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1.1 Introduction to Systems biology  

Systems biology has been responsible for some of the most important developments in the 

science of human health and environmental sustainability. It is a holistic approach to 

deciphering the complexity of biological systems that starts from the understanding that the 

networks that form the whole of living organisms are more than the sum of their parts. It 

is collaborative, integrating many scientific disciplines – biology, computer science, 

engineering, bioinformatics, physics and others – to predict how these systems change over 

time and under varying conditions, and to develop solutions to the world’s most pressing health 

and environmental issues. 

This ability to design predictive, multiscale models enables our scientists to discover new 

biomarkers for disease, stratify patients based on unique genetic profiles, and target drugs and 

other treatments. Systems biology, ultimately, creates the potential for entirely new kinds of 

exploration, and drives constant innovation in biology-based technology and computation. 

1.2 Modeling in biology  

Mathematical, computational and physical methods have been applied in biology and medicine 

to study phenomena at a wide range of size scales, from the global human population all the 

way down to the level of individual atoms within a biomolecule. Concomitant with this range 

of sizes between global to atomistic, the relevant modeling methods span time scales varying 

between years and picoseconds, depending on the area of interest (from evolutionary to 

atomistic effects) and relevance. This review will cover some of the most common and useful 

mathematical and computational methods. Firstly, we outline the maximum entropy principle 

as an inference tool for the study of phenomena at different scales, from gene evolution and 

gene networks to protein-drug molecular interactions, followed with a survey of the methods 

used for large scale systems—populations, organisms, and cells—and then zooming down to 

the methods used to study individual biomolecules—proteins and drugs. To study the large 

systems, the most common and reliable mathematical technique is to develop systems of 

differential equations. At the molecular scale, molecular dynamics is often used to model 

biomolecules as a system of moving Newtonian particles with interactions defined by a force 

field, with various methods employed to handle the challenge of solvent effects. In some cases, 

pure quantum mechanics methods can and should be used, which describe molecules using 

either wave functions or electron densities, although computational costs in time and resources 

may be prohibitive, so hybrid classical-quantum methods are often more appropriate. Quantum 

methods can be particularly valuable in the study of enzymes and enzymatic reactions. 

1.3 System State 

An important notion in dynamical systems theory is the state. The state of a system is a snapshot 

of the system at a given time that contains enough information to pre- dict the behavior of the 

system for all future times. The state of the system is de- scribed by the set of variables that 
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must be kept track of in a model.  Different modeling approaches have different representations 

of the state: in a dif- ferential equation model for a metabolic network, the state is a list of 

concentrations of each chemical species. In the respective stochastic model, it is a probability 

distribution and/or a list of the current number of molecules of a species. In a Boolean model 

of gene regulation, the state is a string of bits indicating for each gene whether it is expressed 

(“1”) or not expressed (“0”). Thus, each model defines what it means by the state of the system. 

Given the current state, the model predicts which state or states can occur next, thereby 

describing the change of state.  

Steady States 

The concept of stationary states is important for the modeling of dynamical systems. Stationary 

states (other terms are steady states or fixed points) are determined by the fact that the values 

of all state variables remain constant in time. The asymptotic be- havior of dynamic systems, 

i.e., the behavior after a sufficiently long time, is often stationary. Other types of asymptotic 

behavior are oscillatory or chaotic regimes.  

The consideration of steady states is actually an abstraction that is based on a se- paration of 

time scales. In nature, everything flows. Fast and slow processes – ranging from formation and 

release of chemical bonds within nanoseconds to growth of individuals within years – are 

coupled in the biological world. While fast processes often reach a quasi-steady state after a 

short transition period, the change of the value of slow variables is often negligible in the time 

window of consideration. Thus each steady state can be regarded as a quasi-steady state of a 

system that is embedded in a larger non-stationary environment. Although the concept of 

stationary states is a mathematical idealization, it is important in kinetic modeling since it 

points to typical behavioral modes of the investigated system and the respective mathematical 

problems are frequently easier to solve.  

1.4 Variables, parameters and constants  

The quantities involved in a model can be classified as variables, parameters, and constants. A 

constant is a quantity with a fixed value, such as the natural number e or Avogadro’s number 

NA = 6.02 7 1023 (number of molecules per mole). Parameters are quantities that are assigned 

a value, such as the Km value of an enzyme in a reaction. This value depends on the method 

used and on the experimental conditions and may change. Variables are quantities with a 

changeable value for which the model establishes relations. The state variables are a set of 

variables that describe the system behavior completely. They are independent of each other 

and each of them is neces- sary to define the system state. Their number is equivalent to the 

dimension of the system. For example, diameter d and volume V of a sphere obey the relation 

V = p d3/6. p and 6 are constants and V and d are variables, but only one of them is a state 

variable, since the mentioned relation uniquely determines the other one.  

Whether a quantity is a variable or a parameter depends on the model. The en- zyme 

concentration is frequently considered a parameter in biochemical reaction ki- netics. That is 
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no longer valid if, in a larger model, the enzyme concentration may change due to gene 

expression or protein degradation.  

 

 

1.5 Model behaviour 

There are two fundamental causes that determine the behavior of a system or its changes: (1) 

influences from the environment (input) and (2) processes within the system. The system 

structure, i.e., the relation among variables, parameters, and constants, determines how 

endogenous and exogenous forces are processed. It must be noted that different system 

structures may produce similar system behavior (out- put). The structure determines the 

behavior, not the other way around. Therefore, the system output is often not sufficient to 

predict the internal organization. Generally, system limits are set such that the system output 

has no impact on the input.  

 

1.6  Advantages of computational modelling 

 

Models gain their reference to reality from comparison with experiments, and their benefits 

are, therefore, somewhat dependent on experimental performance. Never- theless, modeling 

has a lot of advantages.  Modeling drives conceptual clarification. It requires that verbal 

hypotheses be made specific and conceptually rigorous. Modeling also highlights gaps in 

knowl- edge or understanding. During the process of model formulation, unspecified com- 

ponents or interactions have to be determined.  

Modeling provides independence of the modeled object. Time and space may be stretched or 

compressed ad libitum. Solution algorithms and computer programs can be used independently 

of the concrete system. Modeling is cheap compared to experiments. Models exert by 

themselves no harm on animals or plants and help to reduce it in experiments. They do not 

pollute the environment. Models interact neither with the environment nor with the modeled 

system.  

Modeling can assist experimentation. With an adequate model one may test differ- ent 

scenarios that are not accessible by experiment. One may follow time courses of compounds 

that cannot be measured in an experiment. One may impose perturba- tions that are not feasible 

in the real system. One may cause precise perturbations with- out directly changing other 

system components, which is usually impossible in real systems. Model simulations can be 

repeated often and for many different conditions. Model results can often be presented in 

precise mathematical terms that allow for gen- eralization. Graphical representation and 

visualization make it easier to understand the system. Finally, modeling allows for making 

well-founded and testable predictions.  
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1.7 Model development  

 

1. Formulation of the problem: Before establishing an initial model, it must be clear which 

questions shall be answered with the approach. A distinct verbal statement about 

background, problem, and hypotheses is a helpful guide in further analysis.  

2. Verification of available information: As a first step, the existing quantitative and 

structural knowledge has to be checked and collected. This concerns information about 

the included components and their interactions as well as experimental re- sults with 

respect to phenotypic changes such as growth and shape after system perturbations such 

as knockout experiments, RNAi, and variation of environmen- tal conditions.  

3. Selection of model structure: Based on the available information and on the prob- lem 

to solve, the general type of the model is determined: (1) the level of descrip- tion as 

macroscopic or microscopic, (2) the choice of a deterministic or stochastic approach, 

(3) the use of discrete or continuous variables, and (4) the choice of steady-state, 

temporal, or spatio-temporal description. Furthermore, it must be decided what the 

determinants for system behavior (external influences, internal structure) are. The 

system variables must be assigned.  

4. Establishing a simple model: The first model can be expressed in words, schema- 

tically, or in mathematical formulation. It serves as general test and allows refined 

hypotheses.  

5. Sensitivity analysis: Mathematical models typically contain a number of parameters, 

and the simulation result can be highly sensitive to parameter changes. It is recom- 

mendable to verify the dependence of the model results on the parameter choice.  

6. Experimental tests of the model predictions: This is a hard task. Experimental de- sign 

in biology is usually hypothesis-driven. In fact, hypotheses that state general relations 

can rarely be verified, but only falsified. These predictions usually con- cern 

relationships between different cellular states or biochemical reactions. On the other 

hand, hypothesis about the existence of items are hard to falsify. The choice of 

parameters to be measured, how many measurements are to be per- formed, and at what 

time intervals is not uniquely defined but depends on the re- searcher’s opinion. These 

selections are largely based on experience and, in new areas in particular, on intuition.  

7. Stating the agreements and divergences between experimental and modeling re- sults: 

Although the behavior of the model and the experimental system should eventually 

agree, disagreement drives further research. It is necessary to find out whether the 

disagreement results from false assumptions, tampering simplifica- tions, wrong model 

structure, inadequate experimental design, or other inade- quately represented factors.  

8. Iterative refinement of model: The initial model will rarely explain all features of the 

studied object and usually leads to more open questions than answers. After comparing 

the model outcome with the experimental results, model structure and parameters may 

be adapted.  
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As stated above, the choice of a model approach is not unique. Likewise, the possi-  

ble outcome of models differs. Satisfactory results could be the solution to the initi- ally stated 

problem, the establishment of a strategy for problem solution, or reason- able suggestions for 

experimental design.  

 

 

1.8 Typical aspects of biological systems and corresponding models  

 

A number of notions have been introduced or applied in the context of systems biol- ogy or 

computational modeling of biological systems. Their use is often not unique, but we will 

present here some interpretations that are helpful in understanding re- spective theories and 

manuscripts.  

Network Versus Elements 

A system consists of individual elements that interact and thus form a network. The elements 

have certain properties. In the network, the elements have certain relations to each other (and, 

if appropriate, to the environment). The system has properties that rely on the individual 

properties and relations between the elements. It may show additional systemic properties and 

dynamic characteristics that often cannot be deduced from the individual properties of the 

elements.  

Modularity 

 

Modules are subsystems of complex molecular networks that can be treated as func- tional 

units, which perform identifiable tasks (Lauffenburger 2000). Typical exam- ples for 

assignment of modules are (1) the DNA-mRNA-enzyme-metabolism cascade and (2) signal 

transduction cascades consisting of covalent modification cycles. The reaction networks at 

each level are separated as modules by the criterion that mass transfer occurs internally but not 

between the modules, and they are linked by means of catalytic or regulatory effects from a 

chemical species of one module to a reaction in another module (Hofmeyr and Westerhoff 

2001). Consideration of mod- ules has the advantage that modeling can be performed in a 

hierarchical, nested, or sequential fashion. The properties of each module can be studied first 

in isolation and subsequently in a comprehensive, integrative attempt. The concept is appealing 

since it allows thinking in terms of classes of systems with common characteristics that can be 

handled with a common set of methods. The disadvantage is that a mod- ular approach has to 

ignore or at least reduce the high level of connectivity in cellular networks – in particular the 

variety of positive and negative feedback and feed-for- ward regulatory loops – which actually 

contradicts the basic idea of systems biology.  
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Robustness and Sensitivity are Two Sides of the Same Coin 

Robustness is an essential feature of biological systems. It characterizes the insensi- tivity of 

system properties to variations in parameters, structure, and environment or to other 

uncertainties. Robust systems maintain their state and functions despite ex- ternal and internal 

perturbations. An earlier notion for this observation is homeosta- sis. Robustness in biological 

systems is often achieved by a high degree of complex- ity involving feedback, modularity, 

redundancy, and structural stability (Kitano 2002). On the one hand, biological systems must 

protect their genetic information and their mode of living against perturbations; on the other 

hand, they must adapt to changes, sense and process internal and external signals, and react 

precisely depend- ing on the type or strength of a perturbation. Sensitivity or fragility 

characterizes the ability of living organisms for adequately reacting on a certain stimulus. Note 

that in some areas sensitivity is more rigorously defined as the ratio of the change of a vari- 

able by the change of a quantity that caused the change in the variable.  

 

 

 

1.9 Bottom-up and top-down approaches of complex system  

Systems biology is a computational field that has been used for several years across different 

scientific areas of biological research to uncover the complex interactions occurring in living 

organisms. Applications of systems concepts at the mammalian genome level are quite 

challenging, and new complimentary computational/experimental techniques are being 

introduced. Most recent work applying modern systems biology techniques has been conducted 

on bacteria, yeast, mouse, and human genomes. However, these concepts and tools are equally 

applicable to other species including ruminants (e.g., livestock). In systems biology, both 

bottom-up and top-down approaches are central to assemble information from all levels of 

biological pathways that must coordinate physiological processes. A bottom-up approach 

encompasses draft reconstruction, manual curation, network reconstruction through 

mathematical methods, and validation of these models through literature analysis (i.e., 

bibliomics). Whereas top-down approach encompasses metabolic network reconstructions 

using 'omics' data (e.g., transcriptomics, proteomics) generated through DNA microarrays, 

RNA-Seq or other modern high-throughput genomic techniques using appropriate statistical 

and bioinformatics methodologies. In this review we focus on top-down approach as a means 

to improve our knowledge of underlying metabolic processes in ruminants in the context of 

nutrition. We also explore the usefulness of tissue specific reconstructions (e.g., liver and 

adipose tissue) in cattle as a means to enhance productive efficiency. 

1.10 Mathematical representation of cell - biological system Time and space  

 

Mathematical and computational models are increasingly used to help interpret biomedical data 

produced by high-throughput genomics and proteomics projects. The application of advanced 
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computer models enabling the simulation of complex biological processes generates 

hypotheses and suggests experiments. Appropriately interfaced with biomedical databases, 

models are necessary for rapid access to, and sharing of knowledge through data mining and 

knowledge discovery approaches. 

 

Revolutions in biotechnology and information technology have produced enormous amounts 

of data and are accelerating the process of knowledge discovery of biological systems. These 

advances are changing the way biomedical research, development and applications are 

conducted. Clinical data complements biological data, enabling detailed descriptions of both 

healthy and diseased states, as well as disease progression and response to therapies. The 

availability of data representing various biological states, processes and their time 

dependencies enables the study of biological systems at various levels of organization, from 

molecules to organism and even up to the population level. Multiple sources of data support a 

rapidly growing body of biomedical knowledge, however, our ability to analyze and interpret 

this data lags far behind data generation and storage capacity. Mathematical and computational 

models are increasingly used to help interpret biomedical data produced by high-throughput 

genomics and proteomics projects. The application of advanced computer models enabling the 

simulation of complex biological processes generates hypotheses and suggests experiments. 

Computational models are set to exploit the wealth of data stored on biomedical databases 

through text mining and knowledge discovery approaches. 

 

Modeling is the human activity consisting of representing, manipulating and communicating 

real-world daily life objects. As one can easily realize, there are many ways to observe an 

object or, equivalently, there are many different observers for the same object. Any observer 

has ‘different views’ of the same object, i.e. ‘there is no omniscient observer with special access 

to the truth’. Each different observer collects data and generates hypothesis that are consistent 

with the data. This logical process is called ‘abduction’. Abduction is not infallible, though; 

with respect to a scientific unknown, we are all blind. 

 

A system is a collection of interrelated objects. For example, a biological system could be a 

collection of different cellular compartments (e.g. cell types) specialized for a specific 

biological function (e.g. white and red blood cells have very different commitments). An object 

is some elemental unit upon which observation can be made but whose internal structure is 

either unknown or does not exist. The choice of the elemental unit defines the representation 

scale of the system. A model is a description of a system in terms of constitutive objects and 

the relationships among them, where the description itself is, in general, decodable or 

interpretable by humans. 

Generally speaking, a system is an unknown ‘black box’ (S) which, under a specific external 

stimulus (input E) produces a response (output R). Using this general definition, one can 

identify three primary scientific uses of models: (i) synthesis or knowledge discovery; to use 

the knowledge of inputs E and outputs R to infer system characteristics; (ii) analysis and 

prediction; to use the knowledge of the parts and their stimuli (i.e. the inputs E) to account for 

the observed response (i.e. the output R) and eventually, to predict response to different stimuli. 
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(iii) Instrumentation or device; to design an ‘alternative system’ (i.e. hardware or software), 

able to reproduce the input–output relationship with the best possible adherence to the studied 

system. 

Secondary uses of models account for conceptual frameworks to design new experiments, 

methods to summarize or synthesize large quantities of data, tools to discover relationships 

among objects. 

 

Here, we analyze models and modeling processes specific for the biology. We mainly focus on 

the use of models aiming at the points (i) and (ii) as tools for knowledge discovering in biology. 

The mathematical methods used in modeling biological systems vary according to different 

steps of the process. We focus on the mathematical representation of the system. However, 

other important steps in the modeling processes are parameters fitting and model selection. We 

will not analyze the mathematical methods in those two important aspects as these would 

require separate review papers. Methods for parameters fitting refer to wide area of 

mathematical optimization, whereas methods for model selection mainly use statistical 

techniques. On top of these, sensitivity analysis and phase–space analysis of the models may 

be required. Interested readers may find more information in these references. 

Models for technical use are formal models, but the strategy for building them is quite different 

and therefore, we leave them out of the present discussion. In the following we will refer to 

this type of models as Black Box Models (BBM). It is worth pointing out that, as we will 

mention later on, alternative systems can be considered parts of a large model to account for 

effects whose origin can be neglected without compromising the understanding of the whole 

phenomena. 

 

 

 

1.11 Future of systems biology - Experimental  

 

 

In the last 65 years of biology, we have witnessed three changes in the dominant paradigm 

employed to make progress in the life sciences; the systems biology of organisms (300 BC to 

1950 AD), molecular biology and genetics employing a reductionist approach (1950 to 2000), 

and the systems biology of molecules, cells, organs, organisms, and populations (2000 into the 

future) that requires scientists trained in the more quantitative sciences so as to extract 

information from large datasets of experiments and create hypotheses and models that can and 

are then tested experimentally in a laboratory or the environment. The future of systems 

biology is clearly linked to testing ideas in the laboratory and in natural populations, employing 

the tools of molecular biology. The structure of the biological sciences will become like 

physics, with theorists and experimentalists working together to solve problems. 
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Systems Biology is an extremely broad topic and it is likely that the multiple subfields will 

develop in different directions, potentially only a subset of them fulfilling our current hopes. 

As such, the list below is incomplete and we don’t know whether things will turn out as 

planned: 

• Personalised Medicine: At the moment patients receive treatment based on 

inspections of the symptoms and measurements like a full blood exam. But often a 

treatment successfully given to one patient does not work for another one with almost 

identical symptoms. So physicians use a trial-and-error approach: they test treatments 

until one is (hopefully) successful. The idea of personalised medicine is to use DNA 

sequencing to gain insights into diseases like cancer; telling us what the origin of the 

disease is. This information can then guide doctors to a drug that is most efficient for 

this particular patient. One of the first patient who’s cancers DNA was sequenced was 

Steve Jobs. Unfortunately, it did not help to overcome the disease but we are optimistic 

for the future and the first of these approaches were successful for some diseases. 

• Synthetic Biology: By understanding the biological systems we might be 

able to create new artificial biological systems like proteins that do not exist 

in nature but have beneficial purposes. For example, we are already able to 

create synthetic antibodies, which are a body’s natural way fight external 

bacteria. 

The examples above are focussed on the pharmaceutical implications of systems biology 

research. To reach these goals many different other questions will need to be answered: relation 

between genotype and phenotype, epigenetics, metabolomics, mutliscale modelling, and most 

importantly how they all relate to each other, because this is the systems part: we can not 

understand the body and its function by looking just at one level of biological processes but 

have to look at them in an integrated way. 

 

 

1.12 Planning in the Systems Biology Phase of Biological Research  

 

The systems biology phase of biological and medical research will change the way we plan 

and carry out experiments to probe the complex networks of processes; our ability to predict 

must be greatly improved in order to help to solve these types of problems.  

Experimental planning and data generation in the recent, pre-genomic phase of biological 

research has, at least in principle, been guided by hypotheses (hypothesis- driven research, a 

principle that has, however, been mitigated by the many unex- pected observations that often 

contribute more to our understanding of biology than the hypothesis-driven research originally 

planned). In the genomic phase, this has been replaced largely by the systematic analysis of all 

components of a process and, ideally, of all components that an organism has or is able to 

produce (all genes, all transcripts, all proteins, all protein complexes, all metabolites, etc.). The 

systems biol- ogy phase of biological research might represent a synthesis of both principles. 
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Since our knowledge (or hypothesis) about a process is defined by the model or models we can 

formulate about the process as well as the exact parameters we use in this model- ing (initial 

concentrations, kinetic constants etc.), we can use computational and mathematical techniques 

to compare these models, to identify key experiments, and to program robotic systems to carry 

out these experiments. Such a strategy has, for example, been used recently to carry out an 

analysis of yeast mutations (The Robot Scientist; King et al. 2004), in which the experimental 

planning and control of the robots actually carrying out the experiments were performed by a 

computer program.  
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2.1 Linear Algebra & Linear Equations 
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2.2 Systematic Solution of Linear Systems  
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2.3 Matrices - Basic Notions  
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2.7 Solution of Linear ODE Systems 
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2.8 Maltus law  

Malthus believed that through preventative checks and positive checks, the population 

would be controlled to balance the food supply with the population level. These checks 

would lead to the Malthusian catastrophe. 

 

 

 
 

Malthusianism is the idea that population growth is potentially exponential while the 

growth of the food supply or other resources is linear, which eventually reduces living 

standards to the point of triggering a population die off. It derives from the political and 

economic thought of the Reverend Thomas Robert Malthus, as laid out in his 1798 

writings, An Essay on the Principle of Population. Malthus believed there were two 

types of ever-present "checks" that are continuously at work, limiting population 

growth based on food supply at any given time: 

• preventive checks, such as moral restraints or legislative action — for example the 

choice by a private citizen to engage in abstinence and delay marriage until their 

finances become balanced, or restriction of legal marriage or parenting rights for 

persons deemed "deficient" or "unfit" by the government. 

https://en.wikipedia.org/wiki/Malthusian_growth_model
https://en.wikipedia.org/wiki/Resources
https://en.wikipedia.org/wiki/Linear_growth
https://en.wikipedia.org/wiki/Malthusian_crisis
https://en.wikipedia.org/wiki/Thomas_Robert_Malthus
https://en.wikipedia.org/wiki/An_Essay_on_the_Principle_of_Population
https://en.wikipedia.org/wiki/Abstinence
https://en.wikipedia.org/wiki/Marriage
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• positive checks, such as disease, starvation, and war, which lead to high rates of 

premature death — resulting in what is termed a Malthusian catastrophe. The adjacent 

diagram depicts the abstract point at which such an event would occur, in terms of 

existing population and food supply: when the population reaches or exceeds the 

capacity of the shared supply, positive checks are forced to occur, restoring balance. 

(In reality the situation would be significantly more nuanced due to complex regional 

and individual disparities around access to food, water, and other resources.) 

Such a catastrophe inevitably has the effect of forcing the population (quite rapidly, due 

to the potential severity and unpredictable results of the mitigating factors involved, as 

compared to the relatively slow time scales and well-understood processes 

governing unchecked growth or growth affected by preventive checks) to "correct" 

back to a lower, more easily sustainable level. Malthusianism has been linked to a 

variety of political and social movements, but almost always refers to advocates 

of population control.  

 

 

2.9 Stability of Steady States   

 

 

https://en.wikipedia.org/wiki/Malthusian_catastrophe
https://en.wikipedia.org/wiki/Population_growth
https://en.wikipedia.org/wiki/Eugenics
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2.10 Difference Equations  
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UNIT 3 STANDARD MODELS AND APPROACHES 

3.1 Metabolism  

Living cells require energy and material for building membranes, storing molecules, 

replenishing enzymes, replication and repair of DNA, movement, and many other processes. 

Through metabolism cells acquire energy and use it to build new cells. Metabolism is the means 

by which cells survive and reproduce. Metabolism is the general term for two kinds of 

reactions: (1) catabolic reactions (breakdown of com- plex compounds to get energy and 

building blocks) and (2) anabolic reactions (con- struction of complex compounds used in 

cellular functioning). Metabolism is a highly organized process. It involves thousands of 

reactions that are catalyzed by en- zymes.  

Metabolic networks consist of reactions transforming molecules of one type into molecules of 

another type. In modeling terms, the concentrations of the molecules and their rates of change 

are of special interest. The basic concepts of reaction net- works, which are outlined here, may 

also be applied for other types of cellular reac- tion networks, e. g., signal transduction 

pathways. In this chapter metabolism will be studied on three levels of abstraction:  

1. Enzyme kinetics investigates the dynamic properties of the individual reactions in 

isolation.  

2. The network character of metabolism is studied with stoichiometric analysis con- 

sidering the balance of compound production and degradation.  

3. Metabolic control analysis quantifies the effect of perturbations in the network 

employing the individual dynamics of concentration changes and their integration in 

the network.  

Note that most modeling approaches for individual biochemical reactions or net-  

works of such reactions that are presented in this chapter also apply for other types of networks, 

such as signaling cascades or binding of transcription factors to DNA. Since the modeling of 

metabolic networks is the most elaborate, it is subsumed here.  

In order to illustrate the theoretical concepts, we will apply a running example throughout this 

chapter. This example comprises a subset of reactions of glycolysis in yeast as represented by 

Hynne and colleagues (2001). You can also find the com- plete model and many other models 

in modeling databases (Snoep and Olivier 2002).  
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3.2 Enzyme Kinetics and Thermodynamics  
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3.3 The Law of Mass Action 
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3.4 Reaction Kinetics and Thermodynamics 
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3.5 Review of network concepts  

We are surrounded by systems that are hopelessly complicated. Consider for example 

the society that requires cooperation between billions of individuals, or 

communications infrastructures that integrate billions of cell phones with computers 

and satellites. Our ability to reason and comprehend our world requires the coherent 

activity of billions of neurons in our brain. Our biological existence is rooted in 

seamless interactions between thousands of genes and metabolites within our cells. 

These systems are collectively called complex systems, capturing the fact that it is 

difficult to derive their collective behavior from a knowledge of the system’s 

components. Given the important role complex systems play in our daily life, in science 

and in economy, their understanding, mathematical description, prediction, and 

eventually control is one of the major intellectual and scientific challenges of the 21st 

century. 

The emergence of network science at the dawn of the 21st century is a vivid 

demonstration that science can live up to this challenge. Indeed, behind each complex 

system there is an intricate network that encodes the interactions between the system’s 

components: 

a. The network encoding the interactions between genes, proteins, and metabolites 

integrates these components into live cells. The very existence of this cellular 

network is a prerequisite of life. 

b. The wiring diagram capturing the connections between neurons, called the neural 

network, holds the key to our understanding of how the brain functions and to our 

consciousness. 

c. The sum of all professional, friendship, and family ties, often called the social network, 

is the fabric of the society and determines the spread of knowledge, behavior and 

resources. 

d. Communication networks, describing which communication devices interact with each 

other, through wired internet connections or wireless links, are at the heart of the 

modern communication system. 

e. The power grid, a network of generators and transmission lines, supplies with energy 

virtually all modern technology. 

f. Trade networks maintain our ability to exchange goods and services, being responsible 

for the material prosperity that the world has enjoyed since WWII. 

Networks are also at the heart of some of the most revolutionary technologies of the 21st 

century, empowering everything from Google to Facebook, CISCO, and Twitter. At the end, 

networks permeate science, technology, business and nature to a much higher degree than it 

may be evident upon a casual inspection. Consequently, we will never understand complex 

systems unless we develop a deep understanding of the networks behind them. 
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The exploding interest in network science during the first decade of the 21st century is rooted 

in the discovery that despite the obvious diversity of complex systems, the structure and the 

evolution of the networks behind each system is driven by a common set of fundamental laws 

and principles. Therefore, notwithstanding the amazing differences in form, size, nature, age, 

and scope of real networks, most networks are driven by common organizing principles. Once 

we disregard the nature of the components and the precise nature of the interactions between 

them, the obtained networks are more similar than different from each other. In the following 

sections we discuss the forces that have led to the emergence of this new research field and its 

impact on science, technology, and society. 

3.6 Properties and modelling of feedback/feedforward system 

Feed forward loop (FFL) motif is one of the most significant one in both E. coliand yeast. The 

FFL is composed of a transcription factor X, which regulates a second transcription factor Y. 

X and Y both bind the regulatory region of target gene Z and jointly modulate its transcription 

rate. The FFL has three transcription interactions. Each of these can be either positive 

(activation) or negative (repression). There are therefore eight possible structural 

configurations of activator and repressor interactions. Four of these configurations are termed 

“coherent”: the sign of the direct regulation path (from X to Z) is the same as the overall sign 

of the indirect regulation path (from X through Y to Z). The other four structures are termed 

“incoherent”: the signs of the direct and indirect regulation paths are opposite. Mathematical 

modeling indicates that FFLs can serve as a novel mechanism for accelerating the expression 

of the target genes. 

Feedback is defined as the information gained about a reaction to a product, which will allow 

the modification of the product. Feedback loops are therefore the process whereby a change to 

the system results in an alarm which will trigger a certain result. This result will either increase 

the change to the system or reduce it to bring the system back to normal. A few questions 

remain: How do these systems work? What is a positive feedback? What is negative feedback? 

Where do we find these systems in nature? 

Biological systems operate on a mechanism of inputs and outputs, each caused by and causing 

a certain event. A feedback loop is a biological occurrence wherein the output of a system 

amplifies the system (positive feedback) or inhibits the system (negative feedback). Feedback 

loops are important because they allow living organisms to maintain homeostasis. 
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3.7 Reaction kinetics 
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3.8 competitive inhibition 
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3.10  Hyperbolic and sigmoidal responses 
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3.12 Metabolic Networks  
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3.14 Information Contained in the Stoichiometric Matrix N 
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3.16 Signal Transduction  
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3.18 Structural Components of Signaling Pathways  
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3.20 MAP Kinase Cascades 
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3.21 Apoptotic pathway 

Our understanding of the mitochondrial or intrinsic apoptosis pathway and its role in 

chemotherapy resistance has increased significantly in recent years by a combination of 

experimental studies and mathematical modelling. This combined approach enhanced the 

quantitative and kinetic understanding of apoptosis signal transduction, but also provided new 

insights that systems-emanating functions (i.e., functions that cannot be attributed to individual 

network components but that are instead established by multi-component interplay) are crucial 

determinants of cell fate decisions. Among these features are molecular thresholds, cooperative 

protein functions, feedback loops and functional redundancies that provide systems robustness, 

and signalling topologies that allow ultrasensitivity or switch-like responses. The successful 

development of kinetic systems models that recapitulate biological signal transduction 

observed in living cells have now led to the first translational studies, which have exploited 

and validated such models in a clinical context. Bottom-up strategies that use pathway models 

in combination with higher-level modelling at the tissue, organ and whole body-level therefore 
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carry great potential to eventually deliver a new generation of systems-based diagnostic tools 

that may contribute to the development of personalised and predictive medicine approaches. 

Here we review major achievements in the systems biology of intrinsic apoptosis signalling, 

discuss challenges for further model development, perspectives for higher-level integration of 

apoptosis models and finally discuss requirements for the development of systems medical 

solutions in the coming years. 

 

 

3.22 Two component signalling pathways of bacterial chemotaxis.  

The chemosensory pathway of bacterial chemotaxis has become a paradigm for the two-

component superfamily of receptor-regulated phosphorylation pathways. This simple pathway 

illustrates many of the fundamental principles and unanswered questions in the field of 

signaling biology. A molecular description of pathway function has progressed rapidly because 

it is accessible to diverse structural, biochemical, and genetic approaches. As a result, structures 

are emerging for most of the pathway elements, biochemical studies are elucidating the 

mechanisms of key signaling events, and genetic methods are revealing the intermolecular 

interactions that transmit information between components. Recent advances include (a) the 

first molecular picture of a conformational transmembrane signal in a cell surface receptor, (b) 

four new structures of kinase domains and adaptation enzymes, and (c) significant new insights 

into the mechanisms of receptor-mediated kinase regulation, receptor adaptation, and the 

phospho-activation of signaling proteins. Overall, the chemosensory pathway and the 

propulsion system it regulates provide an ideal system in which to probe molecular principles 

underlying complex cellular signaling and behavior. 
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4.2 Glycolytic Oscillations: The Higgins-Sel’kov Oscillator  
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4.7 Modeling the Elongation of a Peptide Chain 
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4.10 Circadian rhythm-how to build an oscillator 

Circadian oscillators are networks of biochemical feedback loops that generate 24-hour 

rhythms in organisms from bacteria to animals. These periodic rhythms result from a 
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complex interplay among clock components that are specific to the organism, but share 

molecular mechanisms across kingdoms. A full understanding of these processes 

requires detailed knowledge, not only of the biochemical properties of clock proteins 

and their interactions, but also of the three-dimensional structure of clockwork 

components. Posttranslational modifications and protein–protein interactions have 

become a recent focus, in particular the complex interactions mediated by the 

phosphorylation of clock proteins and the formation of multimeric protein complexes 

that regulate clock genes at transcriptional and translational levels.  

 
 

Generic model of the circadian clock. The complex network of coupled multiple feedback 

oscillators are represented by solid color lines and ovals. Clock genes forming a functional 

oscillator regulate the input and output pathways (blue dashed lines). Feedback from output 

pathways can also regulate the oscillator and the input pathways (red dashed lines). In addition 

to external input signal transduction for clock entrainment, input pathways can also directly 

affect clock output and vice versa (solid black line). 
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4.11 Gene circuit design 

Cells navigate environments, communicate and build complex patterns by initiating gene 

expression in response to specific signals. Engineers seek to harness this capability to program 

cells to perform tasks or create chemicals and materials that match the complexity seen in 

nature. Circuit dynamics can be influenced by the choice of regulators and changed with 

expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, 

quantify their impact on performance and review mitigation efforts. Finally, we discuss the 

constraints that arise from circuits having to operate within a living cell. Collectively, better 

tools, well-characterized parts and a comprehensive understanding of how to compose circuits 

are leading to a breakthrough in the ability to program living cells for advanced applications, 

from living therapeutics to the atomic manufacturing of functional materials. 

 



 

School of Bio and Chemical Engineering 

 

 

 

 

 

School of Bio and Chemical Engineering 

DEPARTMENT OF BIOINFORMATICS 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT V -  Quantitative Models in Biological Systems   - Subject Code: SBI1402 
 



 

 

UNIT 5 COMPUTER-BASED INFORMATION RETRIEVAL AND 

EXAMINATION 

 

5.1 Computer-based Information Retrieval and Examination 

5.2 Gene Ontology – KEGG and BRENDA  

5.3 Modeling and Visualization tools - Gepasi, Copasi 

5.4 MEGA 

5.5 Netpath 

5.6 Biotapestry 

5.7 E-Cell 

5.8 PyBioS 

5.9 Systems Biology Workbench  

5.10 Jdesigner 

5.11 CellDesigner 

5.12 Petri Nets 

5.13 Model Exchange Languages and Data Formats - Introduction to XML 

5.14 Systems Biology Markup Language 

5.15 MathML 

5.16 Cytoscape 

5.17 SBML tool box for MATLAB.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

School of Bio and Chemical Engineering 

 

 

UNIT 5 COMPUTER-BASED INFORMATION RETRIEVAL AND 

EXAMINATION 
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5.2 Gene Ontology – KEGG and BRENDA  
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5.3 Modeling and Visualization tools - Gepasi, Copasi 
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5.4 MEGA 

MEGA was first developed for MS DOS in the early 1990s (Kumar et al. 1994) and 

then upgraded for use in MS Windows eight times, including MEGA 1 to MEGA 6 and 

MEGA-CC and MEGA-MD (Kumar et al. 2001,, 2016). Some of the MEGA releases 

have been packaged for Linux systems using the WINE compatibility layer for POSIX-

compliant operating systems and the Wineskin tool (built on WINE) for macOS 

systems. These versions have been downloaded over 200,000 times. But the ad hoc 

Windows-emulation solution is sluggish and relatively unstable when compared with 

the performance in MS Windows. Emulators cannot be used effectively for the latest 

64-bit version of MEGA that is built to handle memory-intensive analyses of large 
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contemporary data sets (Kumar et al. 2016), so a more comprehensive solution is 

required for users of alternate platforms. 

Therefore, MEGA has been transformed into a cross-platform version that runs 

natively on Linux and Microsoft Windows. This advancement eliminates the Windows-

only limitation of MEGA, which has become particularly acute due to the increasing 

use of Linux in biological research. This transformation also paves the way for 

development of a MEGA X version for macOS in the near future. 

 

5.5 Netpath 

Complex biological processes such as proliferation, migration and apoptosis are 

generally regulated through responses of cells to stimuli in their environment. Signal 

transduction pathways often involve binding of extracellular ligands to receptors, which 

trigger a sequence of biochemical reactions inside the cell. Generally, proteins are the 

effector molecules, which function as part of larger protein complexes in signaling 

cascades. Cellular signaling events are generally studied systematically through 

individual experiments that are widely scattered in the biomedical literature. 

Assembling these individual experiments and putting them in the context of a signaling 

pathway is difficult, time-consuming and cannot be automated. 

The availability of detailed signal transduction pathways that can easily be understood 

by humans as well as be processed by computers is of great value to biologists trying 

to understand the working of cells, tissues and organ systems. A systems-level 

understanding of any biological process requires, at the very least, a comprehensive 

map depicting the relationships among the various molecules involved. For instance, 

these maps could be used to construct a complete network of protein-protein 

interactions and transcriptional events, which would help in identifying novel 

transcriptional and other regulatory networks. These can be extended to predict how 

the interactions, if perturbed singly or in combination, could affect individual biological 

processes. Additionally, they could be used to identify possible unintended effects of a 

candidate therapeutic agent on any clusters in a pathway. We have developed a resource 

called NetPath that allows biomedical scientists to visualize, process and manipulate 

data pertaining to signaling pathways in humans. 

 

5.6 Biotapestry 

BioTapestry is an open source, freely available software tool that has been developed 

to handle the -challenges of modeling genetic regulatory networks (GRNs). Using 

BioTapestry, a researcher can -construct a network model and use it to visualize and 

understand the dynamic behavior of a complex, spatially and temporally distributed 

GRN. Here we provide a step-by-step example of a way to use BioTapestry to build a 

GRN model and discuss some common issues that can arise during this process. 
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5.7 E-Cell 

 

The E-Cell Project develops general technologies and theoretical supports for 

computational biology with the grand aim to make precise whole cell simulation at the 

molecular level possible. 

Some of the research foci of the Project include: 

• Modeling methodologies, formalisms and techniques, including technologies to 

predict, obtain or estimate parameters such as reaction rates and concentrations of 

molecules in the cell. 

• E-Cell System, a software platform for modeling, simulation and analysis of complex, 

heterogeneous and multi-scale systems like the cell. 

• Numerical simulation algorithms. 

• Mathematical analysis methods. 

The E-Cell Project is open to anyone who shares the view with us that development of 

cell simulation technology, and, even if such ultimate goal might not be within ten years 

of reach yet, solving various conceptual, computational and experimental problems that 

will continue to arise in the course of pursuing it, may have a multitude of eminent 

scientific, medical and engineering impacts on our society. 

 

5.8 PyBioS 

Several software applications have been proposed in the past years as computational 

tools for assessing biomedical signals. Many of them are focused on heart rate 

variability series only, with their strengths and limitations depending on the necessity 

of the user and the scope of the application. Here, we introduce new software, named 

PyBioS, intended for the analysis of cardiovascular signals, even though any type of 

biomedical signal can be used. PyBioS has some functionalities that differentiate it 

from the other software. PyBioS was developed in Python language with an intuitive, 

user-friendly graphical user interface. The basic steps for using PyBioS comprise the 

opening or creation (simulation) of signals, their visualization, preprocessing and 

analysis. Currently, PyBioS has 8 preprocessing tools and 15 analysis methods, the later 

providing more than 50 metrics for analysis of the signals' dynamics. The possibility to 

create simulated signals and save the preprocessed signals is a strength of PyBioS. 

Besides, the software allows batch processing of files, making the analysis of a large 

amount of data easy and fast. Finally, PyBioS has plenty of analysis methods 

implemented, with the focus on nonlinear and complexity analysis of signals and time 

series. Although PyBioS is not intended to overcome all the necessities from users, it 

has useful functionalities that may be helpful in many situations. Moreover, PyBioS is 

continuously under improvement and several simulated signals, tools and analysis 

methods are still to be implemented. Also, a new module is being implemented on it to 

provide machine learning algorithms for classification and regression of data extracted 

from the biomedical signals. 

 



 

5.9 Systems Biology Workbench  

The Systems Biology Workbench (SBW) is a software systems that enables different 

modeling programs to communicate with each other and provide or use specialized 

analysis services. In this way SBW acts as broker for services like deterministic and 

stochastic simulation engines, stability and bifurcation analysis, model optimization 

and graphical model building. Popular tools that are SBW aware are among others 

JDesigner, CellDesigner and Dizzy. 

5.10 Jdesigner 

JDesigner is a graphical network editing tool developed by H. Sauro. It is tightly 

connected with Jarnac. 

http://sys-bio.org/sbwWiki/sysbio/jdesigner 

5.11 CellDesigner 

Understanding the logic and dynamics of gene-regulatory and biochemical networks is 

a major challenge of systems biology. To facilitate this research topic, we have 

developed CellDesigner, a modeling tool of gene-regulatory and biochemical networks. 

CellDesigner supports users to easily create such networks, using solidly defined and 

comprehensive graphical representation (SBGN, systems biology graphical notation). 

CellDesigner is systems biology markup language (SBML) compliant, and has Systems 

Biology Workbench(SBW)-enabled software so that it can import/export SBML-

described documents and integrate with other SBW-enabled simulation/analysis 

software packages. CellDesigner also supports simulation and parameter search, which 

is supported by integration with SBML ordinary differential equation (ODE) Solver, 

enabling us to simulate through our sophisticated graphical user interface. We can also 

browse and modify existing SBML models with references to existing databases. 

CellDesigner is implemented in Java; thus, it runs on various platforms such as 

Windows, Linux, and MacOS X. CellDesigner is freely available from our Web site at 

http://celldesigner.org/. 

 

5.12 Petri Nets 

Petri nets are an excellent formal model for studying concurrent and distributed systems 

and have been widely applied in many different areas of computer science and other 

disciplines (Murata, 1989). There have been over 8000 publications on Petri nets (refer 

to Website http://www.daimi.au.dk/PetriNets/). Since Carl Adam Petri originally 

developed Petri nets in 1962, Petri nets have evolved through four generations: the first-

generation low-level Petri nets primarily used for modeling system control 

(Reisig, 1985a), the second-generation highlevel Petri nets for describing both system 

data and control (Jensen and Rozenberg, 1991), the third-generation hierarchical Petri 

nets for abstracting system structures (He and Lee, 1991; He, 1996; Jensen, 1992), and 

the fourth-generation object-oriented Petri nets for supporting modern system 

development approaches (Agha, 2001). Petri nets have also been extended in many 

different ways to study specific system properties, such as performance, reliability, 

http://sys-bio.org/sbwWiki/sysbio/jdesigner
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and schedulability. Well-known examples of extended Petri nets include timed Petri 

nets (Wang, 1998) and stochastic Petri nets (Marsan et al., 1994; Haas, 2002). In this 

article, we present several extensions to Petri nets based on our own research work and 

provide analysis techniques for these extended Petri net models. We also discuss the 

intended applications of these extended Petri nets and their potential benefits. 

 

5.13 Model Exchange Languages and Data Formats - Introduction to XML 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

5.14 Systems Biology Markup Language 
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5.15 MathML 

 
 

 

 
 

5.16 Cytoscape 

Cytoscape is an open source software project for integrating biomolecular interaction 

networks with high-throughput expression data and other molecular states into a unified 

conceptual framework. Although applicable to any system of molecular components 
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and interactions, Cytoscape is most powerful when used in conjunction with large 

databases of protein-protein, protein-DNA, and genetic interactions that are 

increasingly available for humans and model organisms. Cytoscape's software Core 

provides basic functionality to layout and query the network; to visually integrate the 

network with expression profiles, phenotypes, and other molecular states; and to link 

the network to databases of functional annotations. The Core is extensible through a 

straightforward plug-in architecture, allowing rapid development of additional 

computational analyses and features. Several case studies of Cytoscape plug-ins are 

surveyed, including a search for interaction pathways correlating with changes in gene 

expression, a study of protein complexes involved in cellular recovery to DNA damage, 

inference of a combined physical/functional interaction network for Halobacterium, 

and an interface to detailed stochastic/kinetic gene regulatory models. 

 

5.17 SBML tool box for MATLAB.  

The expanding field of Systems Biology has stimulated the formalization of an 

increasing number of biological/biochemical models. The Systems Biology Markup 

Language (SBML), an XML-based format for computational models of biochemical 

networks, is becoming accepted as a de facto standard for the representation of such 

models (Hucka et al., 2004) and thus facilitates their systematic exchange. 

In addition to promoting the creation of models, Systems Biology has also motivated 

the development of a range of software packages that can interact with these models, 

perform simulations and analyses on them, produce graphical representations of models 

and facilitate the creation of new models. However, the commercially available 

software package MATLAB provides a wide spectrum of this type of functionality 

combined with the facility to easily develop user-specific functions. Thus an alternative 

approach to that of developing new software exists in the form of developing a toolbox 

that provides users with an interface between basic MATLAB data structures and a 

format such as SBML. This not only enables users to leverage their existing skills in 

using the environment to work with a new format such as SBML, but it also provides a 

substrate enabling other analysis tools in the environment to be applied to data 

represented in SBML. MATLAB is a particularly attractive environment in this regard 

because it is already popular worldwide in both engineering and scientific research, and 

as the field of Systems Biology continues to attract researchers with an engineering or 

physical science background, the use of MATLAB within the field is likely to 

proliferate. Also, there currently exist many tools, both commercial and freely available 

(Prajna et al., 2004, that apply the computational and analytical capabilities of 

MATLAB to models and data in a variety of formats. 

SBMLToolbox was initially developed specifically to meet two separate needs: (1) 

those of existing MATLAB users wishing to import SBML models and apply 

functionality appropriate to their goals, whether built into the environment or purpose-

written and (2) those of users experienced with SBML wishing to apply the 

computational power of MATLAB to their models. Thus, in addition to importing 

SBML, the toolbox includes functionality serving as an example of using MATLAB in 



the manipulation and analysis of models. However, the actual analytical functionality 

is limited and while it is possible to simulate a range of models with the toolbox, it 

should not be considered a simulation tool but rather a facilitator for the development 

of other functions and toolboxes. To date we are aware of at least two freely available 

toolboxes that use SBMLToolbox for precisely this purpose; namely SBToolbox and 

SBMLSim. 


