, although in some cases it is a matter of debate whether this reac-
tion is performed by an independent protein or by the kinase itself as autodepho-
sphorylation. Ubiquitin-dependent degradation of phosphorylated proteins is also
reported.

Although they are conserved through species, elements of the MAPK cascade
were given different names in various studied systems. Some examples are repre-
sented in Tab. 6.1 (see also Wilkinson and Millar 2000).
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Fig. 6.11 Schematic representation of the MAP kinase cascade. An
upstream signal (often by a further kinase called MAP kinase kinase
kinase kinase) causes phosphorylation of the MAPKKK. The phos-
phorylated MAPKKK in turn phosphorylates the protein at the next
level. Dephosphorylation is assumed to occur continuously by phos-
phatases or autodephosphorylation.
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Tab. 6.1 Names of the components of MAP kinase pathways in different organisms and different
pathways.

Organism  Budding yeast Xensopus Human, cell cycle regulation
oocytes

HOG Pheromone p38 JNK

pathway pathway pathway pathway
MAPKKK  Ssk2/Ssk22 Stell Mos Rafs (c-, A-  Takl MEKKs

and B-),

MAPKK Pbs2 Ste7 MEK1 MEK1/2 MKK3/6 MKK4/7
MAPK Hogl Fus3 p42 MAPK  ERK1/2 p38 JNK1/2

In the following we will present typical modeling approaches and then discuss
functional properties of signaling cascades. The dynamics of a MAPK cascade may
be represented by the following ODE system:
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d
EMAPKKK = -1 + 1y

d
EMAPKKK-P =v—Vv -1+

d
EMAPKKK-PE =V — Vg

d
EMAPKK = —V3;+ 1

d
EMAPKK-P =V3 — Vg — Vs + Vo

d
aMAPKK-Pz = V4 — V1o

d
EMAPK = —5 - 11

d
EMAPK-P =V5s—Vi1 — Vg + Vi2
d

dt

(6-9)

(6-10)

—MAPK-PZ =Vg— V12 . (6-11}

Please note that it is not clear whether MAPKKK-P, and v,,vg exist at all. In this

case their value may be simply set to zero.

3.21 Apoptotic pathway

Our understanding of the mitochondrial or intrinsic apoptosis pathway and its role in
chemotherapy resistance has increased significantly in recent years by a combination of
experimental studies and mathematical modelling. This combined approach enhanced the
quantitative and kinetic understanding of apoptosis signal transduction, but also provided new
insights that systems-emanating functions (i.e., functions that cannot be attributed to individual
network components but that are instead established by multi-component interplay) are crucial
determinants of cell fate decisions. Among these features are molecular thresholds, cooperative
protein functions, feedback loops and functional redundancies that provide systems robustness,
and signalling topologies that allow ultrasensitivity or switch-like responses. The successful
development of kinetic systems models that recapitulate biological signal transduction
observed in living cells have now led to the first translational studies, which have exploited
and validated such models in a clinical context. Bottom-up strategies that use pathway models
in combination with higher-level modelling at the tissue, organ and whole body-level therefore

School of Bio and Chemical Engineering



INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

carry great potential to eventually deliver a new generation of systems-based diagnostic tools
that may contribute to the development of personalised and predictive medicine approaches.
Here we review major achievements in the systems biology of intrinsic apoptosis signalling,
discuss challenges for further model development, perspectives for higher-level integration of
apoptosis models and finally discuss requirements for the development of systems medical
solutions in the coming years.

3.22 Two component signalling pathways of bacterial chemotaxis.

The chemosensory pathway of bacterial chemotaxis has become a paradigm for the two-
component superfamily of receptor-regulated phosphorylation pathways. This simple pathway
illustrates many of the fundamental principles and unanswered questions in the field of
signaling biology. A molecular description of pathway function has progressed rapidly because
itis accessible to diverse structural, biochemical, and genetic approaches. As a result, structures
are emerging for most of the pathway elements, biochemical studies are elucidating the
mechanisms of key signaling events, and genetic methods are revealing the intermolecular
interactions that transmit information between components. Recent advances include (a) the
first molecular picture of a conformational transmembrane signal in a cell surface receptor, (b)
four new structures of kinase domains and adaptation enzymes, and (c) significant new insights
into the mechanisms of receptor-mediated kinase regulation, receptor adaptation, and the
phospho-activation of signaling proteins. Overall, the chemosensory pathway and the
propulsion system it regulates provide an ideal system in which to probe molecular principles
underlying complex cellular signaling and behavior.
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UNIT 4 SELECTED BIOLOGICAL PROCESSES

4.1 Biological Oscillations
Periodic changes of biochemical and biophysical quantities are a universal phenom-
enon in living systems. Examples from everyday experience are the pulse of the
heart, spontaneous respiration, the circadian rhythm, cycles of ovulation in mam-
mals, or the annual flowering of trees. Well studied are calcium waves (Goldbeter
et al. 1990; Bootman et al. 2001a, 2001b), oscillations in neuronal signals (Rabino-
vich and Abarbanel 1998), oscillations in cyclic AMP in the slime mold Dictyostelium
discoideum (Roos et al. 1977; Halloy et al. 1998; Nanjundiah 1998), the periodic con-
version of sugar to alcohol (glycolysis) in anaerobic yeast cultures (Chance et al.
1964; Ghosh and Chance 1964; Selkov 1968), the circadian rhythm (Smaaland 1996;
Turek 1998), and the cell cycle (Tyson 1991; Tyson et al. 1995; Novak et al. 1999;
Mori and Johnson 2000; Tyson and Novak 2001). Periodic patterns can be a function

of time (glycolytic oscillations), space (striping in Drosophila melanogaster embryos),
or both (D. discoideum, calcium waves, neuronal oscillations), depending on the me-
chanism of the oscillator. The oscillation periods may cover ranges from millise-
conds to years. Some oscillations are initiated externally, while others have intrinsic
causes. Many cellular oscillations are associated with the regulation of enzyme activ-
ity, receptor function, transport processes, or gene expression in an autocatalytic
manner or by positive or negative feedback and feed-forward loops. Other cases of
oscillations arise from the regulation of ionic conductances in electrically excitable
cells.

Temporarily changing patterns are observed in different complexity. Types of beha-
vior include simple periodic oscillations, complex periodicity with several maxima
per period, and even irregular and aperiodic behavior, owing to the appearance of
chaos. In the following sections we will introduce the Higgins-Sel'kov oscillator as a
classical example of oscillations caused by positive feedback and a model of a multi-
ply regulated biochemical system as an example of more complex oscillatory pat-
terns. Coupled oscillators are presented to illustrate that oscillations in individual
cells are sometimes hidden on the population level and therefore are hard to mea-
sure experimentally.
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4.2 Glycolytic Oscillations: The Higgins-Sel’kov Oscillator

The product-activated enzyme reaction is a simple model with two variables for peri-
odic oscillations of the limit-cycle type. The most intensively studied example is the
positive feedback exerted by ADP on the enzyme phosphofructokinase I (PFK I). It is
believed to cause the oscillations observed in glycolysis in yeast and muscles. The dy-
namic behavior of this model system was first studied by Higgins (1964) and Sel’kov
(1968) and later by many others (e. g., Goldbeter and Lefever 1972; Sel'kov 1975).

The two-variable model takes into account the allosteric regulation of the enzyme
PFK I and the autocatalytic effect exerted by the product. For a large range of para-
meter values, it exhibits a stable steady state, but beyond a critical parameter value,
the system becomes instable and evolves towards a stable limit cycle. Then, it shows
sustained oscillations.

/ﬁ
Vo 1

-S —= P

vy

(7-1)

The temporal behavior of the concentrations of substrate S and product P can be
described by the following ODEs:

ds

E=b’0— Skl r(P)

dpP

E = Sk] . P‘(P) - sz . (7-2]
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The supply rate of S, v, is positive. The parameters k,, k, are mass-action rate con-
stants. The function r(P) represents the autocatalytic effect of the product P on its
own production. The simplest expression for this function is

r(P) = P*, (7-3)
yielding

ds

E =Vy— SPZ kl =f(S. P)

% = SP’k; — Pk, = g(S. P). (7-4)

The dynamic behavior of this system is represented in Fig. 7.1 for a set of para-
meters that gives rise to oscillations. Figure 7.1a shows the values of the variables as
function of time. Further information about the dynamics of the system can be in-
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ferred by inspection of the phase plane. Figure 7.1 c shows the trajectory for a given
set of parameters and initial conditions in a plot of S versus P, using the time as
parameter. The nullclines, i.e., the lines for dS/dt = f= 0 or dP/dt = g= 0, respectively,
are shown in Fig. 7.1d. These lines must always be crossed by the trajectories in a
horizontal (for f=0) or vertical (for g= 0) manner, respectively, as indicated by the
little arrows. The sign of g determines the direction of the arrow for the nullcline
f=0ata certain point, and vice versa.

The steady state of the equation system in Eq. (7-4) is unique and is determined by

S=—2 p=—. (7-5)

The stability of the steady state can be analyzed by inspection of the Jacobian ma-
trix (Chapter 3.2),

k1

_ __ - =2k
I T T R A (7-6)
f_)zk1 2.§f_7k1 - kz VZ kl k '
og 2

The character of the steady state is given by the determinant and the trace of the
Jacobian matrix. The determinant reads
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ky
Det] = v} R (7-7)
Since vy > 0, the determinant is always positive. However, the trace
k1
Trace] = —Vv}, 2t k2 (7-8)
2
changes its sign at
2= (7-9)

This surface separates stable from unstable steady states in the parameter space.
Further critical values can be found by the condition (Trace])? = 4 Det] (Secticn 3.2.3)
separating nodes from foci. This condition is fulfilled at

124&—6122’(—1'{- k2 =0 (7-10)
Ok; Okz 2= V-

At the transition from the region of stable focus ((Trace])’ < 4 Det, Trace] < 0) to
the region of instable focus ((Trace])” <4 Det, Trace] > 0), limit cycles arise. The

School of Bio and Chemical Engineering



SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

ky
Det] = v} R (7-7)
Since vy > 0, the determinant is always positive. However, the trace
k1
Trace] = —Vv}, 2t k2 (7-8)
2
changes its sign at
2= (7-9)

This surface separates stable from unstable steady states in the parameter space.
Further critical values can be found by the condition (Trace])? = 4 Det] (Secticn 3.2.3)
separating nodes from foci. This condition is fulfilled at

124&—6122’(—1'{- k2 =0 (7-10)
Ok; Okz 2= V-

At the transition from the region of stable focus ((Trace])’ < 4 Det, Trace] < 0) to
the region of instable focus ((Trace])” <4 Det, Trace] > 0), limit cycles arise. The

School of Bio and Chemical Engineering



SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

ky
Det] = v} R (7-7)
Since vy > 0, the determinant is always positive. However, the trace
k1
Trace] = —Vv}, 2t k2 (7-8)
2
changes its sign at
2= (7-9)

This surface separates stable from unstable steady states in the parameter space.
Further critical values can be found by the condition (Trace])? = 4 Det] (Secticn 3.2.3)
separating nodes from foci. This condition is fulfilled at

124&—6122’(—1'{- k2 =0 (7-10)
Ok; Okz 2= V-

At the transition from the region of stable focus ((Trace])’ < 4 Det, Trace] < 0) to
the region of instable focus ((Trace])” <4 Det, Trace] > 0), limit cycles arise. The

School of Bio and Chemical Engineering



SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

4.3 Cell Cycle - Steps in the Cycle

The eukaryotic cell cycle is the repeated sequence of events accompanying the divi-
sion of a cell into daughter cells (Johnson and Walker 1999). It includes two main
sections: the doubling of the genome (DNA) and all other cell components in the S
phase (synthesis phase) and halving of the genome during the M phase (mitosis).
The periods between the M and S phases are the gap or growth phases G, and G,
(Fig. 2.13). Passage through the eukaryotic cell cycle is strictly regulated by the peri-
odic synthesis and destruction of cyclins that bind and activate cyclin-dependent ki-
nases (CDKs). The notion “kinase” expresses that their function is phosphorylation
of proteins with controlling functions. Cyclin-dependent kinase inhibitors (CKI) also
play important roles in cell cycle control by coordinating internal and external sig-
nals and impeding proliferation at several key checkpoints.

The general scheme of the cell cycle is conserved from yeast to mammals. The
levels of cyclins rise and fall during the stages of the cell cycle. The levels of CDKs ap-
pear to remain constant during the cell cycle, but the individual molecules are either
unbound or bound to cyclins. In budding yeast, one CDK (Cdc28) and nine different
cyclins (CIn1 to Cln3, CIb1 to CIb6) that seem to be at least partially redundant are
found. In contrast, mammals employ a variety of different cyclins and CDKs. Cyclins
include a G1 cyclin (cyclin D), S-phase cyclins (A and E), and mitotic cyclins (A and B).
Mammals have nine different CDKs (referred to as CDK1-CDKY) that are important
in different phases of the cell cycle. The anaphase-promoting complex (APC) triggers
the events leading to destruction of the cohesions, thus allowing the sister chromatids
to separate and degrade the mitotic cyclins.
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Steps in the Cycle

Let us take a course through the mammalian cell cycle starting in the G1 phase. As
the level of G; cyclins rises, they bind to their CDKs and signal the cell to prepare
the chromosomes for replication. When the level of S phase—promoting factor (SPF)
rises, which includes cyclin A bound to CDK2, it enters the nucleus and prepares the
cell to duplicate its DNA (and its centrosomes). As DNA replication continues, cyclin
E is destroyed, and the level of mitotic cyclins begins to increase (in G;). The M
phase—promoting factor (the complex of mitotic cyclins with the M-phase CDK) initi-
ates (1) assembly of the mitotic spindle, (2) breakdown of the nuclear envelope, and
(3) condensation of the chromosomes. These events take the cell to metaphase of mi-
tosis. At this point, the M phase—promoting factor activates the APC, which allows
the sister chromatids at the metaphase plate to separate and move to the poles (ana-
phase), thereby completing mitosis. APC destroys the mitotic cyclins by coupling
them to ubiquitin, which targets them for destruction by proteasomes. APC turns on
the synthesis of G, cyclin for the next turn of the cycle and it degrades geminin, a
protein that keeps the freshly synthesized DNA in the S phase from being re-repli-
cated before mitosis.
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A number of checkpoints ensure that all processes connected with cell cycle pro-
gression and DNA doubling and separation occur correctly. At these checkpoints,
the cell cycle can be aborted or arrested. They involve checks on completion of the S
phase, on DNA damage, and on failure of spindle behavior. If the damage is irrepar-
able, apoptosis is triggered. An important checkpoint in G, has been identified in
both yeast and mammalian cells. Referred to as “start” in yeast and as “restriction
point” in mammalian cells, this is the point at which the cell becomes committed to
DNA replication and completing a cell cycle (Hartwell 1974; Hartwell et al. 1974;
Pardee 1974; Nurse 1975). All the checkpoints require the services of complexes of
proteins. Mutations in the genes encoding some of these proteins have been asso-
ciated with cancer. These genes are regarded as oncogenes. Failures in checkpoints
permit the cell to continue dividing despite damage to its integrity. Understanding
how the proteins interact to regulate the cell cycle became increasingly important to
researchers and clinicians when it was discovered that many of the genes that en-
code cell cycle regulatory activities are targets for alterations that underlie the devel-
opment of cancer. Several therapeutic agents, such as DNA-damaging drugs, micro-
tubule inhibitors, antimetabolites, and topoisomerase inhibitors, take advantage of
this disruption in normal cell cycle regulation to target checkpoint controls and ulti-
mately induce growth arrest or apoptosis of neoplastic cells.

For the presentation of modeling approaches, we will focus on the yeast cell cycle
since intensive experimental and computational studies have been carried out using
different types of yeast as model organisms. Mathematical models of the cell cycle
can be used to tackle, for example, the following relevant problems.

small (the cells accumulate maternal cytoplasm), while after fertilization cells di-
vide without cell growth. How is the dependence on the ratio regulated ?

2. Cancer cells represent a failure in cell cycle regulation. Which proteins or protein
complexes are essential for checkpoint examination ?

3. What causes the oscillatory behavior of the compounds involved in the cell cycle?

4.4 Models of Budding Yeast Cell Cycle

Tyson, Novak, and colleagues have developed a series of models describing the cell
cycle of budding yeast in detail (Tyson et al. 1996; Novak et al. 1999; Chen et al.
2000, 2004). These comprehensive models employ a set of assumptions that are
summarized in the following.

The cell cycle is an alternating sequence of the transition from the G, phase to the
S/M phase, called “Start”, and the transition from S/M to G,, called “Finish”. An
overview is given in Fig. 7.6.
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Fig. 7.6 Schematic representation of the yeast ~ The inner part represents the main molecular
cell cycle (inspired by Fall et al. [2002]). The outer events driving the cell cycle, comprising (1) pro-
ring represents the cellular events. Beginning tein production and degradation, (2) phosphory-
with cell division, the G, phase follows. The cells lation and dephosphorylation, and (3) complex
possess a single set of chromosomes (shown as formation and disintegration. For sake of clarity,
one black line). At Start, the cell goes intotheS  CDK Cdc28 is not shown. The Start is initiated
phase and replicates the DNA (two black lines). by activation of CDK by cyclins CIn2 and ClbS5.
The sister chromatids are initially kept together ~ The CDK activity is responsible for progression

by proteins. During the M phase they are through the S and M phases. At Finish, the pro-
aligned, attached to the spindle body, and segre- teolytic activity coordinated by APC destroys the
gated to different parts of the cell. The cycle cyclins and thereby renders the CDK inactive.

closes with formation of two new daughter cells.
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The CDK (Cdc28) forms complexes with the cyclins Cln1 to Cln3 and CIb1 to
Clb6, and these complexes control the major cell cycle events in budding yeast cells.
The complexes Cln1-2/Cdc28 control budding, the complex Cln3/Cdc28 governs the
executing of the checkpoint Start, CIb5-6/Cdc28 ensures timely DNA replication,
Clb3-4/Cdc28 assists DNA replication and spindle formation, and Clb1-2/Cdc28 is
necessary for completion of mitosis.

The cyclin-CDK complexes are in turn regulated by synthesis and degradation
of cyclins and by the Clb-dependent kinase inhibitor (CKI) Sicl. The expression of
the gene for Cln2 is controlled by the transcription factor SBF, and the expression
of the gene for CIbS is controlled by the transcription factor MBF. Both transcrip-
tion factors are regulated by CDKs. All cyclins are degraded by proteasomes fol-
lowing ubiquitination. APC is one of the complexes triggering ubiquitination of
cyclins.

For the implementation of these processes in a mathematical model, the following
points are important. Activation of cyclins and cyclin-dependent kinases occurs in
principle by the negative feedback loop presented in Goldbeter's minimal model (see
Section 7.2.1). Furthermore, the cells exhibit exponential growth. For the dynamics
of the cell mass M, it holds that dM/dt = M. At the instance of cell division, M is re-
placed by M/2. In some cases uneven division is considered. Cell growth implies
adaptation of the negative feedback model to growing cells.

The transitions Start and Finish characterize the wild-type cell cycle. At Start, the
transcription factor SBF is turned on and the levels of the cyclins Cln2 and CIb5 in-
crease. They form complexes with Cdc28. The boost in Cln2/Cdc28 has three main
consequences: it initiates bud formation, it phosphorylates the CKI Sicl promoting
its disappearance, and it inactivates Hct1, which in conjunction with APC is respon-
sible for Clb2 degradation in the G, phase. Hence, DNA synthesis takes place and
the bud emerges. Subsequently, the level of CIb2 increases and the spindle starts to
form. CIb2/Cdc28 inactivates SBF and Cln2 decreases. Inactivation of MBF causes
CIb5 to decrease. Clb2/Cdc28 induces progression through mitosis. Cdc20 and Hct1,
which target proteins to APC for ubiquitination, regulate the metaphase-anaphase
transition. Cdc20 has several tasks in the anaphase. Furthermore, it activates Hct1,
promoting degradation of CIb2, and it activates the transcription factor of Sicl.
Thus, at Finish, CIb2 is destroyed and Sic1 reappears.

The dynamics of some key players in the cell cycle according to the model given
in Chen et al. (2000) is shown in Fig. 7.7 for two successive cycles. At Start, CIn2 and
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Fig. 7.7 Temporal behavior of some key players
during two successive rounds of the yeast cell
cycle. The dotted line indicates the cell mass
that halves after every cell division. The levels of
ClIn2, CIb2,0ta1, CIbSiota1, and Sicligea are simu-
lated according to the model presented by Chen

Time/min et al. (2000).

Concentrations

4.5 Modeling of Gene Expression

The expression of genes, which is a highly regulated process in eukaryotic as well as
in prokaryotic cells, has a profound impact on the ability of the cells to maintain
vitality, perform cell division, and respond to environmental changes or stimuli. In
theoretical modeling of gene expression, two diverse approaches have been devel-
oped. On the one hand, the expression of one or a few genes has been described on
the level of transcription or translation by detailed mathematical models that include
the binding of transcription factors and RNA polymerases to DNA, the effect of spe-
cific inhibitors or activators, the formation of various stages of maturation of mRNA
or proteins, and the regulation by internal feedback loops or external regulators. The
basis of this type of modeling is knowledge or hypotheses about the processes and
interactions taking place during gene expression. Like most types of kinetic model-
ing, it often lacks specific kinetic parameters for the individual processes under con-
sideration. On the other hand, the expression changes of thousands of genes are ana-
lyzed in parallel over time with DNA arrays. Gene expression profiles (expression
levels at different time points) and gene expression patterns (comparison of expres-
sion values of different genes under different experimental conditions) are used to
search for clusters and motifs and, eventually, to deduce functional correlations.
Based on this information, reverse engineering methods seek to reconstruct the
underlying regulatory networks (Section 9.6). While these approaches largely neglect
the highly complex regulatory machinery behind the emergence of detectable
mRNA involving the action of proteins and other regulatory molecules, they cover a
large fraction or almost all genes of a cell — compared to the first approach, which
can deal only with a few genes.
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4.6 Modules of Gene Expression

In the following section, we will outline a general view of the processes representing
gene expression, from the activation of transcriptional regulators to the synthesis of
a functional protein (Orphanides and Reinberg 2002; Proudfoot et al. 2002; Reed
and Hurt 2002).

Hundreds of different cell types exist and fulfill specific roles in the organism.
Each cell type theoretically contains information on the same set of genes; however,
only a proportion of these genes is expressed, determining the specific role of cells
of this type. Gene expression in eukaryotes is controlled at six different steps, which
determine the diversity and specification of the organism (Alberts et al. 2002):

1. Transcriptional control: when and how often a gene is transcribed.

2. RNA processing control: how the RNA transcript is spliced.

3. RNA transport and localization control: which mRNAs in the nucleus are ex-
ported to cytosol and where in the cytosol they are localized.

4. Translation control: which mRNAs in the cytosol are translated by ribosomes.

. mRNA degradation control: which mRNAs in the cytosol are destabilized.

6. Protein activity control: determines activation, inhibition, compartmentalization,
and degrading of the translated protein.

v
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Each step is complex and has been studied extensively in isolation. The process is
typically modeled with a linear structure of more or less independent modules where
the output of the previous module is the input for the current module.

The expression level of the majority of genes is controlled by transcription factors.
Transcription factors are proteins that bind to DNA regulatory sequences upstream
of the site at which transcription is initiated. Various regulatory pathways control
their activities (see Chapter 6). More than 5% of human genes encode transcription
factors (Tupler et al. 2001). Once activated, transcription factors bind to gene regula-
tory elements and, through interactions with other components of the transcription
machinery, promote access to DNA and facilitate the recruitment of the RNA poly-
merase enzymes to the transcriptional start site.

In eukaryotes, there are three RNA polymerases, namely, RNAP [, II, and III.
RNAP II catalyzes the transcription of protein-coding genes and is responsible for
the synthesis of mRNAs and certain small nuclear RNAs, while the others are re-
sponsible for generating primarily tRNAs (RNAP III) and ribosomal RNAs (RNAP I)
(Allison et al. 1985).

The RNAP II enzyme itself is unable to initiate promoter-dependent transcription
in the absence of complementing factors. It needs to be supplemented by so-called
general transcription factors (GTFs) (Orphanides et al. 1996). RNAP II together with
these GTFs and the DNA template form the pre-initiation complex, and the assem-
bly of this complex is nucleated by binding of TBP (a component of TFIID) to the
“TATA box” (Woychik and Hampsey 2002). The TATA box is a core promoter (or
minimal promoter) that directs transcriptional initiation at a short distance (about

30 bp downstream). Soon after RNAP II initiates transcription, the nascent RNA is
modified by the addition of a cap structure at its 5’ end. This cap serves initially to
protect the new transcript from attack by nucleases and later serves as a binding site
for proteins involved in export of the mature mRNA into the cytoplasm and its trans-
lation into protein.
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General Promoter Structure

Promoter prediction algorithms implicitly assume a specific model for a typical pro-
moter. The general structure of an RNAP II promoter is described in Fig. 8.1a. The
typical promoter is composed of three levels of regulatory sequence signals. The first
level contains sequence motifs that enable the binding of specific transcription fac-
tors. The next level is the combination of binding sites to promoter modules that
jointly act as functional units. The third level consists of the complete promoter that
modulates gene transcription depending on cell type, tissue type, developmental
stage, or activation by signaling pathways.

The promoter must contain binding sites for the GTFs, such as the TATA box. These
proximate regulatory motifs constitute the core promoter that is able to bind the pre-
initiation complex and to determine the exact transcription start site. The core promo-
ter needs additional regulatory motifs at varying distances from the transcriptional
start point, the regulatory binding sites (transcription factor-binding sites, TFBSs).
These sites can be situated nearby or kilobases away from the core promoter.
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Fig. 8.1 (a) General structure of a eukaryotic gene promoter. (b) Ex-
ample of a positional weight matrix and a consensus sequence de-
rived from different transcription factor-binding sites.

Transcription initiation can be viewed as a process involving successive formation
of protein complexes. In the first step, transcription factors bind to upstream promo-
ter and enhancer sequence motifs and form a multiprotein complex. In the next
step, this complex recruits the RNAP II/GTF complex to the core promoter and the
transcription start site. This is done through protein-protein interactions either di-
rectly or by adaptor proteins (Ptashne and Gann 1997). The full complex then starts
the transcription process.

The core promoter is located in the direct neighborhood of the transcription start
site (approximately 30 bp). The core promoter is the best-characterized part of the
promoter and is defined as a set of binding sites sufficient for the assembly of the
RNAP II/GTF complex and for specifying transcriptional initiation. Several types of
core promoters are known (Berg and von Hippel 1987):
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1. TATA box: If TBP is present in the RNAP II/GTF complex, then this protein binds
to the sequence motif and the transcription starts approximately 30 bp down-
stream.

2. TATA-less: No TATA box is present. The start site is determined by a sequence mo-
tif INR (initiator region) surrounding the start site (Smale 1994).

3. A combination of both INR and TATA box

4. Null promoter: Neither of the two sequence motifs is present. Transcription initia-
tion is based solely on upstream (or downstream) promoter elements (Novina and
Roy 1997).

5. In some cases, a downstream promoter element (DPE) exists in addition to INR,
and both elements are able to specify the transcription start site (Burke and Ka-
donga 1997).

Whereas the core promoter determines the transcription start site, this function
cannot explain how genes whose protein products are needed in parallel are co-regu-
lated, e.g., from genes that are located on different chromosomes. Thus, additional
regulatory elements are necessary that meet the requirement of higher flexibility
and coordinated gene expression.

Typically a few hundred base pairs upstream of the core promoter is the proximate
promoter module, which contains TFBSs for proteins responsible for the modula-
tion of the transcription. The corresponding factors can influence the binding of the
core promoter components or the chromatin structure (or both). Furthermore, a pro-
moter can contain a distal promoter module (on the order of kilobases apart from
the transcription start site). Although these modules cannot act as promoters on
their own, they are able to enhance or suppress the activity of transcription up to or-
ders of magnitude (enhancer or silencer). Enhancer and silencer often exhibit a tis-
sue-specific activity. Like the transcription factors binding to the proximate module
of the promoter, the factors binding to the distal module influence gene expression
by interactions with the factors in the RNAP II/GTF complex or by changing the
chromatin structure. There is no clear boundary for the promoter in the 5’ direction,
and the common explanation for interactions with distal factors to the transcription
apparatus is given by the formation of large loops in the DNA. The function of a pro-
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moter is to increase or repress the transcription from the core promoter (basal tran-
scription). Thus, any given gene will have a specific regulatory region determined by
the binding sites of the transcription factors that ensure that the gene is transcribed
in the appropriate cell type and at the proper point in development. The transcrip-
tional activation is determined not only by the presence of the binding sites but also
through the availability of the corresponding transcription factors. These transcrip-
tion factors are themselves subjected to regulation and activation, e.g., through sig-
naling pathways, and the whole process can entail complex procedures such as tran-
scriptional cascades and feedback control loops (Pedersen et al. 1999).

A list of some promoter recognition programs is found in the following table:

Program Web location Reference

FunSiteP http://compel.bionet.nsc.ru/FunSite/fsp.html Kondrakhin et al. (1995)

PomoterInspector  http://www.genomatix.de/cgi-bin/ Scherf et al. (2000)
promoterinspector /promoterinspector.pl

PromoterScan http://bimas.dcrt.nih.gov/molbio/proscan Prestridge (1995)

NNNP http:/ fwww.fruitfly.org/seq_tools/promoterhtml  Reese (2001)

PromFind http://iubio.bio.indiana.edu/soft /molbio/mswin/ Hutchinson (1996)
mswin-or-dos/profinl1.exe

TSSG/TSSW http://www.softberry.com Solovyev and Salamov

(1997)
FirstEF http:/ frulai.cshlorg/tools /FirstEF Davuluri et al. (2001)

Modeling Specific Processes in Eukaryotic Gene Expression

We want to know which genes are expressed, to what level, and where and when in
order to comprehend the functioning of organisms at the molecular level. A network
of interactions among DNA, RNA, proteins, and other molecules realizes the regula-
tion of gene expression. This network involves many components. There is forward
flow of information from gene to mRNA to protein according to the dogma of mole-
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cular biology. Moreover, positive and negative feedback loops and information ex-
change with signaling pathways and energy metabolism ensure the appropriate reg-
ulation of the expression according to the actual state of the cell and its environment.

Modeling of gene expression is an example of a scientific field where one may ob-
tain results with different techniques. The dynamics or the results of gene expres-
sion have been mathematically described with Boolean networks, Bayesian net-
works, directed graphs, ordinary and partial differential equation systems, stochastic
equations, and rule-based formalisms.

Although understanding of the regulation of large groups of genes, of the emer-
gence of complex patterns of gene expression, and of relations with inter- and intra-
cellular communication is still a scientific challenge, many insights have already
been gained from the modeling of particular processes or of the regulation of indivi-
dual sets of genes.

One Example, Different Approaches

In the following sections we will present an overview of modeling approaches and
the scientific questions that can be tackled with different techniques. For the sake of
clarity, we will use only examples with a low number of components (genes and pro-
teins), although the presented approaches can also be applied to larger systems.

The example presented in Fig. 8.2 contains four genes, a through d, which code
for the proteins A through D. mRNA is not shown for sake of simplicity. The pro-
teins A and B may form a heterodimer that activates the expression of gene c. Pro-
tein C inhibits the expression of genes b and d, which are in this way co-regulated.
Protein D is necessary for the transcription of protein B.

8.3.1.1 Description with Ordinary Differential Equations

Gene expression can be mathematically described with systems of ordinary differen-
tial equations in the same way as dynamical systems in metabolism (Chapter 5), sig-
naling (Chapter 6), and other cellular processes (Chapter 7). In general, one considers

dx; .
E=ﬁ(xl_...xﬁ) i=1..n. (8-2)

The variables x; represent the concentrations of mRNAs, proteins, or other mole-
cules. The functions f; comprise the rate equations that express the changes of x; due
to transcription, translation, or other individual processes. For details about how to
specify the rate equations and how to analyze the resulting ODE systems, compare
Sections 5.1, 5.2 and 3.2.
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Fig. 8.2 Gene regulatory network comprising  graph. (c) Respective Bayesian network. Note
four genes a—d. (a) Dependence of translation that some interactions are neglected (inhibition
of genes a—d, the transcription of their mMRNAs  of b by ¢, activation of b by d) in order to get a
(not shown), and the influence of the respective  network without cycles. (d) The Boolean net-
proteins A-D. (b) Representation as directed work.
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Example 8-1

The dynamics of the system depicted in Fig. 8.2 can be described in several ways
depending on the desired particularization. If we consider only the mRNA abun-
dances a, b, ¢, and d, we get:

da
=@
S=ht.cd

dc
m = fc(a.b.c)

dd

E =fd (c.d). (8-3)

Fig. 8.3 Dynamics of the mRNA concentra-
tions of the system presented in Example 8-1
according to Eq. (8-4). Parameters: v, =1,

V.=1,K =5 k=01,Vy=1, kg=1. Initial
conditions: a (0) =b (0) = ¢ (0) =d (0) = 0.
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8.3.1.2 Representation of Gene Network as Directed and Undirected Graphs

A directed graph G is a tuple (V, E), where V denotes a set of vertices and E a set of
edges (cf. Section 3.5). The vertices i € V correspond to the genes (or other compo-
nents of the system) and the edges correspond to their regulatory interactions. An
edge is a tuple (i, j) of vertices. It is directed if i and j can be assigned to the head
and tail of the edge, respectively. The labels of edges or vertices may be expanded to
contain information about the genes and their interactions. In a general way, one
may express an edge as a tuple (i, j, properties). The entry properties can simply indi-
cate whether j activates (+) or inhibits (-) i (Fig. 8.2b). The entry properties can also
be a list of regulators and their influence on that specific edge, such as (i, j, ((k, acti-
vation), (I, inhibition as homodimeric protein))).

In principle, many databases that provide information about genetic regulation
are organized as richly annotated directed graphs (e. g., Transfac, KEGG; see Chapter
13). Directed graphs are not suited to predict the dynamics of a network, but they
may contain information that allows certain predictions about network properties:

e Tracing paths between genes yields the sequence of regulatory events, shows re-
dundancy in the regulation, or indicates missing regulatory interactions (that are,
for example, known from experiment).

e A cycle in the network may indicate feedback regulation.

e Comparison of gene regulatory networks of different organisms may reveal evolu-
tionary relations and reveal targets for bioengineering and for pharmaceutical ap-
plications (Dandekar et al. 1999).

e The network complexity can be measured by the connectivity, i.e., the distribution
and the average of the numbers of regulators per gene.
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8.3.1.3 Bayesian Networks

A Bayesian network (see also Section 3.5.2.3) is based on the representation of the
regulatory network as a directed acyclic graph G = (V, E). Again, the vertices i € V re-
present genes and edges denote regulatory interactions. Variables x; belonging to the
vertices i denote a property relevant to the regulation, e.g., the expression level of a
gene or the amount of active protein. A conditional probability distribution
p(x;| L(x;)) is defined for each x;, where L (x;) are the parent variables belonging to
the direct regulators of i. The directed graph G and the conditional distributions to-
gether specify a joint probability distribution p (x) that determines the Bayesian net-
work. The joint probability distribution can be decomposed into

p(x) =[1p(x|L(x)- (8-6)

The directed graph expresses dependencies of probabilities: the expression level of
a gene represented by a child vertex depends on the expression levels of genes be-
longing to the parent vertices. Hence, it also implies conditional independencies
i(x;; ¥|z), meaning that x; is independent of the set of variables y given the set of
variables z. Two graphs or Bayesian networks are equivalent if they imply the same
set of independencies. In this case they can be considered as the same undirected
graph, but with varying direction of edges. Equivalent graphs cannot be distin-
guished by observation of the variables x (Friedman et al. 2000).

Bayesian networks have been used to deduce gene regulatory networks frcm gene
expression data. The aim is to find the network or equivalence class of networks that
best explains the measured data. A problem is the determination of initial probability
distributions.

8.3.1.4 Boolean Networks

In the Boolean network approach (see also Section 3.5.2.2 and Section 10.3.3 for
Boolean rules), the expression level of each gene is assigned to a binary variable: a
gene is considered to be either on (1) or off (0), i.e., it is transcribed or not. The
states of the genes are updated simultaneously in discrete time steps. The new state
can depend on the previous state of the same gene or other genes. These dependen-
cies cause the Boolean network. The following termini are used: the N genes are the
N nodes of the network, the k interactions regulating the expression of a certain
gene are the k inputs of that node, and the binary expression value of each gene is its
output. Since every node can be in one of two different states, a network of N genes
can assume 2" different states. An N-dimensional vector of variables can describe
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the state at time t. The value of each variable at time t+1 depends on the values of its
inputs. It can be computed by means of the Boolean rules (see Section 10.3.3). For a
node with k inputs, the number of possible Boolean rules is 2*". Although a Boolean
network is a very simplified representation of the gene regulatory network, it enables
a first computation of gene expression dynamics.

For the network presented in Fig. 8.2d the following Boolean rules apply:

at+1)=fi(a(t) =a(t) Rule 1 for k =1

b(t+1) = f,(c(t),d(t)) = (not c(t)) and d(t) Rule 2 for k =2

c(t+1) = f (a(t).b(t) = a(t) and b(t) Rule 2 for k =2

d(t+ 1) = fz (c(t)) = (not c(t)) Rule 0 for k =1

The temporal behavior is determined by the sequence of states (a, b, ¢, d) given an
initial state (compare also Section 10.3.3).

From Tab. 8.1 it is easy to see that this network has two different types of stationary
behavior. If the initial state of a is 0, then the system evolves towards the steady
state 0101, meaning that genes a and c are off, while genes b and d are on. If the in-
itial state of a is 1, then the system evolves towards a cyclic behavior including the
following sequence of states: 1000 — 1001 — 1101 — 1111 — 1010 — 1000.

Tab. 8.1 Successive states in the Boolean network.

0000 — 0001 1000 — 1001
0001 — 0101 1001 — 1101
0010 — 0000 1010 — 1000
0011 — 0000 1011 — 1000
0100 — 0001 1100 — 1011
0101 — 0101 1101 — 1111
0110 — 0000 1110 — 1010
0111 — 0000 1111 — 1010
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The sequence of states given by the Boolean transitions represents the trajectory
of the system. Since the number of states in the state space is finite, the number of
possible transitions is also finite. Therefore, each trajectory will lead either to a
steady state or to a state cycle. These states are called attractors. Transient states are
those states that do not belong to an attractor. All states that lead to the same attrac-
tor constitute the basin of attraction.

Boolean networks have been used to explore general and global properties of large
gene expression networks. Considering random networks (the number k of inputs
per gene and the corresponding Boolean rules are chosen by chance), Kauffman
(1991, 1993) has shown that the systems exhibit highly ordered dynamics for small k

The sequence of states given by the Boolean transitions represents the trajectory
of the system. Since the number of states in the state space is finite, the number of
possible transitions is also finite. Therefore, each trajectory will lead either to a
steady state or to a state cycle. These states are called attractors. Transient states are
those states that do not belong to an attractor. All states that lead to the same attrac-
tor constitute the basin of attraction.

Boolean networks have been used to explore general and global properties of large
gene expression networks. Considering random networks (the number k of inputs
per gene and the corresponding Boolean rules are chosen by chance), Kauffman
(1991, 1993) has shown that the systems exhibit highly ordered dynamics for small k

4.7 Modeling the Elongation of a Peptide Chain
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Protein expression 1s an essential feature of cellular development and operation.
The code for all the proteins needed for a cell to survive and thrive is in its DNA.
However, the code must be transcribed into mRNA molecules, then translated into
polypeptide chains, and finally folded and further chemically processed into func-
tioning molecules. The rates of expression of the proteins are determined by many
factors, including regulation at the transcription site upstream of the gene. Regu-
lators moderate the attachment and operation of the RNA polymerase, which tran-
scribes an mRNA chain containing the code for the protein. The mRNA chains
then attach to the ribosome, which translates the code into peptide chains by suc-
cessively adding the proper amino acid to the nascent chain.

A mathematical model, consisting of differential equations representing the rate
of change of the concentration of each protein, has been derived (Drew, 2001), and
has the capacity of accounting for the repression or activation of mRNA transcrip-
tion by transcription factor proteins. This model describes each reaction in terms
of kinetic rate constants for sub-parts of the overall reaction.

In order for that model to give meaningful results, kinetic rate constants must
be supplied for each part of the reactions. One of the sub-processes for which a
rate constant is needed in the model is peptide chain elongation. Drew models the
attachment of the mRNA to the ribosome, followed by the addition of each amino
acid. The model is essentially a Markov process, whereby the evolution of the
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probability of the cell having an mRNA in each of several states is described. The
states that are assumed to exist in that model are (1) free, 1.e., having no rnibosome
or peptide chain attached; (ii) atrached to a ribosome, i.e., no longer free, but still
without a peptide chain; and (111) having a nascent peptide chain of length i. The
chain is assumed to grow to length N by adding amino acid residues from the
cytoplasm and ultimately be ejected from the ribosome and the mRNA when the
ribosome reaches the end of the pattern for making the protein. The mRNA and
the ribosome parts are then free. The process is described by a set of ordinary
differential equations for the numbers of assemblies in each state. Drew (2001)
assumes that these equations have the form

@ = —kg[R][mRNA] + ky_;[mMRNA_,]
RNA;
% = _xH][aH]][mRNAﬂ +Kj[a_j][mRNAj—l]
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where [mRNA] is the concentration of messenger RNA, [mMRNA] is the concen-
tration of the mRNA-ribosome complex, [mRNA ;] is the concentration of the
mRNA-ribosome complex with a nascent peptide chain of length j attached. The
reaction rate —kg[R][mRNA] is the rate at which the mRNA-ribosome complex
is formed, that 1s, the rate of binding of the mRNA to the ribosome. The reac-
tion rate « j[a;][mRNA;_,] is the elongation rate assumed by Drew (2001), and is
represented there by a rate constant times the concentrations of the amino acid to
be attached, and the mRNA-ribosome complex with the nascent chain. This rate
reflects a binary character of the addition of an amino acid to the chain.

When we examine the biochemical processes that are involved 1n elongation n
more detail, the reaction modeled by «;[a;][mRNA;_,] is clearly more complex.
The elongation step is facilitated by the ribosome, a ubiquitous biological machine
that assembles amino acids into peptide chains, which are then processed and
folded into proteins. Great strides in understanding the mechanisms by which the
ribosome works have been made over the last decade (Pape er al., 1998; Frank
et al., 1999; Tomsic et al., 2000). It is the purpose of this paper to interpret the
mathematical model for the workings of the ribosome as a sub-model reflecting
the overall rate of the reaction in terms of the rates of the sub-steps. In so doing,
we discover the parameters on which the overall rate depends, including the rela-
tive abundances of the amino acids.

The process of elongation is accomplished one amino acid at a time, facilitated
by the ribosome and the tRNA molecules. An amino acid bound to a tRNA binds to
the ribosome, catalyzed by elongation factor Tu and a molecule of GTP. This com-
plex enters the ribosome, and the codon recognition site on the tRNA is associated
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with the corresponding codon on the mRNA. If the amino acid—tRNA complex
recognizes a correct codon on the mRNA, the complex is stabilized by interactions
of the tRNA, mRNA and the ribosome. Formation of the codon—anticodon bond
activates the hydrolysis of the GTP. This causes a conformational change of the
elongation factor Tu (EF-Tu) complex. Next, the elongation factor unbonds and
leaves the ribosome. The amino acid is bonded to the peptide chain. If the amino
acid-tRNA complex recognizes the wrong codon, the complex is rejected, and the
process starts again. In this paper, we present a kinetic model for elongation in
which the various sub-steps are considered. This model includes the steps outlined
above, and assumes rates for each. It results in a set of differential equations for the
evolution of the probabilities that the ribosome is in each of the various states. The
steady-state probabilities are then found, and the dependence of elongation rate on
the concentrations of amino acids is determined. This result allows the connection
of the rate «j[a;][mRNA;_;] to various sub-rates in the detailed model for chain
elongation.

Initial Codon GTPase GTP
binding recognition activation hydrolysis
K, k, ~ ky /2 #E® K P
+ = 2 5 — 5 — ﬂ
k k [@ 11000 [EIIININ (@ TR ED
-1 -2 p—— — e —
Accommodation Peptidyl
transfer
o reloase  EF-Tu conf m - m
' change k. —iy  — _TI0)
5 e e
k o CEET Tk
Pi 1 L) &
Ty~ i -
v T e
@ K + 4
Rejection

Figure 1. Mechanism of EF-Tu-dependent binding of aa-tRNA to the ribosomal A-site
[Rodnina, 2003].
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4.8 The Model According to Griffith

This model (Griffith 1968a) considers the activation of the genes, the formation of
mRNA, the synthesis of the enzymes permease and B-galactosidase, and the degra-

dation of lactose. Permease supports the transport of lactose through the bacterial
membrane. P-galactosidase isomerizes lactose to allolactose and catalyzes the clea-
vage of lactose to glucose and galactose.

Due to fluctuations, the genes G are rendered active even by trace amounts of allo-
lactose (P).

Ginacr.i\*e+mP - Gat;li\'e . (8'15}

p
The portion of active gene is given by p = e The concentration of mRNA
eq

(M) is determined by a basal production rate, My, and a degradation rate, k,M, as
well as by the production from activated gene:

dM p™
o Motk

- kzM. (8'16}

The concentration changes of the enzymes permease (E,) and -galactosidase (E,)
are given by production from mRNA and degradation:
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dE
d—tl = C]M - d] E]
%=02M—dzﬁ'2. (8-17)

The uptake of lactose from the external (.,) into the internal (;,) of the bacterial
cell is mediated by permease (E;), and the decay of lactose depends on f-galactosi-
dase (E):

dLacex Y Lac,s
dt """k + Lace
dLac;, Lac,y Lac;,
dt ofy ko + Lac,, 71k ks + Laci, (8-18)

Allolactose is produced from lactose and converted to glucose and galactose:

Q—a _ Lacn — a,F P
dt 12ks+Lac;n 2 2kp+P'

(8-19)

The equation system in Eqs. (8-16)—(8-19) has been simplified using the following
assumptions: (1) the quasi-steady-state approximation (Section 5.2.7) applies for the
concentration of mRNA; (2) the concentrations of the enzymes are equal, i.e,
E, = E,, as well as their rate constants of degradation, i.e., d, = d,; and (3) there is no
delay in the conversion of lactose into allolactose, expressed by dLac;,/dt = 0.
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For the sake of simplicity, dimensionless variables are considered, i.e., lac = Lac,./
ko, p = Plkp, € = E/ep, and t = t/t,. Taken together, this yields the final system of equa-
tions

de p"
E=%+m_w
g_fz'm(l —!f(;ac_;'lip)
withcoz%, =a’:10,).=z—z,ﬂ=t—2,x=t—eq,mo=f—:, and ¢ = tyd, .

The temporal behavior of this system for low and high external initial concentra-
tion of lactose is represented in Fig. 8.8.

For low initial concentration of lac, there is only a weak activation of gene expres-
sion, resulting in a low enzyme concentration. For high concentration of lac, the pro-
duction of the enzyme is activated as long as its substrate — lac — is available.

4.9 Noise and oscillation in biological system

In higher organisms, circadian rhythms are generated by a multicellular genetic
clock that is entrained very efficiently to the 24-hour light-dark cycle. Most studies
of these circadian oscillators have considered a perfectly periodic driving by light.
Naturally organisms are subject to non-negligible fluctuations in the light level all
through the daily cycle. Interestingly higher organisms respond to artificial con-
stant light conditions over several days with a kind of phase transition from the
free running rhythmic to an arrhythmic behaviour. The constant light intensity
determines the transition.
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We investigate how the interplay between light fluctuations and intercellular
coupling affects the dynamics of the central clock. We model the central circa-
dian clock as a collective rhythm of a large ensemble of nonidentical, globally
coupled cellular clocks modeled as Goodwin oscillators. Based on experimental
considerations,'* we assume an inverse dependence of the cell-cell coupling strength
on the light intensity, in such a way that the larger the light intensity the weaker
the coupling.

The system offers access to interesting questions from the biological viewpoint
and the dynamical systems side. The phase transition from the rhythmic to the
arrhythmic behaviour and the critical light intensity are essential for the coherence
resonance (CR), a noise-induced effect known from the dynamical system theory.
The phase transition can be observed only in the overt rhythm that we model by
the mean response of all individual circadian oscillators. We study the influence of
noise on the quality of the overt rhythm and consider the synchronization and the
coherence of the mean-field. Our results show a noise-induced rhythm generation for
constant light intensities at which the clock is arrhythmic in the noise-free case.l®
Importantly, the rhythm shows a resonance-like phenomenon as a function of the
noise intensity. Such improved coherence can be only observed at the level of the
overt rhythm and not at the level of the individual oscillators, thus suggesting a
cooperative effect of noise, coupling, and the emerging synchronization between the
oscillators.

From the biological viewpoint the CR offers a test tool for the light dependent
coupling hypothesis. The CR in the discussed system relies on the hypothesis of
light dependent coupling. Experimental results of a noise-induced rhythmicity for
constant light intensities at which the clock is arrhythmic in the noise-free case
would strengthen the biological relevant hypothesis of light dependent coupling
amongst the individual oscillators. The mathematical model originates form the
biological problem, makes use of a noise-induced phenomena and gives a protocol
for experimental testable predictions that can be used to strengthen the biological
derived hypothesis of light dependent coupling amongst the many basic circadian
oscillators building the central clock. The discussed circadian model gives an ex-
ample for the vice versa beneficial connection between biology and mathematical
modeling.

4.10 Circadian rhythm-how to build an oscillator

Circadian oscillators are networks of biochemical feedback loops that generate 24-hour
rhythms in organisms from bacteria to animals. These periodic rhythms result from a
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complex interplay among clock components that are specific to the organism, but share
molecular mechanisms across kingdoms. A full understanding of these processes
requires detailed knowledge, not only of the biochemical properties of clock proteins
and their interactions, but also of the three-dimensional structure of clockwork
components. Posttranslational modifications and protein—protein interactions have
become a recent focus, in particular the complex interactions mediated by the
phosphorylation of clock proteins and the formation of multimeric protein complexes
that regulate clock genes at transcriptional and translational levels.

Generic model of the circadian clock. The complex network of coupled multiple feedback
oscillators are represented by solid color lines and ovals. Clock genes forming a functional
oscillator regulate the input and output pathways (blue dashed lines). Feedback from output
pathways can also regulate the oscillator and the input pathways (red dashed lines). In addition
to external input signal transduction for clock entrainment, input pathways can also directly
affect clock output and vice versa (solid black line).
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Circadian rhythms show the same period as the external cues when tested under entrainment conditions (light-dark
cycles: LD) and may deviate from the 24 hour period under the free running conditions (constant light; LL) reflecting the
period of the endogenous clock.

PERIOD: is the time taken by an oscillation to complete one cycle.

PHASE: Phase is a relative event. Any time point on a rhythmic cycle relative to an external reference time point. For
example the peak of a cycle relative to the last dawn.

AMPLITUDE: It represents the level of expression of the rhythmic entity and is measured as half the magnitude from
peak to trough.

ZEITGEBER (ZT): The external environmental cues that synchronize the endogenous circadian clock to the earth’s
diurnal and seasonal cycles. ZTO: is the time of onset of a signal; ZT0-ZT12 represents the subjective day when the

organism is exposed to the light during entrainment; ZT12-ZT24 represents the subjective night.

4.11 Gene circuit design

Cells navigate environments, communicate and build complex patterns by initiating gene
expression in response to specific signals. Engineers seek to harness this capability to program
cells to perform tasks or create chemicals and materials that match the complexity seen in
nature. Circuit dynamics can be influenced by the choice of regulators and changed with
expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits,
quantify their impact on performance and review mitigation efforts. Finally, we discuss the
constraints that arise from circuits having to operate within a living cell. Collectively, better
tools, well-characterized parts and a comprehensive understanding of how to compose circuits
are leading to a breakthrough in the ability to program living cells for advanced applications,
from living therapeutics to the atomic manufacturing of functional materials.
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UNIT 5 COMPUTER-BASED INFORMATION RETRIEVAL AND
EXAMINATION

5.1 Computer-based Information Retrieval and Examination - Databases and Tools

on the Internet
With the rapid increase of biological data, it has become even more important to orga-
nize and structure the data in a way that information can easily be retrieved. As a result,
the number of databases has also increased rapidly over the past few years. Most of
these databases have a Web interface and can be accessed from everywhere in the
world, which is an enormously important service for the scientific community. Again
we have to emphasize that we can give only a very brief summary of a small number of
databases. An extensive list of databases can be found at http:/ /www.mpiem.gwdg.de/
Forschung/Biol/biol_index_en.html. Furthermore, the journal Nucleic Acids Research
offers a databases issue each year in January that is dedicated to factual biological data-
bases and, additionally, a Web server issue in July presenting Web-based services such
as tools for sequence comparison or prediction of 3-D protein structure.
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5.2 Gene Ontology — KEGG and BRENDA
The accumulation of scientific knowledge is a decentralized, parallel process. Conse-
quently, the naming and description of new genes and gene products is not necessa-
rily systematic. Often, gene products with identical functions are given different
names in different organisms or the verbal description of the location and function
might be quite different (e.g., protein degradation vs. proteolysis). This, of course,
makes it very difficult to perform efficient searching across databases and organisms.
This problem has been recognized, and in 1998 the Gene Ontology (GO) project
(http://www.geneontology.org) was initiated as a collaborative effort of the Saccharo-
myces Genome Database (SGD), the Mouse Genome Database (MGD), and FlyBase.
The aim of the Gene Ontology is to provide a consistent, species-independent, func-
tional description of gene products. Since 1998 the GO project has grown consider-
ably and now includes databases for plant, animal, and prokaryotic genomes. Effec-
tively, GO consists of a controlled vocabulary (the GO terms) used to describe the
biological function of a gene product in any organism. The GO terms have a defined
parent-child relationship and form a directed acyclic graph (DAG) (cf. Section 3.5.1).

In a DAG, each node can have multiple child nodes, as well as multiple parent
nodes. Cyclic references, however, are forbidden. The combination of vocabulary and
relationship between nodes is referred to as ontology. At the root of the GO are the
three top-level categories, molecular function, biological process, and cellular compo-
nent, which contain many levels of child nodes (GO terms) that describe a gene pro-
duct with increasing specificity. The GO consortium, in collaboration with other da-
tabases, develops and maintains the three top-level ontologies (the set of GO terms
and their relationship) themselves, creates associations between the ontologies and
the gene products in the participating databases, and develops tools for the creation,
maintenance, and use of the ontologies.

Let's look at a practical example to see how the concept works. The enzyme superox-
ide dismutase, for instance, is annotated in FlyBase (the Drosophila melanogaster data-
base) with the GO term “cytoplasm” in the cellular component ontology, with the GO
terms “defense response” and “determination of adult lifespan” in the biological pro-
cess ontology, and with the terms “antioxidant activity” and “copper, zinc superoxide
dismutase activity” in the molecular function ontology. The GO term cytoplasm itself
has the single parent “intracellular,” which has the single parent “cell,” which is finally
connected to the cellular component. The other GO terms for superoxide dismutase
are connected in a similarly hierarchical way to the three top categories.

The following table gives the number of gene products that have been annotated
to the top-level categories of the GO for several popular databases. The table dates
from January 2004 and excludes annotations that are based exclusively on electronic
inferences.
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KEGG

KEGG (Kyoto Encyclopedia of Genes and Genomes; http://www.genome.ad.jp/
kegg/) is a reference knowledgebase offering information about genes and proteins,
biochemical compounds, reactions, and pathways. The data are organized in three
parts: the gene universe (consisting of the GENES, SSDB, and KO databases), the
chemical universe (with the COMPOUND, GLYCAN, REACTION, and ENZYME da-
tabases which are merged as the LIGAND database), and the protein network con-
sisting of the PATHWAY database (Kanehisa et al. 2004). In addition, the KEGG da-
tabase is hierarchically classified into categories and subcategories at four levels. The
five topmost categories are metabolism, genetic information processing, environ-
mental information processing, cellular processes, and human diseases. Subcate-
gories of metabolism are, e.g., carbohydrate, energy, lipid, nucleotide, or amino acid
metabolism. These are subdivided into the different pathways, such as glycolysis, ci-
trate cycle, purine metabolism, etc. Finally, the fourth level corresponds to the KO
(KEGG Orthology) entries. A KO entry (internally identified by a K number, e.g.,
K00001 for the alcohol dehydrogenase) corresponds to a group of orthologous genes
that have identical functions.

BRENDA

High-throughput projects, such as the international genome sequencing efforts, ac-
cumulate large amounts of data at an amazing rate. These data are essential for the
reconstruction of phylogenetic trees and gene-finding projects. However, for kinetic
modeling, which is at the heart of systems biology, kinetic data of proteins and en-
zymes are needed. Unfortunately, this type of data is notoriously difficult and time-
consuming to obtain, since proteins often need individually tuned purification and
reaction conditions. Furthermore, the results of such studies are published in a large
variety of journals from different fields.

In this situation, BRENDA aims to be a comprehensive enzyme information sys-
tem (http://www.brenda.uni-koeln.de). Basically, BRENDA is a curated database that
contains a large amount of functional data for individual enzymes. These data are
gathered from the literature and made available via a Web interface. The table on the
next page gives an overview of the types of information that is collected and the
number of entries for the different information fields (as of June 2004). For instance,
enzymes representing 4379 different EC numbers and over 50,000 different K, va-
lues are contained in the database.
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5.3 Modeling and Visualization tools - Gepasi, Copasi

Matlab and Mathematica are huge and expensive general-purpose tools for mathe-
matical modeling. They can be used to model anything that can be modeled, but at
the cost of a steep learning curve. The opposite approach is used by specialized tools

that are designed for a certain task. Gepasi is one of these tools that have been devel-
oped for the modeling of biochemical reaction systems. It was written by Pedro
Mendes (Mendes 1993, 1997) and is available free of charge (http://www.gepasi.org).
It runs native under Microsoft Windows but can also be used under Unix/Linux in
connection with the Wine emulator (http://www.winehq.com).

In Gepasi, reactions are entered not as differential equations but rather in a nota-
tion similar to chemical reactions (Fig. 14.1). Each reaction has to be assigned to a
specific kinetics, and Gepasi allows the user to select from a large range of prede-
fined kinetics types (Michaelis-Menten, Hill Kinetics, Uni-Uni, etc.). In addition it is
also possible to create user-defined kinetics types. Once a system is defined, the pro-
gram allows one to perform several tasks such as plotting a time course, scanning
the parameter space, fitting models to data, optimizing any function of the model,
and performing metabolic control analysis and linear stability analysis.
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Fig. 14.1 The simulation tool Gepasi. Top left:
The main window, which contains tabs for activ-
ities such as input of the reaction system, calcu-
lating a time course, fitting the system to experi-
mental data or scanning the parameter space.
Bottom left: Reactions are entered in a chemical
notation, not as ODEs. Irreversible reactions are

entered with the symbol -> and reversible reac-
tions with an equal sign (=). Bottom right:

A kinetics has to be assigned to each reaction
and the necessary numerical constants have to
be specified. Top right: If the system has been
defined, Gepasi can calculate the time course
of selected variables.

It is also possible to create multi-compartment models with Gepasi to model reac-
tions that take place, for instance, in the cytoplasm and the nucleus. If a metabolite
crosses a boundary between two compartments of different volume, the change of
concentration in the originating compartment is not equal to that in the destination
compartment. Gepasi automatically takes care of the conversions between concentra-
tions into absolute amounts and back, which is necessary for the calculations. Apart
from its own format, Gepasi can also save and load models that are described in the
Systems Biology Markup Language (SBML) level 1 (see Section 14.2.2).

Gepasi is a handy tool that is designed to perform many of the standard tasks for
studying a system of biochemical reactions. It is easy to handle, except that one has
to get used to the strange fact that all windows are of a fixed size and rather small.
Graphical simulation results, however, can also be redirected to a companion pro-
gram, gnuplot, which does not have these restrictions.

5.4 MEGA

MEGA was first developed for MS DOS in the early 1990s (Kumar et al. 1994) and
then upgraded for use in MS Windows eight times, including MEGA 1 to MEGA 6 and
MEGA-CC and MEGA-MD (Kumar et al. 2001,, 2016). Some of the MEGA releases
have been packaged for Linux systems using the WINE compatibility layer for POSIX-
compliant operating systems and the Wineskin tool (built on WINE) for macOS
systems. These versions have been downloaded over 200,000 times. But the ad hoc
Windows-emulation solution is sluggish and relatively unstable when compared with
the performance in MS Windows. Emulators cannot be used effectively for the latest
64-bit version of MEGA that is built to handle memory-intensive analyses of large
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contemporary data sets (Kumar et al. 2016), so a more comprehensive solution is
required for users of alternate platforms.

Therefore, MEGA has been transformed into a cross-platform version that runs
natively on Linux and Microsoft Windows. This advancement eliminates the Windows-
only limitation of MEGA, which has become particularly acute due to the increasing
use of Linux in biological research. This transformation also paves the way for
development of a MEGA X version for macOS in the near future.

5.5 Netpath

Complex biological processes such as proliferation, migration and apoptosis are
generally regulated through responses of cells to stimuli in their environment. Signal
transduction pathways often involve binding of extracellular ligands to receptors, which
trigger a sequence of biochemical reactions inside the cell. Generally, proteins are the
effector molecules, which function as part of larger protein complexes in signaling
cascades. Cellular signaling events are generally studied systematically through
individual experiments that are widely scattered in the biomedical literature.
Assembling these individual experiments and putting them in the context of a signaling
pathway is difficult, time-consuming and cannot be automated.

The availability of detailed signal transduction pathways that can easily be understood
by humans as well as be processed by computers is of great value to biologists trying
to understand the working of cells, tissues and organ systems. A systems-level
understanding of any biological process requires, at the very least, a comprehensive
map depicting the relationships among the various molecules involved. For instance,
these maps could be used to construct a complete network of protein-protein
interactions and transcriptional events, which would help in identifying novel
transcriptional and other regulatory networks. These can be extended to predict how
the interactions, if perturbed singly or in combination, could affect individual biological
processes. Additionally, they could be used to identify possible unintended effects of a
candidate therapeutic agent on any clusters in a pathway. We have developed a resource
called NetPath that allows biomedical scientists to visualize, process and manipulate
data pertaining to signaling pathways in humans.

5.6 Biotapestry

BioTapestry is an open source, freely available software tool that has been developed
to handle the -challenges of modeling genetic regulatory networks (GRNSs). Using
BioTapestry, a researcher can -construct a network model and use it to visualize and
understand the dynamic behavior of a complex, spatially and temporally distributed
GRN. Here we provide a step-by-step example of a way to use BioTapestry to build a
GRN model and discuss some common issues that can arise during this process.
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5.7 E-Cell

The E-Cell Project develops general technologies and theoretical supports for
computational biology with the grand aim to make precise whole cell simulation at the
molecular level possible.

Some of the research foci of the Project include:

Modeling methodologies, formalisms and techniques, including technologies to
predict, obtain or estimate parameters such as reaction rates and concentrations of
molecules in the cell.

E-Cell System, a software platform for modeling, simulation and analysis of complex,
heterogeneous and multi-scale systems like the cell.

Numerical simulation algorithms.

Mathematical analysis methods.

The E-Cell Project is open to anyone who shares the view with us that development of
cell simulation technology, and, even if such ultimate goal might not be within ten years
of reach yet, solving various conceptual, computational and experimental problems that
will continue to arise in the course of pursuing it, may have a multitude of eminent
scientific, medical and engineering impacts on our society.

5.8 PyBioS

Several software applications have been proposed in the past years as computational
tools for assessing biomedical signals. Many of them are focused on heart rate
variability series only, with their strengths and limitations depending on the necessity
of the user and the scope of the application. Here, we introduce new software, named
PyBioS, intended for the analysis of cardiovascular signals, even though any type of
biomedical signal can be used. PyBioS has some functionalities that differentiate it
from the other software. PyBioS was developed in Python language with an intuitive,
user-friendly graphical user interface. The basic steps for using PyBioS comprise the
opening or creation (simulation) of signals, their visualization, preprocessing and
analysis. Currently, PyBioS has 8 preprocessing tools and 15 analysis methods, the later
providing more than 50 metrics for analysis of the signals' dynamics. The possibility to
create simulated signals and save the preprocessed signals is a strength of PyBioS.
Besides, the software allows batch processing of files, making the analysis of a large
amount of data easy and fast. Finally, PyBioS has plenty of analysis methods
implemented, with the focus on nonlinear and complexity analysis of signals and time
series. Although PyBioS is not intended to overcome all the necessities from users, it
has useful functionalities that may be helpful in many situations. Moreover, PyBioS is
continuously under improvement and several simulated signals, tools and analysis
methods are still to be implemented. Also, a new module is being implemented on it to
provide machine learning algorithms for classification and regression of data extracted
from the biomedical signals.
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5.9 Systems Biology Workbench

The Systems Biology Workbench (SBW) is a software systems that enables different
modeling programs to communicate with each other and provide or use specialized
analysis services. In this way SBW acts as broker for services like deterministic and
stochastic simulation engines, stability and bifurcation analysis, model optimization
and graphical model building. Popular tools that are SBW aware are among others
JDesigner, CellDesigner and Dizzy.

5.10 Jdesigner

JDesigner is a graphical network editing tool developed by H. Sauro. It is tightly
connected with Jarnac.

http://sys-bio.org/sbwWiki/sysbio/jdesigner

5.11 CellDesigner

Understanding the logic and dynamics of gene-regulatory and biochemical networks is
a major challenge of systems biology. To facilitate this research topic, we have
developed CellDesigner, a modeling tool of gene-regulatory and biochemical networks.
CellDesigner supports users to easily create such networks, using solidly defined and
comprehensive graphical representation (SBGN, systems biology graphical notation).
CellDesigner is systems biology markup language (SBML) compliant, and has Systems
Biology Workbench(SBW)-enabled software so that it can import/export SBML-
described documents and integrate with other SBW-enabled simulation/analysis
software packages. CellDesigner also supports simulation and parameter search, which
is supported by integration with SBML ordinary differential equation (ODE) Solver,
enabling us to simulate through our sophisticated graphical user interface. We can also
browse and modify existing SBML models with references to existing databases.
CellDesigner is implemented in Java; thus, it runs on various platforms such as
Windows, Linux, and MacOS X. CellDesigner is freely available from our Web site at
http://celldesigner.org/.

5.12 Petri Nets

Petri nets are an excellent formal model for studying concurrent and distributed systems
and have been widely applied in many different areas of computer science and other
disciplines (Murata, 1989). There have been over 8000 publications on Petri nets (refer
to Website http://www.daimi.au.dk/PetriNets/). Since Carl Adam Petri originally
developed Petri nets in 1962, Petri nets have evolved through four generations: the first-
generation low-level Petri nets primarily used for modeling system control
(Reisig, 1985a), the second-generation highlevel Petri nets for describing both system
data and control (Jensen and Rozenberg, 1991), the third-generation hierarchical Petri
nets for abstracting system structures (He and Lee, 1991; He, 1996; Jensen, 1992), and
the fourth-generation object-oriented Petri nets for supporting modern system
development approaches (Agha, 2001). Petri nets have also been extended in many
different ways to study specific system properties, such as performance, reliability,


http://sys-bio.org/sbwWiki/sysbio/jdesigner

A"

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

and schedulability. Well-known examples of extended Petri nets include timed Petri
nets (Wang, 1998) and stochastic Petri nets (Marsan et al., 1994; Haas, 2002). In this
article, we present several extensions to Petri nets based on our own research work and
provide analysis techniques for these extended Petri net models. We also discuss the
intended applications of these extended Petri nets and their potential benefits.

5.13 Model Exchange Languages and Data Formats - Introduction to XML

The easiest way to store and exchange data for the computer is a plain text that is
readable by humans. Since data represented by such files are compatible with almost
all computational operating systems, plain text files are also widely used in biological

research, e. g., for the storage of sequence information and its annotations. The type
of information (e.g., sequence identifier, origin, preparation method, and the se-
quence data itself) is indicated by special tags and/or is defined in a separate descrip-
tion. A similar but more flexible tool for the storage of data in a well-defined way is
the Extensible Markup Language (XML). XML is recommended by the World Wide
Web Consortium (W3C) for the definition of special-purpose markup languages
(http://www.w3.org/TR/2004/REC-xml-20040204/). XML is a lightweight adaptation
of the even more general Standard Generalized Markup Language (SGML). Docu-
ments using an XML conform markup language are written as plain text and have a
very clear and simple syntax that can easily be read by both humans and computer
programs; however, it is generally intended to be written and read by computers, not
by humans. The following example of some cellular components illustrates XMLs
major characteristics:
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5.14 Systems Biology Markup Language

Many different tools for modeling and simulation of biological systems have already
been developed (cf. Section 14.1). All of them offer functionalities to enter the model
data and to make the model persistent by storing it, e.g., in an application-specific
file. Since all of these tools offer different strength and capabilities (e.g., one offers a
good graphical representation of models and the other provides very accurate meth-
ods for numerical simulations), a systems biologist is often interested in using sev-
eral of these tools. But this typically requires the re-encoding of a model in a new
tool, which is usually a time-consuming and error-prone process. Therefore, soft-
ware-independent common standards for the representation of qualitative and quan-
titative models of biochemical reaction networks are required. CellML (Lloyd et al.
2004, http://www.cellml.org) and SBML (Hucka et al. 2003, 2004) are two XML-
based formats facing up to this problem. Since SBML is the most prominent, we will
describe it in more detail below.

SBML (http://www.sbml.org) is a free and open format for “describing models
common to research in many areas of computational biology, including cell signal-
ing pathways, metabolic pathways, gene regulation, and others” (Hucka et al. 2003).
It is already supported by many software tools (Hucka et al. 2004); in September
2004 the SBML homepage listed more than 60 software systems supporting SBML.

The following SBML Level 2 code (differences to Level 1 will be discussed below)
shows the general structural elements of an SBML document:
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5.15 MathML

SBML is designed to describe models in systems biology but is not intended to repre-
sent complicated mathematical expressions. MathML is an XML-based markup lan-
guage especially created for this task (http://www.w3.org/Math). At places in SBML
that require a mathematical expression, e. g., a user-defined kinetic law, MathML can
be inserted. MathML comes in two flavors, as markup language for presenting the
layout of mathematical expressions and as markup language for conveying the math-
ematical content of a formula. The major use of the presentation markup is to en-
able Internet browsers to directly display equations, something that is not possible
with normal HTML tags. However, it is the content markup variant of MathML that
is of greater interest for modeling. It can be used to exchange mathematical expres-
sions in a common low-level format between software packages that need to evaluate
these expressions (instead of displaying them). The following table contains

MathML for the Michaelis-Menten expression =5« .

MathML is a very verbose format and is not intended to be generated or edited by
hand. Specialized authoring tools should be used to import or export MathML ex-
pressions. Many different programs are available to make Web browsers MathML
aware, to generate PDF or DVI from MathML, to save equations in MS Word in
MathML format, or to create mathematical expressions interactively and save them
in both types of MathML (http://www.w3.org/Math/implementations.html). One
reason to look closer at the content markup MathML is STOCKS2 (see Section
14.1.7), which needs MathML input if the user wants to define a new kinetic type.
The required MathML format could be generated with a commercial editor like We-
bEQ from Design Science (http://www.dessci.com) or by using a free service offered

at http://www.mathmlcentral.com, a Web site of Wolfram Research (the company
that produces Mathematica). This site offers three valuable Web services for free: va-
lidating whether a given MathML expression is syntactically correct, rendering of
presentation markup MathML into different graphics formats, and conversion of a
mathematical expression that is given in Mathematica syntax into the different types
of MathML. With this wealth of resources available on the Net, it should be no prob-
lem to master MathML.

5.16 Cytoscape

Cytoscape is an open source software project for integrating biomolecular interaction
networks with high-throughput expression data and other molecular states into a unified
conceptual framework. Although applicable to any system of molecular components
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and interactions, Cytoscape is most powerful when used in conjunction with large
databases of protein-protein, protein-DNA, and genetic interactions that are
increasingly available for humans and model organisms. Cytoscape's software Core
provides basic functionality to layout and query the network; to visually integrate the
network with expression profiles, phenotypes, and other molecular states; and to link
the network to databases of functional annotations. The Core is extensible through a
straightforward plug-in architecture, allowing rapid development of additional
computational analyses and features. Several case studies of Cytoscape plug-ins are
surveyed, including a search for interaction pathways correlating with changes in gene
expression, a study of protein complexes involved in cellular recovery to DNA damage,
inference of a combined physical/functional interaction network for Halobacterium,
and an interface to detailed stochastic/kinetic gene regulatory models.

5.17 SBML tool box for MATLAB.

The expanding field of Systems Biology has stimulated the formalization of an
increasing number of biological/biochemical models. The Systems Biology Markup
Language (SBML), an XML-based format for computational models of biochemical
networks, is becoming accepted as a de facto standard for the representation of such
models (Hucka et al., 2004) and thus facilitates their systematic exchange.

In addition to promoting the creation of models, Systems Biology has also motivated
the development of a range of software packages that can interact with these models,
perform simulations and analyses on them, produce graphical representations of models
and facilitate the creation of new models. However, the commercially available
software package MATLAB provides a wide spectrum of this type of functionality
combined with the facility to easily develop user-specific functions. Thus an alternative
approach to that of developing new software exists in the form of developing a toolbox
that provides users with an interface between basic MATLAB data structures and a
format such as SBML. This not only enables users to leverage their existing skills in
using the environment to work with a new format such as SBML, but it also provides a
substrate enabling other analysis tools in the environment to be applied to data
represented in SBML. MATLAB is a particularly attractive environment in this regard
because it is already popular worldwide in both engineering and scientific research, and
as the field of Systems Biology continues to attract researchers with an engineering or
physical science background, the use of MATLAB within the field is likely to
proliferate. Also, there currently exist many tools, both commercial and freely available
(Prajna et al., 2004, that apply the computational and analytical capabilities of
MATLAB to models and data in a variety of formats.

SBMLToolbox was initially developed specifically to meet two separate needs: (1)
those of existing MATLAB users wishing to import SBML models and apply
functionality appropriate to their goals, whether built into the environment or purpose-
written and (2) those of users experienced with SBML wishing to apply the
computational power of MATLAB to their models. Thus, in addition to importing
SBML, the toolbox includes functionality serving as an example of using MATLAB in
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the manipulation and analysis of models. However, the actual analytical functionality
is limited and while it is possible to simulate a range of models with the toolbox, it
should not be considered a simulation tool but rather a facilitator for the development
of other functions and toolboxes. To date we are aware of at least two freely available
toolboxes that use SBMLToolbox for precisely this purpose; namely SBToolbox and
SBMLSim.



