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UNIT-I 

GENERAL INTRODUCTION    

 

Systems biology is based on the understanding that the whole is greater than the sum of the parts. 

 

 

 

❑ One of the tenets of systems biology we often refer to is the “Network of Networks.”  

❑ On a biological level, our bodies are made up of many networks that are integrated at and 

communicating on multiple scales.  

❑ From our genome to the molecules and cells that makeup the organs in our bodies all the 

way out to ourselves in our world: we are fundamentally a network of networks.  



❑ Systems biology looks at these networks across scales to integrate behaviors at different 

levels, to formulate hypotheses for biological function and to provide spatial and temporal 

insights into dynamical biological changes. It is not enough to understand only one part 

of a system when studying the complexity of biology. 

❑  Therefore the framework of the “Network of Networks” provides meaningful insight into 

understanding how systems biology’s approach is different, more integrated and more 

capable of analyzing and predicting state transitions in biological systems. 

 

 

❑ Systems biology has been responsible for some of the most important developments in 

the science of human health and environmental sustainability.  

❑ It is a holistic approach to deciphering the complexity of biological systems that starts 

from the understanding that the networks that form the whole of living organisms are 

more than the sum of their parts. 

❑  It is collaborative, integrating many scientific disciplines – biology, computer science, 

engineering, bioinformatics, physics and others – to predict how these systems change 

over time and under varying conditions, and to develop solutions to the world’s most 

pressing health and environmental issues. 

❑ This ability to design predictive, multiscale models enables our scientists to discover 

new biomarkers for disease, stratify patients based on unique genetic profiles, and 

target drugs and other treatments.  

❑ Systems biology, ultimately, creates the potential for entirely new kinds of exploration, 

and drives constant innovation in biology-based technology and computation. 

Modeling in biology-Properties of models 

What is a model? 

Model is “a simplified or idealized description, representation or conception of a particular 

system, situation, or process, often in mathematical terms , that is put forward as a basis for 

theoretical or empirical understanding, or for calculations, predictions, etc.”  



Models should be as simple as possible, yet as complex as necessary to address a 

given question of interest. 

❑ “All models are wrong, but some of them are useful”, George Box. 

❑ “Everything should be made as simple as possible, but no simpler”, Albert Einstein. 

❑ “Entia non sunt multiplicanda praeter necessitatem” (entities must not be multiplied 

beyond necessity), William of Ockham. 

 

In other words, a mathematical model is a representation of the essential aspects of an existing 

system (or a system to be constructed) which presents knowledge of that system in usable form. 

Thus, models are not replicas of reality, they are simplified representations of it.  

Simplification allows us to comprehend the essential features of a complex process without 

being burdened and overwhelmed by unnecessary details. 

The modelling process is considered successful when the obtained model possesses the 

following characteristics: 

1. Accurate: the model should attempt to accurately describe current existing observations. 

2. Predictive: the model should allow to appropriately predict the behaviour of the system 

(through analysis or simulation) in situations not already observed. 

3. Reusable: the model can be reused in another, similar case. 

4. Parsimonious: the model should be as simple as possible. That is, given competing and 

equally good models, the simplest is preferred 

Essential features of a modelling approach 

Isolate your system of interest. 

•Identify what is important (and therefore what needs to be included in your model). 

•List the quantities that can be observed/measured (they are the outputs). 

•List the quantities that can be controlled/acted upon (they are the inputs). 

•Define the environment and the constraints it places upon the system 

 



 

 

 

 

 

Discrete models are typically used to model discrete events/discontinuous changes, 

e.g., events/changes which occur at specific time instants (i.e., between two consecutive 

events nothing changes/happens). They can also be obtained, as we will see, as the result of 

the discretisation of continuous models. 



Stochastic models (e.g., SDEs) are typically used to model diverse phenomena such as 

fluctuating stock prices, physical systems subject to thermal fluctuations, or intrinsic 

noise/stochastic effects in cellular biology. 

 

 

Nonlinear, stochastic models are almost unavoidable in biological modelling. 

We will mostly deal with autonomous, deterministic models obtained through a con- 

structive approach. But we will also briefly introduce stochastic models. 

Linear deterministic models can be solved analytically. This is typically not the case 

for nonlinear or stochastic models, which, therefore, are often analysed using bifurcation 

and phase plane analysis tools (which we will cover in this course) and also through 

computer simulations, e.g., MATLAB 

 

 

 

 Transcription networks-Basic concepts 

The cell is an integrated device made of several thousands of interacting proteins.Each protein 

is a nanometer size molecular machine that carries out a specific task with exquisite precision. 

Eg:Micron long E.coli is a cell that contains few million proteins of about 4000 types ( Refer 

fig in next slide) 

Cells encounter different situation that require different protein .For example when sugar is 

sensed ,the cell begins to produce proteins that can transport the sugar into the cell and utilize 

it. 



When damaged ,the cell produces repair proteins. 

The cell therefore continuously monitors its environment and calculates the amount at which 

each type of protein is needed.This information processing function which determines the rate 

of production of each protein is largely carried out by transcription networks. 

 

 



 

Cognitive problem of the cell 

• Cells live in a complex environment and can sense many different 

signals,including physical parameter such as temperature and osmotic 

pressure,biological signaling molecules from other cells,beneficial 

nutrients, and harmful chemicals. 

• Information about the internal state of the cell,such as the level of key 

metabolites and intenal damage (eg;damage to DNA,membrane or 

proteins),is also important. 

• Cells respond to these signals by producing appropriate proteins that act 

upon the internal or external environment.  

To represent these environmental states,the cells uses special proteins called 

transcription factors as symbols. 

✓ Transcription factors are usually designed to transit rapidly between active 

and inactive molecular states,at a rate that is modulated by a specific 

environmental signal(input). 

✓ Each active transcription factor can bind the DNA to regulate the rate at 

which specific target genes are read. 

 



✓ The genes are read (transcribed ) into m RNA, which is then translated into 

proteins,which can act on the environment.The activities of the transcription factor in a 

cell therefore can be considered an internal representation of the environment. 

✓ For example bacterium. Ecoli has a internal represenation with about 300 degrees of 

freedom(transcription factors). 

✓ These regulate the rates of production of E.coli’s 4000 proteins. 

✓ Internal representation by a set of transcripton factors is a very compact description 

of the myriad factors in the environment. 

✓ It seems that evolution selected internal representations that symbolizes states that 

are most important for cell survival and growth. 

✓ Many different are summarized by a particular transcription factor activity that 

signifies “ I am starving “.Many other situations are summarized by a different 

tsituations ranscription factors activity that signifies “ my DNA is damaged”.These 

transcription factors regulate their target genes to mobilize the appropriate protein 

responses in each case. 

 

Elements of transcription networks 

✓ Elements of transcription networks are genes and transcription factors (TFs). The 

interaction between TFs and genes is described by these networks . 

✓ Gene:Stretch of DNA whose sequence encodes the information needed for production of 

a protein. 

✓ Transcription of a gene is the process by which RNA polymerase (RNAp) produces m 

RNA that corresponds to that genes coding sequence.The m RNA is then translated into 

a protein also called the gene product.The rate at which the gene is transcribed ,the 

number of m RNA product per unit time is controlled by the promoter, a regulatory 

region of DNA that precedes the gene . 

✓ RNAp binds a defined site (a specific DNA sequence) at the promoter .The quality of 

this site specifies the transcription rate of the gene. 

✓ Whereas RNAp acts on virtually all of the genes,changes in the expression of specific 

genes are due to transcription factors. 

✓ Each transcription factor modulates the transcription rate of a set of target genes. 

✓ Transcription factors affect the transcription rate by binding specific sites in the 

promoters of the regulated gens.When bound ,they change the probability per unit time 

that RNAp binds promoter and produces an Mrna molecule.The transcription factors thus 

affect the rate at which RNAp initiates transcription of the gene. 

✓ Transcription factors can act as activators that increase the transcription rate of a gene,or 

as repressors that reduce the trancription rate. 

✓ The rate at which the gene is transcribed is controlled by the promoter, a regulatory region 

of the gene that precedes the gene. 



✓ When TFs are bound to the promoter region, they change the probability per unit time 

that RNAp binds the promoter and produces an mRNA molecule. 

✓ TFs can act as activators that increase the transcription rate of the gene, or as repressors 

that reduce the transcription rate. 

 

 



 

 

 

 

• Transcription factors themselves encoded by genes,which are regulated by other 

transcription factors,which in turn may be regulated by yet other transcription factors and 

so on.This set of interactions forms a trancription network. 

• Trancription network describes all of the regulatory transcription interactions in a 

cell. 



• In  a network ,the nodes and edges represents transcription regulation of one gene by the 

protein product of another gene. 

• A directed edge X->Y means that the product of gene X is a transcription factor protein 

that binds the promoter of gene Y to control the rate at which gene Y is transcribed. 

• The inputs to the network are signals that carry information from the 

environment.Each signal is a small molecule,protein modification or molecular 

partner that directly affects the activity of one of the transcription factors. 

• Often,external stimuli activate bio chemical signal transduction pathways that 

culminate in a chemical modification of specific transcription factors. 

 

 

• In other systems the signal can be a simple as as sugar moelcule that enters the cells 

and directly binds the transcription factors.The signals usually cause a physical 

change in the shape of the transcription factor protein,causing it to assume an active 

molecular state.Thus signal Sx can cause X to rapidly shift to its active state X* ,bind 

the promoter of gene Y and increase the rate of transcription leading to increased 

production of protein Y. 



• The network thus  represents  a dynamic system: after an input signal arrives, 

transcription factor activities change,leading to change in the production rate of 

proteins. 

• Some of the proteins are transcription factors that activate additional genes and so 

on.The rest of the proteins are not transcription factors,but rather carry out the 

diverse functions of the living cells,such as buiding structures and catalyzing 

reactions. 

 

 

Separation of timescale 

• Transcription networks are designed with a strong seperation of timescales. 

• The input signals usually change transcription factor activities on a sub second 

timescale. 

• Binding of the active transcription factor to its DNA sites often reaches equilibrium in 

seconds.Transcription and translation of the target gene take minutes,and the 

accumulation of the protein product can take many minutes to hours.Thus different 

steps between the signal and the accumulation of the protein products have very 

different time scales. 

 



 

 

The Human Interactome 

• The human interactome is the set of protein–protein interactions (the interactome) that 

occur in human cells. 

• The physiology of a cell can be viewed as the product of thousands of proteins acting in 

concert to shape the cellular response.  

• Coordination is achieved in part through networks of protein–protein interactions that 

assemble functionally related proteins into complexes, organelles, and signal 

transduction pathways.  

• Understanding the architecture of the human proteome has the potential to inform 

cellular, structural, and evolutionary mechanisms and is critical to elucidating how 

genome variation contributes to disease 

• BioPlex 2.0 (Biophysical Interactions of ORFeome-derived complexes), which uses 

robust affinity purification–mass spectrometry methodology to elucidate protein 

interaction networks and co-complexes nucleated by more than 25% of protein-coding 

genes from the human genome, and constitutes, to our knowledge, the largest such 

network so far 

• With  more than 56,000 candidate interactions, BioPlex 2.0 contains more than 29,000 

previously unknown co-associations and provides  functional insights into hundreds of 

poorly characterized proteins  while enhancing network-based analyses of domain 

associations, subcellular localization, and co-complex formation.  

Large-scale analysis of disease pathways in the human interactome 

• Discovering disease pathways, which can be defined as sets of proteins associated with 

a given disease, is an important problem that has the potential to provide clinically 

actionable insights for disease diagnosis, prognosis, and treatment.  

• Computational methods aid the discovery by relying on protein-protein interaction (PPI) 

networks.  



• They start with a few known disease-associated proteins and aim to find the rest of the 

pathway by exploring the PPI network around the known disease proteins 

 

Inborn errors of metabolism and the human interactome: a systems medicine 

approach 

1. Curation of disease genes associated with IEM 

2. Constructing the IEM interactome (IEMi) and the expanded IEM interactome (eIEMi) 

3. Calculation of z-score 

4. Enrichment analysis 

5. Comparison to non-IEM diseases 

6. Drug target information 
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Patterns, Randomized Networks and Network Motifs in Biology  

• Basic dynamics of single interaction in a transcription network. 

• Actual transcription network with many interaction edges. 

• Example:Transcription network of E.Coli included 20% of its total genes. 

• Thus any organism transcription network is complex. 

• Understandable patterns of connections that serve as building blocks of the network;will 

be helpful in understanding the entire network based on the dynamics of the individual 

building blocks. 

• Detecting building blocks patterns in complex networks called network motifs. 

 Graph definition 

• The term graph can refer to two completely different things. Students usually first learn 

of a graph as plot of a function, or a function graph. Here, we refer to a different definition 

of graph, in which a graph is another word for a network, i.e., a set of objects 

(called vertices or nodes) that are connected together. The connections between the 

vertices are called edges or links. 

• A network is simply a collection of connected objects. We refer to the objects 

as nodes or vertices, and usually draw them as points. We refer to the connections 

between the nodes as edges, and usually draw them as lines between points. 

             

An undirected network with 10                              nodes (or vertices) and 11 edges (or links). 

A directed graph with 10 vertices (or nodes) 

 and 13 edges (or links). 

 

• Networks can be classified as ‘directed’ or ‘undirected’ based on the nature of the interaction. 

 

Directed Network: 

In such networks as shown in fig the interaction between any two nodes has a well defined 

direction like the direction of signalling from a transcription factor to a gene or the direction of 

material flow from a substrate to a product in a metabolic reaction 

Undirected graphs have edges that do not have a direction. The edges indicate a two-

way relationship, in that each edge can be traversed in both directions. This figure shows a simple 

undirected graph with three nodes and three edges. 

https://mathinsight.org/definition/network_link
https://mathinsight.org/definition/network_link
https://mathinsight.org/image/small_directed_network_labeled


 

 

In some networks, not all nodes and edges are created equal. For example, in metabolic networks, 

nodes may indicate different enzymes which have a wide variety of behaviors, and edges may 

indicate vastly different types of interactions. To model such difference, one can introduce 

different types of nodes and edges in the network, as illustrated by the different colors and edge 

styles, above.  

In networks where the differences among nodes and edges can be captured by a single number 

that, for example, indicates the strength of the interaction, a good model may be a weighted 

graph. One can represent a weighted graph by different sizes of nodes and edges. 

 



 

 

 



  

 

        

Network motifs are simple building blocks of complex networks and are statistically over 

represented sub structures or sub graphs in a network. Since the number of sub graphs in 

biological networks increases exponentially with the network or motif size, it is difficult to 

detect larger network motifs in a biological network.  

Hence network motifs can be defined as recurring patterns of interactions that are significantly 

over represented in a biological system. This over representation of the sub network indicates 

the functional importance of such motif  

Therefore it becomes important to explore these abundant motifs in biological networks. Milo 

et al, (Science 2002) in one of their break through explorations ,work analyzed 18 different 

networks from  

1. Transcription networks of E.coli and S.cerevisiae  

2. Synaptic connections between neurons in c. elegans  



3. Throphic interactions between predator and prey in ecological systems  

Each of these networks the number of nodes is represented by ‘n’. In each of the above 

mentioned cases all possible motifs of size n=3 and n=4 were enumerated and compared to 

an average count over thousand random networks.  

Randomized networks were generated without compromising on certain properties of the 

original network.  

1. In-degree, out- degree and mutual degree: this is done by swapping edges to generate 

random graphs.  

2. The number of appearances of all n-1 node sub graphs for n>3. This is done to ensure that 

high significance is assigned to highly significant sub pattern also.  

 

 
Identification of Network Motifs  

The following rules help us identify network motifs in biological systems  

1. Identification all sub graphs of n nodes in the network  



2. Randomization of the network without changing the number of nodes, edges and degree 

distribution.  

3. Identification of all sub graphs of n nodes in the randomized network.  

4. Comparison of more frequently occurring significant sub graphs with randomized ones in the 

network and designating them as motifs.  

Real live transcription networks of organisms like E.coli show numerous patterns of nodes and 

edges but it is important to look for meaningful patterns that are statistically significant to 

derive biological information that brings us to discuss the concept of randomized networks.  

Randomized networks are a type of networks that posses the same characteristics of a real 

network. These have the same numbers of nodes and edges as in biological systems. But in 

these networks random connections are made between nodes and edges.  

Network motifs are patterns that occur more significantly and more often in real networks 

than in randomized networks. Recurrent patterns give us the basic idea that these must have 

been evolutionarily conserved against mutation.  

The best way to illustrate this is the fact that edges are easily lost in a transcription network and 

a single mutation abolishes transcription factor binding hence facilitating the loss of edge in the 

network.  

In the same way mutations which generate a binding site for transcription factor X in 

promoter region of gene Y can help add new edges to the network. 

 Mutations, duplication events that reposition pieces on the genome or insertion events can 

generate new binding sites and hence add new edges to the network.  

This clearly demonstrates that the occurrence of the network motifs more often than in 

randomized network proves that this selection offers an advantage to the organism.  



 

 



 
(A) Traditional, pathway specific view with receptors activating linear signaling cascades leading to TFs 

activation, gene expression and protein.  

(B) Network view where biological information from high-throughput experiments is used to 

build an unbiased network where components are not necessarily linked to one pathway. Also 

shown in (B) is the possible feedback loops within gene expression networks.  

C: Systems analysis of biological networks components. Here a 3 nodes network is analyzed 

with ODEs, showing 2 recurrent cases: adaptation and bistable switching 



 

Self edges are those edges that originate and end at the same node.  

 

The E.coli network has approximately 40 self edges each of which correspond to transcription 

factors that regulate the transcription of their own genes. This type of regulation of a gene by its 

own gene product is called autogenous control or auto regulation.  

 

34 of the auto regulatory proteins in the E.coli network have been found to repress their own 

transcription. This process is referred to as negative auto regulation as referred to in fig 

Negative auto regulation is a network motif and occurs at higher numbers than expected in 

random networks.  

 

Such structures display engineering advantages and are more prone to evolutionary selection in 

their appearances network motif.  

 



 

 

• In order to understand the general features of such networks and to extract useful 

information from them, we dissect them at hierarchical levels- into modules and 

motifs which can explain their functionality, evolution and dynamic behavior.  

• Over the process of evolution, these networks show information processing functions.  

• Interesting investigations on network behaviour have shown that simple switching 

circuits, amplifiers or oscillators can map to the core process of biological decision 

making.  

• These have been implemented by two or three gene network motifs and are 

characterized by how they behave around fixed points in the system. Here the steady 

state of the system as well as the process of achieving equilibrium in the system reflects 

the characteristic function performed by the genetic circuit.  

• Network motifs appear at frequencies much higher than those expected at random and 

hence imply information processing roles for these motifs.  



• To arrive at such significant patterns, one first identifies the different patterns of these 

motifs in real and randomized networks and then calculates the number of appearances 

of these patterns in the real and random networks.  

• The discussion that follows focuses on patterns with 3 nodes (forming a triangle), 

Fig.There are 13 possible 3-node patterns in such arrangement.  

• Of these, only one of them qualifies to be a network motif called the Feed Forward 

Loop.  

•  

 



• The most significant of the network motifs in E. coli and yeast is the Feed Forward Loop 

which is defined by a transcription factor X that regulates a second transcription factor 

Y. 

•  X and Y both jointly regulate an operon Z by binding to its regulatory region.  

• Here X is called the general transcription factor, Y the specific transcription factor and Z 

the effector operon.  

• As described in Fig , this type of motif occurs in the L-arabinose utilization system where 

Crp is the general transcription factor and Ara-C is a specific transcription factor. Such a 

motif characterizes 40 effector operons in 22 different systems in the network database 

and accommodates 10 different transcription factors 

 

 

Coherent Feed Forward Loops  

A Feed Forward Loop is termed ‘coherent’ if the direct effect of the general transcription 

factor X on the effector operons has the same sign (positive or negative) as its net indirect 

effect through the specific transcription factor. 



In other words, if X regulates Y positively and if X and Y both positively regulate Z, the 

Feed Forward Loop is coherent. i.e. the sign of the direct path of regulation (X to Z) is the 

same as the overall sign of the indirect regulation path (X to Z through Y).  

The overall sign of a path is determined by the multiplication of the sign of each arrow on 

the path.  

In Fig 3 (a) we see that the sign of the indirect path (Xà YèZ) is plus x plus =plus, while 

the direct path (XèZ) is already plus. Since both the direct and indirect paths have the 

same positive sign, this loop is called a Coherent Feed Forward Loop.   

 

Incoherent Feed Forward Loops  

 

The other type of FFL (as in Fig) is called Incoherent FFL in which the sign of the indirect path 

of regulation is opposite to that of the direct path. 

 

 In type-1 Incoherent FFL as denoted the direct path is positive and the indirect path is 

negative. The Incoherent FFLs show odd number of minus edges.  

 

In both the coherent and incoherent loops, the effects of the general and specific transcription 

factors X and Y are integrated at the promoter region of gene Z.  



The expression profile of Z is modulated by the concentrations of X and Y bound to their 

inducers.  

The cis regulatory input function of Z describes this modulation. cis regulatory input functions 

include logic gates like AND which require both X and Y to express Z and OR gates in which 

either X or Y is sufficient to express Z. 



 

 
Both Coherent and Incoherent Feed Forward Loops are sign sensitive.  

Type 1 coherent FFLs (in which all three regulations are positive) are the most abundant type 

of Feed Forward Loops. 



 The Incoherent Feed Forward loop type-1 is the second most abundant type of FFL among 

biological networks.  

The other types of feed forward loop do not appear more frequently than CFFL I and ICFFL I.  
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Network Motifs and Graphlets  

• To analyse the structure of biological networks  

• They can roughly and historically be divided into local and global network properties.  

• degree of a node (the number of edges that the node participates in),  

• degree distribution (the distribution of degrees over all nodes of a network),  

• clustering coefficient of a node (the number of edges between the neighbours of a node 

as a percentage of the maximum possible number of edges between them),  

• average clustering coefficient of the network over all its nodes etc. 

 

• Network motifs have been introduced by the group of Uri Alon (Milo et al., 2002).  

 

• They are defined as small patterns of interconnections occurring in complex networks at 

numbers that are significantly higher than those in randomized networks (Milo et al., 

2002).  

 

• They were used to study the transcriptional regulation networks of well-studied 

microorganisms (Alon and Mangan, 2003; Mangan et al., 2003), as well as of higher 

order organisms (Charney et al., 2017; Datta et al., 2017).  

 

• It was shown that these networks appear to be made up of a small set of recurring 

regulation patterns, captured by network motifs.  

 

• Example motifs include positive and negative autoregulation, positive and negative 

cascades, positive and negative feedback loops, feedforward loops (FFLs), single input 

modules, and combinations of these, illustrated in Fig (Shoval and Alon, 2010).  

• They were linked with biological function. Since the same network motifs have been 

found in diverse organisms from bacteria to humans, it has been suggested that they 

serve as basic building blocks of transcription networks.  

• To understand the difference in the definition of motifs and graphlets, we need to 

introduce the following simple graph theoretic terms.  

• A partial subgraph is a subgraph of a larger network in which once we pick the nodes 

that form the subgraph, we can pick any subset of edges between the chosen nodes of 

the larger network.  

• An induced subgraph is a subgraph in which we must pick all the edges between the 

chosen nodes of the larger network to form the subgraph. 

• Network motifs are partial subgraphs that are significantly overrepresented in the data 

compared to a chosen random graph model that is assumed to fit well the data 

 



 

 

 

However, as network comparison is computational intractable, determining a well-fitting 

network model is hard, as it involves comparing the data network with model networks.  

A random network model that is usually used as well-fitting is that of a random graph 

constructed to have the same degree distribution as the data network, while edges are drawn at 

random.  

Also, note that motifs are partial subgraphs, while characterizing the structure of any graph 

class is based on induced subgraphs 

Hence, analyses of biological networks involving network motifs have been criticised, since the 

definitions of motifs and anti motifs heavily depend on the choice of a random graph (network) 



model (Artzy-Randrap et al., 2004; Milo et al., 2004), since they are partial subgraphs (Przulj et 

al., 2004) and since they can exhibit a whole range of dynamic behaviours (Ingram et al., 

2006).  

Furthermore, it is computationally hard to identify network motifs (and the same holds for 

graphlets), as the number of possible sub-graphs increases exponentially with the network and 

motif size (node and edge counts).  

Graphlets are small, connected, induced subgraphs of large networks. 

They can appear in the data network at any frequency and hence their definition does not 

depend on any assumed random graph model that fits well the data.  

Also, they are induced, so they are a suitable tool for designing various algorithms for mining 

domain relevant new information from the structures (topologies) of biological and other 

network data.  

All 2- to 5-node undirected graphlets are illustrated in Fig 

 

Graphlet frequency distribution is introduced to be superior to the degree distribution (which is 

the first in the spectrum of 73 graphlet degree distributions), the clustering coefficient (the 

measure of “cliquishness” of the network) and network diameter (which measures how “far 

spread” the nodes of the network are) by imposing a large number of similarity constrains on 

the networks being compared. 

Basically, it compares sequences of numbers over 73 pairs to compare two networks.  

It can be classified into both types of network comparison heuristics, global and local, as it does 

comparison globally over the entire network, but uses local network features in the 

comparisons 

Control of Neuronal Network in Caenorhabditis elegans 



Caenorhabditis elegans, a soil dwelling nematode, is evolutionarily rudimentary and contains 

only*300 neurons which are connected to each other via chemical synapses and gap junctions. 

This structural connectivity can be perceived as nodes and edges of a graph.Controlling complex 

networked systems (such as nervous system) has been an area of excitement for mankind. 

Various methods have been developed to identify specific brain regions, which when controlled 

by external input can lead to achievement of control over the state of the system. But in case of 

neuronal connectivity network the properties of neurons identified as driver nodes is of much 

importance because nervous system can produce a variety of states (behaviour of the animal). 

Hence to gain insight on the type of control achieved in nervous system we implemented the 

notion of structural control from graph theory to C. elegans neuronal network. We identified 

‘driver neurons’ which can provide full control over the network. They  studied phenotypic 

properties of these neurons which are referred to as ‘phenoframe’ as well as the ‘genoframe’ 

which represents their genetic correlates. Hear they  find that the driver neurons are primarily 

motor neurons located in the ventral nerve cord and contribute to biological reproduction of the 

animal. Identification of driver neurons and its characterization adds a new dimension in 

controllability of C. elegans neuronalnetwork.study suggests the importance of driver neurons 

and their utility to control the behaviour of the organism. 

Control of complex networks is an emerging topic in the areas of network science. One such 

example network in which control of physiological activities/state of the network is of crucial 

importance is that of neuronal connectivity network. Controllability naturally raises two key 

questions: what are the points of control and what is to be controlled. Determination of such 

points of control can be achieved with the help of various graph theoretical measures such as 

degree, betweenness centrality, closeness and using importance of nodes identified by 

evolutionary algorithm. The idea of control of brain states is aligned with the studies on control 

of behaviour (state) of an organism by identifying and controlling a few important regions 

(nodes) via external inputs (impulses of electric or magnetic fields). From a connectionist 

paradigm, brain could be thought of as a network of neurons, a complex dynamical system, the 

state of which is to be controlled. This aspect has been studied as ‘structural control’ in a network 

aimed to be achieved with the help of a few ‘driver nodes/neurons’. 

 

It has been proposed that networks possessing cacti structure (without having inaccessible 

nodes or dilations) are controllable as shown in Fig 



 

A structural network with linear time 

invariant dynamical system could be represented as Eq (1), where x(t) represents the state of 

the system at time t, A is the state matrix, B input matrix and u(t) is input signal. 

 

 

The state of such a system is proven to be controllable only if it possess full rank 

 

 

 

 

C. elegans neuronal network 

Caenorhabditis elegans (C. elegans), a nematode, is a model biological organism whose neuronal 

network is fully charted. This hermaphrodite animal has rudimentary nervous system consisting 

of 302 neurons and can process complex information of senses, behaviour and even memory. 

The neurons are divided into various subtypes and are classified based on their functional roles, 

location within the body of the animal and span of the neuron axons. 

 

According to functional roles, neurons are primarily of three types viz. sensory neurons, motor 

neurons and inter neurons. Sensory neurons pick up external signals to which the animal responds 

by sending motor signals to effector organs through motor neurons which connect to command 

inter-neurons on dendritic side and neuro-muscular junction on the axonal side. Motor neurons 

are distributed mainly over the ventral nerve cord (VNC) with ganglia at each end. some of which 



extend their processes circumferentially to form a dorsal nerve cord (DNC)as shown in Fig. Both 

VNC and DNC control locomotion of the animal. 

In accordance with definition of driver nodes, these critical neurons control the state of neuronal 

network when provided with external input. To investigate this state space and what kind of 

changes one can bring by controlling Dn in C. elegans state we examined phenotypic properties 

of these neurons. Study of properties such as location, functional type and span of neurons 

provided us with the potential functional association of driver neurons. Further we investigated 

specific biological functions underlying these neurons with the help of gene ontological 

enrichment studies 

 

Information processing using multi layered perceptron 

Multilayer perceptron network is one of the most popular NN architectures, which consists of a 

series of fully connected layers, called input, hidden, and output layers. The layers are connected 

by a directed graph. 

 
Multi-Layer Perceptron (MLP) diagram with four hidden layers and a collection of single 

nucleotide polymorphisms (SNPs) as input and illustrates a basic "neuron" with n inputs. One 



neuron is the result of applying the nonlinear transformations of linear combinations (xi, wi, and 

biases b) 
The multilayer perceptron network (MLP) is one of the most popular DL architectures, which 

consists of a series of fully connected layers called input, hidden, and output layers . In the context 

of genomic prediction, the first layer receives the SNP genotypes (x) as input and the first layer 

output is a weighted nonlinear function of each input plus the ”bias” (i.e., a constant).  

The first layer output is then: 

  

 

 

where, x contains the genotypes of each individual, b is called the “bias” and is estimated together 

with the rest of weights W(0), and f is a nonlinear function (available activation functions in 

Keras are in https://keras.io/activations/). In successive layers, the same expression as above is 

used except that neuron inputs of a given layer are the outputs from the previous layer  

 The final layer produces a vector of numbers if the target is a real-valued phenotype, or an array 

with probabilities for each level if the target is a class (i.e., a classification problem). Although 

MLPs represent a powerful technique to deal with classification or regression problems, they are 

not the best option to manage spatial or temporal datasets. To face these issues, other DL 

techniques such as convolutional neural networks, recurrent neural networks or deep generative 

networks have been proposed in recent years. 

 

A Novel Classification Method Based on Multilayer Perceptron-Artificial Neural Network 

Technique for Diagnosis of Chronic Kidney Disease(CKD) 

 



The dataset included blood and urine samples collected from 50 healthy people and 90 patients. 

Informed consent was obtained from all subjects before enrolment in the study. Samples were 

kept at -20°C until use. For each person, we gathered the data of the concentrations of glucose 

(GLU), urea, creatinine, sodium (Na), potassium (K), calcium (Ca), phosphorus (P), cholesterol 

(Chol), triglycerides (TG), alkaline phosphatase (Alk), alanine aminotransferase (ALT), and 

aspartate aminotransferase (AST) to use as inputs to the ANN. 

ANN architecture with a hidden layer and different numbers of neurons. It had 12 input nodes 

and one output node and the problem was a binary classification. The output was either 0 or 1 

where 0 indicated a healthy case and 1 stood for CKD. To train the network, the weights between 

hidden-output and input-hidden layers were randomly initialized with a small value ranging from 

0 to 1. Figure indicates the framework of ANN for the diagnosis of CKD. The input layer 

contained 12 neurons. In the hidden layers, there were 10 neurons. The output layer had only one 

neuron, representing CKD. 

 

https://sites.kowsarpub.com/amhsr/articles/101585.html#A101585FIG3
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Introduction 

We saw how bifunctional proteins can make the input-output relation of a signaling circuit precise despite 

variation in protein levels. But not all signaling circuits need to simply transduce the signal level. Some 

circuits are built to make more sophisticated computations, and to do so robustly. To see this, we will now 

consider the robustness of a remarkable protein circuit called the bacterial chemotaxis circuit, that allows 

bacteria to navigate. Bacterial chemotaxis is so well-characterized on the level of both molecules and 

behavior that it is a testing ground for important ideas in systems biology, including robustness. We will 

describe the biology of bacterial chemotaxis, and models and experiments that demonstrate how the 

computation performed by this protein circuit is made robust to changes in protein levels. We will see that 

the principle of robustness can help us to rule out many plausible mechanisms and to home in on the 

correct design. 

Bacterial chemotaxis, or how bacteria think 

Chemotaxis behaviour 

When a pipette containing nutrients is placed in a plate of swimming Escherichia coli bacteria, the bacteria 

are attracted to the mouth of the pipette and form a cloud (Figure 7.1). When a pipette with noxious 

chemicals is placed in the dish, the bacteria swim away from the pipette. This process, in which bacteria 

sense and move along gradients of specific chemicals, is called bacterial chemotaxis.  

 

Chemicals that attract bacteria are called attractants. Chemicals that drive the bacteria away are called 

repellents. E. coli can sense a variety of attractants, such as sugars and the amino acids serine and 

aspartate, and repellents, such as metal ions and the amino acid leucine. Most bacterial species show 

chemotaxis, and some can sense and move toward stimuli such as light (phototaxis) and even magnetic 

fields (magnetotaxis). 

 

Bacterial chemotaxis achieves remarkable performance despite the great physical limitations faced by the 

bacteria. Bacteria can detect concentration gradients as small as a change of one molecule per cell volume 

per micron and function in background concentrations spanning over five orders of magnitude. All this is 

done while being buffeted by Brownian noise, such that if the cell tries to swim straight for 10 sec, its 

orientation is randomized by 90° on average. 

 

How does E. coli manage to move up gradients of attractants despite these physical challenges? 



It is evidently too small to sense the gradient along the length of its own body.  

The answer was discovered by Howard Berg in the early 1970s: E. coli uses temporal gradients 

to guide its motion. It uses a biased-random-walk strategy to sample space and convert spatial 

gradients to temporal ones. In liquid environments, E. coli swims in a pattern that resembles a 

random walk. The motion is composed of runs, in which the cell keeps a rather constant 

direction, and tumbles, in which the bacterium stops and randomly changes direction (Figure).  

 

The runs last about 1 sec on average and the tumbles about 0.1 sec. 

 
 

To sense gradients, E. coli compares the current attractant concentration to the concentration in 

the past. When E. coli moves up a gradient of attractant, it detects a net positive change in 

attractant concentration. As a result, it reduces the probability of a tumble (it reduces its tumbling 

frequency) and tends to continue going up the gradient. The reverse is true for repellents: if it 

detects that the concentration of repellent increases with time, the cell increases its tumbling 

frequency, and thus tends to change direction and avoid swimming toward repellents. Thus, 

chemotaxis senses the temporal derivative of the concentration of attractants and repellents. It 

follows a simple strategy: If life is getting better, keep going, and if life is getting worse, change 

direction. 

 



 

The runs and tumbles are generated by different states of the motors that rotate the bacterial flagella. Each 

cell has several flagella motors that can rotate either clockwise (CW) or counterclockwise (CCW). When 

the motors turn CCW, the flagella rotate together in a bundle and push the cell forward. When one of the 

motors turns CW, its flagellum breaks from the bundle and causes the cell to tumble about and randomize 

its orientation. When the motor turns CCW, the bundle is reformed and the cell swims in a new direction 

 

 

Response and exact adaptation 

The basic features of the chemotaxis response can be described by a simple experiment. In this 

experiment, bacteria are observed under a microscope swimming in a liquid with no gradients. 

The cells display runs and tumbles, with an average steady-state tumbling frequency f, on the 

order of f ~ 1 sec–1 

 

We now add an attractant such as aspartate to the liquid, uniformly in space. The attractant 

concentration thus increases at once, but no spatial gradients are formed. The cells sense an 



increase in attractant levels, no matter which direction they are swimming. They think that things 

are getting better and suppress tumbles: the tumbling frequency of the cells plummets within 

about 0.1 sec 

After a while, however, the cells realize they have been fooled. The tumbling frequency of the 

cells begins to increase, even though attractant is still present This process, called sensory 

adaptation, is common to many biological sensory systems. For example, when we move from 

light to dark, our eyes at first cannot see well, but they soon adapt to sense small changes in 

contrast. Adaptation in bacterial chemotaxis takes several seconds to several minutes, depending 

on the size of the attractant step Bacterial chemotaxis shows exact adaptation: the tumbling 

frequency in the presence of attractant returns to the same level as before attractant was added. 

In other words, the steady-state tumbling frequency is independent of attractant levels. If more 

attractant is now added, the cells again show a decrease in tumbling frequency, followed by exact 

adaptation. Changes in attractant concentration can be sensed as long as attractant levels do not 

saturate the receptors that detect the attractant. Exact adaptation poises the sensory system at an 

activity level where it can respond to multiple steps of the same attractant, as well as to changes 

in the concentration of other attractants and repellents that can occur at the same time. It prevents 

the system from straying away from a favorable steady-state tumbling frequency that is required 

to efficiently scan space by random walk. 

The chemotaxis protein circuit 

We now look inside the E. coli cell and describe the protein circuit that performs the response 

and adaptation computations. The input to this circuit is the attractant concentration, and its 

output is the probability that motors turn CW, which determines the cells’ tumbling frequency 

(Figure). The chemotaxis circuit was worked out using genetics, physiology, and biochemistry, 

starting with J. Adler in the late 1960s, followed by several labs,including those of D. Koshland, 

S. Parkinson, M. Simon, J. Stock, and others. The broad biochemical mechanisms of this circuit are 

shared with many signaling pathways in all types of cells. 

 
 
 



Attractant and repellent molecules are sensed by specialized detector proteins called receptors. Each 

receptor protein passes through the cell’s inner membrane, and has one part outside of the cell membrane 

and one part inside the cell. It can thus pass information from the outside to the inside of the cell. The 

attractant and repellent molecules bound by a receptor are called its ligands. 

 

E. coli has five types of receptors, each of which can sense several ligands. There are a total of several 

thousand receptor proteins in each cell. They are localized in a cluster on the inner membrane, such that 

ligand binding to one receptor appears to affect the state of neighboring receptors. Thus, a single ligand 

binding event is amplified, because it can affect more than one receptor (Bray, 2002), increasing the 

sensitivity of this molecular detection device (Segall et al., 1986; Jasuja et al., 1999; Sourjik and Berg, 

2004). 

 

Inside the cell, each receptor is bound to a protein kinase called CheA.3 We will consider the receptor and 

the kinase as a single entity, called X. X transits rapidly between two states, active (denoted X*) and 

inactive, on a timescale of microseconds. When X is active, X*, it causes a modification to a response-

regulator protein, CheY which we will denote Y, which diffuses in the cell. 

 

This modification is the addition of a phosphoryl group (PO4) to Y to form Yp. This type of modification, 

called phosphorylation, is used by most types of cells to pass bits of information among signaling 

proteins, as we saw in Chapter 6. Yp can bind the flagella motor and increase the probability that it 

switches from CCW to CW rotation. Thus, the higher the concentration of Yp, the higher the tumbling 

frequency (Cluzel et al., 2000). The phosphorylation of Yp is removed by the phosphatase CheZ, denoted 

Z. At steady-state, the opposing actions of X* and Z lead to a steadystate Yp level and a steady-state 

tumbling frequency. Thus, the main pathway in the circuit is phosphorylation of Y by X*, leading to 

tumbles We now turn to the mechanism by which attractant and repellent ligands can affect the tumbling 

frequency. 

Attractants lower the activity of X 

 

When a ligand S binds receptor X, it changes the probability4 that X will assume its active state X*. The 

concentration of X in its active state is called the activity of X. Binding of an attractant lowers the activity 

of X. Therefore, attractants reduce the rate v(S) at which X phosphorylates Y, and levels of Yp drop, 

resulting in fewer tumbles. These responses occur within less than 0.1 sec. The response time is mainly 

limited by the time it takes Yp to diffuse over the length of the cells to the motors that are distributed all 

around the cell membrane. The pathway from X to Y to the motor explains the initial response in Figure 

7.5, in which attractant leads to reduction in tumbling. The reduction in activity X* due to the binding of 

attractant S is well described by a Hill function. Where Xmax is the maximal activity. 

 

The halfway point for reduction in activity is K, the binding constant of the attractant to the receptor. The 

Hill coefficient n is due to clusters of n receptors that show cooperativity: binding of ligand to one receptor 



in the cluster changes the conformation of the other receptors in the cluster and raises the affinity of ligand 

to the other receptors. 

 

Adaptation is due to slow modification of X that increases its activity 

 

The chemotaxis circuit has a second pathway devoted to adaptation. As we saw, binding of ligand reduces 

the activity of the receptor X. However, each receptor has several biochemical “buttons” that can be 

pressed to increase its activity and compensate for the effect of the attractant (Fig). These buttons are 

methylation modifications, in which a methyl group (CH3) is added to four or five locations on the 

receptor. Each receptor can thus have between zero and five methyl modifications. The more methyl 

groups that are added, the higher the activity of the receptor. 

 

The methylation buttons work by changing the binding constant K of the receptor to attractants5. The 

more methylated the receptor the higher is K (lower chemical affinity to the attractant), (Fig). Therefore, 

the less attractant it binds, so that there is less inhibition of X activity, X*. In this way, methylation 

increases receptor activity. Mathematically, we can describe the effect of methylation on K using the 

concept of free energy Δ𝐺. 

The binding constant K is given by the exponential of the free energy of binding the ligand 𝐾 = 𝑒67 (the 



Boltzmann constant k9𝑇 is included in Δ𝐺 ) . Each methylation adds some free energy 𝛾 to the bound 

state of the receptor, making it less favorable, so that Δ𝐺 =Δ𝐺< + 𝛾𝑚, where m is the number of 

methylations. As a result, K increases with methylation, ~𝑒>* , raising the half-way-point ligand level 

needed for inhibition of activity, Figure 7.9. The higher the methylation, the higher the half-way point 

 
for binding K, and more ligand is needed to reduce the activity X*. 

 

Methylation of the receptors is catalyzed by a protein called CheR and is removed by an a protein called 

CheB, denoted R and B. Methyl groups are continually added and removed by these two antagonistic 

proteins, regardless of whether the bacterium senses any ligands (Fig). This seemingly wasteful cycle has 

an important function: it allows cells to adapt. 

 

Adaptation is carried out by a negative feedback loop through B. This protein removes methyl groups 

only from receptors in their active conformation, X*. Thus, reduced X activity means that B is less active, 

causing a reduction in the rate at which methyl groups are removed by B. Methyl groups are still added, 

though, by R at an unchanged rate. Therefore, methylation increases. Methylation makes the receptor 

more active, the tumbling frequency increases. Thus, the receptors X first become less active due to 

attractant binding, and then methylation level gradually increases, restoring X activity. This is a negative 

feedback loop with a slow arm in which X* reduces methylation, and a fast arm in which methylation 

raises X* (Fig). 

 

Methylation reactions are indeed much slower than the reactions in the main pathway from X to Yp to the 

motor (the former are on the timescale of seconds to minutes, and the latter on a sub-second timescale). 

The protein R is present at low amounts in the cell, about 100 copies, and appears to act at saturation 

(zero-order kinetics). The slow rate of the methylation reactions explains why the recovery phase of the 

tumbling frequency during adaptation is much slower than the initial response. 

 

The Barkai-Leibler model of exact adaptation 

 

Early models of chemotaxis used equations to describe the reactions just described and showed response 

to attractant and exact adaptation. However, in these models, exact adaptation depended on setting specific 

values for parameters such as the numbers of R and B proteins per cell. These parameters had to be tuned 

so that methylation could exactly compensate for the reduction in activity caused by attractant. Changing 

the protein level parameters ruined exact adaptation (Fig).  

 

After adding attractant, the cells responded, but then returned to a different basal activity than before the 

attractant step. We say that exact adaptation in these models is fine tuned. A fine-tuned model is described 

in solved exercise X.X.robust mechanism for exact adaptation was proposed by Naama Barkai and Stan 

Leibler. In this mechanism, changing parameters such as R and B protein levels changes the steady-state 

activity. But changing parameters does not ruin exact adaptation: after a step of attractant, activity first 

drops but then returns to the pre-step level 



 

 

In summary, the bacterial chemotaxis circuit has a design such that a key feature (exact 

adaptation) is robust with respect to variations in protein levels. Other features, such as steady-

state activity and adaptation times, are fine-tuned. These latter features show variations within a 

population due to intrinsic cell–cell variations in protein levels. Because of the robust design, the 

intrinsic variability in the cell’s protein levels does not abolish exact adaptationAs a theorist, one 

can usually write many different models to describe a given biological system, especially if some 

of the biochemical interactions are not fully characterized. Of these models, only very few will 

typically be robust with respect to variations in the components. Thus, the robustness principle 

can help narrow down the range of models that work on paper to the few that can work in the 

cell. Robust design is an important factor in determining the specific types of circuits that appear 

in cells. In the next chapter, we will study how robustness constraints can shape the circuits that 

guide pattern formation in embryonic development.  
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Introduction:  

KINETICS AND GENE REGULATION  

• Kinetic proof reading of the genetic code – Recognition of self and non - self by the 

immune system - Proof reading of diverse recognition processes in the cell  

• Demand rules for gene regulation - Savageau demand rule -Rules based on minimal 

error load- Demand rules for multi regulator systems - Simplicity in biology 

  

Proofreading/editing in protein synthesis is essential for accurate translation of information from 

the genetic code. Kinetic proofreading is the theory proposed to rationalize the known lack of 

errors in biological synthesis. In biochemical reactions, enzymes not only enhance the rate of 

reaction, but also selectively choose the correct substrate leading to the desired product. Many 

biological processes, like protein synthesis or DNA replication, exhibit high specificity towards 

the selection of the correct substrates in presence of many other structurally or chemically 

analogous substrates.  

Due to the similar binding energy of both the right and wrong substrates and the size/shape 

analogue to the enzyme, the error rate (the ratio of the rate of wrong product formation to that of 

the desired product formation) is expected to be high. To the contrary, the error rate is extremely 

low in selection of amino acid in protein synthesis (10−4) and DNA replication (10−9).  

The molecular reason for such high selectivity is still not fully understood from a quantitative 

theory. This important problem has remained a debated subject for several decades, with the 

original Hopfield formulation of repeated activation found inadequate in several biosyntheses.  

Recent experimental studies in several enzyme catalytic reactions reveal that the decomposition 

of the intermediates occurs through hydrolysis reaction. Several alternative editing mechanisms 

have been proposed and found to be satisfactory in different cases, outlining the fact that more 

than one mechanism could be operating. One of these mechanisms, proposed first by Fersht, 

employs hydrolysis of the wrong substrate as the main discriminatory step. 

 

Each amino acid is brought into the ribosome connected to a specific tRNA molecule I The tRNA 

has a three-letter recognition site is complementary, and pairs with, the codon sequence for that 

amino acid on the mRNA I There is a tRNA for every codon that maps to an amino acid 



 

The codon must recognize and bind the correct tRNA I Since this is a molecular process working 

under thermal noise, it has an error rate I The wrong tRNA can attach to the codon, resulting in 

a translation error where the wrong amino acid is incorporated I Translation errors occur at a 

frequency of about 10−4 I A much higher error rate would be disastrous, because it would result 

in the malfunction of an unacceptable fraction of the cell’s proteins 

 

 

 



 

 

 



 

 

 

DEMAND RULES FOR GENE REGULATION 

• A critical feature of all living organisms is the ability to tune behavior in response to 

stimuli.1–5 The most widespread and well-understood mode of this tuning is 

transcription, which enables cells to modulate gene expression in response to cues. 

• Looking at the simplest transcription network, where a regulator R, in the presence or 

absence of a signal, controls the expression of a target T – different possibilities emerge.  

• Control of the target might be via positive or negative regulation.  

• When we consider the fact that most transcription factors in E. coli are also 

autoregulators, six possible topologies emerge 



 

• In a series of papers in the 1970s, Savageau proposed ‘‘demand rules for gene 

regulation’’, according to which, a target T is positively regulated, if, in the organism’s 

natural habitat, T is required for a high fraction of time.  

• On the other hand, if the target is only required sporadically, it tends to be regulated 

negatively. 

• Evidence for demand rules was provided as conformity in the regulation of sugar 

utilization enzymes in E. coli with the demand rules.  

 



 

 



 

 

 



 

 



 


