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UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

Rigid bodies and deformable solids - stability, strength, stiffness - tension, compression and shear stresses -
strain, elasticity, Hooke’s law, limit of proportionately, modules of elasticity, stress-strain curve, lateral strain -
temperature stresses deformation of simple and compound bars - shear modulus, bulk modulus, relationship
between elastic constants - bi axial state of stress - stress at a point - stress on inclined plane - principal stresses
.and principal planes — Mohr’s circle of stresses
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When an external force acts on a body, the body tends to undergo some deformation.
Due to cohesion between the molecules, the body resists deformation. This resistance by
which material of the body opposes the deformation is known as strength of material, within
a certain limit (i.e., in the elastic stage). Whenever a load is attached to a thin hanging wire, it
elongates and the load moves downwards (sometimes through a negligible distance). The
amount, by which the wire elongates, depends upon the amount of load and the nature as well
as cross-sectional area of the wire material.

Elasticity

Whenever a force acts on a body, it undergoes some deformation and the molecules
offer some resistance to the deformation. It will be interesting to know that when the external
force is removed, the force of resistance also vanishes; and the body springs back to its
original position. But it is only possible, if the deformation, caused by the external force, is
within a certain limit. Such a limit is called elastic limit.

The property of certain materials of returning back to their original position, after
removing the external force, is known as elasticity.

Stress

The force of resistance per unit area, offered by a body against deformation is known
as stress. The external force acting on the body is called the load or force. The load is applied
on the body while the stress is induced in the material of the body. A loaded member remains
in equilibrium when the resistance offered by the member against the deformation and the
applied load are equal.

Force F

Stress=o = =
Area A

where F = Load or force acting on the body, and
A = Cross-sectional area of the body.

The unit of stress depends upon the unit of load (or force) and unit of area. In M.K.S.
units, the force is expressed in kgf and area in metre square (i.e., m?). Hence unit of stress
becomes as kgf/m. In the S.L units, the force is expressed in newtons (written as N) and area
is expressed as m?. Hence unit of stress becomes as N/m?.

Strain

Whenever a single force (or a system of forces) acts on a body, it undergoes some
deformation. This deformation per unit length is known as strain. Mathematically strain may
be defined as the deformation per unit length. i.e., strain

Strain=¢ = X
L

Types of Stresses
Though there are many types of stresses, yet the following two types of stresses are
important from the subject point of view: 1. Tensile stress, 2. Compressive stress.



1. Tensile Stress

When a section is subjected to two equal and opposite pulls and the body tends to
increase its Length. The stress induced is called tensile stress. The corresponding strain is
called tensile strain. As a result of the tensile stress, the *cross-sectional area of the body gets
reduced.

Pe—fo oo oo

2. Compressive Stress

When a section is subjected to two equal and opposite pushes and the body tends to
shorten its Length. The stress induced is called compressive stress. The corresponding strain
is called compressive strain. As a result of the compressive stress, the cross-sectional area of
the body gets increased.

P—wi-—-—-—-—-—- — fle—r

Hooke’s Law
It states, “When a material is loaded, within its elastic limit, the stress is proportional

to the strain.”
Stress
Strain

Modulus of Elasticity or Young’s Modulus (E)
Whenever a material is loaded, within its elastic limit, the stress is proportional to

= F = Constant

strain
g o= E
= EXEg
: o
E=
Where, o = Stress,
€ = Strain, and
E = A constant of proportionality known as modulus of elasticity or Young’s
modulus.

Numerically, it is that value of tensile stress, which when applied to a uniform bar
will increase its length to double the original length if the material of the bar could remain
perfectly elastic throughout such an excessive strain.

S. No. Material Modulus of elasticity (E)
in GPa i.e. GN/m* or kN/mm*

1. Steel 200 to 220

2. Wrought iron 190 to 200

3. Cast iron 100 to 160

4. Copper 90 to 110

5. Brass 80 to 90

6. Aluminium 60 to 80

7. Timber 10

Deformation of a Body Due to Force Acting on it
Consider a body subjected to a tensile stress.
Let P =Load or force acting on the body,



| = Length of the body,

A = Cross-sectional area of the body,

o = Stress induced in the body,

E = Modulus of elasticity for the material of the body,
¢ = Strain, and

ol = Deformation of the body.

- L Strain _S_F

¢ =1 ‘ €= ETAE
o.l _PI
81 = gli= T uE

Example: A steel rod 1 m long and 20 mm x 20 mm in cross-section is subjected to a tensile
force of 40 kN. Determine the elongation of the rod, if modulus of elasticity for the rod

material is 200 GPa.

Given:
Length () =1 m=1x 10° mm
Cross-sectional area (A) = 20 x 20 = 400 mm?
Tensile force (P) = 40 kN = 40 x 10° N
Modulus of elasticity (E) = 200 GPa = 200 x 10° N/mm?
elongation of the road,

P (40x10%)x (1x10%)

=) 05
AE  400x(20x10°) i

ol =

Example A hollow steel tube 3.5 m long has external diameter of 120 mm. In order to
determine the internal diameter, the tube was subjected to a tensile load of 400 kN and
extension was measured to be 2 mm. If the modulus of elasticity for the tube material is 200
GPa, determine the internal diameter of the tube.

Given:
Length (1) =3.5m = 3.5 x 10° mm
External diameter (D) = 120 mm
Load (P) = 400 kN = 400 x 10® N
Extension (8l) =2 mm
Modulus of elasticity E = 200 GPa = 200 x 10°> N/mm?
area of the tube,

120 {
A = g [(120) — 7] = 0.7854 [(120)" — ']
extension of the tube (&/),
s _ Pl _ 400x10)x(3.5x10°) 8913
- AE 07854[(120)° =47 (200 107) 14400 — o
28800 — 24° = 8913 or 2d* = 28800 — 8913 = 19887
or d> = @:9943.5 or d=99.71 mm Ans.

Example: Two wires, one of steel and the other of copper, are of the same length and are
subjected to the same tension. If the diameter of the copper wire is 2 mm, find the diameter of
the steel wire, if they are elongated by the same amount. Take E for steel as 200 GPa and

that for copper as 100 GPa.




Given:
Diameter of copper wire (dc) =2 mm
Modulus of elasticity for steel (Es) = 200 GPa = 200 x 10° N/mm?
Modulus of elasticity for Copper (Ec) = 100 GPa = 100 x 10° N/mm?
Let  ds= Diameter of the steel wire,
| = Lengths of both the wires and
P = Tension applied on both the wires.

C

Iy 3 s 2 2
A = Ex{dc) =1 ®(2)" =3.142 mm~

and area of steel wire, A= (dg *=0.7854 a'; mm’”

e = 5 X
We also know that increase in the ]:ngth of the copper wire
5, - Pl__ Pi __ FI1
A-E. 3.142x(100x107) 3142x10°
and increase in the length of the steel wire,
5, = Pl _ Wi __ PL___
AgEs  0.7854 45 x(200x107)  157.1x10° xd;

Since both the wires are elongated by the same amount, therefore equating equations () and (7).

i)

P _ P or J2=3142_ 5
3142x10°  157.1x10°xd; ¥ 1571
d, = ﬁ =141 mm Ans.
Deformation of a Body Due to Self Weight A
Consider a bar AB hanging freely under its own weight as shown. _1_
Let | = Length of the bar. f dx
A =Cross-sectional area of the bar. T
E = Young’s modulus for the bar material, d
andw = Specific weight of the bar material. r B _L

Now consider a small section dx of the bar at a distance x from B. We know that
weight of the bar for a length of x,
P = wAXx

Elongation of the small section of the bar, due to weight of the bar for a small section
of length x,
Pl (wAx).dx wx.dx
AE  AE  E

Total elongation of the bar may be found out by integrating the above equation
between zero and I. Therefore total elongation,




ol =
r
_x j.r.d.r
= E
0

A
_E[L}
EED

wi® Wi

ol = =
2E  2AE

.. W= wAl = Total weight)

Example A steel wire ABC 16 m long having cross-sectional area of 4 mm?® weighs 20N as
shown in Fig. If the modulus of elasticity for the wire material is 200 GPa, find the
deflections at C and B.

Given: ——
Length (I) = 16 m = 16 x 10° mm A
Cross-sectional area (A) = 4 mm? 8 m
Weight of the wire ABC (W) =20 N
Modulus of elasticity (E) = 200 GPa = 200 x 10° N/mm? I B

Deflection of wire at C due to self-weight of the wire AC,

W 20 (16 % 10%) 02 mm A
= = - =U.imm AnNS.
€ 2AE  2x4x(200x10%) 2 e

Deflection at B consists of deflection of wire AB due to self-weight plus deflection due to
weight of the wire BC. We also know that deflection of the wire at B due to self-weight of
wire AB

d!

5 _ WIxas2) 10x(8x10%)
P = 2AE 2x4 % (200107

=0.05 mm (i)

and deflection of the wire at B due to weight of the wire BC.
W/2)x(1/2)  10x(8x10%)

= — =0.1mm (i)
AE 4% (200 x107)

8, =

Total deflection of the wire at B.
o, = 8, +81,=0.05+0.1=0.15mm Ans.

Principle of Superposition

A body is subjected to a number of forces acting on its outer edges as well as at some
other sections, along the length of the body. In such a case, the forces are split up and their
effects are considered on individual sections. The resulting deformation, of the body, is equal
to the algebraic sum of the deformations of the individual sections. Such a principle, of
finding out the resultant deformation, is called the principle of superposition. The relation for
the resulting deformation may be modified as:

ol = %=ﬁ (P I, +P L+ P 1 +..)
P, = Force acting on section 1,
!/, = Length of section 1,
P., 1, = Corresponding values of section 2, and so on.



Example A steel rod ABCD 4.5 m long and 25 mm in diameter is subjected to the forces as
shown in Fig. If the value of Young’s modulus for the steel is 200 GPa, determine its
deformation.

A B c D
60KN 4—F — - ——-10kN 4— | —— — | »2DkN- — —+—> 50kN
I‘ 2m }‘ Im '*|L 1.5m ‘I

Given:

Diameter (D) =25 mm and

Young’s modulus (E) = 200 GPa = 200 kN/mm?
We know that cross-sectional area of the steel rod.

A = E{DJ1 =%>< (25)° = 491 mm”

For the sake of simplification, the force of 60 kN acting at A may be split up into two
forces of 50 kN and 10 kN respectively. Similarly the force of 20 kN acting at C may also be
split up into two forces of 10 kN and 10 kN respectively.

4 B c o
S0KN % — —— —10KN 4 —|— —— — ] » 20kN — — ——» 50kN
I 2m k—1m—j Lim ]
A b
SOKN —fF ——————————————— - —— ——» S0 kN
A C
IOKN —f ———————————— > twxN
B c

wkN+—fF—-—JF—» 10y

Now it will be seen that the bar AD is subjected a tensile force of 50 kN, part AC is
subjected to a tensile force of 10 kN and the part BC is subjected to a tensile force of 10 kN
as shown in Fia. We know that deformation of the bar.

1
8l = = [P 1, + Py 1, + Py 1]

1
= 491200

1
= 491200

[[50 x (4.5 x 109] +[10 x (3 x 10*)] +[10 x (1 X 10-‘)]mm

X(265%10°) =270 mm  Ans.

Stresses in the Bars of Different Sections
A bar is made up of different lengths having different cross-sectional areas

le ! | i | ; |
| 1 2 3 [

In such cases, the stresses, strains and hence changes in lengths for each section is
worked out separately as usual. The total change in length is equal to the sum of the changes
of all the individual lengths. It may be noted that each section is subjected to the same
external axial pull or push.

Let

P = Force acting on the body,

E = Modulus of elasticity for the body,

I, = Length of section 1,

A; = Cross-sectional area of section 1,



l,, A, = Corresponding values for section 2 and so on.

We know that the change in length of section 1.
P, o Pi,
o, = AE Similarly o, = AE
Total deformation of the bar,
&f = &I + 08I, + 60, + ..........
— P_II+ sz +P_f-"‘+
= AETAE T mE T

_ i[f_‘+!—1+l—‘+]

and so on

ELA A A

NoTe. Sometimes, the modulus of elasticity is different for different sections. In such cases, the total deformation,

Example A compound bar ABC 1.5 m long is made up of two parts of aluminium and steel
and that cross-sectional area of aluminium bar is twice that of the steel bar. The rod is
subjected to an axial tensile load of 200 kN. If the elongations of aluminium and steel parts
are equal, find the lengths of the two parts of the compound bar. Take E for steel as 200 GPa
and E for aluminium as one-third of E for steel.

Given:
Total length (L) =1.5m =1.5 x 103 mm
Cross-sectional area of aluminium bar (Aa) =2 As
Axial tensile load (P) = 200 kN =200 x 103 N
Modulus of elasticity of steel (ES) = 200 GPa = 200 x 103 N/mm2

200 x 103

Modulus of elasticity of aluminium (EA) = % = — N/mm?
Let, la = Length of the aluminium part,
and Is = Length of the steel part. ED A
We know that elongation of the aluminium part AB,
5 _ s __(200x 10% %1, 4 Alyminium
AT ALE, 200 10°
VA 4 x[ 3 4
1.51, , 1.5m
= Ay i) I
and elongation of the steel part BC,

5 - Dbs _ (200x10%) 45 _ 15
S A;Es A x(200x10%)  As
. . . : 200 kN
Since elongations of aluminium and steel parts are equal, therefore equating Cyuauiss o) v v,
1.51, Ig

A = A or I.=151,

We also know that total length of the bar ABC (L)

1L5x10° =1, +1; = 1, +151,=251,

_L5x 10°
A T 25
and I, = (13x 10*) — 600 = 900 mm Ans,

=600 mm Ans.



Example A circular steel rod ABCD of different cross-sections is loaded as shown in Fig.
Find the maximum stress induced in the rod and its deformation. Take E = 200 GPa.

Given:
Length of first part AB (l1) =1m=1x10°mm i A
Diameter of first part AB (D) =70 mm Im 70 mm ¢
Length of second part BC (1,) =2m=2x10°mm B
Diameter of second part BC (D;) =50 mm Jr
Length of third part CD (ls) =1m=1x10>mm 0N
Diameter of third part CD (D) =50 mm m 50mm ¢
Internal diameter of hole (d3) =30 mm. o
Maximum stress induced in the rod ¢ <
We know that area of the first part (AB) of the rod, lm
A, = % {D])2=% (70)* mm® Lo 0mmo

= 3848.5 mm’ 25N
Similarly area of the second part (5C) of the rod,
A, = g (D, :% (50°=1963.5 mm’
and area of the third part €D of the rod,

b1 2 2
A; = E [DJ)__ffj_]

For simplification, the force of 100 kN acting at B-B may be split up into two forces
of 75 kN and 25 kN. Similarly the force of 50 kN acting at C-C may be split up into two
forces of 25 kN and 25 kN respectively as shown in Fig.

75kN

A A _T_A T 4
i
|
Im E 25kN
B B i B ¢ B
B 2 i
100 kN 75 kN E
|
2m E
50 kN i
I 25 kN
c c : c T C
o) C 1
Tl
25 KN bl |1m
i) b !
D D
25 kN 25 kN
(@) (5

Now it will be seen that the bar AB is subjected to a tensile load of 75 kN, part BC is
subjected to a compressive load of 25 kN and the part CD is subjected to a tensile load of 25
kN as shown in Fig. We know that tensile stress in part 1,

P, T5x10°

g, = A =33185 ~ 19.49 N/mm™ = 19.49 MPa
L Py 25x10° )
Similarly, O, = 4 10635 = 12,73 N'mm™ = 12.73 MPa
Fop  25x 10° ”
and g, = A, 12566 = 19.89 N/mm~ = 19.89 MPa

From the above three values of the stresses, we find that maximum stress induced in the rod is in
CpD and is equal to 19.89 MPa. Ans.

10



We also know that elongation of the part AB, due to tensile load of 75 kN,

AL (I5x10%)x(1x10%)
'™ A E 38485x(200x10%)

Similarly shortening of the part BC due to compressive load of 25 kN.

ol =0.097 mm

Pl (25%10°)x(2x10%)

o, = = =0.127
> T A E 1963.5%(200%10°) mm
and elongation of the part CD due to tensile load of 25 kN.
Pl (25x10°)x (1x10°
ol LR Rl ) =0.099 mm

37 AE 1256.6x(200x107)

Deformation of the rod,
of 31'] - B!l + 5!_1 =0.097 - 0.127 + 0.099 = 0.069 mm

Stresses in the Bars of Uniformly Tapering Circular Sections
Consider a circular bar AB of uniformly tapering circular section as shown in Fig.
Let P =Pull on the bar.
| = Length of the bar,
d1 = Diameter of the bigger end of the bar, and
d2 = Diameter of the smaller end of the bar.
Now consider a small element of length dx of the bar, at a distance x from the bigger
end as shown in Fig. We know that diameter of the bar at a distance x, from the left end A,

e

| ¥ |

3 d,—d
dv = d~(d,~dy) T =d,~kx, A where k= —=2)

and cross-sectional area of the bar at this section,

A

¢ = 7 (d—k)
P 4P

Stress, G, = . 2
X % (d,—kx)® Tl —kx)
__ 4P
. Stress _ T(d, —kx)® 4P
and strain, £, = = = .

E E nid, —kx) E
Elongation of the elementary length

. 4P . dx

= Exedr= n(d, —kx)’ E

Total extension of the bar may be found out by integrating the above equation between the limit
0 and {. Therefore total elongation,

-f 4P . dx
61 = |——————
Y (d, —kx) E

11



4P dx

- mE 'E(ff] — kx)?
i
_ sp [tk
T omE| -lx—k
0
!
_4p | 1
T nEk|d —kx |,

_ 4r 1 1
T mEk|d —-H 4

7

. d . .
Substituting the value of k ==1—=2 in the above equation,

[

51 - 4P 1 1
= ;-:E-(J]_dz)' dl__(dl—dz)f_ d,
/ !
_ L{L_L}_ 4l [dy—d,
T mEl —dy) | dy d |7 nE(d, —d,)| dd,
51— 4Pl

. TEd,d,

Example If the tension test bar is found to taper from (D + a) diameter to (D — a) diameter,
prove that the error involved in using the mean diameter to calculate Young’s modulus is

(%)Zper cent.

Given:

Larger diameter (d1) = (D + a)

Smaller diameter (d2) = (D — a).
Let P =Pull on the bar,

| = Length of the bar,

E1 = Young’s modulus by the tapering formula,

E2 = Young’s modulus by the mean diameter formula and

dl = Extension of the bar.

First of all, let us find out the values of Young’s modulus for the test bar by the
tapering formula and then by the mean diameter formula. We know that extension of the bar
by uniformly varying formula

51 = 4Pl 4P _ 4 p!
- .T[.Eld|d2 _TEEI (D+ﬂ) {D—ﬂ)_TEEl (Dz—ﬂ'z)
£ 4 Pl ]
or 1= j‘[(DZ —ﬁz}_ﬁj (!J
and extension of the bar by mean diameter (D) formula,
§ _ PL__ Pl 4P
- AR g (D’xE, ®D'E,
or E - 4Pl @)
2 = T[Dj . 5‘, a1

12



Percentage error involved (in using the mean diameter to calculate the Young's modulus)

( 4Pl ) ( 4P
[E,—Eg}ximan(Dj—nj)ﬁfJ LTED EIJ
1

= 17 100
n(Dz—azjﬁf
IR D - (D~
2 2 2
_ mea +)(D}x100
(IUGJ A
= D ns.

Example A steel plate of 20 mm thickness tapers uniformly from 100 mm to 50 mm in a
length of 400 mm. What is the elongation of the plate, if an axial force of 80 kN acts on it?
Take E = 200 Gpa.

Given :
Plate thickness =20 mm ;
Width at A =100 mm ; Width at B =50 mm;
Length (1) =400 mm ;
Axial force (P) =80 kN =80x10°N

Modulus of elasticity (E) =200 GPa =200 x 10° N/mm?

Now consider a small element of length dx, of the bar, at a distance x from A as shown
in Fig. From the geometry of the figure, we find that the width of the plate at a distance x
from A.

= 100 — (100 - 50) x ==

Cross-sectional area of the plate at this section.
A, = 20 % (100-0.125 x)

4{]0 =100-0.125x mm

] P 80x10° _ 4%10°
and stress, Ox = A, _ZUX(IUI] —U.]ZS.::J_I[I[}—I].IZS.:;
4x10°
. 100-0.125x
Strain, £, = Zx - = :

E 200%10° ~ 50(100-0.125x)
and increase in the length of the small element

dx

x-F = 550000-0.125)

Now total elongation of the plate may be found out by integrating the above equation between 0
and 400.

5 0o dx
= 50(100—0.125x)

1 00 dx
50 (100 -0.125x)

! L1400
= 50(_{1]25} [log, (100-0.125x)]

= “535 25 ——[log, (50 —log, 100)]

13



100

50

ol log, =23 log,,)

0.16 x2.3x03010=0.11 mm Ans.

Stresses in the Bars of Composite Structures

0.16 [log, 100 — log, 50] ...(Taking minus sign outside)

0.16 x lugf(—) =0.16 x log, 2 =0.16 x 2.3 log 2

A bar made up of two or more different materials, joined together is called a

1. Extension or contraction of the bar is equal.

2. The total external load, on the bar, is equal to the sum of the loads carried by the

different materials.

Consider a composite bar made up of two different materials as shown in Fig.

Let P = Total load on the bar,

I; = Length of the bar 1 A —

I, = Length of the bar 2
A; = Area of bar 1,

E; = Modulus of elasticity of bar 1. () (2]
P; = Load shared by bar 1, and
Ay, E,, Po= Corresponding values for bar 2,
Total load on the bar, ¥
P =P +PF (i)
. _f
Stress in bar 1, G, = A
IR _a__R
and strain in bar 1, g = E " AFE
. I Bl
Elongation, 8 =g =S _a0
ongation ;= &, £ TAE (i)
Similarly, elongation of bar 2,
O'—,L, F!!'.l
aj’lz E—':J’) = === e i
2= &b = PA=3 (i)

Since both the elongations are equal, therefore equating (ii) and (i), we get &= 81,

Rl _ B R __P
AE  AE AE AE
P, = P x 252
. 2 = O A E
But P = P 4+P,=P +P x 25
- 1 2771 1 AI‘EI
A, E, AE+AE,
=P |l+—=—7=|=R| +—"1—"—=
! A E, A E
o v = X AE ¥ AE,
Ay E,
Similarly, P, = Px —=2—2
y 2 A E+AE,

i)

v)

(vi)

From these equations we can find out the loads shared by the different materials. We have also

seen in equation (iv) that

composite bar. The bars are joined in such a manner, that the system extends or contracts as
one unit, equally, when subjected to tension or compression. Following two points should
always be kept in view, while solving example on composite bars:

14



A E A, E,
o, o,
—— — — P
or = oo | = =@ = Stress
£ 2 A °
E, .
o, = EXU: (Vi)
. - E’l
Similarly, o, = ?‘X(Fl - (viii)

From the above equations, we can find out the stresses in the different materials. We also know
that the total load,

P = P +P,=0,A, +0,4,

Example A reinforced concrete circular column of 400 mm diameter has 4 steel bars of 20
mm diameter embedded in it. Find the maximum load which the column can carry, if the
stresses in steel and concrete are not to exceed 120 MPa and 5 MPa respectively. Take
modulus of elasticity of steel as 18 times that of concrete.

Given:
Diameter of column (D) =400 mm
No. of reinforcing bars =4
Diameter of bars (d) =20 mm
Maximum stress in steel (csmax)) =120 MPa = 120 N/mm?

Maximum stress in concrete (Gcmax) =5 MPa =5 N/mm?
Modulus of elasticity of steel (Es) =18 Ec 400
Total area of the circular column. e

= gx(ml =% x (400)" = 125660 mm”

and area of reinforcement (i.e., steel),

A

S 4% % ® (df =4 x % ® (2[!)1 mm°

1257 mm”

Area of concrete,
A. = 125660 — 1257 = 124 403 mm”

First of all let us find out the maximum stresses developed in the steel and concrete. We know

that if the stress in steel is 120 N/mm?, then stress in the concrete.
EC' _ l 2 .
O = E. XOg =1g % 120 = 6.67 N/mm (i)
5

It is more than the stress in the concrete (i.e., 5 N/mm°). Thus these stresses are not accepted.
Now if the stress in concrete is 5 N/mm-, then stress in steel,

ES 2 oy

g, = E_.-:' X .-= 18 x5 =90 N/mm (i)

It is less than the stress is steel (i.e., 120 N/mm®). It is thus obvious that stresses in concrete and

steel will be taken as 5 N/mm” and 90 N/mm” respectively. Therefore maximum load, which the
column can carry.

P

(Gp-AQ) + (0. A = (5 x 124 403) + (90 x 125T) N
735 150N =735.15kN  Ans.

15



Stresses and Strains in Statically Indeterminate Structures

Simple equations of statics were sufficient to solve the examples. But, sometimes, the
simple equations are not sufficient to solve such problems. Such problems are called
statically indeterminate problems and the structures are called statically indeterminate
structures. For solving statically indeterminate problems, the deformation characteristics of
the structure are also taken into account along with the statical equilibrium equations. Such
equations, which contain the deformation characteristics, are called compatibility equations.

Types of Statically Indeterminate Structures
1. Simple statically indeterminate structures.
2. Indeterminate structures supporting a load.
3. Composite structures of equal lengths.
4. Composite structures of unequal lengths.

Stresses in Simple Statically Indeterminate Structures

Example A square bar of 20 mm side is held between two rigid plates and loaded by an axial
force P equal to 450 kN as shown. Find the reactions at the ends A and C and the extension
of the portion AB. Take E = 200 Gpa

Given: .,
Avrea of bar (A) = 20 x 20 = 400 mm? s
Axial force (P) = 450 kN = 450 x 10°N ’ [ l T s
Modulus of elasticity (E) = 200 GPa 300ma | | 300 mm | |

=200 x 10° N/mm? | Jr | e
Length of AB (lag) =300 mm and —1-3 5 T — bl
length of BC (Isc) = 200 mm. Womn |, 200mm | R,
Ra = Reaction at A, and L u fffffff

Rc = Reaction at C. o A
Since the bar is held between the two rigid plates A and C, therefore, the upper portion will
be C subjected to tension, while the lower portion will be subjected to compression as shown
Moreover, the increase of portion AB will be equal to the decrease of the portion BC.
We know that sum of both the reaction is equal to the axial force, i.e.,
R,+R. = 450 x 10° o)
Increase in the portion AB,

5 R 1  R,x300
e = TAE © AE

and decrease in the portion BC,

_ Relge _ R-%200 .
BC T AE - AE ...(”J
Since the value &/, , is equal to that of &, therefore equating the equations (i) and (iii),

R,X300  R.x200

&

AE - AE
R, %300
R. = ~555 =13R,

Now substituting the value of R in equation (if),
R,+15R, = 450 or 25R, =450

R, = PJ-180kN  Ans
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and R. = 15R, =15x180=270kN Ans.
Extension of the portion AB
Substituting the value of R, in equation (i)

5 - R, %300 (180x10%)x300
AB T AE 400 x (200 x 10%)
Stresses in Indeterminate Structures Supporting a Load

=0.675 mm Ans.

Example A block weighing 35 kN is supported by three wires. The outer two wires are of
steel and have an area of 100 mm? each, whereas the middle wire of aluminium and has an
area of 200 mm?. If the elastic modulii of steel and aluminium are 200 GPa and 80 GPa
respectively, then calculate the stresses in the aluminium and steel wires.

Given: M :
Total load (P) =35KkN
=35x 10°N R _
Total area of steel rods (A) =2x100 2l E 3
= 200 mm? “ B .
Area of aluminium rod (Aa) =200 mm? =
Modulus of elasticity of steel (E) =200 Gpa -
= 200 x 10° N/mm? LY
Modulus of elasticity of aluminium (Ea) = 80 GPa
=80 x 10° N/mm?
Load supported by wires (P) =35kN =35x10°N
Let O, = Stress in steel wires,

o, = Stress in aluminium wire and
!
‘We know that increase in the length of steel wires,

Length of the wires.

O, Xl B o, xl

T =
: E; " 200x10°
Similarly, &l = G“‘EX Ly = SEA T [r;x
A * -

Since increase in the lengths of steel and aluminium wires is equal, therefore equating equations
(i) and (i), we get
agxl o, %! 200
= O, =——
200x10° _ sox10° 5780
We also know that load supported by the three wires (),

35 10° = (0,. A9 +(0,.A,) = (25 5, x 200) + (5, x 200) =700 o,

X0, = 2.5 T,

3
G, = % = 50 N/mm® = 50 MPa Ans.
and o, = 250,=25%x50=125MPa Ans.

Stresses in Composite Structures of Equal Lengths

Example A mild steel rod of 20 mm diameter and 300 mm long is enclosed centrally inside a
hollow copper tube of external diameter 30 mm and internal diameter 25 mm. The ends of the
rod and tube are brazed together, and the composite bar is subjected to an axial pull of 40 kN
as shown. If E for steel and copper is 200 GPa and 100 GPa respectively, find the stresses
developed in the rod and the tube.
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Given :

Diameter of steel rod =20 mm;

External diameter of copper tube =30 mm;

Internal diameter of copper tube =25 mm;

Total load (P) =40 kN =40 x 103 N;
Modulus of elasticity of steel (Es) =200 GPa and
Modulus of elasticity of copper (Ec) =100 GPa

Let o5 = Stress developed in the steel rod and

o.= Stress developed in the copper tube.

Copper
tube

40kN 40kN

We know that area of steel rod,

A, = % % (20)* = 314.2 mm’
and area of copper tube,
Ap = % [(30)° = (25))] = 216 mm’

We also know that stress in steel,

E
o, = E_EXGC=% XC.=20.
and total load (P), 40x 10° = (0,Ay) +(GAL)
= (206, % 3142) + (6. x 216) = 844.4 o
o = 435;1.3 —474N/mm®>=474MPa  Ans.
and 0, = 20-,=2x474=948 MPa Ans.

Stresses in Composite Structures of Unequal Lengths

Example A composite bar ABC, rigidly fixed at A and 1 mm above the lower support, is
subjected to an axial load of 50 kN at B as shown. If the cross-sectional area of the section
AB is 100 mm? and that of section BC is 200 mm?, find the reactions at both the ends of the
bar. Also find the stresses in both the section. Take E = 200 GPa.

Given:

Length of AB (Iag) =1m=1x10°mm

T

Area of AB (Ang) = 100mm’ I m A= 100 som?
Length of BC (lac) =2m=2x10°mm |
Area of BC (Agc) =200 mm? 5

Axial load (P) =50 kN =50 x 10° N
Modulus of elasticity (E) =200 GPa =200 x 10° N/mm? o
Reactions at both the ends of the bar
The bar is rigidly fixed at A and loaded at B, therefore,
upper portion AB is subjected to tensions. We also know that
increase in length of the portion AB due to the load at B

Pl (00X 10%) x (1% 10°)
Ap-E 100 (200 107)

Age =200 mm*

1 mm —= C

e

ol =

=25 mm
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We find that of increase in the length of the portion AB would have been less than 1
mm (i.e., gap between C and lower support), then the lower portion of the bar BC should not
have been subjected to any stress. Now it will be interesting to know that as the increase in
length AB is 2.5 mm, therefore, first action of the 50 kN load will be to increase the length
AB by 1 mm, till the end C touches the lower support. And a part of the load will be required
for this increase. Then the remaining load will be shared by both the portions of the bar AB
and BC of the bar.
Let P =Load required to increase 1 mm length of the bar AB,

We know that increase in length

| = Bl _ B % (1x10%)
Asg-E 100 (200 x 107)

1 3
P, = ———=20x 10°N=20kN
! 0.05x107°

and the remaining loas, which will be shared by the portion A5 and CD

=0.05x 107 P,

= 50-20=30kN
Let R, = Reaction at A due to 30 kN load, and
R. = Reaction at C due to 30 kN load.
Thus, R, +R. = 30kN=30x 10° N (i)

We know that increase in length AB due to reaction R, (beyond 1 mm),

Ryl  R,x(1x10%

—3 P
ol = A E  100x(200%10°) =005 x107 R, i)
and decrease in length BC due to reaction R,
Rl x (2x10°
8, = 5= Re X 005107 R, (i)

27 Age.E T 200%(200%10%)
Since 8/, is equal to &1,, therefore equating equations (7) and (i),
005x10° R, = 0.05x 107 R, or R,=R_
Now substituting the value of ®_ in equation (i)

R,+R, =30 or RA=RC=3—;=151(N
Total reaction at A = (20+15)=35kN Ans.
and total reaction at C = 15kN Ans.

Stresses in both the sections
We know that stress in the bar AB,

3
Cup = 351’3(1)0 =350 N'mm* =350 MPa  Ans.
3
and Oy = 15;}:}0 —75Nmm®=75MPa  Ans.

Stresses in Nuts and Bolts

Nuts and bolts to tighten the components of a machine or structure. It is generally
done by placing washers below the nuts as shown. A nut can be easily tightened, till the space
between the two washers becomes exactly equal to the body placed between them. It will be
interesting to know that if we further tighten the nut, it will induce some load in the assembly.
As a result of this, bolt will be subjected to some tension, whereas the washers and body
between them will be subjected to some compression. And the induced load will be equally
shared between the bolt and the body. Now consider an assembly consisting of two nuts and a
bolt along with a tube as shown
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Let P =Tensile load induced in the bolt as a result of tightening the nut,
| = Length of the bolt,
A= Area of the bolt,
o1 = Stress in the bolt due to induced load,
E; = Modulus of elasticity for the bolt material.
A, o,, E> = Corresponding values for the tube
The tensile load on the bolt is equal to the compressive load on the tube, therefore
0,-4, = 0,.4,

o, = 2X0:  Simildy 0 2lxo
1T 4 < ¥ 2 A, 1
and the total toad (P) = 0,4, +0,4,
We also know that increase in the length of the bolt due to tensile stress in it,
o,.1

of, = ?I )
and decrease in the length of the tube due to compressive stress in it,

o, = % i)

Axial advancement (i.e., movement) of the nut
= &, + 81,

Example A solid copper rod 300 mm long and 40 mm diameter passes axially inside a steel
tube of 50 mm internal diameter and 60 mm external diameter. The composite bar is
tightened by using rigid washers of negligible thickness. Determine the stresses in copper rod
and steel tube, when the nut is tightened so as to produce a tensile load of 100 kN in the
copper rod.

Given:
Length of copper rod (1) =300 mm
Diameter of copper rod (DC) =40 mm
Internal diameter of steel tube (dS) =50 mm
External diameter of steel tube (DS) = 60 mm
Tensile load in copper rod (P) =100 kN = 100 x 10° N
Let G = Stress in the copper rod and

G, = Stress in the steel rod.
We know that area of the copper rod,

T 2 I 2 2
A = EX(DC} =7 x (40y =400 T mm

C

and area of the stee] tube,

L4 2 2 n 2 2 2
A, = Tx Dy —d 1= 1x [(60) —(30) =275 n mm
We also know that tensile load on the copper rod is equal to the compressive load on the steel
tube. Therefore stress in steel rod,
A 400m _léo,

c
Oy = 7 X0c=

A, 7755 ¢ T

= 1455 o,
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and load (P) 100 x 10° = (0. Ap) + (05 - Ag) = (6 X 400 1) + (1.455 6 x 275 7)

800 1t o,

100 10 R )
Oc = “goop = 29-8 N/mm” = 39.8 MPa (tension) Ans.

and o, = L1455 0,.=1.455 x39.8 N/fmm® = 57.9 Nfmm”® Ans.
= 57.9 MPa (compression) Ans.

Thermal Stresses and Strains

Whenever there is some increase or decrease in the temperature of a body, it causes
the body to expand or contract. A little consideration will show that if the body is allowed to
expand or contract freely, with the rise or fall of the temperature, no stresses are induced in
the body. But if the deformation of the body is prevented, some stresses are induced in the
body. Such stresses are called thermal stresses or temperature stresses. The corresponding
strains are called thermal strains or temperature strains.

Thermal Stresses in Simple Bars

The thermal stresses or strains, in a simple bar, may be found out as discussed below:

1. Calculate the amount of deformation due to change of temperature with the
assumption that bar is free to expand or contract.

2. Calculate the load (or force) required to bring the deformed bar to the original
length.

3. Calculate the stress and strain in the bar caused by this load.

The thermal stresses or strains may also be found out first by finding out amount of
deformation due to change in temperature, and then by finding out the thermal strain due to
the deformation. The thermal stress may now be found out from the thermal strain as usual.
Now consider a body subjected to an increase in temperature.

Let 1= 0Original length of the body,

t = Increase of temperature and
a = Coefficient of linear expansion.
We know that the increase in length due to increase of temperature
of = Lot
If the ends of the bar are fixed torigid supports, so that its expansion is prevented, then compressive
strain induced in the bar.

& Lot
€= =" =
Stress o = &.E=@.iLE
Cor. If the supports yield by an amount equal to A, then the actual expansion that has taken place,
81 = lot-A
and strain, £ = % = y = (m‘ %)

£.E= (w—%]E

Stress, o

Example Two parallel walls 6 m apart are stayed together by a steel rod 25 mm diameter
passing through metal plates and nuts at each end. The nuts are tightened home, when the
rod is at a temperature of 100°C. Determine the stress in the rod, when the temperature falls
down to 60°C, if (a) the ends do not yield, and (b) the ends yield by 1 mm. Take E = 200 GPa
and o = 12 x 10° /°C

Given:
Length (1) =6 m =6 x 10° mm
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Diameter (d) =25 mm

Decrease in temperature (t) = 100° — 60° = 40°C
Amount of yield in ends (A) = 1 mm

Modulus of elasticity (E) = 200 GPa = 200 x 10° N/mm?

Coefficient of linear expansion (o) = 12 X 10°%/°C.
(@) Stress in the rod when the ends do not yield

We know that stress in the rod when the ends do not yield,
G, = aLE=(12x 107°) x 40 % (200 x 10%) Nfmm®
= 96 N/mm* =96 MPa  Ans.
(b) Stress in the rod wien the ends yield by I mmn
We also know that stress in the rod when the ends yield,

a,

A . —6 _ 1 3 2
[m JE_[(szw )40 6“03} 200 x 10° N/mm
= 62.6 N/mm” = 62.6 MPa Ans.

Thermal Stresses in Bars of Circular Tapering Section

Consider a circular bar of uniformly tapering section fixed at its ends A and B and
subjected to an increase of temperature as shown

Let |= Length of the bar.

d;= Diameter at the bigger end of the bar,

d,= Diameter at the smaller end of the bar,

t = Increase in temperature and

a = Coefficient of linear expansion.

The increase in temperature, the bar AB will tend to expand. But since it is fixed at
both of its ends, therefore it will cause some compressive stress. We also know that the
increase in length due to increase in temperature,

S = Lot (i)
Now let P = Load (or force) required to bring the deformed bar to the
original length.
We know that decrease in the length of the circular bar due to load P
S = Lout o)
Now let P = Load (or force) required to bring the deformed bar to the
original length.
We know that decrease in the length of the circular bar due to load P

4p1 .y
o = TEad, -(f0)
Equating equations (7) and (ii),
— 4Pl TCEdl dz.au"
lLo.t = nEd, d or P:T
. P _mEdd,or «atEd,
*Max. stress, GO = T g = PEIS = 4,
4772 4772
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Note.  If we substitute d, = d,, the above relation is reduced to
C = O.L.E ...(Same as for simple bars)

Example A circular bar rigidly fixed at its both ends uniformly tapers from 75 mm at one end
to 50 mm at the other end. If its temperature is raised through 26 K, what will be the
maximum stress developed in the bar. Take E as 200 GPa and o as 12 x 106 /K for the bar
material.

Given:
Diameter at end 1 (d;) =75 mm
Diameter at end 2 (d;) = 50 mm
Rise in temperature (t) = 26 K
E =200 GPa = 200 x 10°> N/mm’
a=12x10°/K
maximum stress developed in the bar,

at.E.dy  (12x107°)x 26 x (200x10) x 75
amm‘ = dz - 50

= 93.6 N/mm”=93.6 MPa  Ans.

N/mm?

Thermal Stresses in Bars of VVarying Section

Consider a bar ABC fixed at its ends A and C and subjected to an increase of
temperature as shown
Let

I, = Length of portion AB,

o1 = Stress in portion AB,

A; = Cross-sectional area of portion AB,

I, o2, A2 = Corresponding values for the portion BC,

a= Coefficient of linear expansion and

t = Increase in temperature

We know that as a result of the increase in temperature, the bar ABC will tend to
expand. But since it is fixed at its ends A and C, therefore it will cause some compressive
stress in the body. Moreover, as the thermal stress is shared equally by both the portions,
therefore

G A = 0,4,
Moreover, the total deformation of the bar (assuming it to be free to expand),
o, ©,l
8 = 81, +8l,= 2L+ 22~ (0,1, +0, 1)

Note. Sometimes, the modulus of elasticity is different for different sections. In such cases, the total deformation.

8 = [Gé—j' +—0§2]
1 2

( Example A composite bar made up of aluminium and steel, is held between two supports as
shown. The bars are stress-free at a temperature of 38°C. What will be the stresses in the two
bars, when the temperature is 21°C, if (a) the supports are unyielding, (b) the supports come
nearer to each other by 0.1 mm? It can be assumed that the change of temperature is uniform
all along the length of the bar. Take E for steel as 200 GPa; E for aluminium as 75 GPa and
coefficient of expansion for steel as 11.7 x 10-6 per °C and coefficient of expansion for
. aluminium as 23.4 x 10-6 per °C.

~N
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Given:

Length of steel bar (Is) = 600 mm

Avrea of steel bar (As) = 1000 mm?

Length of aluminium bar (l,) = 300 mm

Avrea of aluminium bar (Aa) = 500 mm?

Decrease in temperature (t) =38 — 21 =17°C

Modulus of elasticity of steel (Es) = 200 GPa = 200 x 10° N/mm?
Modulus of elasticity of aluminium (En) = 75 GPa = 75 x 10° N/mm?
Coefficient of expansion for steel (ag) = 11.7 x 10°%/°C

Coefficient of expansion for aluminium (0,a) = 23.4 x 10°%/°C.

Steel bar Aluminium bar
Ag = 1000 mm? A, =500 mm?

600
nim

300
mim

Let c Stress in the steel bar, and

tn
Il

Stress in the aluminium bar.

:9
1l

(a) Stresses when the supports are unyielding
Cg.Ag = G, . A, or o % 1000 =6, x 500

o = 0, x500/1000=05 o,
We know that free expansion of steel bar due to increase in temperature,

8l¢ = Ig0g.t=600x (11.7 % 10°) x 17 =0.119 mm
and 8, = l,.00.0=300x (23.4 x 10°) x 17 =0.119 mm

Total contraction of the bar,
8 = Olg+8l,=0.119 +0.119 = 0.238 mm

Now let us assume a tensile force to be applied at A and C, which will cause an expansion of
0.238 mm of the rod (i.e., equal to the total contraction). Therefore

0.238 = + = + =55x10"0
Eg E, 200 10° 75%10° A
0.238 2
G, = SSXT =43.3 N/mm"~ = 43.3 MPa Ans.
and 6, = 056,=0.5x% 43.3=21.65 MPa Ans.

(b) Stresses when the supports come nearer to each other by 0.1 mm

In this case, there is an expansion of composite bar equal to 0.238 — 0.1 = 0.138 mm. Now let us
assume a tensile force, which will cause an expansion of 0.138 mm. Therefore

0.138 = Os.lg N Cy-ly _ (05 GA)x(z(lD +GAX30§) 55y 10_35,4
Eg E, 200% 10° 75%10
0.138 ”
Oy = 55%10° =25.1 N/mm~ = 25.1 MPa Ans.
and 6, = 0506,=0.5%x25.1=12.55MPa Ans.
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Superposition of Thermal Stresses

Example A rigid slab weighing 600 kN is placed upon two bronze rods and one steel rod
each of 6000 mm? area at a temperature of 15°C as shown in Fig. Find the temperature, at
which the stress in steel rod will be zero. Take: Coefficient of expansion for steel = 12 x 10°®
/°C, Coefficient of expansion for bronze = 18 x 10%/°C

Young’s modulus for steel = 200 Gpa, Young’s modulus for bronze = 80 GPa.

Given:

Weight = 600 kN = 600 x 10 N

Avrea of bronze rod (Ag) = As = 6000mm?

Coefficient of expansion for steel (o) = 12 x 10°° /°C

Coefficient of expansion for bronze (0g) = 18 x 10°° /°C

Modulus of elasticity of steel (Es) =200 GPa

=200 x 10° N/mm?

Modulus of elasticity of bronze (Eg) =80 GPa

= 80 x 10% N/mm?
Let t=Riseintemperature, when the stress in the steel rod will be zero.

Due to increase in temperature all the three rods will expand. The expansion of bronze
rods will be more than the steel rod (because ag is greater than ag). If the stress in the steel
rod is to be zero, then the entire load should be shared by the two bronze rods. Or in other
words, the decrease in the length of two bronze rods should be equal to the difference of the
expansion of the bronze rods and steel rod. We know that free expansion of the steel rod

= It =300x 12X 10° xr=3.6x 10" 1
Similarly, free expansion of the bronze rods,
= L0pf=250x 18 x 10° x 1 =4.5x 10" 1

600 kN

Bronze

Bronze
Steel

fe—— 300 mm —=

Err,

Difference in the expansion of the two rods
= (45x10°)-(3.6x107)r=09x 10" ¢ (i)
We also know that the contraction lof the bronze rods due to load of 600 kIN

Pl __ (600x10%) %250 0156 .
T AE (2x6000)x (80x10%) ~ -0 mm (i)

Now equating equations (7) and (i7),

__0.156
9x107*

09% 107 xt = 0.156 or =173.3°C  Ans.

Thermal Stresses in Composite Bars

Whenever there is some increase or decrease in the temperature of a bar, consisting of
two or more different materials, it causes the bar to expand or contract. The different
coefficients of linear expansions the two materials do not expand or contract by the same
amount, but expand or contract by different amounts. The steel and brass could have been
free to expand, and then no internal stresses would have induced. The two members are
rigidly fixed, therefore the composite bar, as a whole, will expand by the same amount.

Brass Brass /- Brass

Steel Steel Steel

(@) @) @)
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We know that the brass expands more than the steel (because the coefficient of linear
expansion of the brass is greater than that of the steel). Therefore the free expansion of the
brass will be more than that of the steel. But since both the members are not free to expand,
therefore the expansion of the composite bar, as a whole, will be less than that of the brass;
but more than that of the steel as shown. It is thus obvious that the brass will be subjected to
compressive force, whereas the steel will be subjected to tensile force as shown.

G, = Stress in brass

€, = Strain in brass,

o, = Coefficient of linear expansion for brass,
A, = Cross-sectional area of brass bar,

O,, &, 0, A, = Corresponding values for steel, and
€ = Actual strain of the composite bar per unit length.

As the compressive load on the brass is equal to the tensile load on the steel, therefore
G.A, = CpA,
Now strain in brass,
g = O.I-¢€ (i)
and strain in steel, g, = 0,[—¢€ (i)
Adding equation (i) and (if), we get
g +g, = —t(og + 0y

Notes : 1. In the above equation the value of «, is taken as greater of the two values of «; and o,

Example A gun metal rod 20 mm diameter, screwed at the ends, passes through a steel tube
25 mm and 30 mm internal and external diameters respectively. The nuts on the rod are
screwed tightly home on the ends of the tube. Find the intensity of stress in each metal, when
the common temperature rises by 200°F. Take. Coefficient of expansion for steel = 6 x 10—
6/°F Coefficient of expansion for gun metal = 10 x 10 —6 /°F Modulus of elasticity for steel =
200 Gpa, Modulus of elasticity for gun metal = 100 GPa.

Given:
Diameter of gun metal rod = 20 mm
Internal diameter of steel tube = 25 mm
External diameter of steel tube = 30 mm
Rise in temperature (t) = 200°F
Coeff of expansion for steel (ag) = 6 x 10 °/°F
Coeff of expansion for gun metals (ag) = 10 x 107°/°F

(Es) = 200 GPa = 200 x 10° N/mm? S Steel tube
(Eg) = 100 GPa = 100 x 10° N/mm? j e P :
|-7 300 mm —-|

The temperature of the gun metal rod and steel tube will increase; the free expansion of gun
metal rod will be more than that of steel tube. Thus the gun metal rod will be subjected to
compressive stress and the steel tube will be subjected to tensile stress.

Ag = 7 %(20)° =100 x mm’

&l &3

Ag = = [(30)° = (25)"] = 68.75  mm”

26



Ag 1007w
= — X0, =———XG- = 1.
Os = 4, %5 T6g75n <%0 =149
We know that strain in steel tube,

Og Os

€& = T ST 3

S 7 Eg 200x10°

_ S __ %

and % = E; 100x10°

We also know that total strain,
ggte; = t(og— o)

Og Og -6 —6
+ = 200 [(10 x 10°) — (6 x 107%)]
200%x10°  100x10°
1450, 1]
< = 200x(4x10°
200%10°  100x 10
3456
——C¢- - 800x10°
200% 10
345 6G = (800 x 107°) x (200 x 10”) = 160
_ 160 _ 2 _
O; = 345 =464 N/fmm~ = 46.4 MPa Ans.
and 6, = 1456,;=145%x464 =673 MPa Ans.

Elastic constant
The axial deformation of a body, when it is subjected to a direct tensile or
compressive stress. But we have not discussed the lateral or side effects of the pulls or
pushes. It has been experimentally found, that the axial strain of a body is always followed by
an opposite kind of strain in all directions at right angle to it. Thus, in general, there is always
a set of the following two types of strains in a body, when it is subjected to a direct stress.
e Primary or linear strain, and
e Secondary or lateral strain

Whenever some external force acts on a body, it undergoes some deformation. Now consider
a circular bar subjected to a tensile force as shown. Let

| = Length of the bar,

d = Diameter of the bar,

P = Tensile force acting on the bar, and

dl = Increase in the length of the bar

The deformation of the bar per unit length in the direction of the force is known as

linear strain. The linear deformation of a circular bar of length | and diameter d subjected to
a tensile force P. The deformation of the bar, we will find that bar has extended through a
length dlI, which will be followed by the decrease of diameter from d to (d — 6d) as shown.
Similarly, if the bar is subjected to a compressive force, the length of the bar will decrease by
dl which will be followed by the increase of Diameter from d to (d + dd). It is thus obvious
that every direct stress is always accompanied by a strain in its own direction and an opposite
kind of strain in every direction at right angles to it. Such a strain is known as secondary or
lateral strain.
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Poisson’s ratio
If a body is stressed within its elastic limit, the lateral strain bears a constant ratio to
the linear strain.
Lateral strain

n - = (constant
Linear strain ( )

. . . . . 1 .
This constant is known as Poisson’s ratio and is denoted by o Or Mathematically,

. 1
Lateral strain = T XETUE

Example A steel bar 2 m long, 40 mm wide and 20 mm thick is subjected to an axial pull of
160 kN in the direction of its length. Find the changes in length, width and thickness of the
bar. Take E = 200 GPa and Poisson’s ratio = (.3.

Given: Length (1)=2m =2 x 103 mm
Width (b) =40 mm ;
Thickness (t) =20 mm;
Axial pull (P) =160 kN =160 x 103 N ;
Modulus of elasticity (E) = 200 GPa = 200 x 10° N/mm?
poisson’s ratio (1/m) =0.3
Change in length
We know that change in length,

Pl _ (160x10%) % (2x10%)
AE  (40%20)x(200x10%)

3l =

=2 mm Ans.

Change in width
We know that linear strain,

ol

__2
€= 1 2x10

3 =0.001

’—L xe=03x0.01 =0.0003

1

and lateral strain

Change in width,

1

ob b % Lateral strain = 40 x 0.0003 = 0.012 mm Ans.
Change in thickness
We also know that change in thickness,
&t = rx Lateral strain = 20 x 0.0003 = 0.006 mm Ans.

Volumetric strain

Whenever a body is subjected to a single force (or a system of forces), it undergoes
some changes in its dimensions. The change in dimensions of a body will cause some
changes in its volume. The ratio of change in volume, to the original volume, is known as

volumetric strain
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The following are important from the subject point of view:
1. A rectangular body subjected to an axial force.
2. A rectangular body subjected to three mutually perpendicular force

oV
gy =
0V = Change in volume, and
V = Original volume.

Volumetric Strain of a Rectangular Body Subjected to an Axial Force

Consider a bar, rectangular in section, subjected to an axial tensile force as shown in Fig. 6.2.
Let ! = Length of the bar,
b = Breadth of the bar,
t = Thickness of the bar,
P = Tensile force acting on the bar,
E = Modulus of elasticity and
1

el Poisson’s ratio.

‘We know that change in length,

Pl Pl )
ol = E = ﬁ (D)
a1 ¢ o = Force _ P
and linear stress, = Arca b7
. . 'S‘rress _ P
Linear strain = F  biE
. L 1 P
and lateral strain = oo X Linear strain= /% 7%
Change in thickness,
L1l P P
= I X—X——= i
o m btE mbE i)
and change in breadth,
Lol P P
= bX—X——=
ob m DbtE mtE (ait)
As a result of this tensile force, let the final length
= 1+dl
Final breadth = b — b ...(Minus sign due to compression)
and final thickness = r— &t ...(Minus sign due to compression)

We know that original volume of the body,
V = Lb.t
(I + &) (b— 6b) (r— 1)

(10 )(1-5)(1-%)

and final volume

1

I



= Ibt {1 + ol _3db _Q} ...(Ignoring other negligible values)

Change in volume,
OV = Final volume — Original volume

.’br(l+$—%—?]—wr:3br(g—ﬁ—b—g)

I

= in (l —2]
m

and volumetric strain,

S_V B btE m :_(1_2)
v 14 btE m
2
-2) P
- E( m e E—S—Stram

Example A steel bar 2 m long, 20 mm wide and 15 mm thick is subjected to a tensile load of
30 kN. Find the increase in volume, if Poisson’s ratio is 0.25 and Young’s modulus is 200
GPa.

Given: Length (1)=2m =2 x 103 mm ; Width (b) =20 mm ; Thickness (t) = 15 mm
Tensile load () = 30 kN = 30 x 10°N ; Poisson’s ratio ( L ] =0.25 or m =4 and Young’s modulus

m
of elasticity (E) = 200 GPa = 200 x 10> N/mm”.
Let &V = Increase in volume of the bar.
We know that original volume of the bar,
V = Lbt=(2x10°) x 20 x 15 = 600 x 10° mm’

SV P 2 30x10° 2
; o _(1__): (1——):0.00025
an 14 btE m]  20x15%(200x10°) 4

8V = 0.00025 x V=0.00025 x (600 x 10*)= 150 mm>  Ans.

1l

Volumetric Strain of a Rectangular Body Subjected to Three Mutually Perpendicular
Forces

Consider a rectangular body subjected to direct tensile stresses along three mutually
perpendicular axes as shown

z
. L Y
Let G, = Stress in x-x direction, T A
G, = Stress in y-y direction, 1 I ¥
- : - S e —;—>
G. = Stress in z-z direction and -~ : T
E = Young’s modulus of elasticity. Y/ ¢
.. L z
Strain in x-x direction due to stress G,
g,
&=
g, G.
Similarly, g = — and g ==
¥y v E z E

The resulting strains in the three directions may be found out by the principle of
superposition, i.e., by adding algebraically the strains in each direction due to each
individual stress. For the three tensile stresses shown. (taking tensile strains as +ve and
compressive strains as —ve) the resultant strain in x-x direction,
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6, 6, o 1] o &
g = =———-——<L==-|0,————2%
" E mE mE E| m m
Oy O, O, | o, O,
Similarl [t . S SRS Y, S S 4
Y & E mE mE E| 7 m m
6. o, o, 1] 6. O,
and - <= X - ——|g. -
& E mE mE E| ~ m m
The volumetric strain may then be found by the relation;
oV
E72 g teg tE

Example A steel cube block of 50 mm side is subjected to a force of 6 kN (Tension), 8kN
(Compression) and 4 kN (Tension) along X, y and z direction respectively. Determine the
change in volume of the block. Take E as 200 GPa and m as 10/3.

Given:

Side of the cube =50 mm ; 4 kN

Force in x- direction (Px) = 6 kN = 6 x 10® N (Tension) ; T

Force in y-direction(Py) = 8 kN = 8 x 10° N (Compression) : payZans

Force in z-direction (Pz) = 4 kN =4 x 10® N (Tension) and %’l 6 kN
modulus of elasticity (E) = 200GPa = 200 x 10> N/mm?
andm=10/3 50 mm

OV = Change in volume of the
block.

original volume of the steel cube,

V = 50 x 50 x 50 = 125 x 10° mm’
and stress in x-x direction,

P, 6x10° ) .
O, = %= 3500 = 2.4 N/mm™ (Tension)
. P, _§x10’ :
Similarly O = T 3500 = 3.2 N/mm’ (Compression)
P 4x10° 2 .
and O, = = 3500 1.6 N/mm" (Tension)

We also know that resultant strain in x-x direction considering tension as positive and compres-
sion as negative,

i+ Oy o, 24 3_2><3_l.6><3_2.88

X

y O _24 _
& = E "mE mE E 10E 10E E

Similar _ % _ o _ 0 _ 32 24x3 L6x3__ 44
1miarty, & = E mE mE E I0E 10E E

d _ S O G, 7&_2.4><3+3.2><371,84
an & = E mE mE E 10E  10E E

volumetric strain,

K%

VT EtTEtE

8V. 288 44 184 _032__ 032
125x10° = E E E E 200x10°

0.32
SV = 125x% 10° x 200x10° = 0-2 mm’  Ans.
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Shear Stress

When a section is subjected to two equal and opposite forces, acting tangentially
across the resisting section, as a result of which the body tends to shear off across the section
as shown. The stress induced is called shear stress. The corresponding strain is called shear

strain. s -
I_é_/—I—F P
P a— |

Deformation

Shear strain

Original length
cC
= =0
- £
YT 4B

Principle of Shear Stress
It states, “A shear stress across a plane, is always accompanied by a balancing shear
stress across the plane and normal to it.

P = 1TXx.AD=1XCB D — c
Consider a rectangular block ABCD, subjected to a shear 4 L K
stress of intensity t on the faces AD and CB as shown. Now consider
a unit thickness of the block. Therefore force acting on the faces AD T &

and CB,

These forces will form a couple, whose moment is equal to T x AD x AB i.e., force x
distance. If the block is in equilibrium, there must be a restoring couple, whose moment must
be equal to this couple. Let the shear stress of intensity t be set up on the faces AB and CD as
shown. Therefore forces acting on the faces AB and CD,.

TX AD % AB 17" %X AD x AB

T=1
Relation between Modulus of Elasticity and Modulus of Rigidity
Consider a cube of length | subjected to a shear stress of z as shown. due to these
stresses the cube is subjected to some distortion, such that the diagonal BD will be elongated
and the diagonal AC will be shortened. Let this shear stress t cause shear strain ¢ as shown.
We see that the diagonal BD is now distorted to BD1.

. BD, — BD -~ Strai _al
Strain of BD — 8D [ rain ]

Dl .Dg _ DD] cos 45° _ DDJ ¢

BD ADJ2  2AD 2

Linear strain of the diagonal BD

= %:% D - ¢ leF;; S ¢
T = Shear stress and - } L'{ "{)3 N \“.\
= Modulus of rigidity. —l?— x‘“\\:‘?ﬂ
A —~ B ) .
(a) Before distortion () After distortion
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Let us now consider this shear stress t acting on the sides AB, CD, CB and AD. We know that the
effect of this stress is to cause tensile stress on the diagonal BD and compressive stress on the diago-
nal AC. Therefore tensile strain on the diagonal 8D due to tensile stress on the diagonal BD

T

= - i)
E
and the tensile strain on the diagonal BD due to compressive stress on the diagonal AC
1.1
= X E - [Fif)
The combined eftect of the above two stresses on the diagonal BD
1,1 _1t_1 1 T({m+l1
= —t—x—=—(l+—|== iy
E m E E ( m] E [ m J (V)
Equating equations () and (iv),
T tim+1 mE
_— = = C =—_—
2C E[ m ] or 20m+1)

Example An alloy specimen has a modulus of elasticity of 120 GPa and modulus of rigidity
of 45 GPa. Determine the Poisson’s ratio of the material.

Given:
Modulus of elasticity (E) = 120 GPa
Modulus of rigidity (C) = 45 GPa.

Let 1 = Poisson’s ratio of the material.

1

We know that modulus of rigidity (C),

15 - mE_ _ mx120 _ 120m
T 2(m+l 2(m+1l) 2m+2
00 m+90 = 120m or 30 m =00

90 _ 11
N = E - or E - E
Strain Energy and Impact Loading
When the load moves downwards, it loses its *potential energy. This energy is
absorbed (or stored) in the stretched wire, which may be released by removing the load. On
removing the load, the wire will spring back to its original position.
Resilience
It is a common term used for the total strain energy stored in a body. Sometimes the
resilience is also defined as the capacity of a strained body for doing work (when it springs
back) on the removal of the straining force.
Proof Resilience
It is also a common term, used for the maximum strain energy, which can be stored in
a body. (This happens when the body is stressed up to the elastic limit). The corresponding
stress is known as proof stress.
Modulus of Resilience
The proof resilience per unit volume of a material, is known as modulus of resilience
and is a important property of the material.
A load may act in either of the following three ways:
1. Gradually 2. suddenly 3. with impact
Strain Energy Stored in a Body, when the Load is Gradually Applied
When loading a body, in which the loading starts from zero and increases gradually
till the body is fully loaded. e.g., when we lower a body with the help of a crane, the body
first touches the platform on which it is to be placed. On further releasing the chain, the

Ans.
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platform goes on loading till it is fully loaded by the body. This is the case of a gradually
applied load. Now consider a metallic bar subjected to a gradual load.
Let P = Load gradually applied,

A = Cross-sectional area of the bar,

| = Length of the bar,
E = Modulus of elasticity of the bar material and

d = Deformation of the bar due to load.

Since the load applied is gradual, and varies from zero to P, therefore the average load is
equal to P/2

= Work done = Force x Distance
= Average load x Deformation

P P v B —
= Exﬁa':E{E.F) odl=gl D)

—

= ;U.EA.F ST P=0A)
= E ® Stress % Strain ¥ Volume
1 (o] a
= =XOoxX=xA/ e ==
> '] = . E E)
= lxg—zxﬁ.{
2 E

Since the strain energy stored is also equal to the work done, therefore strain energy stored,

2

2
U = %xm=§—ng w(0 Al =Volume = V)

We also know that modulus of resilience
= Strain energy per unit volume

a

c
2E

|

Example Calculate the strain energy stored in a bar 2 m long, 50 mm wide and 40 mm thick
when it is subjected to a tensile load of 60kN. Take E as 200 GPa.

|

Given:
Length of bar (1) =2m =2 x 10° mm
Width of bar (b) =50 mm
Thickness of bar (t) = 40 mm
Tensile load on bar (P) = 60 kN = 60 x 10° N and
Modulus of elasticity (E) = 200GPa = 200 x 10> N/mm?

We know that stress in the bar

P _60x10° 2
C = AT 350%40 =30 N/mm
Strain energy stored in the bar,
o’ (30
= ==XV =r—r——" 5 N-
U= 5g Ex{EDDx1D3} w4 % 107 N-mm

0 % 10° N-mm = 9 kN-mm Ans.

Strain Energy Stored in a Body when the Load is Suddenly Applied

The load is suddenly applied on a body. e.g., when we lower a body with the help of a
crane, the body is, first of all, just above the platform on which it is to be placed. If the chain
breaks at once at this moment the whole load of the body begins to act on the platform. This
is the case of a suddenly applied load. Now consider a bar subjected to a sudden load.
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P = Load applied suddenly,
A = Cross-sectional area of the bar,
{ = Length of the bar,
E = Modulus of elasticity of the material,
& = Deformation of the bar, and

¢ = Stress induced by the application of the sudden load

Since the load is applied suddenly, therefore the load (P) is constant throughout the process of
deformation of the bar.

Work done = Force x Distance = Load x Deformation ()
= Pxdl

We know that strain energy stored,

i
[+3 .
= —xAl
u °E {if)
Since the strain energy stored is equal to the work done, therefore
2 ' :
G~ a
= = = =1 —81=Z
ZEXA.’ P x Ol Px = (GI_E!)
P
or o =2x n

Example An axial pull of 20 kN is suddenly applied on a steel rod 2.5 m long and 1000 mm2
in cross-section. Calculate the strain energy, which can be absorbed in the rod. Take E = 200
GPa.

Given:
Axial pull on the rod (P) =20 kN =20 x 10° N;
Length of rod (I) =25m=25x10°mm
Cross-sectional area of rod (A) =1000 mm?
and modulus of elasticity (E) = 200GPa = 200 x 10> N/mm?
We know that stress in the rod, when the load is suddenly applied
c = 2x§=2x% = 440 Nfmm”

and volume of the rod,
V = 1.A=(25%10%) x 1000 = 2.5 x 10" mm"
Strain energy which can be absorbed in the rod,

Sy WO
27 T 2% (200x10°)

= 10 x 10* N-mm = 10 kN-mm Ans.
Strain Energy Stored in a Body, when the Load is applied with Impact
The impact load is applied on a body e.g., when we lower a body with the help of a
crane, and the chain breaks while the load is being lowered the load falls through a distance,
before it touches the platform. This is the case of a load applied with impact. Now consider a
bar subject to a load applied with impact as shown.
Let £ = Load applied with impact,
A = Cross-sectional area of the bar,
E = Modulus of elasticity of the bar material,
! = Length of the bar,
8! = Deformation of the bar, as a result of this load,

U= % (2.5 % 10°) N-mm

¢ = Stress induced by the application of this load
with impact, and
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f = Height through which the load will fall, before impacting on the collar of the bar.
Work done = Load x Distance moved
= P (h+ 8l
7

o
- - =—xAl
and energy stored, U = 2E

Since energy stored is equal to the work done, therefore

O xAl = P(h+8l)= P(h+£,g’) [--81=9.1)
2E E -

o Pal
E xAl = Ph+ T Load

I
=

ﬁl(zﬂ—é}—c[?J Ph * ?44

Multiplying both sides by (f‘,)

7
o P PER h
—-0|—=|-——F+ =10
2z ° ( A] Al
This is a quadratic equation. We know that /(.'11Ilar

N EET O w
- f{u\j[ ME“J

Once the stress (o)is obtained, the corresponding instantancous deformation (&f) or the strain
energy stored may be found out as usual.

Cor. When 6 is very small as compared to A, then
Work done = Ph

’]

S_ Al = P
2E '
. 2EPh
or g = Al
_ [2EPH
¢ = Al

Example A copper bar of 12 mm diameter gets stretched by 1 mm under a steady load of 4
kN. What stress would be produced in the bar by a weight 500 N, the weight falls through 80

mm before striking the collar rigidly fixed to the lower end of the bar? Take Young’s modulus
or the bar material as 100 GPa

Given :
Diameter of bar (d) =12 mm
Change in length of bar (dl) =1 mm
Load on bar (P1) =4 kN =4 x 10° N
Weight falling on collar (P2) = 500 N
Height from which weight falls (h) = 80 mm
Modulus of elasticity (E) = 100 GPa = 100 x 10° N/mm?
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Let I = Length of the copper bar.
We know that cross-sectional area of the bar,

A = g x (d)’ = % x (12)% = 113.1 mm>
and stretching of the bar (1),
P (4x10°) 1
AE 131 (100 x 10°)  2.83x 10°
-~ I = 1x(2.83x10%) =283 x 10° mm
We also know that stress produced in the bar by the falling weight.

P, 2AED
= 2|1+ {1+
¢ [ szJ

I =

113.1 500 (2.83x10%)

4.2 (1 +35.77) = 162.52 N/mm” = 162.52 MPa Ans.
Strain Energy Stored in a Body of Varying Section

Sometimes, we come across bodies of varying section. The strain energy in such a
body is obtained by adding the strain energies stored in different parts of the body.
Mathematically total strain energy stored in a body.

U=U;+U,+Uz+......
Where U; = Strain energy stored in part 1,

U, = Strain energy stored in part 2,

U3 = Strain energy stored in part 3

3
1500 [1+\/1+2x113.1x(100><10 )xsﬂ -

Example A non-uniform tension bar 5 m long is made up of two parts as shown. Find the
total strain energy stored in the bar, when it is subjected to a gradual load of 70 kN. Also find
the total strain energy stored in the bar, when the bar is made of uniform cross-section of the
same volume under the same load. Take E = 200 GPa.

Given:
Total length of bar (L) =5m =5 x 10° mm
Length of part 1 (L1) =3 m =3 x 10° mm
Length of part 2 (L2) =2 m = 2 x 10° mm
Area of part 1 (A1) = 1000 mm?
Area of part 2 (A2) = 2000 mm?
Pull (P) =70 kN =70 x 10° N
Modulus of elasticity (E) = 200 Gpa = 200 x 10> N/mm?

Total strain energy stored in the non-uniform bar
We know that stress in the first part,
70x10°

F 2
a, = E—W =70 N/mm

and volume of the first part,
v, = (3x10%) x 1000 = 3 x 10° mm’
Strain energy stored in the first part,

o (705

Uy = 5pxVi=7————= x (3 x 10" =36.75 x 10° N-
S ax@onxiey <G x 10° N-mm

1 T 2E
i)

Similarly, stress in the second part,

P 70x107

=000 = 35 N/mm”

0, = 4
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and volume of the second part,
v, = (2x10%) x 2000 = 4 x 10° mm’
Strain energy stored in the second part,

ﬁfg' {35}2 & 3
U, = 2xv,=— 0 4109 = 1225 x 10° N-
2 = 2872 T g ooxaoy <X X A Frmm
(i)

and total strain energy stored in the non-uniform bar,
U=U+U, = (3675x10°)+(1225% 10°)=49x 10°N=mm=49N-m  Ans.

Total strain energy in the uniform bar
We know that total volume of the bar,
V=V, +V,=03x10°+4x10° =7 x 10° mm’
and cross-sectional area of the circular bar,

Volume of the bar  7x10° \
A = Length of thebar  §x10° = 1400 mm

Stress in the bar

70x10° 2
and strain energy storad in the uniform bar,
U= Sxv=—O0 (7510 =4375 x 10° N-mm

2E7 2% (200x10°)
43.75 N-m Ans.

Strain Energy Stored in a Body due to Shear Stress

Consider a cube ABCD of length [ fixed at the bottom face AB as shown in Fig 8.5.

Let P = Force applied tangentially on the face DC,
D, (S o p
- z M

T = Shear stress
¢ = Shear strain, and ! ,
N

= Modulus of rigidity or s ;

shear modulus. / /

If the force P is applied gradually then the average force / /

is equal to P/2. ETJ
: f

Work done

Average force x A
Distance

B

Fig. 8.5. Strain energy due to
= —%x Db shear stress

1
XPXAD X { w7 DD = AD X §)
XTXDCXIXAD XD L P=TxDOXI

XTXOXDOXAD x|

(stress x strain x volume)

|
2= 2= ta|— t2|=— 2= 3|
Il
Z|a
—

T
HIx—xV
X [0
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,
2
= xV i r

= 3N ...(where V is the volume)

Since energy stored is also equal to the work done, therefore energy stored,

9

U= =X
- 2N

We also know that modulus of resilience

xV

= Strain energy per unit volume

-

T
- IN

Example A rectangular body 500 mm long, 100 mm wide and 50 mm thick is subjected to a
shear stress of 80 MPa. Determine the strain energy stored in the body. Take N = 85 GPa.

Given:

Length of rectangular body (I ) = 500 mm

Width of rectangular body (b) = 100 mm

Thickness of rectangular body (t) = 50 mm
Shear stress (t) = 80 MPa = 80 N/mm? and
modulus of rigidity (N) = 85 N/mm?

We know that volume of the bar,
V = Lb.t=500x 100 x 50 = 2.5 x 10° mm’

and strain energy stored in the body,

I xy=_ B0 _
2N 2% (85%10%)
94.1 x 10° N-mm = 94.1 N-m Ans.

U % 2.5 x 10° N-mm

Principal Stresses and Strains

At a time one type of stress, acting in one direction only. But the majority of
engineering, component and structures are subjected to such loading conditions (or
sometimes are of such shapes) that there exists a complex state of stresses; involving direct
tensile and compressive stress as well as shear stress in various directions.

At any point in a strained material, there are three planes, mutually perpendicular to
each other, which carry direct stresses only, and no shear stress. These three direct stresses
one will be maximum, the other minimum, and the third and intermediate between the two.
These particular planes, which have no shear stress, are known as principal planes.

The magnitude of direct stress, across a principal plane, is known as principal stress.
The determination of principal planes, and then principal stress is an important factor in the
design of various structures and machine components.

The following two methods for the determination of stresses on an oblique section of
a strained body are important from the subject point of view: 1. Analytical method and 2.
Graphical method.

Analytical Method for the Stresses on an Oblique Section of a Body

The analytical method for the determination of stresses on an oblique section in the

following cases, which are important from the subject point of view:
1. A body subjected to a direct stress in one plane.
2. A body subjected to direct stresses in two mutually perpendicular directions

In the element shown, the shear stress on the vertical faces (or x-x axis) is taken as
positive, whereas the shear stress on the horizontal faces (or y-y axis) is taken as negative
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Stresses on an Oblique Section of a Body Subjected to a Direct Stress in One Plane
Consider a rectangular body of uniform cross-sectional area and unit thickness
subjected to a direct tensile stress along x-x axis as shown. Now let us consider an oblique

section AB inclined with the x-x axis.

A A
i
i g,
G — G G l — o
i T
! A\
(i C B
(b (e)
Let o = Tensile stress across the face AC and

fas)
I

= Angle, which the oblique section AB makes with BC i.e. with

the x-x axis in the clockwise direction.

First of all, consider the equilibrium of an element or wedge ABC whose free body diagram is
shown in fig 7.2 () and (). We know that the horizontal force acting on the face AC,

P = 0.AC (&)
Resolving the force perpendicular or normal to the section AB
P, = Psinb=0.ACsin B

n

and now resolving the force tangential to the section AR,
P, = PcosO=g.ACcosB

I
We know that normal stress across the section AB#,
P

S, = AB AB AC
sin@

_0ACsin _ ¢.ACsinf _

_ 9 q_ _6_ 9o
= 2{] cos 28) > 21:0528

and shear stress (i.e., tangential stress) across the section AB,

B _0.ACcos® o.ACcosD

Y= 2AB~~ AB ___AC
sin 6
:%Sinlﬁ

i)

o lid)
osin’ @

(i)
=g sinBcos O

v

The face AC will carry the maximum direct stress. Similarly, the shear stress across the
section AB will be maximum when sin 26 = 1 or 20 = 90° or 270°. Or in other words, the
shear stress will be maximum on the planes inclined at 45° and 135° with the line of action of
the tensile stress. Therefore maximum shear stress when 0 is equal to 45°,
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. I 0_0,1_9C
T = sin 90 _2x1_2

AL 2

and maximum shear stress, when 0 is equal to 135°,

_O s__O =8
Tor = 7 SN 270° = 2{ 1]_2

It is thus obvious that the magnitudes of maximum shear stress is half of the tensile stress. Now
the resultant stress may be found out from the relation :

Op = O, +T

NOTE : The planes of maximum and minimum normal stresses (i.e. principal planes) may
also be found out by equating the shear stress to zero. This happens as the normal stress is
either maximum or minimum on a plane having zero shear stress. Now equating the shear
stress to zero, ¢ sin 6 cos 6 =0

Example Two wooden pieces 100 mm x 100 mm in cross-section are joined together along a
line AB as shown. Find the maximum force (P), which can be applied if the shear stress along
the joint AB is 1.3 MPa.

Given:
Section =100 mm x 100 mm ;
Angle made by section with the
Direction of tensile stress (0) = 60° and
Permissible shear stress (t) = 1.3 MPa = 1.3 N/mm?
Let o = Safe tensile stress in the member
We know that cross- sectional area of the wooden member,

A = 100 % 100 = 10 000 mm"”

and shear stress (1),

13 = %sin 26 = %sin{Z x 60°) = %sin 120° = % x 0.866
0433 ¢

or g = % = 3.0 N/mm”

Maximum axial force, which can be applied,
P =0cA=30x10000=30000N=30kN Ans,
Stresses on an Oblique Section of a Body Subjected to Direct Stresses in Two Mutually
Perpendicular Directions
Consider a rectangular body of uniform cross-sectional area and unit thickness
subjected to direct tensile stresses in two mutually perpendicular directions along x-x and y-y
axes as shown. Now let us consider an oblique section AB inclined with x-x axis

o e
o o [
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Let (4

Tensile stress along x-v axis (also termed as major tensile stress),

o, = Tensile stress along y-y axis (also termed as a minor fensile
stress), and
8 = Angle which the oblique section AB makes with x-x axis in

the clockwise direction.
First of all, consider the equilibrium of the wedge ABC. We know that horizontal force acting on
the face AC (or x-x axis).
P, = 0,.AC (&)

and vertical force acting on the face BC (or y-v axis),
P, =g,.Bc()

¥

Resolving the forces perpendicular or normal to the section AB,

P =P snb+P cosb=0,_.ACsinB+0g .BCcosb (1)
and now resolving the forces tangential to the section A5,
P, =P cosB—P sin=0,_.ACcosB—g, .BCsinb w.(Fi)

We know that normal stress across the section AB,

P 0,.ACsin®+¢_ BCcos
(4] = == z
" AB AB

0,-ACsin® 0,.BCcos8 o,.ACsin6 o,.BCcos

AB AB AC BC
sin @ cosH

- 2 G.
o, sin” 8+0, .cos” 6= % (1 —cos 26) + T‘ (1 + cos 26)

[+ 20 [+ 20
= %—%CDSEB‘+T}+T}CDSZE‘
G, +0, O,—-0,
= 7 = — 7 = cos 20 (i)

and shear stress (i.e., tangential stress) across the section AB,

P ©,.ACcosO—0,.BCsind

[

T Sl B
AB AB

o,.ACcos8 0,.BCsin® o .ACcos® 6,.BCsind

AB AE AC BC
sinf cos0

= ¢, .s5infcos®—o sinBcos B

= (0,—0,)sinBcos 6 = O ;G"' sin 26 (i)

It will be interesting to know from equation (ifi) the shear stress across the section AB will be
maximum when sin 20 = 1 or 20 = 90° or 8 = 45°. Therefore maximum shear stress,

G,—0G,

Tma.r - 2

Now the resultant stress may be found out from the relation :

Oy = JJoo+1°
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Example: The stresses at point of a machine component are 150 MPa and 50 Mpa both
tensile. Find the intensities of normal, shear and resultant stresses on a plane inclined at an
angle of 55° with the axis of major tensile stress. Also find the magnitude of the maximum
shear stress in the component.

Given: Tensile stress along x-x axis (sy) = 150 MPa;
Tensile stress along y-y axis (sy) = 50 MPa and
Angle made by the plane with the major tensile stress (0) = 55°.
Normal stress on the inclined plane
We know that the normal stress on the inclined plane
6, +0, O,—-0,
g, = 3 - 5 = cos 20

150;50 _ 1502—50 cos (2 55%) MPa

100 — 50 cos 110° = 100 - 50 (- 0.342) MPa
10+17.1=117.1 MPa Ans,

Shear stress on the inclined plane
We know that the shear stress on the inclined plane,

o, -0, 150 —50

T = — 5 sin 20 = 3 ® sin (2 x 55°) MPa

= 50sin 1107 = 50 x 0.9397 = 47 MPa Ans.

Resultant stress on the inclined plane

We know that resultant stress on the inclined plane,

Op = 02 +7 =yJ(117.1)2 +(47.0)* =1262MPa  Ans.
Maximum shear stress in the cemponent
We also know that the magnitude of the maximum shear stress in the component,
6,0, 15050

Tnm.r == 7 == 2 ==+ 50 MPa Ans,

Stresses on an Oblique Section of a Body Subjected to a Simple Shear stress

Consider a rectangular body of uniform cross-sectional area and unit thickness
subjected to a positive (i.e., clockwise) shear stress along x-x axis as shown. Now let us
consider an oblique section AB inclined with x-x axis on which we are required to find out
the stresses as shown.
Let 1, = Positive (i.e., clockwise) shear stress along x-x axis, and

6 = Angle , which the oblique section AB makes with x-x axis in the anticlockwise
direction.

First of all, consider the equilibrium of the wedge ABC. We know that as per the
principle of simple shear, the face BC, of the wedge will be subjected to an anticlockwise
shear stress equal to zx, as shown. We know that vertical force acting on the face AC,

Tar T—‘J' 4 4
] : | Ty

i i Gir
1 1
1 1
: i
: Ty ! N

C,. 1 Ty C B

C B v Tre
(a) (b) (c)

43



and horizontal force acting on the face BC,
P, =1 BC(—)
Resolving the forces perpendicular or normal to the AB,
P,o=PeosB+Psinb=1, . ACcos 841, .8Csing
and now resolving the forces tangential to the section AB, . .
P,o= PosinB-PicosB=1_ . BOsin®—-1_,.ACcos 8
We know that normal stress across the section A, ' '

P 1,.ACcosB+1 .BCsin®
O = 4B~ AB
_ T ACcosB . 1,,.8C sin8
AB AR
T,.ACcos8 1, .BCsind
=~ Ac_ '~ BC
sing cos8

=1 _.sinBcosB+1_.sinBcosd
4 . U :
= 21, .sin Bcos 8= T, - Sin 2a

and shear stress (f.e. tangential stress) across the section AR

P t,.BCsing-1_ . ACcost

i

T T as” AB
Ty, -BCsin® 1, . ACcos® 1, BCsin® 1, .ACcosB
= AB ~  AB ~ BC T AC

sin @ cos
- 3 2
= 1, sin"8-1_cosH

3

|
|u| o

v T_n-
= (1 —cos 28) — - (1 + cos 268)

=

L L . L
2z

2
5

cos 28

|

A 2

CO

v

2a ..(Minus sign means that normal stress
is opposite to that across AC)
MNow the planes of maximum and minimum normal stresses {F.e., principal planes ) may be found
out by equating the shear stress to zero f.e.

-1 cos28 =0
The above equation is possible only if 28 = 907 or 2707 (because cos 20° or cos 270° =0) or in
other words, 8 = 457 or 135°,

Stresses on an Oblique Section of a Body Subjected to a Direct Stress in One Plane and
Accompanied by a Simple Shear Stress

Consider a rectangular body of uniform cross-sectional area and unit thickness
subjected to a tensile stress along x-x axis accompanied by a positive (i.e. clockwise) shear
stress along x-x axis as shown. Now let us consider an oblique section AB inclined with x-x
axis on which we are required to find out the stresses as shown in the figure.

|

."I t‘.‘ '\-\ T d
T.Tl i \\_\ :‘ 4“&,{'- M1 r\ ﬁ“
o 1 G, O, i O,

I L ] t
i E-kl::l"'\ TJ-I' E. E\u’\ riﬂ

C A ' = =T,  —r

E T.n-
{er} (b {ch
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Leat o, = Tensile stress along x-v axis,
T, = Positive (f.e. clockwise) shear stress along x-r axis, and
8 = Angle which the oblique section AF makes with x-r axis in

clockwise direction.
First of all, consider the equilibrium of the wedge ABC. We know that as per the principle of
simple shear, the face AC of the wedge will be subjected to an anticlockwise shear stress equal to T
as shown in Fig. 7.7 (#). We know that horizontal force acting on the face AC, '

P, =g, AC(e) A1)
Similarly, vertical force acting on the face AC,
P =1 .AC(T) v (i)
and horizontal force acting on the face BC,
P =1 .BCi(—) AHi

Fesolving the forces perpendicular to the section AR,
P = P sinB—F cos8-FPsint
= g, .ACsin®-1_.ACcosB-1_.BCsin®
and now resolving the forces tangential to the section AB, '
P =P cosB+ P sinB-Pcos

=g, ACcosB+1_.ACsin8 -1 _.BCcos
We know that normal stress across the section AB, -

P o, ACsin®-1,, . ACcos8 -1 .BCsin®

% = AF " AB
G, ACsin8 T, AC cos8 Ty .BC=in@
= AR AR AR
o, . ACsin@ T1,.ACcos8 1, .BCsm8®
= AC ~~  AC BC
sing sin@ cos 8

- 3 - -
G, .5 8-t smBeosB-1,sinBeosB

% (1-cos28) -2 1 sinfBcos B

R in 7 .
5 3 ms._ﬂ'—'rn,sm 26 i)

and shear stress (f.e., tangential stress) across the section AR,
P g, ACcosB+1,, ACsnB-1, .BCcosB

T =

AB AB
o, ACcos® T, ACsin® 1,.BCcosB
=" AB '~ AB _ AB
.gI,AC cosf T, ACsin® . .BCcosB
= £ +— £ - BC
sin @ sin@ cos B

. . 3 2
= ¢, sinf@cos B+ 1, sin B—1,, cos @

Op . ) T Ty
= Ts:ln._E'+T'{1—m52El}—T'U+|:r.152EI]

=]

T T T, T
- AV ANV XV IV
Lsin 28+ —— — :0529—7'——'4:0528

2 2 2

Ly

rqlﬂ rq|

sin 28 — 1, cos 29 V)
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MNow the planes of maximum and minimum normal stresses (£, principal planes) may be found
out by equating the shear stress to zero i.e., from the above equation, we find that the shear stress on
any plane is a function of . T__and 8. A little consideration will show that the values of o _and t_ are
constant and thus the shear stress varies with the angle &. Now let 8, be the value of the un;:_cle for
which the shear stress is zero.

0 or % sin 28, =1, cos 28,
2T,
G,

From the above equation we find that the following two cases satisfy this condition as shown in
Fig 7.8 (a) and (b)

\ L m
._f.‘l_

o, .
—L ¥ ¥
5 sin 28, -1, cos 18,

tan EQF =

2Ty B

Eﬁx L \\33;\“

-6, o
[a} case 1 (b} case 2

Fig. 7.8
Thus we find that these are two principal planes at Aight angles to each other, their inclination
with x-x axis being EP. and EIP‘.

Mow for case 1,

2T,
sin 28 = m— and Cos EE
d :,;ﬁ;. +4t, ..llr.r +41:'

Similarly for case 2,

a
sin 28 and cos 28 = ———
(.8 |'ﬂ.3 +41:1 N +41'1.

MNow the values of principal stresses may be found out by substituting the above values of .'3_'9'
and EE] m equation (iv).

: o g, A -
Maximum principal stress, O, = 3 cos 28 -1, sin 26
-2
ﬁ SThy
T Y .T _w‘ 5 ; a. :
= +4'|: o, +41,
[ o, 215
3
= ‘Ul'G +4t“ ,Jﬁ +41:“

2 2 . 2
~ &4_ a, +—1-"E =&+'I||IGJ.'+4T_-{_|;
- 7 2 7

= t:s +-I-I = =
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Minimum principal stress, g, =

P22
= %—Ex O 1 _x o
i 3 T 0 T 3
= o, +417, o, +41,
- )
g o 2Ty
= 7 1 2 b3 1
2oafaieadd, foleddd
T

Example An element in a strained body is subjected to a tensile stress of 150 MPa and a
shear stress of 50 MPa tending to rotate the element in an anticlockwise direction. Find (i)
the magnitude of the normal and shear stresses on a section inclined at 40° with the tensile
stress; and (ii) the magnitude and direction of maximum shear stress that can exist on the

element.

Given:
Tensile stress along horizontal x-x axis (ox) = 150 MPa
Shear stress (txy) — 50 MPa (Minus sign due to anticlockwise) and angle made by
section with the tensile stress (0) = 40°.
Normal and Shear stress on the inclined section
We know that magnitude of the normal stress on the section
ﬁ]’ ﬁ.‘l:

G, = T—?cuslﬂ—Tn,sinZH
= @‘%ms (2 x 40%) — (- 50) =in (2 = 407) MPa

= 75— (75 = 0.1736) + (50 = 0.9548) MPa
= 751302 +4924=111.22 MPa Ans.
and shear stress on the section

[+ .
T = — sin28-1_cos2O

2
50 . .
= —5-sin (2 x 40%) = (= 50) cos (2 x 407) MPa

= (75 =% 0.9848) + (50 = 0.1736) MPa

= 73.86 + 8.68 = 8254 MPa Ans.

(i) Maximeem shear stress and its divection that can exist en the element
We know that magnitude of the maximum shear stress.

v o= % ["T] +2, =¢f[@)'+{—jnf =+90.14 MPa Ans.

Let 0 = Angle which plane of maximum shear stress makes with x-x
axis.
T __q, 150 _
We know that, tan 28, 3 " 3%50 =1.5 or 8 =56.3°

B = 28.15° or 118.15° Ans,
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Fig. 7.9

Consider a rectangular body of uniform cross-sectional area and wnit thickness subjected to
tensile stresses along x-r and y-y axes and accompanied by a positive { i.e., clockwise) shear stress
along x-x axis as shown in Fig.7.9 (k). Now let us consider an obligue section AB inclined with x-x

axis on which we are required to find out the stresses as shown in the figure.

Leat g, = Tensile stress along x-v axis,
a, = Tensile stress along y-y axis,
T,, = FPositive (i.e. clockwise) shear stress along x-v axis, and

Angle, which the oblique section AB makes with x-v axis in
an anticlockwise direction.

First of all, consider the equilibrium of the wedge ABC. We know that as per the principle of
simple shear, the face BC of the wedge will be subjected to an anticlockwise shear stress equal to 1,

as shown in Fig. 7.9 (b). We know that horizontal force acting on the face AC,

P, =g, AC(+) - A1)
and vertical force acting on the face AC,
P, =1 _.AC(T) i)
Similarly, vertical force acting on the face BC,
P, =g, .BC() i
and horizontal force on the face BC,
P, = t,:,..BCt—:] i)

MNow resolving the forces perpendicular to the section AR,
P o= P sind-Pycos8+FPycos8—-Fysing
=g, .ACsin® -1 ACcos8+¢g, . BCcos®—1_ . BCsin@
and now resolving the forces tangential to AR, ' ' '
P, = Plcos@+FP,sin@—P sin9- P cos 8
=g, .ACcos+1_ .ACsin®—g, BCsin®-t_ .BCcosH

Mormal Stress (across the inclined section AB)

P o, ACsin®-1,,.ACcos8+0,.BCcos8-1,,.6Csinb

% = 4B AB
¢ .ACsin8 1,.ACcos8 . a,-BC cosB 1, .BCsin®
= AR AR AR AR
¢, . ACsin® 1,.ACcos8 o BCcos8 1,,.BCsinb
S To R To A Ta BC
sin @ sin @ cos B cos @
:cr_t_sin:lil—t_“_sinﬁmsﬁ +GL..|:ESIH'—TH..5]'HB|:D-SB
&, .
= % (1 —cos 28) + - (1 +cos28) -2 . sinBcos b
4] 0
= % —%cns 25+%+Tym529— T, sin 26
g, +0o, a,—-0C, .
or 0, =——%— —— 5 C0S 26 — 1., sin 26 V)

Stresses on an Oblique Section of a Body Subjected to Direct Stresses in Two Mutually
Perpendicular Directions Accompanied by a Simple Shear Stress
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Shear Stress or Tangential Stress (across inclined the section AB)

P 6,.ACcosO+1 .ACsin0-¢ .BCsin®-1, BC cos®
T=

AB~ AB
G, ACcose 1,,.ACsin® ¢,.BCsin® 1t BCcos®
=7 AB AB~ AB ~ AB
o,.ACcos®  T1,.ACsin® ¢ .BCsin® 1,.BCcosH
=~ AC '~ AC___ BC  BC
sin@ sin@ cos® cos@

=c_‘sinecose+t“sinze—o‘_sinecose—tn,cosze
=(0,-0)sin 8 cos 0 + %‘!_ (1 —cos 20) - 1;-"— (1 + cos 28)

o—
or T

d sin 26 — T, COs 20 i)

Now the planes of maximum and minimum normal stresses (fLe. principal planes) may be found
out by equating the shear stress to zero, From the above equations, we find that the shear stress to any
plane is a function of 5. .. T, and 8. A little consideration will show that the valuesof o, o, and T
are constant and thus the shear stress varies in the angle 8. Now let 8, be the value of the nngIe for
which the shear stress is zero.

a, —a,
" M T =
o 5 sin 20, -1, cos28,=0
2t
G. _G'f . = A
——Leinle = 2
or 5 sin 28, = 1, cos28, or tan 28, = g.-0,

From the above equation, we find that the following two cases satisfy this condition as shown in
Fig 7.10 (a) and (b).

It By fe
T D
e 'r""' 2T 2y “q‘::.
20, 200
-i(g, =,) (@,-a,)
(e} Case | by Case 2

Thus we find that there are two principal planes, at right angles to each other, their inclinations
with x-x axis being 'Eiﬁ and 8, .
Now for case 1,

-2ty 6,0,
sinlf, = 3 = and  cos28, a J
! -Jlﬁ,—uj-l +41, .j{-::r, a,) +-1r;I
Similarly for case 2,
2T, -
sin 26, and cos28, = ©.-3,)
" Jio o, + 41, Jo.—0,) +41),

Now the values of principal stresses may be found out by substituting the above values of 28,
and E'E;,z in equation (v
Maximum Principal Stress,

g,+0, O,—0

g, = R mszﬂ—t_vsiniﬁ
o.+6, lo.-6, —o,-0,) | [ BT
3 2 - * BT - T * 2 -
l = J{ﬂ,—u;.}+4tiyj L .J{U_r—ﬁ_‘.} +4=:;_.fJ
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2
Lo i ] o, —ad, 1
or g = "2'r+[",JI 1]""':;_-;

Minimum Principal Stress

g, +0, (0,-0,)

cos 28 -1, sin 268

P = > 2
-:TJ,+-:51._'Ir-:il.—f:r,.:.< (o,—a,) w"_'rt , 2t !
= 2 2 1 2 w T 3
(¢, —a,) +413, (o,—a,) +41,
2 z 1 . 3
_ UI+GI.' __[-ﬁt_ﬁ,.} + 4'[1_}. . O,—0, {ﬁl_ﬁ]']- +4T;_'-'
- 7 2 * -
< Z.J(csx—ﬁj,]' +dT, 2 2
2
o,+0, [(6,-0,) -
or ﬁpl = 7 = L 7 J +T;|.

Example A point is subjected to a tensile stress of 250 MPa in the horizontal direction and
another tensile stress of 100 MPa in the vertical direction. The point is also subjected to a
simple shear stress of 25 MPa, such that when it is associated with the major tensile stress, it
tends to rotate the element in the clockwise direction. What is the magnitude of the normal
and shear stresses on a section inclined at an angle of 20° with the major tensile stress?
Given:

Tensile stress in horizontal x-x direction (ox) = 250 MPa

Tensile stress in vertical y-y direction (cy) = 100 MPa

Shear stress (txy) = 25 MPa and angle made by section with the major tensile stress
(6) =20°.

Magnitude of normal stress

We know that magnitude of normal stress,

o, +3, 0,-0, _
o, = 5 T 5 c0s 20 -1, sin 28
250100 _ 250 -100
= ST cos (2% 20°) - 25 sin (2 x 20°)

175 — 75 cos 40° — 25 sin 40° MPa
175 — (75 x 0.766) — (25 x 0.6428) MPa
175- 57451607 = 10148 MPa  Ans.

Magnitude of shear siress
We also know that magnitude of shear stress,

G, 0, .
— ! 7
T = = sin _9—'[_1__‘_{‘!:!5 28

= M sin (2 20%) - 23 cos (2 x 207)
= 75 sin 40° — 25 cos 40° MPa
= (75 x 0.6428) — (25 x 0.766) MPa
= 4821 -19.15=2906 MPa  Ans.
Graphical Method for the Stresses on an Oblique Section of a Body
The Mohr’s Circle of Stresses for the following cases:
1. A body subjected to a direct stress in one plane.
2. A body subjected to direct stresses in two mutually perpendicular directions.
3. A body subjected to a simple shear stress.
4. A body subjected to a direct stress in one plane accompanied by a simple shear

stress.
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5. A body subjected to direct stresses in two mutually perpendicular directions
accompanied by a simple shear stress.

Y
~ +ve ——] —
e M -
= e N e

= -
(i) (£} l.'::r-".l

Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to a Direct Stress
in One Plane

a g S s L
\ y o g
B\
{ 8
Proof
From the geometry of the Mohr's Circle of Stresses, we find that,
OC = CI=CP=qa? ... (Radius of the circle)

Mormal Stress.

00 =0C-0C= [%) - (%] cos 28 o Same as in Art. 7.7)

A
I

and shear stress

T=0P=CPsin28= %sin 28 {Same as in Art. 7.7)

We also find that maximum shear stress will be equal to the radius of the Mohr's Circle of

Stresses fe., % It will happen when 28 is equal to 90° or 270° f.e., B is egual to 457 or 135°.

However when & = 45° then the shear stress is equal to g.

And when 8 = 135° then the shear stress is equal to - %.

Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to Direct Stresses
in Two Mutually Perpendicular Direction

4 P—
| |
x_x\‘ |
T Y o o K el 29 l x
h, ¢ ¢
AE: - “ - | o
(: T4 ] |
[ # H |
a0, N
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Proof
From the geometry of the Mohr’s Circle of Stresses, we find that

a,— 0,
KC = O0I=CP= ——
-0, 16,+6, -0, O +aG,
or oC = OK+KC=g + —L=—2X % F__T X
! 2 2 2
o, — 0,
Normal stress, g, = 00=0C-00= 5 - CPcos 2B
g,t0, 0,0,
= 5 s 28 ...[Same as Art. T.8)
and shear stress, T = QP =CFsin28
0, +G, |
= 3 — 5in 26 [Same as Art. T.8)
We also find that the maximum shear stress will be equal to the radius of the Mohr's Circle of
Gy =Gy . . - . -
Stresses. Le., 7 It will happen when 26 is equal to 90° or 270 f.e., when B is equal to 45° or
1357,
However when 8 = 457 then the shear stress is equal to 'I; !
. -5, —,) G, —
And when 8 = 1357 then the shear stress will be equal 1o (0, =, or =——=.

B

Example The stresses at a point of a machine component are 150 MPa and 50 MPa both
tensile. Find the intensities of normal, shear and resultant stresses on a plane inclined at an
angle of 55° with the axis of major tensile stress. Also find the magnitude of the maximum
shear stresses in the component.

Given:

Tensile stress along horizontal x-x axis (sx) = 150 MPa
Tensile stress along vertical y-y axis (sy) = 50 MPa and
Angle made by the plane with the axis of major tensile stress () = 55°.

The given stresses on the planes AC and BC in the machine component are shown.

[

(] ]

150 MPa -

55?\_ " K| ¥

S0 WP M 150

(&) (1)

First of all, take some suitable point £ and draw a horizontal line OX.

Cut off OJ and OK equal to the tensile stresses ¢, and ¢ respectively (i.e. 150 MPa and 50
MPa) to some suitable scale towards right. The point J represents the stress system on the plane
AC and the point X represents the stress system on the plane BC. Bisect KJF at C.

Mow with C as centre and radius equal to CF or CK draw the Mohr's Circle of Stresses.

Mow through C draw two lines CM and CN at right angles to the line QX meeting the circle at M
and . Also through C draw a line OF making an angle of 2 x 55% = 1107 with CK in clockwise
direction meeting the circle at P. The point P represents the stress system on the plane AB.
Through P, draw FQ perpendicular to the line OX. Join OF.

By measurement, we find that the normal stress (¢, ) = 00 = 117.1 MPa ; Shear stress (1) = (P
=470 MFa ; Resultant stress (Gg) = OF = 126.2 MPa and maximum shear stress (t, ) = CM
== 50 MPa Ans,
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Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to a Direct
Stresses in One Plane Accompanied by a Simple Shear Stress

A p—T
Yoy ; (AN
Y | .-" \ E - \ T
ﬂ' E \ al ul"_'_ nﬂ Y IIG-"I (m 26>\:"’{é | #_X
‘ i \ ! \\ "f‘HlI‘Q Ve JG
: % Ta_n- L] P = 4 1 .-'I
] Bt \Z T 1/
el " O
e
(a) )] N
Proof
From the geometry of the Mohr’s Circle of Stresses, we find that
oc = 5
and radius of the circle,
R = EC=CD=CP= :kET,! +1
MNow in the right angled triangle DCF,
o T 1 ac _O:, 1_0¢
St = TpTR an CBSU=cpT 2R 2R
and similarly in right angled riangle CPQ,
LPCQ = (W -u)
CQ = CFcos (20— o) = K [cos (20 — )]

2R

2

R [cos ¢t cos 28 + sin o sin 28]
R cos ocos 20 + R sin o sin 28

Rx—msEﬂ+Rx—sm 28

R

a .
=% cos 28 + 1, sin 28

We know that normal stress across the section AB,

and shear stress,

On

8]
2 2

-
I

2R

a
|"\-'||_,_|

We also know that maximum stress,

¥

T

and minimum stress

T

G ,
—=t——=rcos 28— 1_sin 29

sin 28 -

00=0C-C0= % —[% cosB+1,, sinEBJ

w[Same as in Art. 7.10)

QP = CPsin (28 — ) = R sin (20— o)
R {cos o sin 268 — sin o cos 26)
K cos o 5in 28 — K sin o cos 28

T'I'l'
Rx—ﬁm”El Rx——cos28

2

T, cos 28 [Same as in Art. 7.10)

2

3 2
G = DC+CG_—2"' (—E‘J + Ty

=

O

OH=0C-CH= 5"~ [—] +7,

2

We also find that the maximum shear stress will be equal to the radius of the Mohr’s circle of
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SITesses i.e., [Ejl-] + Tf_,r . It will happen when (26 — ¢} is equal o 907 or 270",

2

[4) ¥
However when (28 — ¢} is equal to 907 then the shear stress is equal to + ['E”'] +Ty .

a0, : 2
And when (28 — ) = 2707 then the shear stress is equal to — [?J T, .

Example A plane element in a body is subjected to a tensile stress of 100 MPa accompanied
by a clockwise shear stress of 25 MPa. Find (i) the normal and shear stress on a plane
inclined at an angle of 20° with the tensile stress; and (ii) the maximum shear stress on the

plane.

Given:

[

Tensile stress along horizontal x-x axis (oX) = 100 MPa
Shear stress (txy) = 25 MPa and
angle made by plane with tensile stress (8) = 20°

A [l
25 MPa "H._H 1 =
i / -
100 MPu T Plf_-_"'--- P '-II 75
208 5 ¥ ¥ o B S Ty

i - A G
¢ 25 MPa 25 "

L) (&) N

First of all, take some suitable point O, and through it draw a horizontal line XOX.

Cut off €F equal to the tensile stress on the plane AC (ie., 100 MPa) to some suitable scale
towards nght.

Mow erect a perpendicular at J above the line X-X and cut off JIY equal to the positive shear
stress on the plane BC {Le., 25 MPa) to the scale. The point [ represents the stress system on
the plane AC, Similarly erect a perpendicular at @ below the line X-X and cut oft OF equal to the
negative shear stress on the plane BC (f.e., 25 MPa) to the scale. The point E represents the
stress system on the plane BC. Join DE and bisect it at C.

Now with € as centre and radius equal o CD or CE draw the Mohr's Cirele of Stresses.

MNow through C, draw two lines CM and CN at right angle to the line OX meeting the circle at
M and N. Alse through C, draw a line CF making an angle of 2 % 207 = 407 with CE in
clockwise direction meeting the circle at P. The peint P represents the stress system on the
section A8,

Through P, draw PQ perpendicular to the line OX.

By measurement, we find that the normal stress (g, ) = Q0 = 4.4 MPa (compression) : Shear
stress (1) = OF = 13.0 MPa and maximum shear stress (1 CM =539 MPa Ans.

I'th.'I:} =

Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to Direct Stresses

in Two Mutually Perpendicular Directions Accompanied by a Simple Shear Stress
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o, T
T, o
o,
5y
Proof
From the geometry of the Mohr’s Circle of Stresses, we find that
a,+a,
oc = 3

“and radius of the circle

R =EC=CD=CP=

Now in the right angled triangle DCJ

Slmllarl)' in right angled triangle CPQ
£ PCQ (20 - )
CQO = CPcos20-a
R cos (26 - «)]
R [cos o cos 26 + sin « sin 20]
R cos ¢t cos 26 + R sin ¢ sin 26

-0, Tix
Rx "R cos 20 + R x —- R sin 26

0,~0

~ cos 20+ 1_ sin 20

Normal Stress (across the inclined section AB)

o, = 00 =0C-CQ
c,+0, ©,-0, ;
or 0, = —5————F— c0s20-1 sin20 ..(SameasinAn 7.11)

Shear Stress or Tangential Stress (across the inclined section AK)

T =0P=CPsin[{20 —x)]=Rsin(28 )
R (cos ¢ sin 26 — sin @ cos 26)
R cos cosin 28— R sino cos 28

o, -0, T,
R 3 smlﬂ—R)-:—R-—co:}lﬂ

o, -

o, .
or T = —2-‘“— sin 208 —1_ cos 28 ..{Same os in Art. 7.11)

Maximum Principal Stress

O

g  =0G=0C+CG=

AT

Minimum Principal Stress

+a, a,— 0, 3
+ 5 + Ty
2
o, +0, g,— G,
Gpin = OH=0C—CH = = | 6,
aum 2 2 4
We also find the maximum shear stress will be equal to the radius of the Mohr's circle of Stresses.

+12, . Tt will happen when (26 — q) is equal to 90° or 2707,

2
O, —0, 2
However when (28 — ¢2) = 907 then the shear stress is equal to + [ J+1}

—a,
And when (28 — &) = 2707 then the shear stress is equal to — 2 ] +T
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Example A point is subjected to a tensile stress of 250 MPa in the horizontal direction and
another tensile stress of 100 MPa in the vertical direction. The point is also subjected to a

simple

shear stress of 25 MPa, such that when it is associated with the major tensile stress, it

tends to rotate the element in the clockwise direction. What is the magnitude of the normal
and shear stresses inclined on a section at an angle of 20° with the major tensile stress?

Given:

Tensile stress in horizontal direction (oX) = 250 MPa
Tensile stress in vertical direction (cy) = 100 MPa
Shear stress (1) = 25 MPa and

angle made by section with major tensile stress (8) = 20°

25 MPa J.H"x. ™~ PARE'S
250 MPa Iy o, + e | 25 v
ZUF'?H.E ' s Hlg _—°¢C S G -
C o e = B . o
25 MPa + 230 "

100 MPa AR . \ /

H\"\-\_,_ ——

@ W
The given stresses on the face AC of the point alongwith a tensile stress on the plane 8C and a

complimentary shear stress on the plane 8C are shown in Fig 7.27 (a). Now draw the Mohr's Circle
of Stresses as shown in Fig. 7.27 (b) and as discussed below :

1.
2

TEXT
1.

2.

First of all, take some suitable point O, and through it draw a horizontal line OX.

Cut off (W and OK equal to the tensile stresses ¢_and ¢, respectively (f.e., 250 MPa and 100
MPa) to some suitable scale towards right. '

Mow erect a perpendicular at J above the line OX and cut off JO equal to the positive shear
stress on the plane AC (Le., 25 MPa) to the scale. The point D represents the stress system on
the plane AC. Similarly, erect a perpendicular at K below the OX and cut off KE equal to the
negative shear stress on the plane BC {f.e., 25 MPa) to the scale. The point £ represents the
stress system on the plane BC. Join DE and bisect it ot C.

Mow with C as centre and radius equal to O or CF draw the Mohr's Circle of Stresses.

Mow through C draw a line CF making an angle of 2 x 207 = 4407 with CE in clockwise
direction meeting the circle at M. The point P represents the stress system on the section to AB.
Through P, draw PO perpendicular to the line OX.

By measurement, we find that the normal stress, (5, ) = 00 = 101.5 MPa and shear stress t=(0F
=29.0 MPa Ans.
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UNIT Il BENDING AND SHEAR STRESS DISTRIBUTION, TORSION

AND BEAMS




UNIT 2 BENDING AND SHEAR STRESS DISTRIBUTION, TORSION AND BEAMS
Stresses in Beams - Simple bending theory: bending stresses in Symmetrical and
Unsymmetrical sections - Composite Beams - Combined bending and Direct stress — Shear
Stress Distribution for Different Sections - Simple Torsion theory - Stresses and deformations
in Solid and Hollow circular shafts- Double integration method — Shear force and bending
moment diagram: Simply supported, Cantilever and overhanging beam — various loading
condition

A beam may be defined as a structural element which has one dimension considerably
larger than the other two dimensions, namely breadth and depth, and is supported a few
points. The distance between two adjacent supports is called span. It is usually loaded normal
to its axis. The applied loads make every cross-section to face bending and shearing.

The load finally gets transferred to supports. The system of forces consisting of
applied loads and reactions keep the beam in equilibrium. The reactions depend upon the type
of supports and type of loading. The types of beams are:

TYPES OF BEAMS

Simple supported beam: A beam supported or resting freely on the supports at its

both ends, is known as simply supported beam.

BEAM

FWA AN

Cantilever beam: A beam which is fixed at one end and free at the other end is

known as cantilever beam. a

= .

Over hanging beam: If the end portion of a beam is extended beyond the support

such beam is known as Overhanging beam

Simply supported ~ Overhanging
portion portion

Lt ]
% %‘/ Support

Fixed beam: A beam whose both ends are fixed or built in walls is known as fixed

beam.



WY

AN\

Continuous beam: A beam which is provided more than two supports is known as

continuous beam.

| J

2 @

O

TYPES OF SUPPORTS

The Various types of supports and reactions developed are listed below:

Simple supports or knife edged support: in this case support will be normal to the
surface of the beam. If AB is a beam with knife edges A and B, then Ra and Rg will be the

reaction.

_ BEAM _
WA JAN

Te, |

Roller support: here beam AB is supported on the rollers. The reaction will be

normal to the surface on which rollers are placed.

Ts

A B

Pin joint (or hinged) support: here the beam AB is hinged at point A. the reaction at the
hinged end may be either vertical or inclined depending upon the type of loading. If load is
vertical, then the reaction will also be vertical. But if the load is inclined, then the reaction at

the hinged end will also be inclined.

B .




Fixed or built-in support: in this type of support the beam should be fixed. The reaction will
be inclined. Also the fixed support will provide a couple.
Hy A

H
R ; i

Vy

Types of Loading

Concentrated Loads: If a load is acting on a beam over a very small length, it is
approximated as acting at the midpoint of that length and is represented by an arrow as shown

Uniformly Distributed Load (UDL): Over considerably long distance such load has
got uniform intensity. For finding reaction, this load may be assumed as total load acting at
the centre of gravity of the loading (middle of the loaded length). For example, in the beam
the load may be replaced by a 20 x 4 = 80 kN concentrated load acting at a distance 2 m
from the left support.

Uniformly Varying Load: The load varies uniformly from C to D. Its intensity is
zero at C and is 20kN/m at D. In the load diagram, the ordinate represents the load intensity

and the abscissa represents the position of load on the beam.

20 kN/m
ﬁ m 1 | 20 kN/m

(a)
20 kN/m

INRRERENRRNRANN)

k T A G D B
e——4m

L—a—} T b) im 3 — |

General Loadings: The ordinate represents the intensity of loading and abscissa

represents position of the load on the beam. For simplicity in analysis such loadings are
replaced by a set of equivalent concentrated loads.
External Moment: A beam may be subjected to external moment at certain points.

The beam is subjected to clockwise moment of 30 kN-m at a distance of 2 m from the left

q ||T| H |:TT 30 kN-m

T T o1

2 m

support.




Concept and significance of shear force and bending moment Sign conventions for
shear force and bending moment

Shear force: A simply supported beam AB. carrying a load of 1000 N at its middle
point. The reactions at the supports will be equal to 500 N. Hence Ra= Rg= 500 N. Now
imagine the beam to be divided into two portions by the section X-X. The resultant of the
load and reaction to the left of X-X is 500 N vertically upwards. And the resultant of the load
and reaction to the right of X-X is (1000] -500 1= 500|N) 500 N downwards. The resultant
force acting on any one of the parts normal to the axis of the beam is called the shear force at
the section X-X is 500N.

x 1 1000 N
. i )
A ! C . B
:
F 9 : -
IR, x Re _
. Convexity
i( 1000 N CDﬂCﬂU[l]l . _/'
! —L— T
— EJ_,,.
. Concavity
*+ Convaxity .
S00 M ! { .
X 500 N {a) Positive B.M. (b} Negative B.M.

The shear force at a section will be considered positive when the resultant of the
forces to the left to the section is upwards, or to the right of the section is downwards.
Similarly the shear force at a section will be considered negative if the resultant of the forces
to the left of the section is downward, or to the right of the section is upwards. Here the
resultant force to the left of the section is upwards and hence the shear force will be positive.

Bending moment: The bending moment at a section is considered positive if the
bending moment at that section is such that it tends to bend the beam to a curvature having
concavity at the top. Similarly the bending moment at a section is considered negative if the
bending moment at that section is such that it tends to bend the beam to a curvature haling
convexity at the top. The positive B.M. is often called sagging moment and negative B.M. as

hogging Moment.




(=) &

+ v Banding Momant  — ve Banding Moment
{Segging B.M.) {Hogglng B.M.)

Example: Find the reactions at supports A and B in the beam AB shown.

{b)

Solution: The reaction at B will be at right angles to the support, i.e., at 60° to horizontal as shown
in the figure. Let the components of the reactions at A be H, and V,. Then

2 M, =0 gives
Rp sin 60° x 6 — 60 sin 60° x 1 — 80 x sin 75° x 3 — 50 x sin 60° x 5.5 =0
: Ry = 100.4475 KkN.
2 H =0, gives
H, + 60 cos 60 — 80 cos 75° + 50 cos 60° — Rg cos 60° =0
Hy =-60 cos 60° + 80 cos 75° — 50 cos 60° + 100.4475 cos 60°
= 15.9293 kN
YV =0, gives
V4 + Rp sin 60° — 60 sin 60" — 80 sin 75 — 50 sin 60° = 0
Vy = -100.4475 sin 60° + 60 sin 60° + 80 sin 75 + 50 sin 60°
= 85.5468 kN

Ry = |/15.9293" + 85.5468

ie., RA = 87.0172 kN.
_, 855468
= tan
15.9293
ie., O = 79.45°, as shown in Fig. 9.18(b).

Example: The cantilever is fixed at A and is free at B. Determine the reactions, when it is

loaded as shown



20 kN 12 kN 10 kN

/,16kam | 1
o2 2 —sfe—tn —sfe—in ]

Vi

T
= |
=
\\\k\\\\\\\

Solution: Let the reactions at A be H,y, V, and M, as shown in the figure

Now ZH =0, gives
H,=0.
XV =0, gives
Vi—-16%x2-20-12-10=0
V, = 74 kN.
IM =0, gives

My—16x2x1-20x2-12x3-10x4=0
M, = 148 KN-m.

Example: Determine the reactions at A and B of the overhanging beam shown

4{: kN-m 30 kN

b

*4>.v_a_|_ - oo

Solution: M, =
Rpx6-40-30sin45" x5-20x2x7=0
Rp = 71.0110 kN.

>H =0
H, = 30 cos 45" = 21.2132 kN
v =0

Vy—30sin45° + R —20x 2 =0
V, = 30 sin 45° — Ry + 40
V, = -9.7978

(Negative sign show that the assumed direction of V, is wrong. In other words, V, is acting

vertically downwards).
Ry = Vi +H:

R, = 23.3666 kN.
V
o = tan 2

A
o = 24.79", as shown in Fig. 9.24(b).



Shear force and Bending moment diagram

The following are the important points for drawing shear force and bending moment

diagrams:

1.
2.

Consider the left or the right portion of the section.

Add the forces (including reaction) normal to the beam on one of the portion. If right
portion of the section is chosen, a force on the right portion acting downwards is
positive while force acting upwards is negative.

If the left portion of the section is chosen, a force on the left portion acting upwards
is positive while force acting downwards is negative.

The positive values of shear force and bending moments are plotted above the base
line, and negative values below the base line.

The shear force diagram will increase or decrease suddenly i.e., by a vertical straight
line at a section where there is a vertical point load.

The shear force between any two vertical loads will be constant and hence the shear
force diagram between two vertical loads will be horizontal.

The bending moment at the two supports of a simply supported beam and at the free

end of a cantilever will be zero.
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INTRODUCTION: TORSION

In machinery, the general term “shaft” refers to a member, usually of circular cross section,
which supports gears, sprockets, wheels, rotors, etc., and which is subjected to torsion and to
transverse or axial loads acting singly or in combination. An “axle” is a rotating/non-rotating
member that supports wheels, pulley and carries no torque. A “spindle” is a short shaft.
Terms such as line shaft, head shaft, stub shaft, transmission shaft, countershaft, and flexible

shaft are names associated with special usage.

Analysis of torsion

In a slender member under the action of a torsional moment (also called twisting moment or
torque) shearing stresses appear, whose moment about the bar axis is equal to the applied
torque. In the same way as the shearing stresses caused by the shear force, these stresses must
be tangent to the contour in the points lying close the boundary of the cross-section. These
two conditions are not sufficient to determine the distribution of shearing stresses in the
cross-section. Furthermore, the twisting moment is not a symmetrical loading with respect to

the middle cross-section of a piece of bar.

(
—
dy
b 0 o
Tl:Pldl
(a)
4! T
\ R - ——
-
(b)
T, T
> AN </

(c)
An idealized case of torsional loading is a straight bar supported at one end and loaded by
two pairs of equal and opposite forces. The first pair consists of the forces P1 acting near the
midpoint of the bar and the second pair consists of the forces P2 acting at the end. Each pair

of forces forms a couple that tends to twist the bar about its longitudinal axis. As we know

11



from statics, the moment of a couple is equal to the product of one of the forces and the
perpendicular distance between the lines of action of the forces; thus, the first couple has a
moment T1 = P1d1 and the second has a moment T2 = P2d2.

Torsion refers to the twisting of a straight bar when it is loaded by moments (or torques) that
tends to produce rotation about the longitudinal axis of the bar. For instance, when you turn a
screwdriver, your hand applies a torque T to the handle and twists the shank of the
screwdriver. Other examples of bars in torsion are drive shafts in automobiles, axles,

propeller shafts, steering rods, and drill bits.

The moment of a couple may be represented by a vector in the form of a double-headed
arrow. The arrow is perpendicular to the plane containing the couple, and therefore in this
case both arrows are parallel to the axis of the bar. The direction (or sense) of the moment is
indicated by the right-hand rule for moment vectors—namely, using your right hand, let your
fingers curl in the direction of the moment, and then your thumb will point in the direction of
the vector. An alternative representation of a moment is curved arrow acting in the direction
of rotation. The choice depends upon convenience and personal preference. Moments that
produce twisting of a bar, such as the moments T1 and T2, are called torques or twisting
moments. Cylindrical members that are subjected to torques and transmit power through
rotation are called shafts; for instance, the drive shaft of an automobile or the propeller shaft
of a ship. Most shafts have circular cross sections, either solid or tubular. In this chapter we
begin by developing formulas for the deformations and stresses in circular bars subjected to
torsion. We then analyze the state of stress known as pure shear and obtain the relationship
between the moduli of elasticity E and G in tension and shear, respectively. Next, we analyze
rotating shafts and determine the power they transmit. Finally, we cover several additional
topics related to torsion, namely, statically indeterminate members, strain energy, thin-walled

tubes of noncircular cross section, and stress concentrations.

Torsional deformations of a circular bar

A prismatic bar with a circular cross-section has a symmetrical geometry with respect to any
plane passing through the bar axis. If, in addition, the material also has symmetrical
rheological properties with respect to these planes, which happens if the material is isotropic

or monotropic with the monotropy direction parallel to the bar axis, the bar is totally
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symmetric with respect to the bar axis, i.e., it is axisymmetric. As a consequence of this type
of symmetry, all the points of a cross-section lying on a circumference with the centre in the
bar axis, are in the same conditions with respect to the centre of the cross-section. If we
consider a vector applied at the centre of the cross-section, representing the torque acting on
the bar, all the points of that circumference are also in the same conditions with respect to
that vector. As a consequence, all the points will undergo the same displacement in relation to
the bar axis, i.e., the radial, circumferential and longitudinal components of the displacement
will be the same in all points of the circumference. This means that the circumference will

remain on a plane perpendicular to the bar axis and that its centre will remain on that axis.

The shear strains in a circular bar in torsion, we are ready to determine the directions and
magnitudes of the corresponding shear stresses. The directions of the stresses can be
determined by inspection. We observe that the torque T tends to rotate the right-hand end of
the bar counterclockwise when viewed from the right. The magnitudes of the shear stresses
can be determined from the strains by using the stress-strain relation for the material of the
bar. If the material is linearly elastic, we can use Hooke’s law in shear, in which G is the
shear modulus of elasticity and vy is the shear strain in radians. Combining this equation with
the equations for the shear strains, in which t max is the shear stress at the outer surface of
the bar (radius r), t is the shear stress at an interior point (radius r), and 6 is the rate of twist.
(In these equations, 6 has units of radians per unit of length.)

” ['.- ‘\/j— / |

(b) (©)

P
Tmax = Grt T= Gf’“ = T Tmax

Equations show that the shear stresses vary linearly with the distance from the center of the
bar, illustrated by the triangular stress diagram. This linear variation of stress is a

13



consequence of Hooke’s law. If the stress-strain relation is nonlinear, the stresses will vary

nonlinearly and other methods of analysis will be needed.

The shear stresses acting on a cross-sectional plane are accompanied by shear stresses of the
same magnitude acting on longitudinal planes. This conclusion follows from the fact that
equal shear stresses always exist on mutually perpendicular planes. If the material of the bar
is weaker in shear on longitudinal planes than on cross-sectional planes, as is typical of wood
when the grain runs parallel to the axis of the bar, the first cracks due to torsion will appear
on the surface in the longitudinal direction. The state of pure shear at the surface of a bar is
equivalent to equal tensile and compressive stresses acting on an element oriented at an angle
of 45. Therefore, a rectangular element with sides at 45° to the axis of the shaft will be
subjected to tensile and compressive stresses. If a torsion bar is made of a material that is
weaker in tension than in shear, failure will occur in tension along a helix inclined at 45° to

the axis.

Torsion of circular shafts

Equation for shafts subjected to torsion T

Torsion Equation
Where J = Polar moment of inertia,tr = Shear stress induced due to torsion T.
G = Modulus of rigidity,0 = Angular deflection of shaft, R, L = Shaft radius & length

respectively.
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Assumptions
¢ The bar is acted upon by a pure torque.
¢ The section under consideration is remote from the point of application of the load and from
a change in diameter.
o Adjacent cross sections originally plane and parallel remain plane and parallel after
twisting, and any radial line remains straight.
¢ The material obeys Hooke's law

¢ Cross-sections rotate as if rigid, i.e. every diameter rotates through the same angle

Polar moment of Inertia

As stated above, the polar second moment of area, J is defined as

R
- I
J = L 2xr dr
Pt * 27xR* =D*
For a solid shaft I=2rx == = ‘ﬁ - d -
4 A 4 32 - d.
For a hollow shaft of nternal radius 1:
J = J.R"'rr?’dr =27 rt R_E(th —r“)—i(D“—a”)
o 7 e 2 BED

Where D is the external and d is the imternal diameter.

4
e Solid shaft “J" = 29
32

« Hollow shaft, "J = %(do“ —dY

Polar section Modulus



Zp=4dJ /¢, wherec=r=D/2
For a solid circular cross-section, Zp =1 D3/ 16
For a hollow circular cross-section, Zp =1 (Do* - Di*)/ (16Do)

Then., 7, =T/%Z
If design shears stress. 7, 1s known, required polar section modulus can be calculated from:

Zp:T,fr fd

Polar Moment of Inertia and Section Modulus.

The polar moment of inertia, J, of a cross-section with respect to a polar axis, that is, an axis
at right angles to the plane of the cross-section, is defined as the moment of inertia of the
cross-section with respect to the point of intersection of the axis and the plane. The polar
moment of inertia may be found by taking the sum of the moments of inertia about two
perpendicular axes lying in the plane of the cross-section and passing through this point.
Thus, for example, the polar moment of inertia of a circular or a square area with respect to a
polar axis through the center of gravity is equal to two times the moment of inertia with
respect to an axis lying in the plane of the cross-section and passing through the center of
gravity. The polar moment of inertia with respect to a polar axis through the center of gravity
is required for problems involving the torsional strength of shafts since this axis is usually the
axis about which twisting of the shaft takes place.

The polar section modulus

(also called section modulus of torsion), Zp, for circular sections may be found by dividing
the polar moment of inertia, J, by the distance ¢ from the center of gravity to the most remote
fiber. This method may be used to find the approximate value of the polar section modulus of
sections that are nearly round. For other than circular cross-sections, however, the polar

section modulus does not equal the polar moment of inertia divided by the distance c.

Power Transmission

2xNT
60

P (in Watt) =

16



P (in hp) 2ZNT (1 hp = 75 Kgm/sec)
n hp = ~ p = 75 lkgm/sec).
4500

[Where N = rpm: T = Torque in N-m.]

Safe diameter of a shaft (d)

» Stiffness consideration
I Ge
J L
¢ Shear Stress consideration
I r
J R

We take higher value of diameter of both cases above for overall safety if other parameters are given.

In Twisting

16T
e Solid shaft. 7= 3
xd

16Td,
* Hollow shaft, 7, = ——F—7-
’T((fo _d;' )

/ L
e Diameter of a shaft to have a maximum deflection "a " d=49x 3 (1—
(94

[Where T in N-mm, L in mm, G in N/mm?]

Problems on Solid and hollow circular section
1. What torque, applied to a hollow circular shaft of 25 cm outside diameter and 17.5 cm

inside

diameter will produce a maximum shearing stress of 75 MN/m2 in the material.
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We have
ry, = 125 cm, r, = B75 cm

Then

J = %[[0.125)‘ - (0.0875)] = 0292 x 10° m*

If the shearing stress is limited to 75 MN/m’, the torque is

x -3 Eq 6
oo Juo_ 0292 x107)05 <109 | a5 inm
r (0.125)

2. A ship's propeller shaft has external and internal diameters of 25 cm and 15 cm. What

power can be
transmitted at 1 10 rev/minute with a maximum shearing stress of 75 MN/m2, and what

will then
be the twist in degrees of a 10 m length of the shaft? G = 80 GN/m2

r, = 0125 m, r, = 0.075 m, I = 10m

J = .’25[(0.125)4 - (00750 = 0335 x 10° m*

and

75 MN/m?

—
I

Then

-3 6
Joo_ 0335 x 10705 x 109 | 500 o
r 0.125

At 110 rev/min the power generated is

(201 x 103)[2n x 16100] = 232 x 10° Nm/s

The angle of twist is

3
o = JLo. @O 109010 | o095 ragians - 430
GJ (80 x 10 (0.335 x 1073)

3. A solid circular shaft of 25 cm diameter is to be replaced by a hollow shaft, the ratio of the

external to internal diameters being 2 to 1. Find the size of the hollow shaft if the maximum
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shearing stress is to be the same as for the solid shaft. What percentage economy in mass will
this change effect?

Let r be the inside radius of the new shaft; then = 2r the outside radius of the new shaft

J for the new shaft 1;-(161»-4 - = 75m0

J for the old shaft

i

% x (0.125 = 0.384 x 102 m*

If T is the applied torque, the maximum shearing stress for the old shaft is

7(0.125)
0.384 x 1073

and that for the new one is

" T(2r)
7.57rt

If these are equal,

T(0.125)  _ TQr)
0.384 x 1073 7.51r?

Then
3 0261 x 10> m?

~
"

0.640 m

or r
Hence the internal diameter will be 0.128 m and the external diameter 0.256 m.

area of new cross-section _  (0.128)° - (0.064)°

= 0.785
area of old cross-section (0.125)?

Thus, the saving in mass is about 21%.

4. A ship's propeller shaft transmits 7.5 x 106 W at 240 rev/min. The shaft has an internal
diameter of 15 cm. Calculate the minimum permissible external diameter if the shearing
stress in the shaft is to be limited to 150 MN/m2.
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If T is the torque on the shaft, then

T[M] - 75 x 10°
60

Thus
T = 298 kNm

If d, is the outside diameter of the shaft, then

J = %(df - 0.150%) m*

If the shearing stress is limited to 150 MN/m?, then

Td, )
—L = 150 x 10
27

Thus,
Td, = (300 x 10%J

On substituting for Jand T

(98 x 10%d, = (300 x 106][1] @ - 0.150")
32
This gives
4
d d
— | - 3[.___1_ -1
0.150 0.150

On solving this by trial-and-error, we get
d = 1.54(0.150) = 0231 m

]
[

or d = 231cm

Problems for practice
1. A solid steel bar of circular cross section has diameter d =1.5 in., length L =54 in., and
shear modulus of elasticity G = 11.5 x10° psi. The bar is subjected to torques T acting at the

ends.
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(a) If the torques has magnitude T =250 Ib-ft, what is the maximum shear stress in the bar?
What is the angle of twist between the ends?
(b) If the allowable shear stress is 6000 psi and the allowable angle of twist is 2.5°, what is

the maximum permissible torque?

2. A steel shaft is to be manufactured either as a solid circular bar or as a circular tube. The
shaft is required to transmit a torque of 1200 N_m without exceeding an allowable shear
stress of 40 MPa nor an allowable rate of twist of 0.75°/m. (The shear modulus of elasticity
of the steel is 78 GPa.)

(a) Determine the required diameter dO of the solid shaft.

(b) Determine the required outer diameter d2 of the hollow shaft if the thickness t of the shaft
is specified as one-tenth of the outer diameter.

(c) Determine the ratio of diameters (that is, the ratio d2/d0) and the ratio of weights of the

hollow and solid shafts.

r=

1

/ \ // f‘,,\

i

— d—

3. A hollow shaft and a solid shaft constructed of the same material have the same length and
the same outer radius R . The inner radius of the hollow shaft is 0.6R. (a) Assuming that both
shafts are subjected to the same torque, compare their shear stresses, angles of twist, and
weights. (b) Determine the strength-to-weight ratios for both shafts.

Stepped shafts
When a shaft is made of different lengths and of different diameters, it is termed as shaft as
varying cross section. For such a shaft, the torque induced in its individual sections should be

calculated first. The strength of the shaft is the minimum of all these torques.

Problems
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A stepped shaft has the appearance as shown in figure. The region AB is aluminum, having G
= 28 GPa, and the region BC is steel, having G = 84 GPa. The aluminum portion is of solid
circular cross section 45 mm in diameter, and the steel region is circular with 60-mm outside
diameter and 30-mm inside diameter. Determine the maximum shearing stress in each
material as well as the angle of twist at B where a torsional load of 4000 N - m is applied.

Ends A and C are rigidly clamped.
SOLUTION: The free-body diagram of the system is shown. The applied load of 4000 N-m
as well as the unknown end reactive torques are as indicated. The only equation of static

equilibrium is

45 mm . T.f.
B ,

" . i 1
o : W 75000 N - m
% He—1.2m

S\

60 mm

M
3

IM, =T, +T,—4000=0
Since there are two unknowns TL and TR, another equation (based upon deformations) is

required. This is set up by realizing that the angular rotation at B is the same if we determine
it at the right end of AB or the left end of BC. We thus have

T, x1.2 _ T, x 2.0
(28 x 10%)m x 0.045*/32 (84 x 10”)7(0.06* — 0.03*)/32

or T, =0.1875 T,

Solving for TL and TR, we find
T, =632 N -m and T,=3368 N-m

The maximum shearing stress in AB is given by

_ Tp _ (632)(0.0225)

. =P _ —35.6 MPa
AR T 10.045)%32

and in BC by

Tp _ _ (3370)0.030) ooy

J m0.06* —0.03%)/32

Tpe =

The angle of twist at B, using parameters of the region AB, is

TL (632)(1.2)

- = = 0.0673 rad or 3.86°
GJ (28 x10%)(x x 0.045*/32)

Op

22



Problems for practice

A circular cross-section steel shaft is of diameter 50 mm over the left 150 mm of length and of diameter 100 mm
over the right 150 mm, as shown in Fig. 5-21. Each end of the shaft is loaded by a twisting moment of 1000 N - m (as
indicated by the double-headed arrows). If G = 80 GPa, determine the angle of twist between the ends of the shaft
as well as the peak shearing stress. Ans. 1.09°, 40.7 MPa

' ,

ot ——— SO mm !l)ﬂlrnm o —r e
1000 N+ m } 1000 N+ m

f

—— 15l mm —-Ll— 150 mm —*I

A compound shaft is composed of a 70-cm length of solid copper 10 cm in diameter. joined to 90-cm length
of solid steel 12 cm in diameter. A torque of 14 kN - m is applied to each end of the shaft. Find the maximum
shear stress in each material and the total angle of twist of the entire shaft. For copper G = 40 GPa, for steel
G = 80 GPa. Ans. In the copper, 71.3 MPa; in the steel, 41.3 MPa; 0 = 0.0328

Compound shafts — fixed and simply supported shafts

A compound shaft is made of two or more different materials joined together in such a way
that the shaft is elongated or compressed as a single shaft. The total torque transmitted by a
compound shaft is the sum of the torques transmitted by each individual shaft and the angle

of twist in each shaft will be equal.

1. A compound shaft consisting of a steel segment and an aluminum segment is acted upon
by two torques as shown. Determine the maximum permissible value of T subject to the
following conditions: tst = 83 MPa, tal = 55 MPa, and the angle of rotation of the free end is

limited to 6°. For steel, G = 83 GPa and for aluminum, G = 28 GPa.

Steel 2T Alumlnum
S0mm@ e~ 40mm @ ‘_T\
900 mm 600 mm
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Based on maximum shearing stress Tg., = 16T / nd™:
16(3T
T = (—3] =83
n(507)
T =679 042,16 N-mm
T=679.04 N-m
16T _
Y n(40)
T =691 150.35 N-mm
T=691.15MN-m
Based on maximum angle of twist:

(TLY (1L
=] +|=
h G/'_.-g ‘.IG/',;:
GD.-“ T 3T(900) . T{600)

\180°)  Lm(50%)(83000)  -Lm(40%)(28000)
T = 757 316.32 N-mm
T=757.32 N-m

Use T=679.04 N-m

2. The compound shaft shown is attached to rigid supports. For the bronze segment AB, the
diameter is 75 mm, t < 60 MPa, and G = 35 GPa. For the steel segment BC, the diameter is
50 mm, t < 80 MPa, and G = 83 GPa. [f a =2 m and b = 1.5 m, compute the maximum
torque T that can be applied.
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A B C
(o (=)

7 n \
Tor T

EM=0

T=Ty+Ta = Equation (1)

Bur = G

(TLy ’11“1',

‘-}G/"'.::r ~-IGJ'I51

T, (2)(1000) _  T.(1.5)(1000)

+n(75*)(35000) < n(50*)(83000)
T =1.6011T:

E fi 2
Tt = 06246 T } quations (2)

Based on 1 < 60 MPa
— 16]—:IJ."
m(75%)

Ty =4 970 097.75 N-1mm
T = 4,970 kIN-m = Maximum allowable torgue for bronze

T.. = 0.6246(4.970) = From one of Equations (2)
Tee= 3104 kKN-m

Based on 1. < 80 MPa
16T,
~ n(50°%)
T =1963 495.41 N-mm
T =1.963 kIN-m1 = maximum allowable terque for steel

Ty = 1.6011(1.963) = From Equaticns (2)
T = 3,142 EMN-m

Use Ty = 3.142 kMN-m and T:: = 1.963 kN-m

T=3142 + 1.963 = From Eguation (1)
T=5.105kN-m

3. The compound shaft shown is attached to rigid supports. For the bronze segment AB, the

maximum shearing stress is limited to 8000 psi and for the steel segment BC, it is limited to
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12 ksi. Determine the diameters of each segment so that each material will be simultaneously

stressed to its permissible limit when a torque T = 12 Kip-ft is applied. For bronze, G = 6 x

106 psi and for steel, G = 12 x 106 psi.

Bronze

_ 16T

max 3

nD”

For bronze:
1 6'}-‘.5!'

8000 = —=

nD,,

Tor = 500m Dy~ Ib-in

For steel:

16T,

12000 = —=

nD,,
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T.=750nD,° Ibin

I T =12 kipft
oy
t!' Bronze ) Steel J
Y Tor 6 ft RS R
IM=0
T+ Tg=T

Ty + T = 12(1000)(12)
Tor + Ter = 144 000 Ib-in
500m D> + 7501 D,,° =144 000

wo =288/m-15D,° > equation (1)

B = O
[TL [ o
\

\

/ st

JG ), \JG
T, (6) _ T, (4)
+nD, *(6x10°) -4mD_*(12x10°)

L, _ Ty
in Bl 5 s
500mD,,> _ 750nD,’
' g 3D}
Ds: = 0.5Db

From Equation (1)
D,,> = 288/m - 1.5(0.5Dy,)°
1.1875D,,° = 288/x
Dir = 4.26 in.
D= 0.5(4.26) = 2.13 in.

4. A shaft composed of segments AC, CD, and DB is fastened to rigid supports and loaded as
shown. For bronze, G = 35 GPa; aluminum, G = 28 GPa, and for steel, G = 83 GPa.

Determine the maximum shearing stress developed in each segment.

Te = 300 N-m T, = 700 N-m
C Aluminum D

& Bronze
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Stress developed in each segment with respect to Ta:

Te =300 N-m To =700 N-m
C Aluminum D

Steel B )
1 Te
50 mm ¢ \] e &

=

e— 2m —¢—— 2m —>—— 25 m —>

(TR RRRRN

Ta—1000

| T.-300

Ta

The rotation of B relative to A is zero.
64/8=0

%),
. ]G. A/B
T,(2)(1000%) . (T, —300)(2)(1000%)
+-n(25%)(35000) -+-1(50*)(28000)
LA 1000)(2.5)(1000%) _
-+ m(25%)(83000)
(25%)(35)  (50%)(28) (25%)(83)
16T, , T,—300 _ 20(T,-1000) _ .
35 28 83
BTa+ 4Ta-2 +B2Ta- 5= =0
8527 =
S Ta=251.678
Ta=342.97 N-m
IM=0
Ta+ Tz =300 + 700
342.97 + Tz = 1000
Tz = 657.03 N-m

Tpr = 34297 N-m
Ty=34297 - 300 = 42.97 N-m
Ts = 342,97 - 1000 = -657.03 N-m = -Tg (ok!)
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s = ABT
Ymax

aD?
16(342.97)(1000
Tor = ( _1( ) =111.79 MPa
m(257)
16(42.97)(1000
1= LOE297)1000) _, o pp,
m(507)
16(657.03)(1000)
5= Ll _)3( ) =214.16 MPa
w(257)

5. A hollow bronze shaft of 3 in. outer diameter and 2 in. inner diameter is slipped over a
solid steel shaft 2 in. in diameter and of the same length as the hollow shaft. The two shafts
are then fastened rigidly together at their ends. For bronze, G =6 x 106 psi, and for steel, G =
12 x 106 psi. What torque can be applied to the composite shaft without exceeding a shearing

stress of 8000 psi in the bronze or 12 ksi in the steel?

i
: | L Fa

14 @1z [
: |

Hellow Bronze j Steel Core
D=3in,d=2in OD=2iIn

T.L _ T, L
Lm(2*)(12x10°) Lw(3*-2%)(6x10°)
T, T,,

o ;-10'5' = 390 10° - Eguation (1)

Applied Torque = Resisting Torque
T=Tu+ T = Equation (2)

Equation (1) with T in terms of Ter and Equation (2)

192 % 10°
T=—""""" T, +T

390%10° =~ 7
T = 0.6701T
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Equation (1) with Tir in terms of T.: and Equation (2)

6
o, s 320X10°
192 =10
T==0,3200T

Based on hollow bronze (T, = 0.6701T)
| 1etD
Toax = | —
n(D* —d™) o
_ 16(0.6701T)(3)
n(3*-2%)
T =>50789.321bin
T=423244 lb-ft

5000

Based on steel core (T, = 0.3299T):

T 16Ti|
Lomax — =
B LaD"” |,
(0,329
12 00p = 16(0-3299T)
m(27)

T =57137.18 Ib-in
T = 4761.43 1b-ft
Use T =4232.44 1b-ft

6. The two steel shaft shown in Fig. P-325, each with one end built into a rigid support have
flanges rigidly attached to their free ends. The shafts are to be bolted together at their flanges.
However, initially there is a 6° mismatch in the location of the bolt holes as shown in the
figure. Determine the maximum shearing stress in each shaft after the shafts are bolted
together. Use G = 12 x 106 psi and neglect deformations of the bolts and flanges.

Baf 6.5 shaft + Bor 325 shast = 6°

(TL ST _go[ ® '
\JG ) of 6.5 shaft \ ]G ! of 3.25'shaft \ 180°)
T(e5)(12) . T(325)(127) _ m

+m(2*)(12x10°) & m(1.5%)(12x10°) 30
T =817.32 Ib-ft

16T
Tmax = =
D’
16(817.32)(12
T of 6.5 shaft = (—3)() = 6243.86 psi
n(2°)
16(817.32)(12
T of 325 shaft = -(/—)() =14 800.27 psi
n(1.57)

Closed Coiled helical springs subjected to axial loads:
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Definition: A spring may be defined as an elastic member whose primary function is to
deflect or distort under the action of applied load; it recovers its original shape when load is
released. Also Springs are energy absorbing units whose function is to store energy and to

restore it slowly or rapidly depending on the particular application.

Important types of springs are:

There are various types of springs such as

(i) helical spring: They are made of wire coiled into a helical form, the load being applied
along the axis of the helix. In these type of springs the major stresses is Torsional shear stress

due to twisting. They are both used in tension and compression.

(it) Spiral springs: They are made of flat strip of metal wound in the form of spiral and
loaded in torsion.

In this the major stresses are tensile and compression due to bending.

(iii) Leaf springs: They are composed of flat bars of varying lengths clamped together so as
to obtain greater efficiency. Leaf springs may be full elliptic, semi elliptic or cantilever types,

In these type of springs the major stresses which come into picture are tensile & compressive.
Uses of springs:
(a) To apply forces and to control motions as in brakes and clutches.

(b) To measure forces as in spring balance.
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(c) To store energy as in clock springs.
(d) To reduce the effect of shock or impact loading as in carriage springs.

(e) To change the vibrating characteristics of a member as inflexible mounting of motors.

Derivation of the Formula :
In order to derive a necessary formula which governs the behaviour of springs, consider a

closed coiled spring subjected to an axial load W.

L FEE

Let

W = axial load

D = mean coil diameter

d = diameter of spring wire

n = number of active coils

C =spring index = D / d For circular wires
| = length of spring wire

G = modulus of rigidity

x = deflection of spring

g = Angle of twist

when the spring is being subjected to an axial load to the wire of the spring gets be twisted
like a shaft.

If q is the total angle of twist along the wire and x is the deflection of spring under the action

of load W along the axis of the coil, so that

x=D/2.q
again | = p D n [ consider ,one half turn of a close coiled helical spring ]
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Assumptions: (1) The Bending & shear effects may be neglected

(2) For the purpose of derivation of formula, the helix angle is considered to be so small that

it may be neglected.

Any one coil of a spring will be assumed to lie in a plane which is nearly perpendicular to the
axis of the spring. This requires that adjoining coils be close together. With this limitation, a
section taken perpendicular to the axis the spring rod becomes nearly vertical. Hence to
maintain equilibrium of a segment of the spring, only a shearing force V = F and Torque T =
F. r are required at any X — section. In the analysis of springs it is customary to assume that
the shearing stresses caused by the direct shear force is

uniformly distributed and is negligible

so applying the torsion formula. Using the torsion formula i.e

4
and substiituting J = E;T = W.E
32 2

2.
§=—:==nb.
5 nD.x

SPRING DEFLECTION
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w.d/2 _ G2x/D

ad* n0.n
32
Thus,
_ 8w.D n
- Gd?

Spring striffness: The stiffness is defined as the load per unit deflection therefore

Therefare
G.d*

k:
g0%n

Shear stress

wdi2 _ T

md* d/2
32
_BwD
or Tl'naj-:“1 - mG

WAHL'S FACTOR :

In order to take into account the effect of direct shear and change in coil curvature a stress

factor is defined, which is known as Wahl's factor

K = Wahl' s factor and is defined as

K= 4c -1 +III_E15
dc -4 C

Where C = spring index
=D/

if we take into account the Wahl's factor than the formula for the shear stress becomes
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_1b.Tk
i

max™

Strain Energy : The strain energy is defined as the energy which is stored within a material

when the work has been done on the material.

In the case of a spring the strain energy would be due to bending and the strain energy due to
bending is given by the expansion

so after substitutionwe get
2
U= 32T“Dn
Ed*

Worked examples:

1. A close coiled helical spring is to carry a load of 5000N with a deflection of 50 mm and a
maximum shearing stress of 400 N/mm2 if the number of active turns or active coils is
8.Estimate the following:

(i) wire diameter

(it) mean coil diameter

(iii) weight of the spring.

Assume G = 83,000 N/mmz2 ; r = 7700 kg/m3

solution :

(i) for wire diametre if W is the axial load, then
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d/2° 32 W
o - 400.md’ 2
5000.16
D =0.0314 4

Further, deflection is given as

i gwD® n
G.d*

on substituting the relevant parameters we get

_B.5000.(0.03144°Y 8
g0 = -
83,000 d
d=13.32mm

Therefore,

D =.0314 x (13.317)3mm
=74.15mm

D =74.15mm

2. Determine the maximum shearing stress and elongation in a helical steel spring composed

of 20 turns of 20-mm-diameter wire on a mean radius of 90 mm when the spring is

supporting a load of 1.5 kN. G = 83 GPa.

=t 16PR( 4m—-1 g 0.615 l 3

_— ad® \4m—-4 m
Where P=15kN=1500N; R =90 mm
d =20 mm; n=20tums
m = 2R/d = 2{90)/20 = 9
16(1500)(90) | 4(9)—1 0.615}
Tmax = +

1(203) L 4(9)-4 9

Tmax = 99.87 MPa

64PR*n _ 64(1500)(90°)(20)
Gd* 83 000(20%)

6 =105.4 mm

o
Il




3. Determine the maximum shearing stress and elongation in a bronze helical spring
composed of 20 turns of 1.0-in.-diameter wire on a mean radius of 4 in. when the spring is
supporting a load of 500 Ib. G =6 x 106 psi.

Tmax

_ 16PR( 4m—-1 0.615 l
nd> \ 4m—-4 "

Where P=500lb; R=4in
d=1in; n=20tums
m=2R/d=2(4)/1=8

_ 16500 48)-1 0615 64PR%n _ 64(500)(4°)(20)
n(1%) |[4(8)-4 8 | Gd* (6x10°)(1%)
Tmax = 12 060.3 psi = 12.1 ksi 5=6.83in

4. A helical spring is fabricated by wrapping wire % in. in diameter around a forming
cylinder 8 in. in diameter. Compute the number of turns required to permit an elongation of 4

in. without exceeding a shearing stress of 18 ksi. G = 12 x 106 psi.

_ _16PR(, d)

L T 5 T

18000 = —o(%) |, 3/4 |
3/4)°|  44)

P = 356.07 Ib

. _ 64PR%n

o=

Gd*
_ 64(356.07)(4°)n
(12x10°%)(3/4)°
n =13.88 say 14 turns

Weight

massorweight = volume. density

= area.length of the spring.density of spring material
2

= jT%,;rﬂ:]n.p

On substituting the relevant parameters we get
Weight =1.996 kg
= 20ky
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Close — coiled helical spring subjected to axial torque T or axial couple.

In this case the material of the spring is subjected to pure bending which tends to reduce
Radius R of the coils. In this case the bending moment is constant through out the spring and

is equal to the applied axial Torque T. The stresses i.e. maximum bending stress may

thus be determined from the bending theory.
Springs in Series: If two springs of different stiffness are joined endon and carry a common

load W, they are said to be connected in series and the combined stiffness and deflection are

given by the following equation

k1

W _ U W

— T My T——

k ki ks

or kz
1T 1 1

—_ e —

Springs in parallel: If the two spring are joined in such a way that they have a common
deflection ‘x' ; then they are said to be connected in parallel. In this care the load carried is
shared between the two springs and total load W = W1 + W2

38



PRI ITIIIFIINI LS EF LS

Futher
W A,

1. Two steel springs arranged in series as shown supports a load P. The upper spring has 12 turns of
25-mm-diameter wire on a mean radius of 100 mm. The lower spring consists of 10 turns of 20-
mmdiameter wire on a mean radius of 75 mm. If the maximum shearing stress in either spring must
not exceed 200 MPa, compute the maximum value of P and the total elongation of the assembly. G =
83 GPa. Compute the equivalent spring constant by dividing the load by the total elongation.

1513112 [' dm—-1 » 0.615

nd® | 4m—4 m )

e

Tnax

For Spring (1)

16P(100)[ 4(8)-1 0.615
Spring (1) 300'= ~ )} A6, St
n =12 tums m(25%) | 4(8)—4 5
d = 25 mm [T _ =
R = 100 mm B P=5182.29N
m = 2{100)/25 = & o &
Soring (2) B nE For Spring (2)
AR n - —_—
=10t Bz 3 200 = 1P 475)-1 _0.615
= 20 mm — = el +
R = 75 mm 2o n(20°) | 475)-4 7.5
L P=3498.28 N

Use P =3498.28 N

Total elongation:
8=2081+ 8
_ [ 64PR’n | |" 64PR’n |

o -
cd* ) | cdt

64(3498.28)(100°)12  64(3498.28)(75°)(10)
83 000(25%) ' 83 000(20*%)
153.99 mm

=]
I

8

Equivalent spring constant, Kequivalent:
g _ P _ 3498.28
TS 158,99

kaq‘.:ivalent =22.72 Nf]l’lﬂl
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Design of helical coil springs — stresses in helical coil springs under torsion loads

Worked problems

Design a close-coiled helical compression spring with a following data :

Service load range.

Axial deflection of spring for load range
Spring index

Permissible shear stress for spring
Modulus of rigidity for spring material

Given : F.. = 2250N
d = 6mm
T = 420 N/mm’

Wire diameter :

K, =
Now, T =
420 =
d =
d =

. Mean coil diameter :
D =
or D =

. Number of coils :

Spring stiffness, K =
or, K =
Now, K =
83.33 =

2250N to 2750N
o6mm

5

= 420N/mm°

= 84 KN/mm”

Neglect the effect of stress concentration. Draw a dimensioned sketch of the spring

Neglecting effect of stress concentration,

: F_. = 2750N;
; cC =35
, G = 84x10° N/mm’.
[1+E}=[1+£} =1.1
C 5
8F .. C
KS[ nd’ J
lx[gx 275(2)><5}
wd

9.58 mm or 9.6 mm
9.6 mm

C-d=5x96
48 mm

2750 — 2250

6
83.33 N/mm
Gd
8Cn

84 % 10° x 9.6

8><53><n
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n
n

Assuming square and ground ends,

!

n

nl
Solid length :

or L
Free length :

maximum deflection, 8§,

e

max

Free length, L, = solid length + maximum deflection + total clearance

= L +5

max

or Ly = 150.27 mm
Pitch of coil :
Now, Ly = pn+d
150.27 = px9.7+96
p = 14.5mm

9.68 or 9.7 turns
9.7

n+2=97+2=11"7 turns
11.7

+0.155

(Assume total clearance as 15 % of maximum deflection)
= 112.32+33+0.15x 33

max

n+2)d=(9.7+2)x96
112.32 mm

Foax 2750
K 8333
33 mm

...Ans,

The following data refers to a helical compression spring :

Mean coil diameter
Maximum axial load
Spring rate

Allowable shear stress for string
Modulus of rigidity for spring material =

= 125 mm
8000 N

= 72 KN/m

= 275 N/mm’

Determine :

(1) Wire diameter; and

(11))  Number of active turns.

Given : D = 125 mm ; F..x
K = 72 kN/m =72 N/mm ; T
G = 80x10°N/mm’.

80 x 10° N/mm’

8000 N:
275 N/mm"
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Wire diameter :

° Trial 1:

As spring index is not known, initially assuming K = 1,

T

275

. Trial 2 :

e

1 x8x 8000 x 125
= 3

7d

21 mm

The initial value of wire diameter d = 21 mm is used to estimate C and K, . Taking the new value
of K, the wire diameter is determined as follows :

C = D/d=% =5.95
K. - 4C—1 0615  4x595-1 0615
4C—-4 C 4x595-4 595
or K, = 1255
8F_. D
To K [ nd’ }
1.255 x 8 x 8000 x 125
275 = 3
nd
d = 22.65mmor 23 mm
o Check for shear stress induced in spring wire :
C = D/d=%=5.43
K, - 4C—1 0615 4x543-1 0.615
4C -4 C 4x543-4 543
or K, = 12826
8 Fuax D] 1.2826 x 8 x 8000 x 125
T KwG[ ol } B nx (23)
or T = 26844 N/mm’ <275 N/mm’
design is safe d = 23mm
Hence, C = 5.43
(ii) Number of active coils :
Gd
NOW, K = 3 C3Il
o - 80><103>§23
8 % (5.43) xn
n = 19.950or 20 turns
n = 20
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Design a helical compression for a spring operated pressure relief valve with following data :

. Operating pressure = 1.25 N/mm’

. Valve lift = 3.5 mm at 10% pressure rise over operating pressure
. Diameter of valve = 25mm

o Limiting mean coil diameter = 40 mm

. Permissible shear stress for spring = 500 N/mm’

. Modulus of rigidity for spring material = 834 Pa

The available standard spring wire diameters are : 2, 3, 4, 5, 6, 7, 8 and 10 mm.

Given : p, = 125 N/mm’ : d, = 3.5mm;
Powe = L1p,=125x1.1=1375N/mm° ; dv = 25mm;
D = 40 mm ; T = 500 N/mmz;

G = 83 x 10’ N/mm’".
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Maximum spring force :
Cross-sectional area of valve, A, = ndv’ /4 =m x (25)2/ 4

490.87 mm"

or Ay
The spring force at operating pressure,
F, = pAy =125x49087=61359N

o

The maximum spring force,

Fox = Puax Av=1375x490.87=67495N
Wire diameter :
K,8F_ .C
T = 7'Cd2
C = DA
d = D/C

Substituting value of ‘d” from Equation (b) in Equation (a),

ooy T
K, x 8 x 67495 x C’
500 = >
7 % (40)
s KO = 46545
4C—1 06157 5
[4C_4+ C Jc = 465.45
Solving Equation (c) by trial and error, we get,
C =173

d = D/C=40/73=548 mm or 5.5 mm
The next standard wire diameter selected is,

d = 6 mm
C =D/d=40/6 =6.667
C = 6.667

Number of coils :
Frox —Fo 674,95 -613.59

The spring stiffness is, K =

8, 3.5
or = 17.53 N/mm
Gd
Now, K = 3C3n
83 x 10° x 6
17.53 =

8 x (6.677) x n
n = 11.98 or 12 turns

n = 12

Assuming square and ground ends,
n = n+2=12+2=14 turns
n' = 14
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. Solid length :
Solid length, L, = (n+2)d=(12+2) x 6 = 84 mm

or L, = 84 mm
. Free length :
Mo deflection. 5 — Fmax_675.95_385
aximum deflection, o, = K 1753 ~%-mm
Free length, L; = solid length + maximum deflection + total clearance
(Assuming total clearance as 15% of o)
L, = L,+3,.,.+0150 .
= 84+385+0.15x385=128.275 mm
or Ly = 128.275 mm

o Pitch of coil :
Now, L, = pn+2d
128.275 px12+2x6
p = 9.69 mm

Two helical springs are arranged in a concentric manner, with one inside the other. Both the springs
have same free length and carry a total load of 5500 N. The outer spring has 8 coils with mean coil
diameter of 128 mm and wire diameter of 16 mm. The inner spring has 12 coils with mean coil diameter
of 84 mm and wire diameter of 12 mm. Determine :

(i) the maximum load carried by each spring;

(i)  the total deflection of each spring; and

(iii)  the maximum stress in each spring.

Assume G = 81 GPa.

Given : Ly = Ly, , F = 5500N;
n = 8 ; D, = 128mm;
d, = 16 mm ; n, = 12
D, = 84 mm ; d, = 12mm;
G = 81x10° N/mm’.
1. Stiffness of outer spring :
D, 128
G =73 "6 "8
K, = Gd  _81x107x16 39.55 N/mm
- - — 27.J°
' 8C'n,  8x(®)x8
2. Stiffness of inner spring :
D, 84
G=3 177
Gd, 81x10°x12 .
K, = = =29.52 N/mm

2 8C n. 8x('x12
2 P
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3. Load shared by each spring :
F,+F, = F
F,+F, = 5500 N

- “ F, F,
o K K
Fl l:1
3955~ 2952 o Fo= 134 R
Substituting Equation (b) in Equation (a),
1.34F,+F, = 35500 234F, = 5500
F, = 235061 N F, = 5500 -2350.61
or F, = 314939N
The load shared by outer spring, F, = 3149.39 N
The load shared by inner spring, F, = 2350.61 N
4. Deflection of each spring :
5 = F_1=3149.39 —79.63 mm
1 K, 39.55 :
5. — F_2: 2350.61 70.63 mm
2 K, 2952 '

o9 =9, = 79.63 mm
5. Maximum stress in each spring :

_ 4(31—1_|_0.615_4><8—1_|_0.615_1184
Ka = 4C, -4 G, 4x8-4 8
8F, C 1.184 x 8 x 3149.39 x 8
T = Ky =

nd nx (16
1

The Maximum stress in outer spring, t, = 296.73 N/mm’
4C,-1 0615 4x7-1 0615
Ke = ¥c-3%C Tix71-2777
8F, C, 1.2128 x 8 x 2350.61 x 7
T T sz[ 2 } =

=1.2128

rd Tx (12
2

. . . 2
The Maximum stress inner spring, T,= 352.91 N/mm

A composite compression spring has two closed coil helical springs and is subjected to an axial load of
400 N. The outer spring is 15 mm longer than the inner spring. The outer spring has 10 coils of 40 mm
mean diameter and 5 mm wire diameter. The inner spring has 8 coils of 30 mm mean diameter and
4 mm wire diameter. If the modulus of rigidity for spring material is 84 GPa, determine :

(1)  the compression of each spring;
(i)  the load carried by each spring; and
(i11)  the shear stress induced in each spring.

Given: F =400N ; G = 84x10°N/mm";
For outer spring : For inner spring :
n, =10 : n, = 8;
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Dl = 240 mm : D2
dl = 5 mm ; d2
Ly = h+15mm ; Lps
Referring Fig. 12.22.1;
. Deflection of outer spring :
D, 40
C = - = = 8
1 d 5
F, Gd,
i -
o 8C m
F
6l
8,
Deflection of inner spring :
&
F,
5,
%,
Now, 8§, =

Load carried by each spring :

84 % 10° %5

8 x 8 x 10
9.75x 10 F,, mm

8.04 x 10 °F,, mm
3, +15

Substituting Equations (a) and (b) in Equation (c),
9.75x 10 °F, = 8.04x10 “F,+15

Fl
F, +F,

Now,

0.824 F, + 153.846
400

Substituting Equation (d) in Equation (¢),

0.824F,+ 153.846+F, = 400
1.824F, = 246.15
F, = 13495N
and F, =
F, = 26505N
FZ

400 —F, =400 — 134.95 =265.05 N [from Equation (¢)]

13495 N
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. Compression of each spring :
From Equation (a).

8, = 975x10°F, =9.75x 10" x 265.05

or 8, = 25.84 mm
From Equation (b),
5, = 8.04x10 "F,=8.04x 10" x 13495
or 3, = 10.85 mm
. Shear stress in outer spring :
4C, -1 0615 4x8-1 0.615
Ka = 3c,-377C, "axs-4'73
K, = 1.16
. - Ky 8 El G _116x8x 265.05x 8
T d] T % (5)
or 1, = 250.58 N/mm’
. Shear stress in inner spring :

_4C-1 0615 _4x75-1 0615
Ko = 36,°477C, Tax75-4 775

K, = 12
_ K,8F, G 1.2x8x134.95x 7.5
T2 nd 7 x (4)°
or 1T, = 193.3 N/mm®

A composite compression spring has two closed coil helical springs. The outer spring is 15 mm longer
than the inner spring. The outer spring has 10 coils of mean diameter 40 mm and wire diameter 5 mm.
The inner spring has 8 coils of mean diameter 30 mm and wire diameter 4 mm. When the spring is
subjected to an axial load of 400 N, find :

() Compression of each spring;

(i) Load shared by each spring;

(ii1)  Shear stress induced in each spring

Modulus of rigidity may be taken as 84 KN/mm”.

Given : Ly = L +15 ; n = 10;
D, = 40mm ; d, = 5mm;
n, = 8 ; D, = 30 mm,
d, = 4 mm ; F = 400 N;

G = 84x10° N/mm®.

. Stiffness of outer spring :

40
C, = D/d=7 =8

Gd, 84x10°x5
8(;13111 8 x (8) x 10

=10.2539 N/mm’

Fe
|

10.2539 N/mm’

e
I

48



Stiffness of inner spring :

C, = ]3—22 =% =75
K, = =% 84« 10" x4 = 12.444 N/mm’
2 8(;2112 8 x (7.5)" x 8 '
K, = 12.444 N/mm’
Load shared by each spring :
F,+F, = F
F,+F, = 400
F, = 400-F,
Again, o, = 0,+15
F F
Ell = EZZJF 15
F, F,
102539 ~ 1244 D
1.2136 F, = F,+186.66
Substituting Equation (a) in Equation (b),
1.2136 F;, = 400 —-F, + 186.66
22136 F, = 586.66
- F, = 265N
and F,+F, = 400
: F, = 400-265=135N
F, = 265N
F, = 135N
Compression of each spring :
o, = il = 265 =25.84 mm
1T K, 102539 '
and 9o, = 112_22 = 12%2544 =10.84 mm
8, = 25.84mm
9, = 10.84 mm
Shear stress induced in each spring :
Koo = 4C1—1+0.615:4><8—1+0.615
Wi 4C, -4 (08 4x8-4 8
B 8 F, C 1,184 x 8 x 265 x 8
o Wl[ nd, } n(5)’
T, = 255.67 N/mm’
4C,—1 0615 4x75-1 0615
= = =1.1974

K = 3¢9 77 ¢,

Ax75-4 " 75

=1.184



11974 x8 x 135 x 7.5

8F,C
Ko [ 2! 2}
Tcd2
192.65 N/mm”

255.67 N/mm’
192.65 N/mm’

n (4’
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UNIT 111 SLOPE AND DEFLECTION OF BEAMS




UNIT 3 SLOPE AND DEFLECTION OF BEAMS

Deflection and Slope of a Beam — Radius of curvature - Deflection of a Simply Supported
Beam (various load condition) - Macaulay’s method - Moment area method — Mohr’s
Theorem — Conjugate beam method for simply supported and cantilever beams, (only point
loads & Uniformly distributed loads.)

Introduction: Elastic Stability of Columns

Structural members which carry compressive loads may be divided into two broad categories
depending on their relative lengths and cross-sectional dimensions. The analysis and design
of compression members can differ significantly from that of members loaded in tension or in
torsion. If you were to take a long rod or pole, such as a meter stick, and apply gradually
increasing compressive forces at each end, nothing would happen at first, but then the stick
would bend (buckle), and finally bend so much as to fracture. Try it. The other extreme
would occur if you were to saw off, say, a 5-mm length of the meter stick and perform the
same experiment on the short piece. You would then observe that the failure exhibits itself as
a mashing of the specimen, that is, a simple compressive failure. For these reasons it is
convenient to classify compression members according to their length and according to
whether the loading is central or eccentric. The term column is applied to all such members
except those in which failure would be by simple or pure compression.

General comments

The critical load of a column is proportional to the flexural rigidity EI and inversely
proportional to the square of the length. Of particular interest is the fact that the strength of
the material itself, as represented by a quantity such as the proportional limit or the The
flexural rigidity can be increased by using a “stiffer” material (that is, a material with larger
modulus of elasticity E) or by distributing the material in such a way as to increase the
moment of inertia | of the cross section, just as a beam can be made stiffer by increasing the
moment of inertia. The moment of inertia is increased by distributing the material farther
from the centroid of the cross section. Hence, a hollow tubular member is generally more
economical for use as a column than a solid member having the same cross-sectional area.
Reducing the wall thickness of a tubular member and increasing its lateral dimensions (while
keeping the cross-sectional area constant) also increases the critical load because the moment
of inertia is increased. This process has a practical limit, however, because eventually the
wall itself will become unstable. When that happens, localized buckling occurs in the form of
small corrugations or wrinkles in the walls of the column. Thus, we must distinguish between
overall buckling of a column, which is discussed in this chapter, and local buckling of its
parts. yield stress, does not appear in the equation for the critical load. Therefore, increasing a
strength property does not raise the critical load of a slender column. It can only be raised by
increasing the flexural rigidity, reducing the length, or providing additional lateral support.

we assumed that the xy plane was a plane of symmetry of the column and that buckling took
place in that plane. The latter assumption will be met if the column has lateral supports
perpendicular to the plane of the figure, so that the column is constrained to buckle in the xy
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plane. If the column is supported only at its ends and is free to buckle in any direction, then
bending will occur about the principal centroidal axis having the smaller moment of inertia. If
the cross section is square or circular, all centroidal axes have the same moment of inertia and
buckling may occur in any longitudinal plane.

Limitations

In addition to the requirement of small deflections, the Euler buckling theory used in this
section is valid only if the column is perfectly straight before the load is applied, the column
and its supports have no imperfections, and the column is made of a linearly elastic material
that follows Hooke’s law.

Columns:

Short, thick members are generally termed columns and these usually fail by crushing when
the yield stress of the material in compression is exceeded. Columns can be categorized then
as:

Long columns with central loading
Intermediate-length columns with central loading
Columns with eccentric loading

Struts or short columns with eccentric loading

Struts:

Long, slender columns are generally termed as struts; they fail by buckling some time before
the yield stress in compression is reached. The buckling occurs owing to one the following
reasons. A short bar loaded in pure compression by a force P acting along the centroidal axis
will shorten in accordance with Hooke’s law, until the stress reaches the elastic limit of the
material. At this point, permanent set is introduced and usefulness as a machine member may
be at an end. If the force P is increased still more, the material either becomes “barrel-like” or
fractures. When there is eccentricity in the loading, the elastic limit is encountered at smaller
loads.

() The strut may not be perfectly straight initially.
(b) The load may not be applied exactly along the axis of the Strut.

(c) One part of the material may yield in compression more readily than others owing to some
lack of uniformity in the material properties throughout the strut.

In all the problems considered so far we have assumed that the deformation to be both
progressive with increasing load and simple in form i.e. we assumed that a member in simple
tension or compression becomes progressively longer or shorter but remains straight. Under
some circumstances however, our assumptions of progressive and simple deformation may
no longer hold good and the member become unstable. The term strut and column are widely
used, often interchangeably in the context of buckling of slender members.



At values of load below the buckling load a strut will be in stable equilibrium where the
displacement caused by any lateral disturbance will be totally recovered when the disturbance
is removed. At the buckling load the strut is said to be in a state of neutral equilibrium, and
theoretically it should than be possible to gently deflect the strut into a simple sine wave
provided that the amplitude of wave is kept small.

Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with
loads exceeding the buckling load, any slight lateral disturbance then causing failure by
buckling, this condition is never achieved in practice under static load conditions. Buckling
occurs immediately at the point where the buckling load is reached, owing to the reasons
stated earlier.

The resistance of any member to bending is determined by its flexural rigidity EI and is The
quantity | may be written as | = Ak,

Where | = area of moment of inertia
A = area of the cross-section
k = radius of gyration.

The load per unit area which the member can withstand is therefore related to k. There will be
two principal moments of inertia, if the least of these is taken then the ratio

(- length of member

k" least radius of gyration

is called the slenderness ratio. Its numerical value indicates whether the member falls into the
class of columns or struts.

P
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Euler's Theory: The struts which fail by buckling can be analyzed by Euler's theory. In the
following sections, different cases of the struts have been analyzed.

Case A: Strut with pinned ends:



Consider an axially loaded strut, shown below, and is subjected to an axial load ‘P' this load
‘P' produces a deflection ‘y' at a distance ‘x' from one end.

Assume that the ends are either pin jointed or rounded so that there is no moment at either
end.

y
Cc

A
P__»élﬂ_d

Assumption:

The strut is assumed to be initially straight, the end load being applied axially through

centroid.
. (=
= B.M
+ 8.

x ‘ :: ::
-B.M

According to sign
convention

B. ML:: = Py
Futherwe know that
2
R
dx
dz'_-,-'
El —L=-P.yv = M
dx I

In this equation ‘M’ is not a function ‘x'. Therefore this equation can not be integrated directly
as has been done in the case of deflection of beams by integration method.

Thus,
dz'_-,-'

El
dx?

+Py=10

Though this equation is in ‘y' but we can't say at this stage where the deflection would be
maximum or minimum.

So the above differential equation can be arranged in the following form



Let us define a operator

D = d/dx

(D? + n) y =0 where n’ = P/EI

This is a second order differential equation which has a solution of the form consisting of
complimentary function and particular integral but for the time being we are interested in the
complementary solution only[in this P.I = 0; since the R.H.S of Diff. equation = 0]

Thus y = A cos (nx) + B sin (nx)

Where A and B are some constants.

y:AcnsJE}{ + Eisin,JE}{
El El

In order to evaluate the constants A and B let us apply the boundary conditions,
(atx=0;y=0

(iatx=L;y=0

Applying the first boundary condition yields A = 0.

Applying the second boundary condition gives

Bsin| L E =0
[ 'I.IEI

. . |'F'
ThusenherEi=El,nr5|n[L E]=III

if B=0that yO for all values of ¥ hence the strut has not buckled yet Therefore the solution required is

-

7 _ TEl
— = Z o P=_—0H
\EI L L

From the above relationship the least value of P which will cause the strut to buckle, and it is
called the “ Euler Crippling Load ” P, from which w obtain.

sin
ar

T El
Po=l—
E

It may be noted thatthe value of [ used in this expression is the least moment of inertia
It should be noted that the other solutions exists for the equatian

sin I‘JE = i.e. sin nL=0
El



The interpretation of the above analysis is that for all the values of the load P, other than
those which make sin nL = 0; the strut will remain perfectly straight since

y=BsinnL=0

For the particular value of

sinnL =0 ornL=wm

Therefare n = z
L

Hence y= B sin nx=B sin %

Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection
which it suffers will be maintained. This is subjected to the limitation that ‘L' remains
sensibly constant and in practice slight increase in load at the critical value will cause the
deflection to increase appreciably until the material fails by yielding.

Further it should be noted that the deflection is not proportional to load, and this applies to all
strut problems; like wise it will be found that the maximum stress is not proportional to load.

The solution chosen of nL = p is just one particular solution; the solutions nL= 2p, 3p, 5p etc
are equally valid mathematically and they do, infact, produce values of ‘P’ which are equally
valid for modes of buckling of strut different from that of a simple bow. Theoretically
therefore, there are an infinite number of values of P, , each corresponding with a different
mode of buckling.

The value selected above is so called the fundamental mode value and is the lowest critical
load producing the single bow buckling condition.

The solution nL = 2p produces buckling in two half — waves, 3p in three half-waves etc.

Py = .':‘:El/' P:=4 P:
\

nL=x nk = 2x nL =32
Fundamental Mode Second harmonic Third harmonic
(First harmonic) (mid point bracing) {Third point bracing)



|

L f = 7 oar F'1 = ﬂ
LE
It L= = Zmor F'2=ﬂ'ﬂzE|=le'1
‘UIEI L?
= 9 El
If L E = 3Amor F'g = |_2 =9P1

If load is applied sufficiently quickly to the strut, then it is possible to pass through the
fundamental mode and to achieve at least one of the other modes which are theoretically
possible. In practical loading situations, however, this is rarely achieved since the high stress
associated with the first critical condition generally ensures immediate collapse.

o] ™

struts and columns with other end conditions: Let us consider the struts and columns
having different end conditions

Case b: One end fixed and the other free:

Orgin

1]
~
'
PP PP 7 KII/

writing down the value of bending moment at the point C

B M| = Pla-y)
Hence, the differential equation becames,
dz'_-,-'
El — = Pa -
: ( )

COn rearranging we get
fy . Py  Pa

i El El
P2
Let — =
et m=n

Hence in operator form, the differential equation reduces to ( D>+ n?) y = n’a

The solution of the above equation would consist of complementary solution and particular
solution, therefore

Ygen = A cos(nx) + sin(nx) + P. |
where

P.lI = the P.1 is a particular value of y which satisfies the differential equation



Hence yp, = a

Therefore the complete solution becomes

Y = A cos(nx) + B sin(nx) + a

Now imposing the boundary conditions to evaluate the constants A and B
(atx=0;y=0

This yields A = -a

(i) atx=0;dy/dx=0

This yields B =0

Hence

y = -acos(nx) +a

Futher,atx=L;y=a
Thereforea=-acos(nx) +a or 0 =cos(nL)

Now the fundamental mode of buckling in this case would be

=2
2
F,o.= N o
\(; L= §,Therefnre,the Euler's crippling load is given as
P - ;ﬁ?
4L

Case 3

Strut with fixed ends:

M

A
%p
“

T
N,

L 4
g o
—_—
|
AN

Lol /)
>
NN ORI

Due to the fixed end supports bending moment would also appears at the supports, since this

is the property of the support.

Bending Moment at point C =M —P.y
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di

Bl — =M-F
dx? !

Drﬁ+£: E
dxf  El El

ne o= %,Thereﬁ:re inthe operator fram, the equation reducesto

2, .2y, - M
(D% +n ]?‘g
Ygeneml = '.'I"c-:-mplememar!.r + '.'I"parti-::.llarintegml
N ' I
i = =5 * &

Hence the general solution wauld be
y = B Cosnx+ A Siﬂﬂ}{+g

Boundry conditions relevant to this case are at »=0:y=

i
B =- —
Fl
dy
Also at x=0;— =0 hence
dx
A=
Therefore,

:—ECDSH}{ +E
T E P

ful
== [1- Cognx
- )
Futher, it maybenotedthatat x =L,y =0
ThenO = g (1- Cosnl)

Thus,eitherg =D or {1- Cosnl)=0

obwiously,[1- Cosnl) =0
cosnbk =1

Hencethe least solutionwouldbe
nL =2m

\(g L =2m Thusthe buckling load or crippling load is

5 - 4+ El
CO ]
Thus, L

Case 4

One end fixed, the other pinned
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M

%p

/
y
A

/—\C
P y
_>1 - -

A

-

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary
in this case to introduce a vertical load F at the pin. The moment of F about the built in end

then balances the fixing moment.

With the origin at the built in end, the B,M at C is given as

d?y
El—-=-Py + FiL-%
2 ¥y + FiL-x)
dy
El +Py = FiL-x
Tz (L-x)
Hence
dy P _F
+—y = —[L-&
el R =
In the operator form the equation reduces to

(Dz +n2:|3,: gﬂ__ )

C-x

F
= L— = __
(L- x®)ory 5

l-'l'lparti-::.llar ngEl
Thefull solution is therefore
. F
= AC BS —[L-
¥ 0s my + |nn}{+P[ )

The boundry conditions relevants to the problem are at »=0,y=0

FL
Hence A = -
BACE B

Alsoat x =IZI;d—3'r =0
dx

Hence B = i

nP

ary :-ECDS ny o+ iSin nx +E[L— x)
P P P

- Fora
¥ = ﬁ[Sm ni - nLCosnx + nil- }{)]
Alsowhenx=L;y=0
Therefore

nL CosnL=SinnL ortannL=nL

The lowest value of nL ( neglecting zero) which satisfies this condition and which therefore

produces the fundamental buckling condition is nL = 4.49radian
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[
-
| T
—
1

4.49
El
Pe 2
=1* =202
El
p - 2.057 El
LE

Equivalent Strut Length:

Having derived the results for the buckling load of a strut with pinned ends the Euler loads
for other end conditions may all be written in the same form.

Le. B, = %

Where L is the equivalent length of the strut and can be related to the actual length of the
strut depending on the end conditions.

The equivalent length is found to be the length of a simple bow(half sine wave) in each of the
strut deflection curves shown. The buckling load for each end condition shown is then readily
obtained. The use of equivalent length is not restricted to the Euler's theory and it will be
used in other derivations later.

The critical load for columns with other end conditions can be expressed in terms of the
critical load for a hinged column, which is taken as a fundamental case.

For case(c) see the figure, the column or strut has inflection points at quarter points of its
unsupported length. Since the bending moment is zero at a point of inflection, the freebody
diagram would indicates that the middle half of the fixed ended is equivalent to a hinged
column having an effective length Le = L / 2.

The four different cases which we have considered so far are:

(a) Both ends pinned (c) One end fixed, other free

(b) Both ends fixed (d) One end fixed and other pinned

13
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Solved Problems on deflection of beams

1. Determine the deflection at every point of the cantilever beam subject to the single
concentrated force P, as shown in Figure shown below

SOLUTION: The x-y coordinate system shown is introduced, where the x-axis coincides with
the original unbent position of the beam. The deformed beam has the appearance indicated by
the heavy line in Fig It is first necessary to find the reactions exerted by the supporting wall
upon the bar, and these are easily found from statics to be a vertical force reaction P and a
moment PL, as shown.

1 L i
, (3._____4 .
l PL F—‘--\L
47,[4‘4 P
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According to the sign convention of Chap. 6, the bending moment M at the section x is
M=-PL+ Px

The differential equation (8.4) of the bent beam is then

d2
Eid—g:—PL+Px (1)
X

This equation is readily integrated once to yield

,
dy _ Px~
e PLx + 3

El +C, @)

which represents the equation of the slope, where C; denotes a constant of integration. This constant may
be evaluated by use of the condition that the slope dy/dx of the beam at the wall is zero since the beam is
rigidly clamped there. Equation (2) is true for all values of x and y, and if the condition x = 0 is substituted
we obtain 0=0+0+C, or C,=0.

Next, integration of Eq. (2) yields

2 3

x-  Px
Ely = _PLT t——+t C, (3)
where C, is a second constant of integration. Again, the condition at the supporting wall will deter-
mine this constant. At x = 0, the deflection y is zero since the bar is rigidly clamped. We find

0=0+0+C,orC,=0.

Thus Egs. (2) and (3) with C, = C, = 0 give the slope dy/dx and deflection y at any point x in the beam.
The deflection is maximum at the right end of the beam (x = L), under the load P, and from Eq. (3),

1
o )

where the negative value denotes that this point on the deflection curve lies below the x-axis. If only the
magnitude of the maximum deflection at x = L is desired, it is usually denoted by A__~ and we have

P’

‘é‘max = W ©)

2. The cantilever beam AB is of uniform cross section and carries a load P at its free end A).
Determine the equation of the elastic curve and the deflection and slope at A.

15
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[x=L,8=0]

P i [x=L,y=0]

L -_— ! L

Using the free-body diagram of the portion AC of the beam
., where C is located at a distance x from end A, we find

M= —Px

Substituting for M and multiplying both members by the
constant EI, we write

d%y
El - = —Px
dx
Integrating in x, we obtain
di
El —J= —%ng + C;
dx

We now observe that at the fixed end B we have x = L and 8 = dy/dx = 0
Substituting these values and solving for C,, we
nave

C, = iPL?

dy 5 .
El —== —1px® + LPL?

Integrating both members we write

Ely = —gPx’ + 3PL* + C,
But, at B we have x = L, y = 0. Substituting we have

0= —#PL® + 3PL* + C,

C, = —3PL?
Carrying the value of C; , we obtain the equation of
the elastic curve:
Ely = —gPx® + $PL* — 3PL®

or

P 3 3 3
= —| — — —
Y= BE I( x* + 3L — 2L7)
The deflection and slope at A are obtained by letting x = 0
We find

_pL? 1 9_(5_9)_1’*59
Ya = Tggr M A7 \ae ), 2EI




3. The simply supported prismatic beam AB carries a uniformly distributed load w per unit
length. Determine the equation of the elastic curve and the maximum deflection of the beam.

. il
w l i"l l l) [1 ={]. y = 1]: [1 =], y= [r:
A M - B
Adl l"——ﬁ"'ﬂ;—h x
A D e
A B -«—_r—-| A% _&"‘-—--__:: r & :::_df"':&:
L R, = %m’, ! L |
¥
~L/2—
A= 1 B x
EZZ:;;—E::L{;E&:

C

Drawing the free-body diagram of the portion AD of the beam
and taking moments about D, we find that

9
M = twLx — fwx”

Substituting for M and multiplying both members of this
equation by the constant EI, we write

rfgy 1,
El — = — —-wx™ + -wlx
dx” 2 2
]ntegmting twice in x, we have
d_y= — lwﬁ + lwLJrz +C
dx 6 4 !
Ely = Ll L La* + Cx + C
y Y wx B wlx X 2

Observing that y = 0 at both ends of the beam we first let
x=0and y = 0 and obtain C; = 0. We then make x = L
and y = 0 in the same equation and write

0= —ﬁu.‘-f_ﬁ; - ﬁu:l'_f1 + C.L

C[ = — %‘LEL‘1
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Carrying the values of C; and C; we obtain the
equation of the elastic curve:
Ely = — fwx' + swla® — fwl’x
or
w
24FT
Substituting the value obtained for C,, we check

that the slope of the beam is zero for x = L/2 and that the elastic curve
has a minimum at the midpoint C of the beam . Letting x =

L/2 , we have
w L L’ 2L 5w’
(__+2L_8 _L;)= -

y = (—x* + 2Lx* — L%)

Y T 24EI\ 16 2 384E1

The maximum deflection or, more precisely, the maximum absolute value
of the deflection, is thus

o = S5wl.*
y max .384EI

4. A steel rod 5 cm diameter protrudes 2 m horizontally from a wall. (i) Calculate the
deflection due to a load of 1 kN hung on the end of the rod. The weight of the rod may be
neglected. (ii) If a vertical steel wire 3 m long, 0.25 cm diameter, supports the end of the
cantilever, being taut but unstressed before the load is applied, calculate the end deflection on
application of the load. TakeE = 200GN/m2.

The second moment of are of the cross-section is

I, = = (0.050 = 0.307 x 10° m*
64

The deflection at the end is then

3 3
y = PL (1000)(2) - 0.0434 m

3EI 3(200 = 10%(0.307 = 10°9)

Let T = tension in the wire; the area of cross-section of the wire is 4.90 x 10 m®. The
elongation of the wire is then

.o 16)
EA (200 x 10°)4.90 x 107%)

The load on the end of the cantilever is then (1000 - 7), and this produces a deflection of

(1000 - T)(2)°
30200 x 10°)(0.307 x 1079)

v =

18



If this equals the stretching of the wire, then

(1000 - N2 _ (3)
3200 x 10%)(0.307 x 1079) 200 x 10°@.90 x 1075

This gives T = 934 N, and the deflection of the cantilever becomes

= (66)2)’ = 0.00276 m

3(200 x 10%{0.307 x 10°)

5. A steel beam rests on two supports 6 m apart, and carries a uniformly distributed load of 10
kN per metre run. The second moment of area of the cross-section is 1 x 10-3 m4 and E =
200 GN/m2. Estimate the maximum deflection.

The greatest deflection occurs at mid-length and has the value given by equation

3 4
_ o SwLt 5100 = 10%) (6) - 0.00844 m
3B4E] 384(200 x 10°) (1 x 107%)

Solved Problems on columns

1. A 2-m-long pin-ended column of square cross section is to be made of wood. Assuming E
= 13 GPa, 6 =12 MPa, and using a factor of safety of 2.5 in computing Euler’s critical load
for buckling, determine the size of the cross section if the column is to safely support (a) a
100-kN load, (b) a 200-kN load.
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(a) For the 100-kN Load. Using the given factor of safety, we

make
P = 2.5(100 kN) = 250 kN L=2m E = 13GPa
in Euler’s formula (10.11) and solve for I. We have
PL2 (250 x 10° N)(2 m)?
T PE %13 % 10° Pa)

Recalling that, for a square of side a, we have I = 4%/12, we write

=7.794 % 10 " m*

4
;’—2 =7794% 10°m* &= 983 mm ~ 100 mm
We check the value of the normal stress in the column:
o= £= w= 10 MPa

A (0.100 m)?

Since o is smaller than the allowable stress, a 100 % 100-mm cross section
is acceptable.

(b) For the 200-kN Load. Solving again Eq. (10.11) for I, but
making now P, = 2.5(200) = 500 kN, we have
I=15588x 10 °m*
4
61"—9 = 15588 x10° 4= 116.95 mm
The value of the normal stress is

P 200 kN
g=—=———— —— 1462 MPa
A (0.11695 m)®

Since this value is larger than the allowable stress, the dimension obtained
is not acceptable, and we must select the cross section on the basis of its
resistance to compression. We write

P 200kN
0 al 12 MPa
a=1667 x107°m*> a= 1291 mm

A= = 16.67 x 107 m?

A 130 * 130-mm cross section is acceptable.

Deflection of Beams: Problems for practice

1. A cantilever steel beam has a free length of 3m. The moment of inertia of the section
is 30x10° mm4. A concentrated load of 50kN at the free end. Find the deflection at the
free end using
a. Double integration method

b. Macauley’s Method

¢. Moment Area Method

20



d. Conjugate Beam Method, Take E= 2x10° N/mm?

2. A cantilever Beam of 8m carries a UDL of 5kN/m run and a load of W at the free end.
If the deflection at the free end is 30mm, calculate the magnitude of the load W, and
the slope at the free end. Take E= 2x10° N/mm?, | = 5x10” mm?*,

3. A cantilever beam of 6m long carries a UDL of 5kN/m throughout its length and a
concentrated load of 80 kN. Determine the slope and deflection at the free eng by
using moment area method. Take E= 2x10° N/mm?, | = 2x10° mm®*.

4. A SSB of 6m span carries a concentrated load of 50 kN at 3m from left support. Find
the slope at the supports and deflection under the load. EI = 2000 kN-m?.

5. A SSB of 10 m span carries a concentrated load of 10 kN at its center. It carries a
UDL of 2 kN/m over its length. Find the maximum Deflection of beam by

a. Double integration method
b. Macauley’s Method
c. Moment Area Method

d. Conjugate Beam Method, Take E= 2x10° N/mm?, | = 200x106 mm®.

6. A beam is simply supported at its ends over a span of 10 m and carries two
concentrated loads of 100 kN and 60 kN at a distance of 2 m and 5 m respectively
from the left support. Calculate (i) slope at the left support (ii) slope and deflection
under the 100 kN load. Assume El = 36 x 104 kKN-m2.

7. (i) State Moment-Area Mohr’s theorem.
(i) A simply supported beam AB uniform section, 4 m span is subjected to a

clockwise moment of 10 KNm applied at the right hinge B. Derive the equation to the
deflected shape of the beam. Locate the point of maximum deflection and find the
maximum deflection.

Columns: Problems for practice
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Find the Euler critical load for a hollow cylindrical cast iron column 150mm external
diameter, 20 mm wall thickness if it is 6 m long with hinged at both ends. Assume
Young’s modulus of cast iron as 80 kN/mm2. Compare this load with that given by
Rankine formula. Using Rankine constants a = 1/1600 and 567 N/mm?2.

. A column of solid circular section, 12 cm diameter, 3.6 m long is hinged at both ends.
Rankine’s constant is 1 / 1600, oc = 54 KN/cm2. Find the buckling load. ii) If another
column of the same length, end conditions and rankine constant but of 12 cm X 12 cm
square cross-section, and different material, has the same buckling load, find the value
of oc of its material.

Determine the section of a hollow C.I. cylindrical column 5 m long with ends firmly
built in. The column has to carry an axial compressive load of 588.6 KN. The internal
diameter of the column is 0.75 times the external diameter. Use Rankine’s constants.
a=1/1600,cc=57.58 KN/cm2 and F.O.S = 6.

Find the euler critical load for a hollow cylindrical cast iron column 150mm external
diameter, 20mm wall thick ness if it is 6m long with hinged at both ends. Assume
young’s modulus of cast iron as 80 KN/mm2.compare this load with that given by
rankine constants. a=1/1600 and 567N/mm2.

. A 1.2m long column has a cross section of 45mm diameter one of the ends of the
column is fixed in direction and position and other end is free. Taking factor of safety
as 3, calculate the safe load using. I. Rankine’s formula, take yield stress=560N/mm?2
and a=1/1600 for pinned ends. II. Euler’s formula Young’s modulus for cast iron =
1.2X105 N/mm2.

. The external and internal diameters of a hollow cast iron column are 50mm and

40mm respectively. If the length of this column is 3m and both of its ends are fixed,
determine the crippling load using Euler formula taking E=100Gpa. Also determine
the rankine load for the column assuming fc=550Mpa and a=1/1600.

. An | section joists 400mmx200mmx20mm and 6m long is used as a strut with both

ends fixed. What is Euler’s crippling load for the column? Take E=200Gpa.

Deflection of Beams

In all practical engineering applications, when we use the different components, normally we
have to operate them within the certain limits i.e. the constraints are placed on the
performance and behavior of the components. For instance we say that the particular
component is supposed to operate within this value of stress and the deflection of the
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component should not exceed beyond a particular value. In some problems the maximum
stress however, may not be a strict or severe condition but there may be the deflection which
is the more rigid condition under operation. It is obvious therefore to study the methods by
which we can predict the deflection of members under lateral loads or transverse loads, since
it is this form of loading which will generally produce the greatest deflection of beams.

Assumption: The following assumptions are undertaken in order to derive a differential
equation of elastic curve for the loaded beam

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for
beams that are not stressed beyond the elastic limit.

2. The curvature is always small.

3. Any deflection resulting from the shear deformation of the material or shear stresses is
neglected.

It can be shown that the deflections due to shear deformations are usually small and hence
can be ignored.

Equation of the Elastic curve

We first recall from elementary calculus that the curvature of a plane curve at a point Q(X,y)
of the curve can be expressed as

a

d~y

1 dx?

-@T
dx

where dy/dx and d®y/dx? are the first and second derivatives of the function y(x) represented
by that curve. But, in the case of the elastic curve of a beam, the slope dy/dx is very small,
and its square is negligible compared to unity. We write, therefore,

1 _dy
P o
d?y _ M(x)
dv  EI

It should be noted that, in this chapter, y represents a vertical displacement, while it was used
in previous chapters to represent the distance of a given point in a transverse section from the
neutral axis of that section.
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The equation obtained is a second-order linear differential equation; it is the governing
differential equation for the elastic curve. The product EI is known as the flexural rigidity
and, if it varies along the beam, as in the case of a beam of varying depth, we must express it
as a function of x before proceeding to integrate. However, in the case of a prismatic beam,
which is the case considered here, the flexural rigidity is constant. We may thus multiply both
members of Equations by El and integrate in X. We write

dy

Ir M(x)dx + C,

S0

El

0 - x

where C; is a constant of integration. Denoting by u(x) the angle, measured in radians, that
the tangent to the elastic curve at Q forms with the horizontal, and recalling that this angle is
very small, we have

dy =246
e tan 6 = 6(x)

EI6(x) = J M(x) dx + C,
"0
Integrating both members of Eq. (9.3) in x, we have

Ely = J { J M(x)dx + Cy |dx + C;
‘o Lo

[x [x
dx
Yo o

Ely = M(x)dx + Cix + C,

where C; is a second constant, and where the first term in the right hand member represents
the function of x obtained by integrating twice in x the bending moment M(x). If it were not
for the fact that the constants C; and C, are as yet undetermined, would define the deflection
of the beam at any given point Q, and define the slope of the beam at Q.

The constants C; and C, are determined from the boundary conditions or, more precisely,
from the conditions imposed on the beam by its supports. Limiting our analysis in this section
to statically determinate beams, i.e., to beams supported in such a way that the reactions at
the supports can be obtained by the methods of statics, we note that only three types of beams
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need to be considered here (a) the simply supported beam, (b) the overhanging beam, and (c)

the cantilever beam.

Y Y B
;-‘LF_.- Yy oy -y a8 x
—— -
=10 0
(@) Simply supported beam
U I)
0 yr="u
(b Overhanging beam
¥
lJ

0 B

(e} Cantilever beam

In the first two cases, the supports consist of a pin and bracket at A and of a roller at B, and
require that the deflection be zero at each of these points. Letting first x = Xa, ¥ = ya =0 in the
Equation, and then x = Xg, Y = yg = 0 in the same equation, we obtain two equations that can
be solved for C; and C,. In the case of the cantilever beam, we note that both the deflection
and the slope at A must be zero. Letting X = Xa, ¥ = Ya = 0 in Equation and X = Xa, U=ua =0

in Equation, we obtain again two equations that can be solved for C; and C,.

xy
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Consider a beam AB which is initially straight and horizontal when unloaded. If under the
action of loads the beam deflects to a position A'B' under load or infact we say that the axis of
the beam bends to a shape A'B'. It is customary to call A'B' the curved axis of the beam as the
elastic line or deflection curve.

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending
moment M varies along the length of the beam and we represent the variation of bending
moment in B.M diagram. Futher, it is assumed that the simple bending theory equation holds
good.

a_ N

il
T

0| M

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every
point is different; hence the slope is different at different points. To express the deflected
shape of the beam in rectangular co-ordinates let us take two axes x and y, x-axis coincide
with the original straight axis of the beam and the y — axis shows the deflection.

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us
construct the normal which intersect at point O denoting the angle between these two normal
be di But for the deflected shape of the beam the slope i at any point C is defined,

tani:d—Elf e M o i=ﬂ Assuming tani =i
dx dx

Futher

ds = Rdi

however,

ds = dx [usually for smallcury ature]
Hence

ds = dx = Rdi

di _ 1

d R
substitutingthevalueofi, oneget

d [dy]_ 1 dfy 1

ar

Tl\d) RV GE R
Fromthe simplebendingtheary
M_E El
— = _ M= —
T RYTR
sothe basic differentialeguation governingthe deflectionof beam sis
g2y
t=El
it

This is the differential equation of the elastic line for a beam subjected to bending in the
plane of symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection
curve as it is frequently called.
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Relationship between shear force, bending moment and deflection: The relationship
among shear force, bending moment and deflection of the beam may be obtained as
differentiating the equation as derived

dM_g, oy
EEA T

Thus,

Re calling 2M=F
o

d3§,r
F=EI

di®
Therefore, the above expression represents the shear force whereas rate of intensity of
loading can also be found out by differentiating the expression for shear force

e w= _gF
dx
|:|43,f
w= -El
dx¥

Therefore if 'y 'isthe deflection of the loadedbe am,
thenthefollowingimportantrelationscanbearrivedat

slope =§_i

B.M=EI$
shearforce = Eld'j_}
loaddistribution = E|$

Methods for finding the deflection: The deflection of the loaded beam can be obtained
various methods. The one of the method for finding the deflection of the beam is the direct
integration method, i.e. the method using the differential equation which we have derived.

Direct integration method: The governing differential equation is defined as

R ' .
h EIEE. ar g 57
onintegrating ane get,
ﬂz_{ﬂd}{ +A.--- - thisequation gives the slope
dx El
of theloaded beam.
Integrate once againto get the deflection.

y:”%dx + A% +B

Where A and B are constants of integration to be evaluated from the known conditions of
slope and deflections for the particular value of x.
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Illustrative examples: let us consider few illustrative examples to have a familiarity with the
direct integration method

Case 1: Cantilever Beam with Concentrated Load at the end:-_A cantilever beam is subjected
to a concentrated load W at the free end, it is required to determine the deflection of the beam

In order to solve this problem, consider any X-section X-X located at a distance x from the
left end or the reference, and write down the expressions for the shear force and the bending

moment

5F|,_, =-W
BM| _, = -WW.x
Therefore M|,_, =-'W.x
v
the gaverning equatiun% = :?Y
substituting the value of M interms of % then integrating the eguation one get
M _ dy
Bl
Ay W
dx?  E
dfty Wy
— 2 =-_"q
Idxi J-Fron
dy _ W
L =- + A
dx 2El

Integrating ance mare,

dy _W}{z
JH_I ﬁdxt[ﬁdx

3
¥ =—W_H+AK+EE
GEI

The constants A and B are required to be found out by utilizing the boundary conditions as
defined below

eatx=L;y=0 -mmmmmmemmeeeeee- (1)
atx=L;dy/dx =0  ------mmmmmmmmeeee- (2)

Utilizing the second condition, the value of constant A is obtained as
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oy

A= o
While employing the first condition yields
WL
Y= - =5 + a4l +B
_ ol
- BEI
ol
" BEI  ZEI
oy lE —aww L 2wlE
B BEI T TBEI
o
CI=D

Substituting the values of A and B we get
I I WL3]
El GEI 2El 3EI
The slope aswell as the deflection would be
maximum at the free end hence putting *=0 we get,

¥

WL
¥max =ET
2
[Slnpe]ma}{m =+%

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is
subjected to U.d.l with rate of intensity varying w / length. The same procedure can also be
adopted in this case

|X
|
N N N NENENENENENINISNNG,
X |
x=0 |e > x=L
X
L
SFl_, = —w
Iy a S w2
R |I—I__W}{§_W ?
b d¥y
I d x=
l:iz':.-'=_'-.-'-.-'}=c2
A= 2 El
o= e S
=|-_"__d=
Id}:z I 2EI
l:i':.-'z_'-.-'-.-'}{3
o GEI
dy w3
—4=]- dx +] A& d
'rd}{ I EET [avax
4
W
=-_— _+Ax+B
¥= Toagr "
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Boundary conditions relevant to the problem are as follows:
1. Atx=L;y=0
2. Atx=L;dy/dx =0

The second boundary conditions yields

3
Wy
A=+_
BEI
whereasthe firstboundary conditions yields

_ wlt  wl?

T Z4El BEl
. wi?
aEl

wit owl o owl?

Thus, 3,r=l - + - I

Ell 24 B g
S0 Ymaem willbeat x =10

=_wﬁ
¥maxm ﬁ

u:h,r] :muL3
% ) g BEI

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply
supported beam is subjected to a uniformly distributed load whose rate of intensity varies as
w / length.

g w /length
|

|

o A
%

o

In order to write down the expression for bending moment consider any cross-section at
distance of x metre from left end support.

W \ ]
wi & w
2 2
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The differential equation which gives the elastic curve far the deflected beam is
d'y _ M _ 1 [wl.}{_ﬂ}

& B OEILZ 2
dy _ [ wrlx i
—= = —dx- | —dx+A
ax Iza * Iza §
z 2
_whe e
4El  EEI
Integrating,once mare ane gets
wlhe® w?
Y e T TAYTE (1)

Boundary conditions which are relevant in this case are that the deflection at each support
must be zero.

ie.atx=0;y=0:atx=1,y=0

let us apply these two boundary conditions on equation (1) because the boundary conditions
are ony, This yields B = 0.

4 4

_owl ol
12El  24El

ol

24El

aothe equationwhich gives the deflection curve is

1 IWL}{3 it st}{I

CEITTE T T

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e.
at the position where the load is being applied ].So if we substitute the value of x = L/2

Then 1wl w ) wlfL
Y TE 72| E | 22|TE ] 2|2

__ Gwl?
Yea™ = T 3EAEN

Conclusions
(1) The value of the slope at the position where the deflection is maximum would be zero.

(i) The value of maximum deflection would be at the centre i.e. at x = L/2.
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The final equation which is governs the deflection of the loaded beam in this case is

3’=1 WL}{3_W}{4_WL3}{
Ell 12 24 24

By successive differentiation one can find the relations for slope, bending moment, shear
force and rate of loading.

Deflection (y)
-SWLY

l_'l"El - IWLHE _ "-"'-"}{4 _ "."'."|_3 }{I /384E|
7 24 i

*wi
Slope (dy/dx) 24
-wi'
El dy _ FwlL? _1'1'-.-'-.-'}{3 _ wl? 24
dx 12 24 24 .

3" degree Polynomial

So the bending moment diagram would be

Bending Moment

dw El| 2 "2

ity _ 1 IWL}{ ) wle
M

wi

2

Single degre€ shear force
equation In 'x’

Shear Force

Shear force is obtained by
taking third derivative.

El iy _ il
X

=Wy
a2

Rate of intensity of loading



d4'_-,-'=_

TS

El !

Case 4: The direct integration method may become more involved if the expression for entire
beam is not valid for the entire beam.Let us consider a deflection of a simply supported beam
which is subjected to a concentrated load W acting at a distance 'a’' from the left end.

Let R; & R, be the reactions then,

W

A 13 c
R ‘Rz

B.Mfor the portion AB
Mg =Fix D <x<a
B.h far the portion BC
M. =R -Wix-a)au<l

so the differential equation for the two caseswould be,

2z
Elj?: Ry x
di
Elﬁﬂ:ﬁ %= W (% - a)

These two equations can be integrated in the usual way to find ‘y' but this will result in four
constants of integration two for each equation. To evaluate the four constants of integration,
four independent boundary conditions will be needed since the deflection of each support
must be zero, hence the boundary conditions (a) and (b) can be realized.

Further, since the deflection curve is smooth, the deflection equations for the same slope and
deflection at the point of application of load i.e. at x = a. Therefore four conditions required
to evaluate these constants may be defined as follows:

(a) at x =0; y =0 in the portion ABie.0<x<a

(b)atx =1; y=0in the portion BCi.e.a<x <1

(c) at x = a; dy/dx, the slope is same for both portion
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(d) at x = a; y, the deflection is same for both portion

By symmetry, the reaction R; is obtained as

_ Wb
' a+b
Hence,
dj,r Wi'b
O2xdq -------- 1
ITE t—j (1)
By _ Wb _ _ o e
Elm{2 [a+h}}{ W - a) atutl (2)
integrating (1) and (2} we get,
dy _ Wh s
—== +k Ofsca--------
I« 2(a+b) xea S
3
dy _ Wb, W([i-a)
El=L = - +k A 4
dx 2[a+b) 7 po AR )

Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence
letting K; = K, = K, Hence
dy _ Wb

EIZL= T4k Dfxda------ 3
% 2(a+b) " Ke e )

gy Wb, W (x - a)
dx 2(a+b) 2
Integrating agian eguation (31 and (41 we get

Wb 4
= _ A T
Ely E(a+h}}{ +kx +ky Dixza &)

Ely = Wb H3_W(x—a)3 +hki+ky, aLHEl------ )
B(a+h) B
Litilizing condition (a)in equation (5] yields
k, =0
Litilizing condition (b)in equation (B) yields

3

Whoop Wi(l-a)
0= [* - +hl+k
Bla +b) B *

Who o W(-a)’
ky=- P+ - ki
* Bla+h) B
Buta+h=I,

Thus,

Wb a +h)* | W
B B

I‘{4:_ —k[a+h:|

Now lastly ks is found out using condition (d) in equation (5) and equation (6), the condition
(d) is that,

At X = a; v, the deflection is the same for both portion
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Therefare y|_ equation 5 ) - equation

ar
3
Whoo 4 Wb W(x-a)
+hy +ky = - +hx +k
Ea+b) T Bla+h) 5 S
3
Witk Wwhoo . W(a-a)
— gt +ka+k, = - +ka +k
Ela+n) o Blath) 3 AT
Thus, k,=0;
OR
2 3
|,;4=_Wh(?3+h) +m;h -k{a+b) =0
Wb (a +b)" e
kia+b)=- +
(a+b) 5 =
k:_Wh(a+h)+ Yyl
B Bz +h)
so the deflection equations for each portion of the beam are
Who 4
Ely= ¥ tkx+k
Py ’
Whi®  Whla+hix Wbk
= - + ----forD<x<a----- 7
B3 +b) 3 B(a +b) orf<xsa-----{7)

and far ather partion
Wi Kg_mumaf
Bla+hb) B
substituting the value of 'k'inthe above equation
_owbd W[ al’  Whia+b)x L W'y
B(a+b) = B B(a+h)
soeither of the equation (7Y or (B1may be used to find the deflectionat x=a
hence substituting x = ain either of the equation we get

Ely= ki +ky,

Forforas=<l----- {8

Y =- Wa'h?
¥a  3El[a+h)
ORifa=b=12
_ Wi
ma  45E]

ALTERNATE METHOD: There is also an alternative way to attempt this problem in a
simpler way. Let us considering the origin at the point of application of the load,

\\’/ VI/,

n
~N
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W
5l =5
W

[
B'ML:( = T[i— }{]

substituting the value of Min the governing equation for the deflection

_ " |+Ax+B
12

[
El| &
Boundary conditions relevant for this case are as follows
(i)atx =0; dy/dx=0
hence, A=0

(if) at x = 1/2; y = 0 (because now | / 2 is on the left end or right end support since we have
taken the origin at the centre)

Thus,
N L S
EV T
_ Wl
45

Hence he egquation which governsthe deflection wouldbe
_ 1 fwnd wed we?
=Tl R VR T

Hence

v _ W
max™ |at><=|:| - E

dy Wit
a3 Jraxm

L =
at=tz T EIEE
Hence the integration method may be bit cumbersome in some of the case. Another limitation
of the method would be that if the beam is of non uniform cross section,

At the centre

Attheends

i.e. it is having different cross-section then this method also fails. So there are other methods
by which we find the deflection like

1. Macaulay's method in which we can write the different equation for bending moment for
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different sections.

2. Area moment methods

3. Energy principle methods

THE AREA-MOMENT / MOMENT-AREA METHODS

The area moment method is a semi graphical method of dealing with problems of deflection
of beams subjected to bending. The method is based on a geometrical interpretation of
definite integrals. This is applied to cases where the equation for bending moment to be
written is cumbersome and the loading is relatively simple.

The moment-area method provides a semigraphical technique for finding the slope and
displacement at specific points on the elastic curve of a beam or shaft. Application of the
method requires calculating areas associated with the beam’s moment diagram; and so if this
diagram consists of simple shapes, the method is very convenient to use. Normally this is the
case when the beam is loaded with concentrated forces and couple moments. To develop the
moment-area method we will make the same assumptions we used for the method of
integration: The beam is initially straight, it is

elastically deformed by the loads, such that the slope and deflection of the elastic curve are
very small, and the deformations are only caused by bending. The moment-area method is
based on two theorems, one used to determine the slope and the other to determine the
displacement at a point on the elastic curve.

Let us recall the figure, which we referred while deriving the differential equation governing
the beams.

It may be noted that dq is an angle subtended by an arc element ds and M is the bending
moment to which this element is subjected. We can assume, ds = dx [since the curvature is
small]
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hence, R dq =ds

48 _ 1 _M
ds R EI
d8 _ M
ds B

But for small curvature[but Bisthe angle slope is tanEl=% for small
¥

2

anglestanB = Bhence & £ d—ysn we getd—Elr = Ehy putting ds = dx]
dx dx*  El

Hence,

dé M T Mdx]

ﬁ—aﬂr.dﬂ——El |:1:|

The relationship as described in equation (1) can be given a very simple graphical
interpretation with reference to the elastic plane of the beam and its bending moment diagram

A Bl il

2 Defbaio _:u,.,,,T tangents drawn at the

A% do end of small element ds.
Deflection curve of " B — xdt
—
the beam \>< Arc = Angle x radius
L~ 0 we can lake the radius
7 ~., to be equal 1o X
/ 3B This Isalso within
Al reasonable accuracy

Bending Moment dlagram £
of the beam subjected to —[ M< [/
arbitrary type of loading 7%

’C‘ |
A — X — BI
cantroid

Refer to the figure shown above consider AB to be any portion of the elastic line of the
loaded beam and A1BL1is its corresponding bending moment diagram.

Let AO = Tangent drawn at A

BO = Tangent drawn at B

Tangents at A and B intersects at the point O.

Futher, AA " is the deflection of A away from the tangent at B while the vertical distance B'B
is the deflection of point B away from the tangent at A. All these quantities are futher

understood to be very small.

Let ds = dx be any element of the elastic line at a distance x from B and an angle between at
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its tangents be dg. Then, as derived earlier

Pl x

dé =
El

This relationship may be interpreted as that this angle is nothing but the area M.dx of the
shaded bending moment diagram divided by EI.

From the above relationship the total angle g between the tangents A and B may be
determined as

Bhddx 18
f= 2= _ [Mdx
i | E|£

Since this integral represents the total area of the bending moment diagram, hence we may
conclude this result in the following theorem

Theorem I:

between any two points

{ slopeord } _ %x area of B.M diagram between
carrespanding portionof B.M diagram

Now let us consider the deflection of point B relative to tangent at A, this is nothing but the
vertical distance BB'. It may be note from the bending diagram that bending of the element ds
contributes to this deflection by an amount equal to x dq [each of this intercept may be
considered as the arc of a circle of radius x subtended by the angle q

B
a=jxda
Hence the total distance B'B becomes ~

The limits from A to B have been taken because A and B are the two points on the elastic
curve, under consideration]. Let us substitute the value of dq = M dx / El as derived earlier

B B
E:J}{M_I::}{:IMI:{K
A

[ This is infact the moment of area of the bending moment diagram]

Since M dx is the area of the shaded strip of the bending moment diagram and x is its
distance from B, we therefore conclude that right hand side of the above equation represents
first moment area with respect to B of the total bending moment area between A and B
divided by EI.

Therefore, we are in a position to state the above conclusion in the form of theorem as
follows:
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Theorem I1:

1 x{ﬁrat maoment of area with respect }

Deflection of point ‘B’ relative to point A El | topointB, of the total B.M diagram

Futher, the first moment of area, according to the definition of centroid may be written as A
, Where xis equal to distance of centroid and a is the total area of bending moment

8, = | A%

m

Therefore,the first moment of area may be obtained simply as a product of the total area of
the B.M diagram betweenthe points A and B multiplied by the distance *to its centroid C.

If there exists an inflection point or point of contreflexure for the elastic line of the loaded
beam between the points A and B, as shown below,

BM e G

A By
i D tyve Gz

Then, adequate precaution must be exercised in using the above theorem. In such a case B. M
diagram gets divide into two portions +ve and —ve portions with centroids Cland C2. Then to
find an angle g between the tangentsat the points A and B

D B
- Jhﬂdx Md}{
ry D
And similarly for the deflection of Baway fromthe tangent at A becomes

5= Jhﬂd}{ de}{

Illustrative Examples: Let us study few illustrative examples, pertaining to the use of these
theorems

Example 1:

1. A cantilever is subjected to a concentrated load at the free end.It is required to find out the
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deflection at the free end.

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below

W
R
N B
N

L
2L

3.
—
\l\m B.M,Diagram

Let us workout this problem from the zero slope condition and apply the first area - moment
theorem

slope at A=%[Area of B.M diagram between the points A and B]

T
_E[ﬁL'WL]

_ L
2El

The deflection at A (relative to B) may be obtained by applying the second area - moment
theorem

NOTE: In this case the point B is at zero slope.

Thus,
5=%[ﬁr51 mornent of area of B.Mdiagram between AandBabout A

1

=__ ."I:I"._
giiad
_1]f1 2
E[[jL.WL]gL]
_ WL
3EI

Example 2: Simply supported beam is subjected to a concentrated load at the mid span
determine the value of deflection.

A simply supported beam is subjected to a concentrated load W at point C. The bending
moment diagram is drawn below the loaded beam.
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B.M digram.

Again working relative to the zero slope at the centre C.

slope atA— 1 Area of B. M diagrambetween A and C]

EI [[ #]] we aretakinghalf area of the B.Mbecause we
havetowork outthisrelative to a zero slope
_ Wl
16El

Deflection of A relative to C = central deflection of C
ar

.= 1 Mnment of B.M diagram between points Aand C about Al

g [[ )

4EEEI

Example 3: A simply supported beam is subjected to a uniformly distributed load, with a

intensity of loading W / length. It is required to determine the deflection.

The bending moment diagram is drawn, below the loaded beam, the value of maximum B.M

is equal to WI2 /8
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A 18

Wi
/2 \
p 8 .
C S.F.Diagram
wl
v /2

Wi /;!

B.M.Diagram

Lz
o« NELIZ) |

So by area moment method,
1

El
_ 1

Slope at point Cw.r.t point A = —[Area of B.Mdiagram between point A and C]

(L))

El
_ WL

24El
Ceflection at point © =%[s‘1‘a 7]
relative to A

WL3
EI
SBdEI

Macaulay's Methods

If the loading conditions change along the span of beam, there is corresponding change in
moment equation. This requires that a separate moment equation be written between each
change of load point and that two integrations be made for each such moment equation.
Evaluation of the constants introduced each integration can become very involved.
Fortunately, these complications can be avoided by writing single moment equation in such a
way that it becomes continuous for entire length of the beam in spite of the discontinuity of
loading.

Note : In Macaulay's method some author's take the help of unit function approximation (i.e.
Laplace transform) in order to illustrate this method, however both are essentially the same.

For example consider the beam shown in fig below:
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Let us write the general moment equation using the definition M = ( ). M )L, Which means
that we consider the effects of loads lying on the left of an exploratory section. The moment
equations for the portions AB,BC and CD are written as follows

| x

500N 450 Nim
A 81 “Y vy ¥ ¥ ¢°
<5 1 - Mug = 480 xMN.m
2m m m
Ri=480N . Rz 920N Mo = [480 »-500(x-2)]N.m
: J x My = [450H-EDD(K—QJ—?(H—aflm.m

It may be observed that the equation for MCD will also be valid for both MAB and MBC
provided that the terms (x - 2) and ( X - 3 )2are neglected for values of x less than 2 m and 3
m, respectively. In other words, the terms ( x - 2) and (X - 3 )2 are nonexistent for values of
x for which the terms in parentheses are negative.

Y|
' 500 N 450 Nim
A B Cl f Y Y Y yD
R |
- 2m . Im Z2m
R1=480 N R2=920 N

As an clear indication of these restrictions,one may use a nomenclature in which the usual
form of parentheses is replaced by pointed brackets, namely, < >. With this change in
nomenclature, we obtain a single moment equation

M = [4BD}{—5DD(}{—2j - ?[}{ —ajﬁlm.m

Which is valid for the entire beam if we postulate that the terms between the pointed brackets
do not exists for negative values; otherwise the term is to be treated like any ordinary
expression.

As an another example, consider the beam as shown in the fig below. Here the distributed
load extends only over the segment BC. We can create continuity, however, by assuming that
the distributed load extends beyond C and adding an equal upward-distributed load to cancel
its effect beyond C, as shown in the adjacent fig below. The general moment equation,
written for the last segment DE in the new nomenclature may be written as:
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tm . 3m | 2m | 2m
Ri=500N R;=1300N
(a) 600 N
400 Nim
LI | R 5 T 1
[ o
A BH VLY g
R
- L1 [ |
im 3m 2m T 2m
Ry =500 N
Rz=1300N

M:{Enux—fgggx—u2+4uu
2 2

[H—df+13mﬂx—Eﬂan

It may be noted that in this equation effect of load 600 N won't appear since it is just at the
last end of the beam so if we assume the exploratary just at section at just the point of
application of 600 N than x = 0 or else we will here take the X - section beyond 600 N which
is invalid.

Procedure to solve the problems

(1). After writing down the moment equation which is valid for all values of ‘x' i.e. containing
pointed brackets, integrate the moment equation like an ordinary equation.

(ii). While applying the B.C's keep in mind the necessary changes to be made regarding the
pointed brackets.

llustrative Examples :
1. A concentrated load of 300 N is applied to the simply supported beam as shown in Fig.

Determine the equations of the elastic curve between each change of load point and the
maximum deflection in the beam.

300N
A 2m B 1im C
o J‘Y E——
le— X
Ry=100N R:=200N

Solution : writing the general moment equation for the last portion BC of the loaded beam,

45



dz'_-,-'
EI—2=M=|I1DD}{—3DD{}{—2}:|N.m M)

dx
Integrating twice the above equation to obtain slope and the deflection
EI? = (505 -180 {x - 2§ + € JNm? )

Ely [53D % - 60 {x - 2} * T+ C ]Nm3 )

To evaluate the two constants of integration. Let us apply the following boundary
conditions:

1. At point A where x = 0, the value of deflection y = 0. Substituting these values in Eq. (3)
we find C2 = 0.keep in mind that < x -2 >3 is to be neglected for negative values.

2. At the other support where x = 3m, the value of deflection y is also zero.

substituting these values in the deflection Eqg. (3), we obtain
0- [5D33 -50(3-2f +3.C1]Dr Cy=- 133N,

Having determined the constants of integration, let us make use of Egs. (2) and (3) to rewrite
the slope and deflection equations in the conventional form for the two portions.

segment AB (0 £ = £2m)

dy _

Bl = (50" - 133 M Y

Ely = [53E' v 133}{]I‘~J ....... 5
segment BC 2m < x £3m)

E|'j3" (50 - 180 (x - 2§ - 133xNm? (5]

Ely = [ ¥ -60(x-2) —133}{]N.m3.......[?]|

Continuing the solution, we assume that the maximum deflection will occur in the segment
AB. lts location may be found by differentiating Eq. (5) with respect to x and setting the
derivative to be equal to zero, or, what amounts to the same thing, setting the slope equation
(4) equal to zero and solving for the point of zero slope.

We obtain

50 x2— 133 =0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does
not yield a value < 2 m then we have to try the other equations which are valid for segment
BC)

Since this value of x is valid for segment AB, our assumption that the maximum deflection

occurs in this region is correct. Hence, to determine the maximum deflection, we substitute x
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=1.63 min Eq (5), which yields
Ely [ pgem = -145Mm°  __(8)

The negative value obtained indicates that the deflection y is downward from the x axis.quite
usually only the magnitude of the deflection, without regard to sign, is desired; this is denoted
by d, the use of y may be reserved to indicate a directed value of deflection.

IfE=30Gpaand I =1.9x 106 mm4 =1.9 x 10 -6 m4 , Eqg. (h) becomes

¥ |pam = [30%10%](1.9x1077)
= -Z2Admm

Example 2:

It is required to determine the value of Ely at the position midway between the supports and
at the overhanging end for the beam shown in figure below.

R, =500N Rz= 1300 N

Solution:

Writing down the moment equation which is valid for the entire span of the beam and
applying the differential equation of the elastic curve, and integrating it twice, we obtain

2
E|d_§=m= 5[|[|}{_ﬂ(x—1f+4DD(}{—432+13DD(}{—EJ M.m
dx 2 2
SR P -@(x—tﬁ +@(x—4f +B50(x-B)* + C, |Mm
dx 3 3
Ely :[zg_nx3—%(}{—1]4+%(x—4]4+E§D[H—Ejs+c1x+cz]Nm3

To determine the value of C2, It may be noted that Ely = 0 at x = 0,which gives C2 = 0.Note
that the negative terms in the pointed brackets are to be ignored Next,let us use the condition
that Ely = 0 at the right support where x = 6m.This gives

- 250 e S0
3 3

L 50

0 )+ Z(2)* + BCy or € = -1308Nm?

Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the
deflection equation for the segment BC obtained by ignoring negative values of the bracketed
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terms a x - 4 i4 and a x - 6 i3. We obtain

Ely = ESEB]F —53_D|:2;|4 -1308(31 = -1941 M.
For the overhanging end where =8 mwe have
O R URE=NCIRED)

= —1814Nm?

Example 3:

A simply supported beam carries the triangularly distributed load as shown in figure.
Determine the deflection equation and the value of the maximum deflection.

1Zx=w
2 L
We &
: 8
y | |
w
| ) Pl
A c . Yy
— " —
X l‘ - Smmra—
L T =l X
% B L/Z
) |
Ri=w.l/4 R=w.L4 weLJ/d o)
(a) {b)

Solution:

Due to symmetry, the reactionsis one half the total load of 1/2wOL, or R1 = R2 =
1/4w0L.Due to the advantage of symmetry to the deflection curve from A to B is the mirror
image of that from C to B. The condition of zero deflection at A and of zero slope at B do not
require the use of a general moment equation. Only the moment equation for segment AB is
needed, and this may be easily written with the aid of figure(b).

Taking into account the differential equation of the elastic curve for the segment AB and
integrating twice, one can obtain

oy wol  wigr? x
El—L=p, =_"0"y-"0°" * il
4 L 3 W
dy _wrpla? B gt
Eld z oL 1 A2
w Lx® owe
Ely = ':'24 - Erllle + e+ T, (3

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the
support A, y = 0 at x = 0.Hence from equation (3), we get C2 = 0. Also,because of symmetry,
the slope dy/dx = 0 at midspan where x = L/2.Substituting these conditions in equation (2) we
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get

o= Mb{LY e LY o o 5wl
g 12) 1201z B 192

Hence the deflection equation from A to B (and also from C to B because of symmetry)
becomes

- L B wigi® B EvrgL¥
24 GOL 192
Wehichreducesto

Ely

- W K

Ely = |:25L4 - 407 + 167
oL
The maximum deflection at midspanwhere x =12 is then found to be
WI:IL4
Ely = -
T 0

Example 4: couple acting

Consider a simply supported beam which is subjected to a couple M at adistance ‘a' from the
left end. It is required to determine using the Macauley's method.

I
/?'

vV 7
-z

N
&

El
1
=
ey
-

To deal with couples, only thing to remember is that within the pointed brackets we have to
take some quantity and this should be raised to the power zero.i.e. M & x - a i0 . We have
taken the power O (zero) ' because ultimately the term M & x - a fi0 Should have the moment
units. Thus with integration the quantity a x - a fi becomes either & x - afilor ax - afi2 Or

4~M
Al ) | B
a Sle b o

Therefore, writing the general moment equation we get
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ity
M=Rpx-MO-ador Eld—2 = i
i
Integrating twice we get
dy e 1
ElI-L£ =R, —-M{x-ay +C
i B { ) 1
2
Ely =F{1.%—g{}{—a}2 + Cyx+

Example 5:

A simply supported beam is subjected to U.d.l in combination with couple M. It is required to
determine the deflection.

ZOON."m
M=1800 N-m
| &~ YYYYY Yy
[ D] |
e ~ e
R1 Rz

2m 2m 2m 2m 5

This problem may be attemped in the some way. The general moment equation my be written
as

200 {x - 43{x - 4}

Mix) = Ryx-1800{x -2V - 5 +Ry (x - B
200{x - 4V
= Rp- 1800 - 21 —#mz {x -B)
Thus,
7 Ry
E19Y - py-tmm -2 - 200 L gy
dx 2

Integrate twice to get the deflection of the loaded beam.
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(UNIT 4 FLUID PROPERTIES & EQUATIONS OF MOTION

Fluid Properties: Density - Specific Weight - Specific Gravity - Viscosity - Surface tension -
Capillarity - compressibility. Fluid Statics: Hydrostatic Law - Pressure Variation in static
fluid - Hydrostatic force on submerged plane-surfaces - Location of hydrostatic force.
Manometers - Simple U tube and differential manometers - Buoyancy - Meta-centric height —
determination of stability of floating bodies and submerged bodies- Basic equations of
motion: Types of fluid flow - Continuity, momentum and energy equations - Euler’s and
Bernoulli’s Equation and its applications.-Flow Measurement: Orifice meter, Venturimeter,
_Piezometer, Pitot Tube.

J

Fluids

Substances capable of flowing are known as fluids. Flow is the continuous
deformation of substances under the action of shear stresses. Fluids have no definite shape of
their own, but confirm to the shape of the containing vessel. Fluids include liquids and gases.
Fluid Mechanics

Fluid mechanics is the branch of science that deals with the behavior of fluids at rest
as well as in motion. The study of fluids at rest is called fluid statics. The study of fluids in
motion, where pressure forces are not considered, is called fluid kinematics and if the
pressure forces are also considered for the fluids in motion, that branch of science is called
fluid dynamics.
Fluid Properties
1. DENSITY (or) MASS DENSITY: Density or mass density of a fluid is defined as the

ratio of the mass of the fluid to its volume.

Mass of  fluid

Mass density, p =
Volume of  fluid

S.1 unit of density is kg/m®. The value of density for water is 1000 kg/m*
2. SPECIFIC WEIGHT (or) WEIGHT DENSITY (w): Specific weight or weight density

of a fluid is the ratio between the weight of a fluid to its volume.
Weight of fluid
Volume of  fluid
Mass of fluid X g
Volume of  fluid

w=pg

Weight density =

S.I unit of specific weight is N/m°. The value of specific weight or weight density of
water is 9810N/m? or 9.81 kN/m3.
3. SPECIFIC VOLUME (v):
Specific volume of a fluid is defined as the volume of a fluid occupied by unit mass.



Volume of a fluid 1

Specific volume = . :
Mass of  fluid Yo,

Thus specific volume is the reciprocal of mass density. S.I unit: m® /kg
4. SPECIFIC GRAVITY or RELATIVE DENSITY (s): Specific gravity is defined as the

ratio of the specific weight of a fluid to the specific weight of a standard fluid.

Specific weight or density of liquid

Specific gravity=

Specific weight or density of water
Example:
Specific gravity of water=1
Specific gravity of mercury=13.6
5. VISCOSITY: Viscosity is defined as the property of a fluid which offers resistance to the

movement of one layer of fluid over adjacent layer of the fluid.

1‘ u + du
dy u /
1 du
y -
r VELOCITY PROFILE
TP PP RrlRres?
—_—u

Velocity variation near a solid boundary.

NEWTONS LAW OF VISCOSITY: The shear stress between two layers is proportional to

the rate of change of velocity with respect to y.

. du

dy
T=U @
dy

where, pis co-efficient of dynamic viscosity or viscosity

du/dy rate of shear strain or rate of shear deformation or velocity gradient.
Thus the viscosity is also defined as the shear stress required to produce unit rate of shear
strain.

T

=
" (a
dy

S.Iunit: Ns/m2. It is still expressed in poise (P) as well as centipoises (cP).

. Ns 1
One poise = I—E-P 2 | centipoise = o0 poise




Kinematic Viscosity (v): It is defined as the ratio between the dynamic viscosity and density

of the fluid.
_ Dynamic viscosity u

Density P

Vv

Sl unit: m? /s; CGS unit ‘stoke’. 1 stoke = 1 cm®/ sec = 10 m® /s
6. COMPRESSIBILITY: Compressibility is the reciprocal of the bulk modulus of

elasticity, K, which is defined as the ratio of compressive stress to volumetric strain.

Bulk modulus K - Increase of pressure |*t ‘::_I F ,:_
Volumetric Strain (L 2
dp I :.’:f.;;'_‘ - PISTON
—-dV [ =
A | 2
.-r.-l.-l.}'.-'.-'."."."".".'!-"-"-":-'.;:-'-"-'_-'.-'-'.-'.-'.-.-.-

_ e l
Compressibility = — ;
K CYLINDER

Cohesion is due to the force of attraction between molecules of same liquid

Adhesion is defined as the force of attraction between the molecules of two different liquids

or between the molecules of the liquid and molecules of the solid boundary surface.

7. SURFACE TENSION: Surface tension is defined as the tensile force acting on the
surface of a liquid in contact with a gas or on the surface between two immiscible liquids
such that the contact surface behaves like a membrane under tension.

Some important real life examples are
(i) Formation of water bubbles.
(it) Formation of rain droplets.
(iii) Collection of dust particles on water surface.
(iv) A small needle can gently place on the liquid surface without sinking.
(v) Breakup of liquid jets.
(vi) Capillary rise and capillary siphoning.

Free surface Molecule
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Surface Tension on Liquid Droplet:
Consider a small spherical droplet of a liquid of diameter‘d’. On the entire surface of the

droplet, the tensile force due to surface tension will be acting.

RITTTT]

(a) DROPLET  (b) SURFACE TEMNSIONM

(c) PRESEURE FORCES

Forces on droplet.

Where, o = Surface tension of the liquid
p = Pressure intensity inside the droplet (in excess of the outside pressure intensity)
d = Dia. of droplet
Let the droplet is cut into two halves. The forces acting on one half will be
i)  Tensile force (FT)due to surface tension acting around the circumference of the cut
portion as shown in fig. and this is equal to = ¢ x Circumference =c x t d
ii)  Pressure force (Fp) on the area md?/4 is = p x md®/4 as shown in the figure. These two
forces are equal under equilibrium conditions.
i.e., px nd*4=cxnd
Therefore, p = 4alp
Surface Tension on a Hollow Bubble:
A hollow bubble like a soap bubble in air has two surfaces in contact with air, one inside and

other outside. Thus two surfaces arc subjected to surface tension. In that case,

2
px%:2x(cxnd)

8o
Therefore, p = =
8. CAPILLARITY: Capillarity is defined as a phenomenon of rise or fall of a liquid surface
in a small tube relative to the adjacent general level of liquid when the tube is held vertically
in the liquid. The rise of liquid surface is known as capillary rise while the fall of the liquid
surface is known as capillary depression. It is expressed in terms of cm or mm of liquid.

Its value depends upon the



» specific weight of the liquid
» diameter of the tube and

» surface tension of the liquid.

Expression for Capillary Rise
Consider a glass tube of small diameter ‘d' opened at both ends and is inserted in a liquid.

The liquid will rise in the tube above the level of the liquid.

a . ; ] 8\4\0
\ n \
- A
= LQUID; i s
Capillary rise

Let, h =height of the liquid in the tube.
o = Surface tension of liquid
0= Angle of contact between liquid and glass lube.
Under a state of equilibrium,
The weight of liquid of height h = Vertical component of surface tension force

(Area of tube x h) x p x g = 6 X Circumference X cos 0
1TTclthxpxg =o X md X cos 0

__40cos® _ 4ccosH

pxgXd wd
Example: 5000 litres of an oil weighs 45 kN. Find its Specific weight, mass density and
relative density.
Given: Volume, V = 5000 lit = 5000/1000 = 5 m3 Weight, W= 45 kN = 45000 N

Specific Weight, w = W/V = 45000 / 5 = 9000 N/m3 = 9 KN/m3

Specific Weight, w = pg

Mass density, p = w/g = 9000/ 9.81 = 917.43 kg/m?

Relative density = Density of oil/density of water = 917.43/ 1000 = 0.917
2. The density of an oil is 850 kg/m3. Find its relative density and Kinematic viscosity if
the dynamic viscosity is 5 x 10 kg/ms

Density of oil, poii = 850 kg/m3

Density of water, pwater = 1000 kg/m3



Relative density of oil = 850/1000 = 0.85
Dynamic viscosity = p = 5 x 10° kg/ms = 5 x 10- 3 N s/m?
Kinematic viscosity =v=p/p =5 x 10- 3/ 850 = 5.882 x 10-6 m?/s

A flat plate of area 1.5 x 10° mm® is pulled with a speed of 0.4 m/s relative to
another plate located at a distance of 0.15 mm from it. Find the force and power required to maintain
this speed, if the fluid separating them is having viscosity as 1 poise.

Solution. Given :

Area of the plate, A= 15x 10°mm® = 1.5 m?
Speed of plate relative to another plate, du = 0.4 m/s
Distance between the plates, dy = 0.15 mm = 0.15 x 10> m

Viscosity KL =1 poise = i N—S
10 m
() . Shear force, F =1 x area = 266.66 % 1.5 = 400 N. Ans.

(i) Power* required to move the plate at the speed 0.4 m/sec
=Fxu=400x04 =160 W. Ans.

Calculate the dynamic viscosity of an oil, which is used for lubrication between a
square plate of size 0.8 m x 0.8 m and an inclined plane with angle of inclination 30° as shown in
Fig.  The weight of the square plate is 300 N and it slides down the inclined plane with a uniform

velocity of 0.3 m/s. The thickness of ol film is 1.5 mm. <

Solution. Given :

Area of plate, A=0.8%0.8=0.64 m’

Angle of plane, 8 =30°

Weight of plate, W=300N

Velocity of plate, u=03m/s

Thickness of oil film, t=dy=15mm=15%x10"m

Let the viscosity of fluid between plate and inclined plane is J.
Component of weight W, along the plane = W cos 60° = 300 cos 60° = 150 N
Thus the shear force, F', on the bottom surface of the plate = 150 N

150 03
06s M 15%10°°

_150x15%107°

=1.17 N s/m? = 1.17 x 10 = 11.7 poise. Ans.
0.64 % 0.3 P

du = change of velocity = u - 0=u = 0.3 m/s
dy=1t=15%x10"m



T= F _ 150 meg
Area 0.64

Example Determine the viscosity of a liquid having kinematic viscosity 6 stokes and sp.
Gravity of 1.9.

Solution. Given :

Kinematic viscosity v = 6 stokes = 6 cm*/s = 6 x 1074 m?/s
Sp. gr. of liquid =19

Density of the liquid

Now sp. gr. of a liquid =
Density of water

or 19 = Density of liquid
1000
. - kg
. Density of liquid = 1000 x 1.9 = 1900 —
m
. Using the relation V= £, we get
6x10%= H_
1900

=6 x10"*x 1900 = 1.14 Ns/m’
= 1.14 x 10 = 11.40 poise. Ans.

The dynamic viscosity of an oil, used for lubrication between a shaft and sleeve is
6 poise. The shaft is of diameter 0.4 m and rotates at 190 r.p.m. Calculate the power lost in the bearing
for a sleeve length of 90 mm. The thickness of the oil film is 1.5 mm.

Solution. Given : 1.5 mm
Viscosity K = 6 poise
SO NS g N2
10 m? m’
Dia. of shaft, D=04m m A
Speed of shaft, N =190 r.p.m 2 90 mm SHAFT
Sleeve length, L=90mm=90x103m SLEEVE
Thickness of oil film, t=15mm=15x10"m
Tangential velocity of shaft, u = "~ = FX 04 X190 _ 4 g¢ s
0 60
Using the relation T=H du
dy

where du = Change of velocity = u - 0= u = 3.98 m/s
dy = Change of distance = 1= 1.5x 10 * m

3.
T=06X iﬁ = 1592 N/m?
15% 10



This is shear stress on shaft
Shear force on the shaft, F' = Shear stress X Area
=1592x DX L=1592x 71t x.4x90x10*=180.05N

Torque on the shaft, T = Force x g = 180.05 x % =36.01 Nm

_2rNT 271 x190x36.01
60 60

*Power lost =716.48 W. Ans.

Determine the bulk modulus of elasticity of a liquid, if the pressure of the liquid is
increased from 70 N/em?® to 130 Nfem?. The volume of the liquid decreases by 0.15 per cent.

Solution. Given :

Initial pressure =70 N/em?
Final pressure = 130 N/cm?
o. dp = Increase in pressure = 130 — 70 = 60 N/cm?
Decrease in volume =0.15%
dv 0.15
. - = —
v 100
2
BULKMoODULUS K = dp = 60 N/em = S0 x100 =4 x 10* N/em?. Ans.
AR TR
A4 100

The surface tension of water in contact with air at 20°C is 0.0725 N/m. The pressure
inside a droplet of water is to be 0.02 N/em® greater than the outside pressure. Calculate the diameter
of the droplet of water.

Solution. Given :
Surface tension, o= 0.0725 N/m
Pressure intensity, p in excess of outside pressure is

p=0.02 Nem? = 0.02 x 10* N,
m
we getp = i or 0.02 x 10* = SX0oIES
d d
d= Lmzi = .00145 m = .00145 x 1000 = 1.45 mm. Ans.
0.02 x(10)

Calculate the capillary effect in millimetres in a glass tube of 4 mm diameter, when
immersed in (i) water, and (ii) mercury. The temperature of the liquid is 20°C and the values of the
surface tension of water and mercury at 20°C in contact with air are 0.073575 N/m and 0.51 N/m
respectively. The angle of contact for water is zero and that for mercury is 130°. Take density of water

at 20°C as equal to 998 kg/m‘?.

10



Solution. Given :

Dia. of tube, d=4mm=4x10>m
The capillary effect (i.e., capillary rise or depression) is given by equation (1.20) as
b= 40 cos®
pxgxd

where o = surface tension in N/m
0 = angle of contact, and p = density

(i) Capillary effect for water
6 = 0.073575 N/m, 6 = 0°
p =998 kg/m? at 20°C

~ 4 x0.073575 x cos 0°

T = 7.51 x 10 m = 7.51 mm. Ans.
998 x 981 x4 x 10

h

(i) Capillary effect for mercury
6 =0.51 N/m, 6 = 130° and
p = sp. gr. x 1000 = 13.6 x 1000 = 13600 kg/m’

o
, e 4 x (051 x cos 130 =-246 % 10> m = = 2.46 mm. Ans.

~ 13600 x 981 x4 x 107

9.VAPOUR PRESSURE
Vapour pressure is the pressure of the vapor over a liquid which is confined in a closed vessel
at equilibrium.  Vapour pressure increases with temperature. All liquids exhibit this
phenomenon.
Types of fluid
i. ldeal Fluid:
A fluid, which is incompressible and is having no viscosity, is known as an ideal
fluid.
ii. Real Fluid:
A fluid, which possesses viscosity, is known as real fluid. All the fluids, are real fluids
in actual practice.
iii. Newtonian Fluid:
A real fluid, in which the shear stress is directly proportional to the rate of shear strain
(or) velocity gradient, is known as a Newtonian fluid
iv. Non-Newtonian Fluid:
A real fluid, in which the shear stress is not proportional to the rate of shear strain (or)
velocity gradient, is known as a Non-Newtonian fluid.
v. ldeal Plastic Fluid:
A fluid, in which shear stress is more than the yield value and shear stress is
proportional to the rate of shear strain (or) velocity gradient, is known as ideal plastic fluid

Fluid pressure

Fluid pressure is the force exerted by the fluid per unit area. Fluid pressure is transmitted with
equal intensity in all directions and acts normal to any plane.

11
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S.1 unit of fluid pressure are N/m2 or Pa,

where 1 N/m? =1 Pa.

Many other pressure units are commonly used:

1 bar = 105 N/m?

1 atmosphere = 101325 N/m? = 101.325kN/m? = 1.01325 bar= 760mm of mercury =
10.336m of water

Pressure Head: The pressure intensity exerted at the base of a column of homogenous fluid
of a given height in metres.

Atmospheric Pressure: The pressure at the surface of the earth exerted by the head of air
above the surface

Gauge Pressure: The pressure measured by a pressure gauge above or below atmospheric
pressure

Vacuum pressure: The gauge pressure less than atmospheric is called Vacuum pressure or
negative pressure

Absolute Pressure: The pressure measured above absolute zero or vacuum.

0 3
4
v
&% 7
s m
Sk
1 atm (yauge pressure 0 §
=N & 2
< Y
~ -
£ Z T =
ol _'q“' ~ )
e 3 z =
= g 3 2
o : & .8
Il - g 1 <
o8 v [ \
T g v )
o & S5 =
- il 3 32
g 280 5 Z ¢
3 <
'\

Perfect vacuum

Atmospheric, Gauge & Absolute pressure
Fig.5. Barometer, Atmospheric, Gauge and Absolute Pressure
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Fluid Pressure

Fluid pressure is the force exerted by the fluid per unit area.

Fluid pressure or Intensity of pressure or pressure, = Fluids exert pressure on surfaces with
which they are in contact.

Fluid pressure is transmitted with equal intensity in all directions and acts normal to any
plane. In the same horizontal plane the pressure intensities in a liquid are equal.

Hydrostatic law

The hydrostatic law is a principle that identifies the amount of pressure exerted at a specific
point in a given area of fluid.

It states that, “The rate of increase of pressure in the vertically downward direction, at a point
in a static fluid, must be equal to the specific weight of the fluid.”

Pressure Variation in static fluid

Consider a small vertical cylinder of static fluid in equilibrium.

Pressure Variation in static fluid

Consider a small vertical cylinder of static fluid in equilibrium.

= A
S re— 0
h

ptdp

v o Y. cross sectional

e d.‘l area = A
i
P

Fig.6. Pressure variation in static fluid
Assume that the sectional area is “A” and the pressure acting upward on the bottom surface
is p and the pressure acting downward on the upper surface (dz above bottom surface) is (p
+ dp)dz.
Let the free surface of the fluid be the origin, i.e., Z = 0. Then the pressure variation at a depth Z = -
h below the free surface is governed by
(p+dp) A+W=pA
dpA + pgAdz = 0 [W=w x volume = pg Adz] dp = -pgdz
=-pg=-w

Therefore, the hydrostatic pressure increases linearly with depth at the rate of the specific weight, w

= pg of the fluid.

If fluid is homogeneous, p is constant. By simply integrating the above equation, [dp = - [pg dz =>
p =-pgZ + C Where C is constant of integration.

When z = 0 (on the free surface), p = C = po = the atmospheric pressure. Hence, p = - pgZ + po

Pressure given by this equation is called absolute pressure, i.e., measured above perfect vacuum.

However, it is more convenient to measure the pressure as gauge pressure by setting atmospheric

pressure as datum pressure. By setting po = 0,

13



p = -pgz+0 = -pgz = pgh

p =wh

The equation derived above shows that when the density is constant, the pressure in a liquid at rest
increases linearly with depth from the free surface.

Here, h is known as pressure head or simply head of fluid.

In fluid mechanics, fluid pressure is usually expressed in height of fluids or head of fluids.

Hydrostatic force

Hydrostatic pressure is the force exerted by a static fluid on a plane surface, when the static
fluid comes in contact with the surface. This force will act normal to the surface. It is also
known as Total Pressure.

The point of application of the hydrostatic or total pressure on the surface is known as Centre
of pressure.

The vertical distance between the free surface of fluid and the centre of pressure is called
depth of centre of pressure or location of hydrostatic force.

Total Pressure on a Horizontally Immersed Surface

Consider a plane horizontal surface immersed in a liquid as shown in figure.

Let, w = Specific weight of the liquid, kN/m3 A = Area of the immersed surface in m2
= Depth of the horizontal surface from the liquid level in m We know that,

Total pressure on the surface, P = Weight of the liquid above the immersed surface
P = Specific weight of liquid x Volume of liquid

= Specific weight of liquid x Area of surface x Depth of liquid P = wA kN

0 Free surface of liquid 0

B 4 i

Specific weight, w

% (depth of centroid)

Area A

Hotizontally immersed Plane
Surface
Fig:7. Horizontal Plane surface submerged in liquid
Total Pressure and depth of centre of pressure on a Vertically Immersed Surface
Consider an irregular plane vertical surface immersed in a liquid as shown in figure. Let,
w = Specific weight of liquid
A = Total area of the immersed surface
= Depth of the center of gravity of the immersed surface from the liquid surface
Now. consider a strip of width ‘b’, thickness ‘dx’ and at a depth x from the free surface of
the liquid

14



Free surface of liquid

- F .
X X - depth of centroid
= | = h = depth of centre of
. * dx pressure
________ s G - Centroid
C.P - centre of
e e s cp
P pressure
area = A Vetﬁcally immersed

plane surface
Fig: 9. Vertical Plan immersed in liquid
Moment of pressure on the strip about the free surface of liquid = ' x b dx X x = W' x2 b dx Total
momentfon the entire plane immersed surface = | ' x2 b dx
M = 2
But, | 2 =second moment of area about free liquid surface = lo
therefore, M = ' lo

lo = IG + A x2, according to parallel axis theorem.
Therefore, M = ' (IG + Ax?) (1)

Also = xh=Axxh 2

Since equations 1 & 2 are equal,

A xh= (1IG+A X3

Depth of centre of pressure, h= (IG +Axy) ] A

Total Pressure and depth of Centre of Pressure on an Inclined Immersed Surface
Consider a plane inclined surface, immersed in a liquid as shown in figure. Let,

w = Specific weight of the liquid

A = Total area of the immersed surface

X = Depth of the centroid of the immersed plane surface from the free surface of liquid. 6 = Angle at
which the immersed surface is inclined with the liquid

Surface h= depth of centre of pressure from the liquid surface

b = width of the considered thin strip dx = thickness of the strip

O = the reference point obtained by projecting the plane surface with the free surface of liquid
x = distance of the strip from O

15



Free sutface of Liquid
S e——

w - Spacific weight of f luid

Total Area A

Fig: 10. Inclined Immersed Plain

Page |9
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Let the plane of the surface, if produced meet the free liquid surface at . Then O0-0 is the axis
perpendicular to the plane of the surface,

Let y = distance of the C.G. of the inclined surface from -0

v¥ = distance of the centre of pressure from 0-0.

Consider a small strip of area d4 at a depth *f° from free surface and at a distance y from the axis
O-0 as shown in Fig. 3.18.

Pressure intensity on the strip, P =pgh
Pressure force, dF, on the strip, dF = p x Area of strip = pgh x dA

Total pressure force on the whole arca, F = Isz nghd&

h h  h*

But from Fig. 3.18, S=-="=sing
y oy oy
h=ysin B

F= IPS ® y 2 sin 8 x dA = pg sin HIydA
But J-H._-L.q = A;
where y = Distance of C.G. from axis 0-0
F=pgsin®yxA

= pgAh (= =y sin 8) ..(3.6)
Centre of Pressure (h*)
Pressure force on the strip.dF = pghdA

= pgy sin B dA [f = v sin 8]
Moment of the force, dF, about axis O0-0

=dF » y=pgysin B dA x y = pg sin E}"zdﬂ
Sum of moments of all such forces about €-0

= jpg sin @ y* dA = pg sin BJ}*: dA

But J}'E dA = M.O.IL of the surface about O0-0 = I,

Sum of moments of all forces about -0 = pg sin 8 [
Moment of the total force, F, about -0 is also given by
= Fxy*
where y* = Distance of centre of pressure from -0,
Equating the two values given by equations (3.7) and (3.8)
Fxy*=pgsin8 I,

or o= pg sin B I,
. F
B ¥ —
Now yo=—— F=pgAh
sin B

and I, by the theorem of parallel axis = [, + Ay®,

Table: M.I and Geometric Properties of some plane surfaces
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Moment of inertia
about an axis passing
Plane surface C.G. from the Area through C.G. and
base parallel to base (1)
l. Rectangle
|
I ]
]
f"_"L'“”“ d bd?
' X= = bd —_—
X 2 12
' X
o bh o'
3 2 36
3. Circle
¢ , o8 . '
| 1( 2 4 64

Pascal's law

The basic property of a static fluid is pressure.
Pressure is the surface force exerted by a fluid against the walls of its container. Pressure also
exists at every point within a volume of fluid.
For a static fluid, as shown by the following analysis, pressure turns to be independent

direction.

B

Fig:11. Pascal Law

Consider a triangular prism of small fluid element ABCDEF in equilibrium. Let Px is the
intensity of pressure in the X direction acting at right angle on the face ABFE, Py is the

18



intensity of pressure in the Y direction acting at right angle on the face CDEF, and Ps is the
intensity of pressure normal to inclined plane at an angle 6 as shown in figure at right angle to
ABC ..
For a fluid at rest there will be no shear stress, there will be no accelerating forces, and
therefore the sum of the forces in any direction must be zero.
Thus the forces acting on the fluid element are the pressures on the surrounding and the
gravity force. Force due to px = px x Area ABFE = px dydz
Horizontal component of force due to pN = - (pN x Area ABC ) sin(0) = - pNdNdz dy/ds = -
PNdydz As Py has no component in the x direction, the element will be in equilibrium, if
px dydz + (-pNdydz) =0
i.e. px=pN
Similarly in the y direction, force due to py = pydxdz
Component of force due to pN = - (pN x Area ABC ) cos(0) = - pNdsdz dx/ds = - pNdxdz
Force due to weight of element is negligible and the equation reduces to, py = pN
Therefore, px = py = pN
Thus, Pressure at a point in a fluid at rest is same in all directions.
Manometers:
Manometer is an instrument for measuring the pressure of a fluid, consisting of a tube filled
with a heavier gauging liquid, the level of the liquid being determined by the fluid pressure
and the height of the liquid being indicated on a scale. A U-tube manometer consists of a
glass tube bent in U-Shape, one end of which is connected to gauge point and the other end is
exposed to atmosphere.
Manometric liquids:

1. Manometric liquids should neither mix nor have any chemical reaction

with the liquid whose pressure intensity is to be measured.

2. It should not undergo any thermal variation.
Manometric liquid should have very low vapour pressure.

4. Manometric liquid should have pressure sensitivity depending upon the

magnitude of pressure to be measured and accuracy requirement.

Simple U-Tube Manometer: It consist of glass tube in U shape one end of which is
connected to a point at which pressure is to be measured and other end remains open to the
atmosphere as shown in fig. The tube generally contains mercury or any other liquid whose

specific gravity is greater than the specific gravity of the liquid whose pressure is to be
measured.

w

(a) For gauge pressure (b) For vacuum pressure

Fig: 12. Simple U tube Manometer

For Gauge Pressure. Let B is the point at which pressure is to be measured, whose value is p.
The datum line is A-A Let,H; = Height of light liquid above the datum line
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H, = Height of heavier liquid above the datum line S; = Specific gravity of light liquid
p1 = Density of light liquid = 1000 x S; S, = Specific gravity of heavy liquid
p2 = Density of heavy liquid = 1000 x S,

As the pressure is the same for the horizontal surface. Hence pressure above the horizontal datum
line A-A in the left column and in the right column of U-tube manometer should be same.

Pressure above A-A in the left column =p+p; XgXh,
Pressure above A-A in the right column =P, XgXxh,
Hence equating the two pressures p+p,gh, = p.gh,

P =(paghy = py X g X h).
(b) For Vacuum Pressure. For measuring vacuum pressure, the level of the heavy liquid in the
manometer will be as shown in Fig. 2.9 (b). Then

Pressure above A-A in the left column = pPaghy + p,ghy +p
Pressure head in the right column above A-A =0

Paghy + pighy +p =0
p=—(pghy + pighy).

Differential U-Tube Manometer:

Let, A and B are the two pipes carrying liquids of specific gravity sl
and s3 & s2 = specific gravity of manometer liquid.

3
Pipe A = { Datum
l \—J J\ Manometer liquid

Fig:13. Differential U-tube Manometer

Let two point A & B are at different level and also contains liquids of different sp.gr. These points are connected
to the U-tube differential manometer. Let the pressure at A and B are P, and Py

Let 71 = Difference of mercury level in the U-tube.
» Distance of the centre of 2. from the mercury level in the right limb.

a0 Distance of the cenure of A, from the mercury level in the right limb.

o, Density of ligquid at A
o Density of liquid at B
P = Density of heavy liquid or mercury.

Taking datum linc at X-X.

Pressure above X-X in the left imb = p,e(fz + x) + p,
where p, = pressure at A.

Pressure above X-X in the right limb = Pe X 8 X< T+ pLX g XY+ pg
where pgy = Pressure at B,

Equating the two pressure. we have

P18t + X) + P, = PR XIE + P8y + Pp
PaA—Pp=PgX8XnI+ prgy — P80 + x)
=h X g(P,— P,;) + P22y — P, 8X
Difference of pressure at A and B = /1 < g(pP, — ;) + P>8Y — P 8X

In Fig. 2.18 (&), the two points A and B are at the same level and contains the same liquid of density
Py- Then

Pressure above X-X in right imb =p_ X g < + p, X g X x + pgy
Pressure above X-X in left limb =Py X8 X (1 + X))+ p,
Equating the two pressure
PeX 8 XN+ P18X +Pp=P; X8 XUt +x)+ p,
Pa—Pp=Peg>X8 X+ pgx — p,&(1 + x)
=g < A(p_— Pi)-
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Buoyant force:_The upward force exerted by a liquid on a body when the body is immersed
in the liquid is known as buoyancy or buoyant force.

The point through which force of buoyancy is supposed to act is called centre of buoyancy.
The buoyant force acting on a body is equal to the weight of the liquid displaced by the body.
For a fluid with constant density, the buoyant force is independent of the distance of the body
from the free surface. It is also independent of the density of the solid body.

Archimedes principle: The buoyant force acting on a body immersed in a fluid is equal to
the weight of the fluid displaced by the body, and it acts upward through the centroid of the
displaced volume. For floating bodies, the weight of the entire body must be equal to the
buoyant force, which is the weight of the fluid whose volume is equal to the volume of the
submerged portion of the floating body.

Floating
<y RTETE AN
v Fluid

Suspended body
tncuteally buoyane

Sinking
Iy £?= Py by

Fig:14. Floating Body

Stability of immersed and floating bodies

A floating body possesses vertical stability, while an immersed neutrally buoyant
body is neutrally stable since it does not return to its original position after a
disturbance.

Stability of submerged bodies
(i) stable (ii) Neutrally stable (iii) Unstable

Fig:15. An immersed neutrally buoyant body is (a) stable if the
center of gravity G is directly below the center of buoyancy
B of the body, (b) neutrally stable if G and B are coincident,
and (c) unstable if G is directly above B.

Metacentre: The point about which a body starts oscillating when the body is tilted is known
meta- centre.
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Metacentric height GM: The distance between the center of gravity G and the metacenter M
is known as Meta centric height. It is the point of intersection of line of action of buoyant

Centre of grvity & centre of
buoyancy - Lying oln same axis

Metacentre

Body floaJing - Normal Body floating - Tilted
force with the line passing through centre of gravity, when the body is slightly tilted.

Fig.16. Metacentric Height

The length of the metacentric height GM above G is a measure of the stability: If the metacentric
height increases, then the floating body will be more.. The meta-centric height (GM) is.given by, GM
=V - BGWhere, | = Moment of Inertia of the floating body (in plan) at water surface about the axis
Y- Y V = Volume of ihe body sub merged in waterBG = Distance between centre of gravity and
centre of buoyancy. Conditions of equilibrium of a floating and submerged body are :

Table.2. Condition of Equilibrium of a Floating bodies

Equilibrium Floating Body Sub-merged Body
(i) Stable Equilibrium M is above G B is above G

(@) Unstable Equilibrium |M is below G B is below G

(H1) Neutral Equilibrium |Af and G coincide B and G coincide

Stability of floating bodies .A floating body is stable if the body is bottom-heavy and thus
the center of gravity G is below the centroid B of the body, or if the metacentre M is above
point G. However, the body is unstable if point M is below point G.

Metacentre

| 4
f M

Overturning

‘ ! Restoring
| OIS moment
| [ moment
@ (i) (@)
Stable condnditions of floating bodies Unstable condition of floating body
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Fig.17.Stability of Floating Bodies

Problems:
1.Calculate the sp.weight, density and sp.gravity of one litre of liquid which weights 7N.

1 |
Volume = 1 litre = ——m* ( 1 litre = l m® or 1 litre = 1000 cm’]

1000
Weight = 7 N
() Specificweight(w) =8t o TN _ 2000 Nm®. Ans.
Volume ( I ] 3
——|m
1000
y 7
(i) Density (p) =¥ _T000 4 oimd s 7135 kg, Ans.
g 981
iqui 35
(ii1) Specific gravity = Denw.(y of ligquid = i {* Density of water = 1000 kg/m?}
Density of water 1000
= 0.7135. Ans.

2.Calculate the density, sp.weight and weight of one litre of petrol of specific gravity = 0.7
Solution. Given:  Volume = 1 litre = 1 x 1000 cm® = ll(:)(? m’ = 0.001 m*

Sp. gravity §=07
(i) Density (p)
Using equation (1.14),

Density (p) = § % 1000 kg/m* = 0.7 x 1000 = 700 kg/m>. Ans.
(ii) Specific weight (w)
Using equation (1.1), w=pxg=700x9.81 N/m* = 6867 N/m*. Ans.
(iii) Weight (W)
We know that specific weight = eight
Volume
W ; W
) = e OF 6867 = ——
o "= 0001 0.001

W= 6867 x 0.001 = 6.867 N. Ans.

3.A plate 0.023 mm distant from a fixed plate moves at 60 cm/s and requires a force of 2N
per unit area i.e 2 N/m? to maintain this speed. Determine the fluid viscosity between the

plates.
Solution. Given : —L o
Distance between plates, dy = .025 mm Emm=c=c::= U =60 cride
=.025%x10%m dy=025mm ===:=
Velocity of upper plate, u =60 cm/s = 0.6 m/s t
N FIXED PLATE
Force on upper plate, F=2.0 = .
02
This is the value of shear stress i.e., T
Let the fluid viscosity between the plates is .
d
Using the equation (1.2), we have T=1 d—“ .
¥
where  dui = Change of velocity = 4 - 0 = © = 0.60 m/s
dy = Change of distance = .025 x 10> m
T = Force per unit area = 2.0 NZ
] .0 % .025 =2 _s Ns
2,0=p_L0_3_ P 20x.025%107* _ oo s N':
025x<10 0.60 m~

= 8.33 x 107> x 10 poise = 8.33 x 10~ poise. Ans.
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4.The dynamic viscosity of oil used for lubrication between a shaft and sleeve is 6 poise. The
shaft is of diameter 0.4 m and rotates at 190 rpm. Calculate the power lost in the bearing for a
sleeve length of 90mm. The thickness of the oil film is 1.5mm.

Solution. Given : 1.5 mm
Viscosity 1 = 6 poise

- ——

Dia. of shaft, D=04m ?g |
¥%—— 90 mm SHAFT

E\\\“

Speed of shaft, N =190 r.p.m
3 SLEEVE
Sleeve length, L=90mm=90x10"m
Thickness of oil film, t=1.5mm=15x10>m
Tangential velocity of shaft, u = REN S0, 3.98 m/s
60 60
; : du
Using the relation T=10 —
dy
where du = Change of velocity = u— 0 = u = 3.98 m/s
dy = Change of distance = r = 1.5 x 10> m
.9
T=10x 3—83 = 1592 N/m?
1.5x 10

This is shear stress on shaft
Shear force on the shaft, F' = Shear stress X Area
=1592x DXL =1592x 1t x.4%x90%x 10 >=180.05N

Torque on the shaft, T = Force X g = 180.05 X 02—4 =36.01 Nm

_2nNT _271tx190x36.01
60 60

*Power lost = 716.48 W. Ans.

5.The surface tension of water in contact with air at 20°C is 0.0725N/m. The pressure
inside a droplet of water is to be 0.02 N/cm? greater then the outside pressure.
Calculate the diameter of the droplet of water.

Solution. Given :
Surface tension, o = 0.0725 N/m
Pressure intensity, p in excess of outside pressure is

p=0.02 N/em? = 0.02 < 10% Nz
Let d = dia. of the droplet
we getp = %’ or 0.02 x 10* = AOs,
d= X002 _ 00145 m = 00145 x 1000 = 1.45 mm. Ans.
0.02 x(10)
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6.Calculate the capillary rise in a glass tube of 2.5mm diameter when immersed vertically in
a) water b) Mercury. Take surface tension of 2.5 mm diameter when immersed vertically in
contact with air. The specific gravity for mercury is given as 13.6 and angle of contact = 130

Density = 13.6 x 1000 kg/m>.
(a) Capillary rise for water (6 = 0°)
46 4 % 00725
pxgxd 1000x981x25x1073
=.0118 m = 1.18 cm. Ans.

Using equation (1.20), we get i =

(b) For mercury

Angle of contact between mercury and glass tube, 6 = 130°

46 cosO 4 % 0.52 x cos 130°
pxgxd 13.6x1000x9.81x2.5x10>

=—.004 m = — 0.4 cm. Ans.
The negative sign indicates the capillary depression.

Using equation (1.21), we get h =

7.The right limb of a single U-tube manometer containing mercury is open to the atmosphere
while the left limb is connected to a pipe in which a fluid of sp.gravity is 0.9 is flowing. The
centre of the pipe is 12cm below the level of mercury in the right limb. Find the pressure of
fluid in the pipe if the difference of mercury in the two limbs is20cm.

Solution. Given :

Sp. gr. of fluid, §;=09
Density of fluid, p; =5, % 1000 = 0.9 x 1000 = 900 kg/m’ T

Sp. gr. of mercury, §,=13.6 : T
Density of mercury, P, =13.6 x 1000 kg/m?

Difference of mercury level, h,=20cm=0.2m
Height of fluid from A-4, hy=20-12=8cm=0.08 m
Let p = Pressure of fluid in pipe
Equating the pressure above A-A, we get
P+ Pighy = pyghy
p+900 x9.81 x 0.08 = 13.6 x 1000 x 9.81 x .2
p=13.6 x 1000 x 9.81 x .2 - 900 x 9.81 x 0.08
= 26683 - 706 = 25977 N/m” = 2.597 N/em’. Ans.
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8.A differential manometer is connected at the two points A and B of two pipes as shown in
fig. The pipe A contains a liquid of Sp.gravity = 1.5 while pipe B contains a liquid of
sp.gravity = 0.9. The pressure at A and B are 1 Kgf/cm? and1.80 Kgf/cm? respectively. Find
the difference in mercury level in the differential manometer.

Sp.gr=15
o Py =1 kgf/cm2

Solution. Given :
Sp. gr. of liquid at 4, §, = 1.5 = p, = 1500
Sp. gr. of liquid at B, $,=09 = p, =900
Pressure at A, py=1 kgf/cm2 =1x10* kgf/m2
= 10*x 9.81 N/m? (- 1 kgf = 9.81 N)
Pressure at B, pg= 1.8 keffem®
= 1.8 x 10* kef/m” _
=18 10'x 981 Nim® (= 1 kef =981 N)
Density of mercury = 13.6 x 1000 kg/m’
Taking X-X as datum line.

Pressure above X-X in the left limb
=13.6 x 1000 x 9.81 X i + 1500 x 9.81 X (2 + 3) + p,
= 13.6 X 1000 X 9.81 X i + 7500 x 9.81 + 9.81 x 10*
Pressure above X-X in the right limb = 900 x 9.81 X (h + 2) + pp
=900 x 9.81 X (h +2) + 1.8 x 10 x 9.81
Equating the two pressure, we get
13.6 X 1000 x 9.81h + 7500 x 9.81 + 9.81 x 10*
=900 x 9.81 x (h + 2) + 1.8 x 10* x 9.81
Dividing by 1000 x 9.81, we get
136h+75+10=(h+2.0)x .9+ 18
13.6h + 17.5= 097 + 1.8 + 18 = 0.9h + 19.8
(136 - 09)h=19.8 - 17.5 or 12.7h = 2.3

h= —21 = (.181 m = 18.1 ¢m. Ans.

T 127
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A rectangular plane surface is 2m wide and 3m deep. It lies in vertical plane in water.
Determine the total pressure and position of centre of pressure on the plane surface when its
upper edge is horizontal and a) coincide with water surfaceb) 2.5 m below the free water surface.

Solution. Given :

Width of plane surface, b=2m

Depth of plane surface, d=3m

(a) Upper edge coincides with water surface

s e FREE WATER SURFACE
where p = 1000 kg/m>, g = 9.81 m/s> e T"U ACE
—3x2=6m% %=~ (3)=15m h T
2 h*
F = 1000 x 9.81 x 6 x 1.5 G l 3m
= 88290 N. Ans. ¥ pa
Depth of centre of pressure is given by equation (3.5) as
h* = I—G_ + E
Ah ! 2m !
where I; = M.O.I. about C.G. of the areca of surface
3 3
- bd — 2x3 . m4
12 12
ke &S

+ 1.5=0.5+ 1.5 = 2.0 m. Ans.
6 <X 1.5
(b)) Upper edge is 2.5 ma below water surface
Solution. Given :

FREE WATER SURFACE
Width of plane surface, b =2m - 2 P
Depth, d=3m ‘ 1.5
Angle, 8 = 30° = E ”‘)c,
Distance of upper edge from free water surface = 1.5 m ¥ AD
(i) Total pressure force is given by equation X
F = pgAh &
where p = 1000 kg/m> X Q /
A=bxd=3x2=6m’ > <
h = Depth of C.G. from free water surface N /

= 1.5 + 1.5 sin 30°
{~ h=AE+ EB=1.5+ BCsin 30°= 1.5 + 1.5 sin 30°}
000 x 9.81 x 6 x 2.25 = 132435 N. Ans.

(ii) Centre of pressure (h¥)

Using equation (3.10), we have

2 X 3 3
h*=M+E, whereIG=bd #%3 =4.5m*
Ah 12 12
1
4.5 x sin?30° A5R—

h* = +225=—-——F +2.25
6x2.25 6 x2.25

= 0.0833 + 2.25 = 2.3333 m. Ans.

10.A rectangular plane surface 2m wide and 3m deep lies in water in such a way that its
plane makes an angle of 30> with the free surface of water. Determine the total surface and
position of centre of pressure when the upper edge is 1.5m below the free water surface.
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Solution. Given : FREE WATER SUR:ACE
»

Width of plane surface, b =2m
Depth, d=3m
Angle, 0 = 30°
Distance of upper edge from free water surface = 1.5 m

(i) Total pressure force is given by equation

F = pgAh
where p = 1000 kg/m>
A =bxd=3%2=6m?>

h = Depth of C.G. from free water surface
= 1.5 + 1.5 sin 30°

{~ h=AE+ EB= 1.5+ BC sin 30° = 1.5 + 1.5 sin 30°}

=15+15x4+=225m
F =1000 %< 9.81 X 6 X 2.25 = 132435 N. Ans.

(ii) Centre of pressure (h¥)

Using equation (3.10), we have

=2 3 3
O L T B S Tl
Ah 12 12
1
=2 o 4.5 < —
p— 4.5 < sin” 30 + 2.25 = 4 + 2.25
6: X225 6 < 2.25

. =_0.0833 + 2.25 = _2.3333 m. Ans.
11.Find the volume of the water displaced and position of centre of buoyancy for a wooden

block of width 2.5m and depth 1.5m. When it floats horizontally in water. The density of
wooden block is 650 kg/m*® and its length 6m.

Solution. Given :

Width =25m WATER

Depth =15m SURFACE| =

Length - 6.0m === o 1W o

Volume of the block =2.5x1.5x%6.0=22.50m> BTF m p

Density of wood, p = 650 kg/m> = J_l
Weight of block = p X g X Volume < 25m =|

=650 x9.81 x22.50 N = 143471 N

For equilibrium the weight of water displaced = Weight of wooden block

= 143471 N
Volume of water displaced
Solution. Given : = M0 . PR Jp
Dimension of pontoon =5mx3Imx1.20m 1000x9.81
Depth of immersion =08 m - . o density of water = 1000 x 9.81 N/m>)

Position of Centre of Buoyancy. Volume of wooden block in water
= Volume of water displaced
2.5 % h x 6.0 = 14.625 m®, where  is depth of wooden block in water

=280 G
2.5x%6.0

Centre of Buoyancy = ngj = 0.4875 m from base. Ans.

12.A rectangular pontoon is 5m long, 3m wide and 1.20m high. The depth of immersion of
the position is 0.80 m in sea water. If the centre of gravity is 0.6m above the bottom of the
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position, determine the meta centric height. The density for sea water is 1025 kg/m?®,

Types of fluid flow

The fluid flow is classified as :
(i) Steady and unsteady flows ;

(i) Uniform and non-uniform flows ;

(iif) Laminar and turbulent flows ;

(iv) Compressible and incompressible flows
(v) Rotational and irrotational flows ; and

(vi) One, two and three-dimensional flows.

Steady and Unsteady Flows. Steady flow is defined as that type of flow in which the fluid
characteristics like velocity, pressure, density, etc., at a point do not change with time. Thus for
steady flow, mathematically, we have

2, ), ),
ot X0+ Yg» W ot X0, ¥+ 20 ot Xgs Yo 20

where (x,, ¥y, Zp) is a fixed point in fluid field.

Unsteady flow is that type of flow, in which the velocity, pressure or density at a point changes with
respect to time. Thus, mathematically, for unsteady flow

v 3
a— #0, | = # () etc.
f Yo Yoo 20 at Xps ¥gr 20

Uniform and Non-uniform Flows. Uniform flow is defined as that type of flow in
which the velocity at any given time does not change with respect to space (i.e., length of direction of
the flow). Mathematically, for uniform flow

(50 ™
aS 1 =constant

where 9V = Change of velocity
ds = Length of flow in the direction S.

Non-uniform flow is that type of flow in which the velocity at any given time changes with respect

to space. Thus, mathematically, for non-uniform flow

[a—"] £0.
ds t = constant

Laminar and Turbulent Flows. Laminar flow is defined as that type of flow in which
the fluid particles move along well-defined paths or stream line and all the stream-lines are straight and
parallel. Thus the particles move in laminas or layers gliding smoothly over the adjacent layer. This

type of flow is also called stream-line flow or viscous flow.

29



Turbulent flow is that type of flow in which the fluid particles move in a zig-zag way. Due to the
movement of fluid particles in a zig-zag way, the eddies formation takes place which are responsible

for high energy loss. For a pipe flow, the type of flow is determined by a non-dimensional numberv—
v
called the Reynold number,
where D = Diameter of pipe
V = Mean velocity of flow in pipe

and v = Kinematic viscosity of fluid.

If Re < 2000, the flow is Laminar
Re > 4000, the flow is turbulent
2000 < Re <4000, the flow may be Laminar or turbulent

laminar flow

L

L
- —
-
-

L

turbulent flow

o
=
<

S
= C—
-

C < e

< S

Compressible and Incompressible Flows. Compressible flow is that type of flow in
which the density of the fluid changes from point to point or in other words the density (p) is not
constant for the fluid. Thus, mathematically, for compressible flow

p # Constant
Incompressible flow is that type of flow in which the density is constant for the fluid flow. Liquids
are generally incompressible while gases are compressible. Mathematically, for incompressible flow

p = Constant.

Rotational and Irrotational Flows. Rotational flow is that type of flow in which the
fluid particles while flowing along stream-lines, also rotate about their own axis. And if the fluid
particles while flowing along stream-lines, do not rotate about their own axis then that type of flow is
called irrotational flow.

One-, Two- and Three-Dimensional Flows. One-dimensional flow is that type of
flow in which the flow parameter such as velocity is a function of time and one space co-ordinate only,

u=f(x),v=0and w=0

Two-dimensional flow is that type of flow in which the velocity is a function of time and two
rectangular space co-ordinates say x and y. ' '

u=fxy),v=Lfxy) and w=0.
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Three-dimensional flow is that type of flow in which the velocity is a function of time and three
mutually perpendicular directions. . '

u=fi(x,y, 2),v=[flx,y, 2) and w = f3(x, y, 2).

Rate of flow or Discharge (Q)

It is defined as quantity of flow per second through the section of pipe or channel.

(i) For liquids the units of Q are m’/s or litres/s
(if) For gases the units of Q is kgf/s or Newton/s
Consider a liquid flowing through a pipe in which

A = Cross-sectional area of pipe

V = Average velocity of fluid across the section
Then discharge Q=AxV.

Continuity Equation
The equation based on the principle of conservation of mass is called continuity equation. Thus for
a fluid flowing through the pipe at all the cross-section, the quantity of fluid per second is constant.
Rate of flow at section 1 — 1 = rate of flow at section 2 — 2

p1A1V1 =p2A2V;
If the fluid flow is incompressible, the p; =p;

A1V1 :A2V2
O) @
l{/)l[t}l!{///l}l}//l!/_LlLLLl_Lz_w
DIRECTION Ii !
—
OF FLOW

Equation of motion

According to Newton’s second law of motion,
F.=ma,
In the fluid flow, the following forces are present :
(i) F,, gravity force.
(i) FP, the pressure force.
(iiif) F,, force due to viscosity.
(iv) F,, force due to turbulence.
(v) F_, force due to compressibility.

the net force
F. = (Fg)x + (Fp)x + (F) e+ (F+ (F)y

(7) If the force due to compressibility, FC is negligible, the resulting net force
Fx = (Fg).t + (Fp)x + (Fv)x + (Fr).r
and equation of motions are called Reynold’s equations of motion.
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(it) For flow, where (F,) is negligible, the resulting equations of motion are known as
Navier-Stokes Equation.
(i) If the flow is assumed to be ideal, viscous force (F,) is zero and equation of motions are
known as Euler’s equation of motion.

Euler’s equation of motion.

The forces acting on the cylindrical element are:

1. Pressure force pdA in the direction of flow.

J
2. Pressure force [ p+ a—p ds | dA opposite to the direction of flow.
s

3. Weight of element pgdAds.
Let 6 is the angle between the direction of flow and the line of action of the weight of element.

The resultant force on the fluid element in the direction of s must be equal to the mass of fluid
element X acceleration in the direction s.

pdA — [p + g_p ds) dA — pgdAds cos ©
s

= pdAds X ag
where ag is the acceleration in the direction of s.

dv . .
a,= d—, where v is a function of s and t.
' t

T o T os o

=V

_dvds dv _viv v {d_s }
Codr

d
If the flow is steady, A 0

ot
s as
Substituting the value of a;
d
- a—P dsdA — pg dAds cos 0 = pdAds % dd
ds Os
Dividing by pdsdA, — 22 _ g cos 8 = *”
pos ds
or a—‘U+ Cos B+ v o =0
pOs £ s
we have cos 0 = ﬂ
ds
1 4
— —p + g d_?.. + ﬂ = O
p ds ds ds -
dp
or —+ gdz+vdv=0

e Frnanrm ae Enlar’e aanatinn afF tvodicm



BERNOULLI’'S EQUATION FROM EULER’S EQUATION

Bernoulli’s equation is obtained by integrating the Euler’s equation of motion
d,
j_p + jgdz + J vdv = constant
p
If flow is incompressible, p is constant and

p v
“tgr+ 5= constant

2

P v
—+ z+— = constant
pg 28
p v
—+ — 4 7z = constant
pg  2¢
£ _ pressure energy per unit weight of fluid or pressure head.
pPg

v2/2g = kinetic energy per unit weight or kinetic head.
z = potential energy per unit weight or potential head.

Statement of Bernoulli’s Theorem. It states that in a steady, ideal flow of an incom-
pressible fluid, the total energy at any point of the fluid is constant. The total energy consists of
pressure energy, kinetic energy and potential energy or datum energy. '

A pipe, through which water is flowing, is having diameters, 20 cm and 10 cm at the
cross-sections 1 and 2 respectively. The velocity of water at section 1 is given 4.0 m/s. Find the velocity
head at sections I and 2 and also rate of discharge.

D, =20cm=0.2m

A="p2=T(2)2=0.0314 m> @
4 4
V, = 4.0 m/s )
D,=0.1m D, =20 cm D, =10 cm

V, =40 misec

A, = ; (.1)2 = .00785 m>

(i) Velocity head at section 1
V7 40x40
2¢ 2x9.81

(if) Velocity head at section 2 = V22;’2g
To find V,, apply continuity equation at 1 and 2

= 0.815 m.

AV, 0314
A,  .00785

AV, =AV, or V,= x 4.0 = 16.0 m/s
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vy

16.0 x16.0

Velocity head at section 2 = 5
g

(iii) Rate of discharge
=0.0314 x 4.0 = 0.1256 m>/s
= 125.6 litres/s. Ans.

Problem 2:

= = 83.047 m.
2 x981

(- 1 m>= 1000 litres}

The water is flowing through a pipe having diameters 20 and 10 cm at sections 1 and 2
respectively. The rate of flow through the pipe is 35 litres/sec. the section 1 is 6 m above
the datum and section 2 is 4 m above the datum. If the pressure at section 1 is 39.24
N/cm?. Find the intensity of pressure at section 2

D

=3
%2 Ny,
C[he
\\\A
6 m 9? =70
4m
l DATUM LINE l

At section 1,

D =20cm =02 m
A, = % (2)% = .0314 m?
p; = 39.24 N/cm?

= 39.24 x 10* N/m?
Z| — 6-0 m

At section 2,
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D,=0.10 m
A, = ; (0.1)> = .00785 m?

Z,=4m
pr="

0 = 35 lit/s = 3 035 m¥s
1000

v, = Q _ 035
A, 0314
0 035
V,Z = =
A, .00785
Applying Bernoulli’s equation at sections 1 and 2, we get

= 1.114 m/s

= 4.456 m/s

V.2 V.2
P =P,
pg 28 pg 2g
4 2 2
3924x10°  (L114)* s , (4450
1000 x9.81 2x9.81 1000 x9.81 2x9.81

p, =41.051 x 9810 N/m?
_ 41.051x 9810
- 10*

N/cm? = 40.27 N/em?.

Problem 3:

Water is flowing through a pipe having diameter 300 mm and 200 mm at the bottom
and upper end respectively. The intensity of pressure at the bottom end is 24.525 N/em* and the
pressure at the upper end is 9.81 N/em®. Determine the difference in datum head if the rate of flow
through pipe is 40 lit/s.
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=

DO, — 200 rrmarrm
—T P — O . =1 IN/orv
——=24 a>
D, —= 300 rmxrm -
zx P, = =29 . S22 N/ aornm
-
h 4

CCoAAT URN LINE

Section 1,

D, =300 mm=0.3m
p, = 24.525 N/cm? = 24.525 x 10* N/m*

Section 2,

D, =200 mm = 0.2 m
p, =9.81 N/em? = 9.81 x 10* N/m?

Rate of flow = 40 lit/s

Q= 40 = 0.04 m’/s
1000

AV, =A,V, = rate of flow = 0.04

V, = H_ 4 004 0.5658 m/s

A, 593_5032
4! 4(')
~ (.566 m/s
V, = 04 = 04 = 0.04 = 1.274 m/s

‘AZ EDE E[}zl
4(3) 4(-)

Applying Bernoulli’s equation at sections (1) and (2), we get
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24.525%10%  .566 %.566 081x10* (1.274)°
-+ +Z,= + +2
1000 % 9.81 2 %9.81

"~ 1000x9.81 2x9.81

25+ 32+2,=10+1.623 + z,
2532 +z,=11.623 + z,
=2, =2532-11.623=13.697 =13.70 m
Difference in datum head =2z,-z, =13.70 m. Ans.

Problem 4:

The water is flowing through a taper pipe of length 100 m having diameters 600 mm

at the upper end and 300 mm at the lower end, at the rate of 50 litres/s. The pipe has a slope of 1 in 30.

Find the pressure at the lower end if the pressure at the higher level is 19.62 N/cm®.

2

o N
_=Q0 «,‘/\/
02’3 s
L=100m
T > " 5
A -_— D = — .6
1 1 1 4 (.6)
= 0.2827 m?
P, = pressure at upper end

19.62 N/cm?
D, =300 mm=0.3m

A= ; D, = % (.3)% = 0.07068 m

Q = rate of flow = 50 litres/s = i = 0.05 m>/s
1000

Let the datum line passes through the centre of the lower end.
Then 7, =0
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As slope is 1 in 30 means  z, = % x 100 = % m

Also we know Q=A,V,=A,V,
V= Q. 005 = 0.1768 m/sec = 0.177 m/s
A 2827
and V,= Q2 ._ 0 0.7074 m/sec = 0.707 m/s
A, .07068

Applying Bernoulli’s equation at sections (1) and (2), we get

2 2
V V.
Py oy =82422 4

pg 2g pg 2g

19.62x10* 177* 10 p, .707°
+ + + +0
1000x9.81 2x981 3 pg 2x981

20 + 0.001596 + 3.334 = £2 4+ 0.0254
pPg

P
1000 x 9.81
P> =23.3 x 9810 N/m* = 228573 N/m* = 22.857 N/cm®

23.335 - 0.0254 =

Practical applications of Bernoulli’s equation:

Although Bernoulli’s equation is applicable in all problems of incompressible flow where
there is involvement of energy considerations. But we shall consider its application to the
following measuring devices. 1) Venturimeter 2) Orifice meter 3) Pitot tube

Venturimeter: is a device used for measuring the rate of flow of a fluid flowing through a
pipe. It consists of three parts:

* A short converging part
* Throat

* Diverging part
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Figure 4.4. Venturimeter

Let d; = diameter at inlet or at section (1),

p = pressure at section (1)
v, = velocity of fluid at section (1),

. T
a = area at section (1) = E d,z

d,, p», V5, a, are corresponding values at section (2).

Applying Bernoulli’s equation at sections (1) and (2), we get

L2 + — + 7= =P + —— + 25
P8 23 P8 2g
As pipe is horizontal, hence z, =2,
P1+V12=P2+V§ or Pl_P2=ﬁ_ﬁ
Pg 28 pg 28 P8 2g 28
But Wb is the difference of pressure heads at sections I and 2 and it is equal to h or Wb h
Pg pg

P~ P>
Pg

Substituting this value of in the above equation, we get

2 2
Vo VY

2g 2g
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Now applying continuity equation at sections 1 and 2

d.V
a
Substituting this value of v,
2
a,V,
2 2 2 2 2 2
h=V2 _ al =V2 l_a_z =V2 al_az
2¢ 26 28| 4| 2| af
22
vy,© =2gh )
a, —4a,
a’ a
_ 1 _ 1
Vy = [28h——— = = = \28h
a; —d, a; — a,
Discharge, 0 = a,v,

‘\f _“1 d, —a,

Equation gives the discharge under ideal conditions and is called, theoretical discharge. Actual
discharge will be less than theoretical discharge.

Qact = Ca’ X

xZg

a ‘“2

where C, = Co-efficient of venturimeter and its value is less than 1.

Value of ‘h’ given by differential U-tube manometer
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Case I. Let the differential manometer contains a liquid which is heavier than the liquid flowing
through the pipe. Let
S, = Sp. gravity of the heavier liquid
S, = Sp. gravity of the liquid flowing through pipe
x = Difference of the heavier liquid column in U-tube

Then h:x{ﬁ— ]

o

Case II. If the differential manometer contains a liquid which is lighter than the liquid flowing
through the pipe, the value of 4 is given by

h=x _3

where  §;, = Sp. gr. of lighter liquid in U-tube
S, = Sp. gr. of fluid flowing through pipe
x = Difference of the lighter liquid columns in U-tube.

Case III. Inclined Venturimeter with Differential U-tube manometer. The above two cases are
given for a horizontal venturimeter. This case is related to inclined venturimeter having differential
U-tube manometer. Let the differential manometer contains heavier liquid then A is given as

h= (ﬂ-l-zlj_(&-'- ZZJ =X {Sh—l]
P8 P8 5o

Case IV. Similarly, for inclined venturimeter in which differential manometer contains a liquid
which is lighter than the liquid flowing through the pipe, the value of # is given as

e
pg pg S,

Problem 5;:

A horizontal venturimeter with inlet and throat diameters 30 cm and 15 cm respec-
tively is used to measure the flow of water. The reading of differential manometer connected to the
inlet and the throat is 20 cm of mercury. Determine the rate of flow. Take C, = 0.98.
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Dia. at inlet, d, =30 cm

Area at inlet, a, = E d? = ; (30) = 706.85 cm?
Dia. at throat, d, =15 cm

a4, = = x 152 = 176.7 cm?
4

Cﬂr - 098

Reading of differential manometer = x = 20 cm of mercury.
Difference of pressure head is given by (6.9)

or h=x {S”— 1]
SO
where §, = Sp. gravity of mercury = 13.6, S, = Sp. gravity of water = 1
=20 [%— l} =20x12.6 cm = 252.0 cm of water.

a,a,

2 2
a, —d,

Q = Cd X Zgh

= 0.98 x ——08XNT60T | pogix252

J(706.85)% — (176.7)?

_ 8606759336  _ 86067593.36
J499636.9 — 31222.9 684.4

125756

= 125756 cm>/s = lit/s = 125.756 lit/s.

Problem 6:
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A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm is
used to measure the flow of il of sp. gr. 0.8. The discharge of oil through venturimeter is 60 litres/s.
Find the reading of the oil-mercury differential manometer. Take C, = 0.98.

d, =20 cm

a, = ; 202 = 314.16 cm®
d, = 10 cm
a, = g x 10° = 78.54 cm?

C,= 098
Q = 60 litres/s = 60 x 1000 cm?/s

0=C, ‘:1‘12 — % [2gh

a; —a,

60 % 1000 = 9.8] x 110X 7854 s—rer——r  1071068.78vh

J(314.16)* - (78.54)* 304

304 x 60000

h =
Vh 1071068.78
h=(17.029)> = 289.98 c¢m of oil

= 17.029

289.98 = x [13—6— 1} = 16x
0.8
h=x S—”"— 28998
S, X = = 18.12 cm.

Reading of oil-mercury differential manometer = 18.12 cm.
Problem 7:
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The inlet and throat diameters of a horizontal venturimeter are 30 cm and
10 cm respectively. The liquid flowing through the meter is water. The pressure intensity at inlet is
13.734 Nicm® while the vacuum pressure head at the throat is 37 cm of mercury. Find the rate of flow.
Assume that 4% of the differential head is lost between the inlet and throat. Find also the value of C,
for the venturimeter.

Dia. at inlet, d, =30 cm
T
a=7 (30)* = 706.85 cm”
Dia. at throat, d, =10 cm

a, = % (10)? = 78.54 cm?

13.734 N/cm? = 13.734 x 10* N/m?

Pressure, P

4
Pressure head, Pr_ 13734 x10 = 14 m of water

pg 1000 x9.81

P2 __ 37 ¢cm of mercury
P8
-37x13.6
= m of water = — 5.032 m of water
100
Differential head, h=p,/pg—p./pg
= 14.0 — (- 5.032) = 14.0 + 5.032
= 19.032 m of water = 1903.2 cm
Head lost, h,= 4% of h = % % 19.032 = 0.7613 m
h—h 19.032 — .7613
Ca= \f P \{ 19.032 =098
_ a,a,+/2gh
. Discharge =Cy —
a, —a,
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a,a,+/2gh

2

Discharge =Cy -
a, —a,

_ 098 X706.85 X 78.54 X /2 x 981 x 1903.2
J(706.85)° — (78.54)°

_ 10513224738
/499636.9 — 6168

= 149692.8 cm>/s = 0.14969 m?/s.

Problem 8:

A 30 cm x 15 cm venturimeter is provided in a vertical pipe line carrying oil of
specific gravity 0.9, the flow being upwards. The difference in elevation of the throat section and
entrance section of the venturimeter is 30 cm. The differential U-tube mercury manometer shows a
gauge deflection of 25 cm. Calculate :

(i) the discharge of oil, and
(ii) the pressure difference between the entrance section and the throat section. Take the
co-efficient of discharge as 0.98 and specific gravity of mercury as 13.6.

Dia. at inlet, d, = 30 cm

. Area, a, = % (30)? = 706.85 cm?
Dia. at throat, d, =15 cm

s Area, a, = E (15)2 = 176.7 cm?

S,=0.9
Sp. gr. of mercury, 5, = 13.6
Reading of diff. manometer, x = 25 cm

Sp. gr. of oil,
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S
= x {—3- 1} =25 [%— 1] = 352.77 ¢m of oil

(i) The discharge, Q of oil

a,d,

a; — azz
_ 0.98 x 706.85 x176.7 _ JZ <981 < 35277
J(706.85)* — (176.7)*
= 1018322199 = 148790.5 cm>/s
684.4

= 148.79 litres/s. Ans.

(ii) Pressure difference between entrance and throat section

h= (ﬂ+ zlj—[&+ zgj = 352,77
P8 P8

[ﬂ— &) + 2, — 2, = 352.77
Ps P8

ZE_ZI = 30 cm

[ﬂ - &) ~30 = 352.77
Pg P8

P _ P2 _ 35777 4+ 30 = 382.77 cm of oil = 3.8277 m of oil.
pg  Pg

46



= Sp. gr. of oil x 1000 l{g;’m3
= 0.9 x 1000 = 900 kg/cm’

3.8277 x 900 x 9.81 12

m

(Py— P2

379
% N/cm? = 3.3795 N/cm?>.

Orifice Flow Measurement — History:

The first record of the use of orifices for the measurement of fluids was by Giovanni
B.Venturi, an Italian Physicist, who in 1797 did some work that led to the development of the
modern Venturi Meter by Clemons Herschel in 1886. It has been reported that an orifice
meter, designed by Professor Robinson of Ohio State University was used to measure gas
near Columbus, Ohio, about 1890. About 1903 Mr. T.B. Weymouth began a series of tests in
Pennsylvania leading to the publication of coefficients for orifice meters with flange taps. At
the same time Mr. E.O. Hickstein made a similar series of tests at Joplin, Missouri, from
which he developed data for orifice meters with pipe taps. An orifice in a pipeline is shown in
Figure 4.5 with a manometer for measuring the drop in pressure (differential) as the fluid

passes thru the orifice. The minimum cross sectional area of the jet is known as the “vena
contracta.”

PIPE ORIFICE METER

o4 @)
= ; -
DIRECTION OF FLOW( . \l il Q

b

k.
- Lo L
P @ N

—

|
|
0

Figure 4.5.0rificemeter

The discharge, Q is given by equation
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dnd
0=Cy ;} - > X +J28h

a, —dy

What is an Orifice Meter?

An orifice meter is a conduit and a restriction to create a pressure drop. An hour glass is a
form of orifice. A nozzle, venturi or thin sharp edged orifice can be used as the flow
restriction. In order to use any of these devices for measurement it is necessary to empirically
calibrate them. That is, pass a known volume through the meter and note the reading in order
to provide a standard for measuring other quantities. Due to the ease of duplicating and the
simple construction, the thin sharp edged orifice has been adopted as a standard and extensive
calibration work has been done so that it is widely accepted as a standard means of measuring
fluids. Provided the standard mechanics of construction are followed no further calibration is
required.

Major Advantages of Orifice Meter Measurement

Flow can be accurately determined without the need for actual fluid flow calibration. Well
established procedures convert the differential pressure into flow rate, using empirically
derived coefficients. These coefficients are based on accurately measurable dimensions of the
orifice plate and pipe diameters as defined in standards, combined with easily measurable
characteristics of the fluid, rather than on fluid flow calibrations. With the exception of the
orifice meter, almost all flow meters require a fluid flow calibration at flow and temperature
conditions closely approximating service operation in order to establish accuracy.

Problem 9:

An orifice meter with orifice diameter 10 cm is inserted in a pipe of 20 cm diameter.
The pressure gauges fitted upstream and downstream of the orifice meter gives readings of
19.62 N/em?* and 9.81 N/em® respectively. Co-efficient of discharge for the orifice meter is given as
0.6. Find the discharge of water through pipe.

Dia. of orifice, dg= 10 cm

.. Area, a, g (10)* = 78.54 cm?
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Dia. of pipe, d, =20 cm
Area, a, = % (2(]')2 = 314.16 cm*
p, = 19.62 N/em” = 19.62 x 10* N/m*

p _ 1962x10°
pg 1000 x9.81

20 m of water

p, 981x10*
pg 1000 x9.81

10 m of water

n=PL _ P2 _500-10.0 = 10 m of water = 1000 cm of water
pg P8
Q = Cn‘ G X Zgh
a, = ﬂﬂz
= 0.6 X 78.54 x314.16 X 1./2 x 981 x 1000
J(314.16)" - (78.54)’
_ 2073683809 _ 68213.28 cm’/s = 68.21 litres/s.
304
Problem 10:

An orifice meter with orifice diameter 15 cm is inserted in a pipe of 30 cm diameter.
The pressure difference measured by a mercury oil differential manometer on the two sides of the
orifice meter gives a reading of 50 cm of mercury. Find the rate of flow of oil of sp. gr. 0.9 when the co-
efficient of discharge of the orifice meter = (.64.
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Dia. of orifice, dy=15cm

Area, ay = % (15)* = 176.7 cm?
Dia. of pipe, d, =30 cm
T
Area, a=7 (30)* = 706.85 cm”
Sp. gr. of oil, S,=09

Reading of diff. manometer, x = 50 cm of mercury

. . S 13.6 ,
Differential head, h=x S_ —-1|=50 0—9 —1| cm of oil

(2]

=50 x 14.11 = 705.5 cm of oil
dna

2 2
a, —dg

0=C,. x [2gh

= 0.64 % 176.7x 706.85 X /2 X 981 % 705.5

J(706.85)* = (176.7)’

_ 34046317.78 _ 137414.25 cm>/s = 137.414 litres/s.

684.4

Pitot tube for Flow Measurement Construction:

The principle of flow measurement by Pitot tube was adopted first by a French Scientist
Henri Pitot in 1732 for measuring velocities in the river. A right angled glass tube, large
enough for capillary effects to be negligible, is used for the purpose. One end of the tube
faces the flow while the other end is open to the atmosphere as shown in Fig.4.6.
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Figure 4.6. Pitot tube

Consider two points (1) and (2) at the same level in such a way that point (2) is just as the inlet of
the pitot-tube and point (1) is far away from the tube.
Let p, = intensity of pressure at point (1)
v, = velocity of flow at (1)
P, = pressure at point (2)

v, = velocity at point (2), which is zero

H = depth of tube in the liquid

h = rise of liquid in the tube above the free surface.
Applying Bernoulli’s equation at points (1) and (2), we get

2 2
ﬂ+—+z _ﬁ+_+32
pg 28 Pg 28
But z, = z, as points (1) and (2) are on the same line and v, = 0.
P pressure head at (1) = H
Pg

P2 _ pressure head at (2) = (h + H)
P8
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Substituting these values, we get

2 2
V y

H+ L =(h+ soh=—— or v =.20h
2 (h+H) % 1= 428

This is theoretical velocity. Actual velocity is given by

(vl)act = Cw \/2?]1

where C, = Co-efficient of pitot-tube

Velocity of flow in a pipe by pitot-tube. For finding the velocity at any point in a pipe by pitot-
tube, the following arrangements are adopted :

1. Pitot-tube along with a vertical piezometer tube

2. Pitot-tube connected with piezometer tube

3. Pitot-tube and vertical piezometer tube connected with a differential U-tube manometer

./PITOT-TUBE m

PIEZOMETER -a i
TUBE

Figure 4.7. Velocity of flow in a pipe by Pitot tube

Problem 11:
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Find the velocity of the flow of an oil through a pipe, when the difference of mercury
level in a differential U-tube manometer connected to the two tappings of the pitot-tube is 100 mm.
Take co-efficient of pitot-tube 0.98 and sp. gr. of oil = 0.8.

Diff. of mercury level, x=100mm=0.1m
Sp. gr. of oil, S,=0.38
Sp. gr. of mercury, S,=13.6
C,=0098

, S 136 ,

Diff. of pressure head, h=x|—-1|=.1|—-1| =1.6 m of oil
S, 0.8
Velocity of flow =C, +2gh =098 /2x9.81xX1.6 =5.49 m/s. Ans.
Problem 12:

A sub-marine moves horizontally in sea and has its axis 15 m below the surface of
water. A pitot-tube properly placed just in front of the sub-marine and along its axis is connected to the
two limbs of a U-tube containing mercury. The difference of mercury level is found to be 170 mm. Find
the speed of the sub-marine knowing that the sp. gr. of mercury is 13.6 and that of sea-water is 1.026
with respect of fresh water.

Diff. of mercury level, x=170 mm = 0.17 m
Sp. gr. of mercury, S,=13.6
Sp. gr. of sea-water, S, =1.026

136 _ 1] =2.0834 m

SE
h=x|-%-1[=0.17
S, 1.026

V=,2gh = \f2 X 9.81x2.0834 =6.393 m/s

_ 6393 x60x60
1000

km/hr = 23.01 km/hr. Ans.

Problem 13:

A pitot-tube is inserted in a pipe of 300 mm diameter. The static pressure in pipe is
100 mm of mercury (vacuum). The stagnation pressure at the centre of the pipe, recorded by the

pitot-tube is 0.981 N/em”. Calculate the rate of flow of water through pipe, if the mean velocity of
flow is 0.85 times the central velocity. Take C, = 0.98.
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Dia. of pipe, d =300 mm = 0.30 m

Area, a= ; d*= g (.3)? = 0.07068 m?
Static pressure head = 100 mm of mercury (vacuum)
100
=— —— X 13.6 = - 1.36 m of water
1000
Stagnation pressure =981 N/cm?” = .981 x 10* N/m”
4 4
Stagnation pressure head = I81x10° _ 98Ix10_ 1 m
pg 1000 x 9.81
h = Stagnation pressure head — Static pressure head

=1.0-(-1.36) = 1.0 + 1.36 = 2.36 m of water

Velocity at centre =C, 2gh
= 0.98 X /2 x 9.81 X 2.36 = 6.668 m/s

Mean velocity, V =0.85 X 6.668 = 5.6678 m/s

Rate of flow of water = V X area of pipe
= 5.6678 x 0.07068 m*/s = 0.4006 m*/s. Ans.

Force exerted by a flowing fluid on a pipe bend

(b)

Figure4.8. Forces on bend
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Let v, = velocity of flow at section (1),
P, = pressure intensity at section (1),
A, = area of cross-section of pipe at section (1) and
V,, P, A, = corresponding values of velocity, pressure and area at section (2)

Net force acting on fluid in the direction of x = Rate of change of momentum in x-direction
p\A; - pA, cos B - F, = (Mass per sec) (change of velocity)
= pQ (Final velocity in the direction of x
- Initial velocity in the direction of x)

=pQ (V,cos0-V))
F,=pQ (V;,-V,cos0)+p A, —-pA,cosB

Similarly the momentum equation in y-direction gives
0-prA,sin 8- F =pQ (V,sin 8- 0)

F,=pQ (- V,sin 8) — p,A; sin 6
Now the resultant force (Fy) acting on the bend

_ 2 2
= / F; + P;}
And the angle made by the resultant force with horizontal direction is given by

tan 9 = =

X

Problem 14:

A 45° reducing bend is connected in a pipe line, the diameters at the inlet and outlet
of the bend being 600 mm and 300 mm respectively. Find the force exerted by water on the bend if the
intensity of pressure at inlet to bend is 8.829 N/em? and rate of flow of water is 600 litres/s.
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Angle of bend, 0 = 45°

Dia. at inlet, D, =600 mm = 0.6 m
Area, A, = % D2 = % (.6)>
= 0.2827 m?
Dia. at outlet, D, = 300 mm = 0.30 m
-. Area, A, =2 (3)* = 0.07068 m’
Pressure at inlet, p, = 8.829 N/cm? = 8.829 x 10* N/m?
Q = 600 lit/s = 0.6 m*/s
0.6
y =< = 2.122 m/s
A, 2827
V,= 0 __06 _ 8.488 m/s.
A, 07068

Applying Bernoulli’s equation at sections (1) and (2), we get

p p, Vs
Vi oY

pg 2g pg  2¢g

p VP b . Vy or 8.829 x 10* . 2122>  p, N 8.488°
pg 28 pg 28 1000 x9.81 2x9.81 pg 2x9.81

9+ .2295 = p,/pg + 3.672

P2 _ 92295 — 3.672 = 5.5575 m of water

P8
P, = 5.5575 x 1000 x 9.81 N/m” = 5.45 x 10* N/m’
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Forces on the bend in x- and y-directions are given by equations

pQ [V, - V,cos 8] + pA, — p,A, cos O
1000 x 0.6 [2.122 — 8.488 cos 45°]
+ 8.829 x 10* x .2827 — 5.45 x 10* x .07068 x cos 45°
— 2327.9 + 24959.6 — 2720.3 = 24959.6 — 5048.2
199114 N
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UNIT V PUMPS AND TURBINES




UNIT 5 PUMPS & TURBINES

Centrifugal Pumps: Definition - Operations - Velocity Triangles - Performance curves - Cavitations - Multistaging.

Reciprocating Pumps: Operation - Slip - indicator Diagram - Separation - Air vessels. Hydraulic Turbines:

Classification of hydraulic turbines - Working principle of Pelton wheel, Francis and Kaplan turbines - velocity

triangles - draft tube — hydraulic turbine characteristics. Dimensional Analysis: Buckingham’s Theorem, Non-
. Dimension Numbers, Similarities of Flow- Model studies )

Hydraulic Pump

A hydraulic pump is a mechanical source of power that converts mechanical power
into hydraulic energy. It generates flow with enough power to overcome pressure induced by
the load at the pump outlet. When a hydraulic pump operates, it creates a vacuum at the pump
inlet, which forces liquid from the reservoir into the inlet line to the pump and by mechanical
action delivers this liquid to the pump outlet and forces it into the hydraulic system.

L]

2

Classifications of Pump

! |
Positive ;
Displacement

Reciprocating Centrifugal

Single Multiple . ;
o Diaphragm Piston, Plunger

Centrifugal Pump

The main components of a centrifugal pump are:
i) Impeller
i) Casing
iii) Suction pipe
iv) Foot valve with strainer,
v) Delivery pipe
vi) Delivery valve.

Impeller is the rotating component of the pump. It is made up of a series of curved vanes.
The impeller is mounted on the shaft connecting an electric motor.

Casing is an air tight chamber surrounding the impeller. The shape of the casing is designed
in such a way that the kinetic energy of the impeller is gradually changed to potential energy.
This is achieved by gradually increasing the area of cross section in the direction of flow.

GUIDE VANES

VORTEX

CHAMBER /" --7"7 7=~ S Yolute casing

Discharge line

IMPELLER \\ ‘‘‘‘ IMPELLER Suction line

Impeler
(a) VORTEX CASING (b) CASING WITH GUIDE BLADES

Fig. Types of Casing



Suction pipe: It is the pipe connecting the pump to the sump, from where the liquid has to be
lifted up.

Foot valve with strainer: The foot valve is a non-return valve which permits the flow of the
liquid from the other words the foot valve opens only in the upward direction. The strainer is
a mesh surrounding the valve, it p debris and silt into the pump.

Delivery pipe is a pipe connected to the pump to the overhead tank. Delivery valve is a valve
which can regulate the pump.

4
v Delivery
- Pipe

L/'ry
} Valve

Fig. Main parts of a centrifugal pump
Working

A centrifugal pump works on the principle that when a certain mass of fluid is rotated
by an external source, it is thrown away from the central axis of rotation and a centrifugal
head is impressed which enables it to rise to a higher level.

Working operation of a centrifugal pump is explained in the following steps:

Close the delivery valve and prime the pump.

2. Start the motor connected to the pump shaft, this causes an increase in the impeller

pressure.

Open the delivery valve gradually, so that the liquid starts flowing into the deliver pipe.

4. A partial vacuum is created at the eye of the centrifugal action, the liquid rushed from the
sump to the pump due to pressure difference at the two ends of the suction pipe.

5. As the impeller continues to run, move & more liquid are made available to the pump at
its eye. Therefore impeller increases the energy of the liquid and delivers it to the
reservoir.

6. While stopping the pump, the delivery valve should be closed first; otherwise there may
be back flow from the reservoir.

=

w

It may be noted that a uniform velocity of flow is maintained in the delivery pipe.
This is due to the special design of the casing. As the flow proceeds from the tongue of the
casing to the delivery pipe, the area of the casing increases. There is a corresponding change
in the quantity of the liquid from the impeller. Thus a uniform flow occurs in the delivery
pipe.

Centrifugal pump converts rotational energy, often from a motor, to energy in a
moving fluid. A portion of the energy goes into kinetic energy of the fluid. Fluid enters



axially through eye of the casing, is caught up in the impeller blades, and is whirled
tangentially and radially outward until it leaves through all circumferential parts of the
impeller into the diffuser part of the casing. The fluid gains both velocity and pressure while
passing through the impeller. The doughnut-shaped diffuser, or scroll, section of the casing
decelerates the flow and further increases the pressure. The negative pressure at the eye of the
impeller helps to maintain the flow in the system. If no water is present initially, the negative
pressure developed by the rotating air, at the eye will be negligibly small to suck fresh stream
of water. As a result the impeller will rotate without sucking and discharging any water
content. So the pump should be initially filled with water before starting it. This process is
known as priming.

Use of the Casing

From the illustrations of the pump so far, one speciality of the casing is clear. It has an
increasing area along the flow direction. Such increasing area will help to accommodate
newly added water stream, and will also help to reduce the exit flow velocity. Reduction in
the flow velocity will result in increase in the static pressure, which is required to overcome
the resistance of pumping system.

NPSH - Overcoming the problem of Cavitation

If pressure at the suction side of impeller goes below vapour pressure of the water, a
dangerous phenomenon could happen. Water will start to boil forming vapour bubbles. These
bubbles will move along with the flow and will break in a high pressure region. Upon
breaking the bubbles will send high impulsive shock waves and spoil impeller material
overtime. This phenomenon is known as cavitation. More the suction head, lesser should be
the pressure at suction side to lift the water. This fact puts a limit to the maximum suction
head a pump can have. However Cavitation can be completely avoided by careful pump
selection. The term NPSH (Net Positive Suction Head) helps the designer to choose the right
pump which will completely avoid Cavitation. NPSH is defined as follows:

P Fa P:_.
NPSH=|—+— -
g 2g suction P8

Where Py is vapour pressure of water
V is speed of water at suction side

Work done by the centrifugal pump (or by impeller) on water
Velocity triangles at inlet and outlet

TANGENT TO
IMPELLER AT
OUTLET




Let,
I 1 Diameter of impeller atinlet =2 x R,

Do 1 Diameter of impeller at outlet = 2 x Ry

N : Speed ofimpeller in rpm

w : Tangential blade velocity at inlet = wRy = (%)Rl
usy : Tangential blade velocity at outlet = wRy = (%)RQ
V' : Absolute velocity

v,

r

: Relative velocity

Vi @ Velocity of flow

V,,; Velacity of whirl

a : Angle mode by ebsolute velocity V_1 at inlet
8 : Inlet angle of vane

¢ 1 Outlet angle of vane

B : Discharge angle of absolute velocity at outlet
Angular momentum = mass x tangentialvelocity x Radius

Angular momenitum entering the impeller per sec = m. V1. By

Angular momenitum leaving the impeller per sec = m. V5. Ra

Torque transmitted = rate of change of angular momentum
= M. Vm RZ — m. le'Rl
= %(ng.Rg — Va1 Ry)

Since the work done in unit time is given by the product of torque and angular velocity
W.D per sec = Torque x W
= %(ng. Row — Vi Rjw)
But Raw = ug and Byw = 1
W.D per sec = %(szw. Vi)
Work done by impeller per N weight of [iquid per sec,
W.D= —;(ngu;g — Vi)

But V,,; = Osince entry is radial

Voo . uz

W.D per N weight persec=

Definitions of Heads and Efficiencies of a centrifugal pump

1. Suction Head (h,). It is the vertical height of the centre line of the centrifugal pump above the
water surface in the tank or pump from which water is to be lifted as shown in Fig. This height
is also called suction lift and is denoted by ‘A;’.

2. Delivery Head (h,). The vertical distance between the centre line of the pump and the water
surface in the tank to which water is delivered is known as delivery head. This is denoted by ‘A,.
3. Static Head (H). The sum of suction head and delivery head is known as static head. This is

represented by ‘H;’ and is written as
H =h,+ h,



4. Manometric Head (H ). The manometric head is defined as the head against which a centrifugal
pump has to work. It is denoted by ‘H,’. It is given by the following expressions :

(a) H, = Head imparted by the impeller to the water — Loss of head in the pump
V.., . .

= —2— — Loss of head in impeller and casing
8
w, U2

= —2— __.if loss of pump is zero
8

(b) H,, = Total head at outlet of the pump — Total head at the inlet of the pump

2 2
_ [L"—wzoJ—[LLa]
pg  2¢ pg 28
Vz
— _d
(c) H, =hg+hy+he +he + 2%
where h, = Suction head, A, = Delivery head,
hfs = Frictional head loss in suction pipe, hfa = Prictional head loss in delivery pipe,
V ;= Velocity of water in delivery pipe.

Efficiencies of a Centrifugal Pump.

(a) Manometric Efficiency (n,,,,)-

Manometric head

Mman = Head imparted by impeller to water
- Hm — gHm
{ VW: ) ] Vw: uZ
8

The power at the impeller of the pump is more than the power given to the water at outlet of the
pump. The ratio of the power given to water at outlet of the pump to the power available at the
impeller, is known as manometric efficiency.

(b) Mechanical Efficiency (n,,).
_ Power at the impeller
" Power at the shaft

Work done by impeller per second
1000

The power at the impeller in kW

W szul
—_— X —_—
g 1000

w sz i,
2 {1000

S.P.

N =
where S.P. = Shaft power.



{c) Overall Efficiency (1,). [t is defined as ratio of power output of the pump to the power input to
the pump. The power output of the pump in kKW

_ Weightof water lifted x H,,  WH,

1000 1000
Power input to the pump = Power supplied by the electric motor
= 5.P. of the pump.
[WH,,. ]
1000
Also No = Nman # N

PRIMING OF A CENTRIFUGAL PUMP

Priming of a centrifugal pump is defined as the operation in which the suction pipe, casing of the
pump and a portion of the delivery pipe upto the delivery valve is completely filled up from outside
source with the liquid to be raised by the pump before starting the pump. Thus the air from these parts
of the pump is removed and these parts are filled with the liquid to be pumped.

CAVITATION

Cavitation includes formation of vapour bubbles of the flowing liquid and collapsing of the vapour
bubbles. Formation of vapour bubbles of the flowing liquid take place only whenever the pressure in
any region falls below vapour pressure. When the pressure of the flowing liquid is less than its vapour
pressure, the liquid starts boiling and vapour bubbles are formed. These vapour bubbles are carried
along with the flowing liquid to higher pressure zones where these vapours condense and bubbles
collapse. Due to sudden collapsing of the bubbles on the metallic surface, high pressure is produced
and metallic surfaces are subjected to high local stresses. Thus the surfaces are damaged.

\ Cavitation in Centrifugal Pumps. In centrifugal pumps the cavitation may occur at
the inlet of the impeller of the pump, or at the suction side of the pumps, where the pressure is consid-
erably reduced. Hence if the pressure at the suction side of the pump drops below the vapour pressure
of the liquid then the cavitation may occur. The cavitation in a pump can be noted by a sudden drop in
efficiency and head. In order to determine whether cavitation will occur in any portion of the suction
side of the pump, the critical value of Thoma’s cavitation factor (o) is calculated.

Precaution Against Cavitation.

(i) The pressure of the flowing liquid in any part of the hydraulic system should not be allowed to
fall below its vapour pressure. If the flowing liquid is water, then the absolute pressure head should not
be below 2.5 m of water.

(it) The special materials or coatings such as aluminium-bronze and stainless steel, which are

cavitation resistant materials, should be used.

Effects of Cavitation.

(i) The metallic surfaces are damaged and cavities are formed on the surfaces.

(i) Due to sudden collapse of vapour bubble, considerable noise and vibrations are produced.

(zif) The efficiency of a turbine decreases due to cavitation. Due to pitting action, the surface of the
turbine blades becomes rough and the force exerted by water on the turbine blades decreases. Hence,
the work done by water or output horse power becomes less and thus efficiency decreases.



Example The internal and external diameters of the impeller of a centrifugal pump are
200 and 400 mm respectively. The pump is running at 1200 rpm. The vane angles of the
impeller at inlet and outlet are 20 and 30 respectively. The water enters the impeller
radially and velocity of flow is constant. Determine the work done by the impeller per unit
weight of water.

Given:

Internal diameter of impeller, D, =200 mm = 0.20 m
External diameter of impeller, D, = 400 mm = 0.40 m

Speed, N =1200 r.p.m.
Vane angle at inlet, 0 =20°
Vane angle at outlet, 6 =30°
Water enters radially* means, o=90°andV, =0
Velocity of flow, Vi =V,
Tangential velocity of impeller at inlet and outlet are,
D, N 20 x12
u = T X020 X 00_12.56m!s
60 60
1 u = nD,N _ < 0.4 %1200 2513 m/s.
60 60
Ya o Y

From inlet velocity triangle, tan 6 = =
7 12.56

Vf1 =12.56tan 0 = 12.56 x tan 20° = 4.57 m/s
sz = Vfu =4.57 m/s.

V, 457

-V, 2513-V,

457  4.57

tan ¢  tan 30°
2-25 13 -7.915=17.215 m/s.

The work done by impeller per kg of water per second is given by equation (

1 17.215 x 25.13
Ly = T2IX23 ) NN,
g

From outlet velocity triangle,tan ¢ =

25.13 -V, = = 7915

"2 9.81

Example A centrifugal pump is to discharge 0.118 m%s at a speed of 1450 rpm against a
head of 25m. the impeller diameter is 250 mm, its width at outlet is 50 mm and
manometric efficiency is 75%. Determine the vane angle at the outer periphery of the
impeller.

Given:
Discharge, 0 =0.118 m%s
Speed, N = 1450 r.p.m.
Head, H, =25m
Diameter at outlet, D, =250 mm = 0.25m
Width at outlet, B, =50 mm = 0.05 m
Manometric efficiency, 1, =75% = 0.75.
Let vane angle at outlet =¢

Tangential velocity of impeller at outlet,




_wD,N _ T x0.25x1450

Uy = 18.98 m/s
60 60
Discharge is given by Q =nD,B, X sz
Ve, = O = 0118 = 3.0 m/s.
* mD,B, mx025x.05
S gH,  981x25
"V, u, V, x1898
= 9.81x25 _ 9.81x25 — 1723
2 My X1898  0.75x 1898
From outlet velocity triangle, we have
\4
tan ¢ = —L—— = 30 7143

(u2 —vV, ) (1898 —17.23)
¢ =tan"' 1.7143 = 59.74° or 59° 44’. Ans.

Example A centrifugal pump delivers water against a net head of 14.5 m and a design
speed of 1000 rpm. The vanes are curved back at an angle of 30° with the periphery. The
impeller diameter is 300 mm and outlet width is 50 mm. determine the discharge of the
pump if manometric efficiency is 95%.

Given:
Net head, H,=145m
Speed, N = 1000 r.p.m.
Vane angle at outlet, o =30°
Impeller diameter means the diameter of the impeller at outlet
Diameter, D, =300 mm = 0.30 m
Outlet width, B, =50 mm = 0.05 m

Manometric efficiency, M,,,, = 95% = 0.95
Tangential velocity of impeller at outlet,
nD,N _ 1 x0.30 x 1000

Uy = = 15.70 m/s.
60 60
- _8H,
Tman Vi, XU,
9.81x14.
0.95 = 981x145
V,, x15.70
., = M = 9.54 m/s.
2 095x%15.70
From outlet velocity triangle, we have
vV v %
tan 0= —2 ortan 30° = 5 =L
(u, = V,.) (15.70-954) 6.16

V,, = 6.16 X tan 30° = 3.556 m/s.
Q = TchBz X sz
=1t %X 0.30 % 0.05 X 3.556 m°/s = 0.1675 m>/s. Ans.
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Example A centrifugal pump having outer diameter equal to two times the inner diameter
and running at 1000 rpm works against a total head of 40 m. the velocity of flow through
the impeller is constant and equal to 2.5 m/s. the vanes are set back at an angle of 40° at
outlet. If the outer diameter of the impeller is 500 mm and width at the outlet is 50 mm,
determine: i) Vane angle at inlet, ii) work done by impeller on water per second
1ii) manometric efficiency

Given:
Speed, N = 1000 r.p.m.
Head, H,=40m
Velocity of flow, Vf| =V, =25m/s
Vane angle at outlet, 0 = 40°
Outer dia. of impeller, D, = 500 mm = 0.50 m
Inner dia. of impeller, D, = % = ?: 025 m
Width at outlet, B, =50 mm = 0.05 m
4, = DN _ mx025X 1000 = 13.09 m/s
60 60
and 0, = mD,N _ mx0.50 x1000 — 26.18 m/s.
60 60
Discharge is given by, Q=mD,B, X V;, = X 0.50 X .05 X 2.5 = 0.1963 m’/s.
(i) Vane angle at inlet (0).
V., 25

From inlet velocity triangle tan 8 = — = —— =(.191
u,  13.09

0 =tan"' .191 = 10.81° or 10° 48"
(if) Work done by impeller on water per second is given by equation
- Pxgx0Q

- E XK szuz— X VWZ X uz
_ 1000 x 9.81x 0.1963 X V. x26.18
9.81 2
But from outlet velocity triangle, we have
Vv
tan ¢ = f2 = 23
=V, (2618-V, )
. 2.
2618-V, = 25 = > - =2.979
2 tan¢ tan40

V... =26.18 — 2.979 = 23.2 m/s.

Substituting this value of VH.2 in equation (i), we get the work done by impeller as

_ 1000 x 9.81 x 0.1963 % 23.2 % 26.18

9.81
119227.9 Nm/s. Ans.
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(i) Manometric efficiency (1,,,,). Using equation (19.8), we have

gH, _ 981x40
V,u, 232%26.18

= 0.646 = 64.4%.

Nman =

Example The outer diameter of an impeller of a centrifugal pump is 400 mm and outlet
width is 50 mm. the pump is running at 800 rpm and is working against a total head of 15
m. the vanes angle at outlet is 40° and manometric efficiency is 75%. Determine:
i) Velocity of flow at outlet, ii) velocity of water leaving the vane, iii) angle made by the
absolute velocity at outlet with the direction of motion at outlet and iv) discharge

Given:

Outer diameter, D, =400 mm= 0.4 m
Width at outlet, B, =50 mm = 0.05 m
Speed, N =800 r.p.m.

Head, H,=15m

Vane angle at outlet, ¢ = 40°

Manometric efficiency, 1,,,,=75% =0.75
Tangential velocity of impeller at outlet,

_mD,N _ 1wx0.4x800

Uy = = 16.75 m/s.
60 60
gH,
nrm;m = V
Wy L)
075 = 0.81x15
V,, x16.75
o= —SUXAS 1 s,
2 0.75x%16.75
From the outlet velocity triangle, we have
Vv Vv Vv
tal'l ¢ = f? - fZ - fZ
u =V, (16.75-11.71) 504
(i) .. sz = 5.04 tan ¢ = 5.04 X tan 40° = 4.23 m/s.

(ii) Velocity of water leaving the vane (V).
Vy= V2 +V2 = 4232 +1170°
= J17.89 +137.12 = 12.45 m/s.

(i) Angle made by absolute velocity at outlet (),

Vv
tanﬁ=i=ﬁ=o.3ﬁ
V,, 1171

B = tan"' 0.36 = 19.80° or 19° 48".

(iv) Discharge through pump is given by,
Q = mD,B, x V, =1 x 0.4 % 0.05 X 4.23 = 0.265 m/s.

12




Example The internal diameter and external diameter of an impeller of a centrifugal
pump which is running at 1000 rpm are 200 and 40 mm respectively. The discharge
through pump is 0.04 m3/s and velocity of flow is constant and equal to 2.0 m/s. the
diameter of the suction and delivery pipes are 150 and 100 mm respectively and suction
and delivery heads are 6 m (abs.) and 30 m (abs.) of water respectively. If the outlet vane
angle is 45° and power required to drive the pump is 16.168 kW, determine: i) Vane angle
of the impeller at inlet, ii) the overall efficiency of the pump and iii) manometric efficiency
of the pump

Given:
Speed, N = 1000 r.p.m.
Internal dia., D, =200 mm=0.2m
External dia., D, =400 mm = 0.4 m
Discharge, Q = 0.04 m*/s
Velocity of flow, VJ,cl = sz =2.0m/s
Dia. of suction pipe, D =150 mm = 0.15m
Dia. of delivery pipe, D, =100 mm = 0.10 m
Suction head, hy=6 m (abs.)
Delivery head, h,; =30 m (abs.)
Outlet vane angle, 0 = 45°
Power required to drive the pump, P = 16.186/ kW
Vi 2 DN 2x1
From inlet velocity, we have tan 6 = o —0, where u, = TON _EX 02 x 1000 = 10.47 m/s
uoou 60 60
2'0 -1 o ’
tanf8=——=10.191or 6 =tan™ .191 = 10° 48", Ans.
10.47
(7i) Overall efficiency of the pump (n,).
(WH,,, )
Using equation (19.10), we have 1, = —180(1130
where S.P. = Power required to drive the pump and equal to P here.
(p xgxQxH, j
n, = 1000 _Pgx0OxH,
? P 1000 x P
- 1000 x9.81x.04 x H,, = 0.02424 H,, ()
1000 % 16.186
Now H,, is given by equation (19.6) as
2 2
Hm{&ﬂ’—uz{,]_(ﬁ&%J (i)
pg 28 pg  2g
2 2
H, = (30 + V—d] - (6+ Ve J (i)
2g 2g
Disch . .
4= 18€ arge - = 1'[:0042:1[04 =5.09 m/s
Area of delivery pipe Z(Dd) KAWL
= 04 - — = 7;04 == 04 2.26 m/s.
Area of suction pipe T Dsz H % 152

13



2 2
H =30+ 5.09 _le4 2.26
2 x9.81 2x981
=30+ 1.32) - (6 + .26) = 31.32 — 6.26 = 25.06 m.

Substituting the value of ‘H,’ in equation (i), we get
N, = .02424 x 25.06 = 0.6074 = 60.74%.

(iii) Manometric efficiency of the pump (M,,4,)-
Tangential velocity at outlet is given by
D, x N  mx0.4x1000

Uy = = = 20.94 m/s.

60 60
From outlet velocity triangle, we have
1%

tan ¢ = f _ 2.0
u, =V, 2094- ‘Vw2
2.0 20
2094 -V, =——= =20
? tan¢d tan 45

V,, =20.94 -2.0 = 18.94.

Nman = gHm = 981 x25.06 = 0.6198 = 61.98%.

S V,u, 1894x2094

MULTISTAGE CENTRIFUGAL PUMPS
If a centrifugal pump consists of two or more impellers, the pump is called a multistage centrifugal
pump. The impellers may be mounted on the same shaft or on different shafts. A multistage pump is

having the following two important functions :
1. To produce a high head, and 2. To discharge a large quantity of liquid.
If a high head is to be developed, the impellers are connected in series (or on the same shaft) while

for discharging large quantity of liquid, the impellers (or pumps) are connected in parallel.

Multistage Centrifugal Pumps for High Heads.

TO DELIVERY
! , .‘ ‘. PIPE
4
FROM }
SUCTlON PIPE \
, .
SHAFT d
| i | Then total head developed
IMPELLER vy /
NUMBER1 | &/ |}
NN . IMPELLER =nXH,,
- NUMBER 2

PIPE CONNECTING + : . .
OUTLET OF 1st IMPELLER TO The discharge passing through each impeller is same
INLET OF 2nd IMPELLER

n = Number of identical impellers mounted on the same shaft,
H, = Head developed by each impeller.
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Multistage Centrifugal Pumps for High Discharge.

COMMON PIPE
—= Q —» Qi+ Q,
DELIVERY
f PIPE NO.2 f
Q; | DELIVERY
PIPE NO.1
[~
PUMP p—
PUMP
NO. 1 1 NO. 2
SUMP
Let n = Number of identical pumps arranged in parallel.
@ = Discharge from one pump.
Total discharge =nxQ

CHARACTERISTIC CURVES OF CENTRIFUGAL PUMPS

Main Chan;acl;eristic Curves.

P(Q AND H CONSTANTS)
o :

~5y HeN
v E
Qe
Sug H(@ = CONSTANT)
€-a PN

N Q=N

Q
(H, = CONSTANT)

— = SPEED(N)

Operating Characteristic Curves.

=3 HEAD (H)
5
o EFFICIENCY,
iz L
oug
£ 23
wacz<T
INPUT POWER, P
' ] T SPEED = CONSTANT
OUTPUT POWER

— DISCHARGE, Q
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Constant Efficiency Curves.

s —— HV,Q
& ____ CONSTANT
< EFFICIENCY
i CURVE
| :

N3

NZ

\N1
(a)
>.
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O
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L
w CONSTANT
I EFFICIENCY
LINE
ANB\C\D\
7 R
N, N, N;

v)

— DISCHARGE, Q

MAXIMUM SUCTION LIFT (or SUCTION HEIGHT)

Applying Bernoulli’s equation at the free surface of liquid in the sump and section 1 in the suction
pipe just at the inlet of the pump and taking the free surface of liquid as datum line, we get

V2 :
p_“+_9+za=ﬂ V_1+Z]+hL (I)
pg 28 pg  2g
2
p_“+0+0=ﬂ+v—‘+hs+hfs
Pg pg 28
2
&:ﬂ+v—s+hs+hf
pg P8 2 :
2
P _ Pa v—5+hs+hf (i)
Pg P8 \2¢ ’
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For finding the maximum suction lift, the pressure at the inlet of the pump should not be less than
the vapour pressure of the liquid. Hence for the limiting case, taking the pressure at the inlet of pump
equal to vapour pressure of the liquid, we get

p, = p,, Where p, = vapour pressure of the liquid in absolute units.

Now the equation (ii) becomes as

2
Lr _ P —(;—’+hs+hﬂ}

Pg Pg 8
2
Pa o Pry % ypoan (o Py =py) i)
Pg P8 28
Pa _ Atmospheric pressure head = H, (meter of liquid)
pPg
by _ Vapour pressure head = H, (meter of liquid)
P8

Now, equation (iif) becomes as
v?.
H,=H,+ g +hg+ hy
s
hy=H,—H,— 2¢ - hf‘
Equation (19.31) gives the value of maximum suction lift (or maximum suction height) for a
centrifugal pump. Hence, the suction height of any pump should not be more than that given by
equation (19.31). If the suction height of the pump is more, then vaporization of liquid at inlet of pump
will take place and there will be a possibility of cavitation.

NET POSITIVE SUCTION HEAD (NPSH)

The term NPSH ( Net Positive Suction Head) is very commonly used in the pump industry. Actually
the minimum suction conditions are more frequently specified in terms of NPSH.
The net positive suction head (NPSH) is defined as the absolute pressure head at the inlet to the
pump, minus the vapour pressure head ( in absolute units) plus the velocity head.
NPSH = Absolute pressure head at inlet of the pump — vapour pressure head (absolute units) +
velocity head

2

_p_ P v

— (" Absolute pressure at inlet of pump = p,) .
pPg P8 28

the absolute pressure head at inlet of the pump is given by as

2
14 Pa Vs
—L——[——+m+hﬁ

pg  pg \28
2 2
NPSH = | £« [3L+h +hf]._£L+£L
pg \2g )| P8 28
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RECIPROCATING PUMP

If the mechanical energy is converted into hydraulic energy by sucking the liquid into
a cylinder in which a piston is reciprocating, which exerts the thrust on the liquid and
increases its hydraulic energy is known as reciprocating pump. A reciprocating pump is a
positive displacement pump. It is often used where relatively small quantity of liquid is to be
handled and where delivery pressure is quite large.

Reciprocating pump consists of following parts.

1. A cylinder with a piston 5. suction pipe

2. piston rod 6. delivery pipe
3. connecting rod 7. suction valve
4. crank 8. delivery valve

WORKING OF A SINGLE-ACTING RECIPROCATING PUMP

Single acting reciprocating pump:-

A single acting reciprocating pump, which consists of a piston which moves forwards
and backwards in a close fitting cylinder. The movement of the piston is obtained by
connecting the piston rod to crank by means of a connecting rod. The crank is rotated by
means of an electric motor. Suction and delivery pipes with suction valve and delivery valve
are connected to the cylinder. The suction and delivery valves are one way valves or non-
return valves, which allow the water to flow in one direction only. Suction valve allows water
from suction pipe to the cylinder which delivery valve allows water from cylinder to delivery
pipe.

The rotation of the crank brings about an outward and inward movement of the piston
in the cylinder. During the suction stroke the piston is moving towards right in the cylinder,
this movement of piston causes vacuum in the cylinder. The pressure of the atmosphere
acting on the sump water surface forces the water up in the suction pipe. The forced water
opens the suction valve and the water enters the cylinder. The piston from its extreme right
position starts moving towards left in the cylinder. The movement of the piston towards left
increases the pressure of the liquid inside the cylinder more than atmospheric pressure. Hence
suction valve closes and delivery valve opens. The liquid is forced into the delivery pipe and
is raised to a required height.

For one revolution of the crank, the quantity of water raised up in the delivery pipe is
equal to the stroke volume in the cylinder in the single acting pump and twice this volume in
the double acting pump. Discharge through a single acting reciprocating pump.

D = diameter of the cylinder
A = cross section are of the piston or cylinder
r = radius of crank
N =r.p.m of the crank
L = Length of the stroke =2 xr
s = Suction head or height of axis of the cylinder from water surface in sump.
hq = Delivery head or height of the delivery outlet above the cylinder axis.
Discharge of water in one revolution = Area x Length of stroke
=AXL
Number of revolution per second = N/60
Discharge of the pump per second
Q = Discharge in one revolution x No.of revolution per second

= AdAxL x i = _‘ﬂN m*/sec

&0
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Discharge Through a Reciprocating Pump.

Let D = Diameter of the cylinder
A = Cross-sectional area of the piston or cylinder
-p?
4
r = Radius of crank
N = r.p.m. of the crank
L = Length of the stroke =2 X r
h, = Height of the axis of the cylinder from water surface in sump.
h, = Height of delivery outlet above the cylinder axis (also called delivery head)



Volume of water delivered in one revolution or discharge of water in one revolution
= Area X Length of stroke = A X L

Number of revolution per second, = ﬁi

Discharge of the pump per second,
Q = Discharge in one revolution x No. of revolution per second

—axLx Y oAV .20.1)
60 60
Weight of water delivered per second,
pgALN
W=pxgx(Q-= .
pxgxQ@=—r0

Work done by Reciprocating Pump.
Work done per second = Weight of water lifted per second X Total height through which water is lifted
=Wx (hs+ hy) ()
where (h, + h,) = Total height through which water is lifted.
From equation (20.2), Weight, W, is given by
W= P8X ALN '
60
Substituting the value of W in equation (i), we get

Work done per second = % X (hy +hy,) (20.3)

Power required to drive the pump, in kW

Work done per second _ pg X ALN X (h, + ;)

P=
1000 60 x 1000

X ALN X (h_ +h
- pg (hy +hy) KW .(20.4)

60,000
Discharge, Work done and Power Required to Drive a Double-acting Pump.

Let D = Diameter of the piston,
d = Diameter of the piston rod
Area on one side of the piston,

A=T p
4

Area on the other side of the piston, where piston rod is connected to the piston,

A=2p T pr_ g
4 4" 4
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Volume of water delivered in one revolution of crank
= A X Length of stroke + A; x Length of stroke

=AL+AL=(A+A)L= EDZ +%(D2 —dg)]xL

Discharge of pump per second
= Volume of water delivered in one revolution X No. of revolution
per second

- FDZ + (D —dz)} «Lx ¥
107y 60

If “d’ the diameter of the piston rod is very small as compared to the diameter of the piston, then it
can be neglected and discharge of pump per second,

} LXN T
X

—ax T piy LxN _ 2ALN
60 4 60 60

Work done by double-acting reciprocating pump
Work done per second = Weight of water delivered x Total height

Q= [EDz +Xp? .20.5)

4 4

= pg X Discharge per second X Total height

2ALN
= pg X

Power required to drive the double-acting pump in kW,

X (hs+ hy) = 2pg X Aﬁ% X (hs + h,)

_ Work done per second « ALN « (kg +hy )

= 2

1000 PEX 60 " 1000

2pg X ALN X (hy + hy)
B 60,000
—|—>—
D%lg/EEsR i CONNECTING
l ROD

|~ s

SUCTION
L~ PIPES N | sumPp LEVEL
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SLIP OF RECIPROCATING PUMP

The actual discharge of the pump is always less than theoretical discharge. The
difference between theoretical discharge and actual discharge is known as Slip of the
reciprocating pump

Shp = th - Qac'r
But slip is mostly expressed as percentage slip which is given by,

Percentage slip = O = Qo x 100 = {1 - %J x 100

th Qm

Qac:‘
=(1-Cp)x100 ['-'Q_mzcd]

where C,; = Co-efficient of discharge.

Negative Slip of the Reciprocating Pump.

Negative Slip of the Reciprocating Pump. Slip is equal to the difference of
theoretical discharge and actual discharge. If actual discharge is more than the theoretical discharge,
the slip of the pump will become —ve. In that case, the slip of the pump is known as negative slip.

Negative slip occurs when delivery pipe is short, suction pipe is long and pump is running at high
speed.

Example A single acting reciprocating pump, running at 50 rpm, delivers 0.01m3/s of
water. The diameter of the piston is 200 mm and stroke length 400 m. Determine:
i) theoretical discharge of the pump ii) Co — efficient of discharge and iii) Slip and the
percentage of slip of the pump.

Given:
Solution. Given :
Speed of the pump, N =50r.p.m.
Actual discharge, Qe = 01 m%s
Dia. of piston, D =200 mm=.20m
Area, A= % (2)* = .031416 m*
Stroke, L =400 mm = 0.40 m.
(i) Theoretical discharge for single-acting reciprocating pump is given by equation (20.1) as
X LX . 416 x.40 x
Q= AXLXN _ 031416 X40X30 _ 4 41047 m%ss. Ans.
60 60
(ii) Co-efficient of discharge is given by
.01
= Lo _ OO1 _ 0.955. Ans.
Q, 01047

(iif) Using equation (20.8), we get
Slip = Qy — Quer = 01047 — .01 = 0.00047 m*/s. Ans.

- .01047 - .01
And percentage slip = M x 100 = (01047 -.01)
01047

th
00047
01047

x 100

X 100 = 4.489%. Ans.
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' Example A double-acting reciprocating pump, running at 40 r.p.m., is discharging 1.0 m’ of
water per minute. The pump has a stroke of 400 mm. The diameter of the piston is 200 mm. The
delivery and suction head are 20 m and 5 m respectively. Find the slip of the pump and power required
fo drive the pump.

Speed of pump, N=40rp.m.

1.0
Actual discharge, Q4 = 1.0 m*/min = @ m’/s = 0.01666 m’/s
Stroke, L =400 mm =040 m
Diameter of piston, D=200mm=0.20m
.. Area, A= T D= T (2)*=0.031416 m?

4 4

Suction head, h,=5m
Delivery head, hy =20 m.

Theoretical discharge for double-acting pump is given by equation (20.5) as,
_2ALN  2x.031416 x 0.4 x 40
"6 60
Using equation (20.8),  Slip= Q,, - Q,., = 01675 - .01666 = .00009 m’/s. Ans.
Power required to drive the double-acting pump is given by equation (20.7) as,
pe 2Xpg X ALN X (h, +h,) _ 2 %1000 x9.81 x.031416 x.4 x40 x (5+20)
60,000 60,000
=4.109 kW. Ans.

= 01675 m’/s.

INDICATOR DIAGRAM
indicator diagram is a graph between pressure head and stroke length of the piston for one complete
revolution. The pressure head is taken as ordinate and stroke length as abscissa.

A .
D RIS TROKE Let H,, = Atmospheric pressure head
% D % T = 10.3 m of water,
T h
W ¢ L = Length of the stroke,
> !
B S Ty E k h, = Suction head, and
@ :
v A g| s h, = Delivery head.
T Hyym SUCTION STROKE T 10.3'm
——
| . STROKELENGTH _ | r
| 1
— STROKE LENGTH
Fig. Ideal indicator diagram.
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we know that the work done by the pump per second

X ALN
= PR (b +hy)

60
= K x L(h, + h) [whcre K= % = Constant]
o L (h, + hy) D)

Work done by pump o Area of indicator diagram.

SEPARATION OF LIQUID

If the pressure in the cylinder is below the vapour pressure, dissolved gasses will be
liberated from the liquid and cavitation will takes place. The continuous flow of liquid will
not exist which means separation of liquid takes place. The pressure at which separation takes
place is called separation pressure and head corresponding to the separation pressure is called
separation pressure head.

The ways to avoid cavitation in reciprocating pumps:

1. Design: Ensure that there are no sharp corners or curvatures of flow in the system while

designing the pump.

Material: Cavitation resistant materials like Bronze or Nickel can be used.

Model Testing: Before manufacturing, a scaled down model should be tested.

4. Admission of air: High pressure air can be injected into the low pressure zones of
flowing liquid to prevent bubble formation.

AIR VESSELS

An air vessel is a closed chamber containing compressed air in the top portion and liquid (or water)
at the bottom of the chamber. At the base of the chamber there is an opening through which the liquid
(or water) may flow into the vessel or out from the vessel. When the liquid enters the air vessel, the air
gets compressed further and when the liquid flows out the vessel, the air will expand in the chamber.

An air vessel is fitted to the suction pipe and to the delivery pipe at a point close to the cylinder of
a single-acting reciprocating pump :

wmn

(1) to obtain a continuous supply of liquid at a uniform rate,

(i7) to save a considerable amount of work in overcoming
friction in suction and delivery pipes
(7it) to run the pump at a high speed without separation.

ROD

24



COMPARISON BETWEEN CENTRIFUGAL PUMPS AND RECIPROCATING
PUMPS

Centrifugal pumps Reciprocating pumps

1. The discharge is continuous and smoath. 1. The discharge is fluctuating and pulsating.

2. It can handle large quantity of liquid. 2. It handles small quantity of liquid only.

3. Itcan be used for lifting highly viscous liquids. 3. It is used only for lifting pure water or less

viscous liquids.

4. Tt is used for large discharge through smaller 4. Tt is meant for small discharge and high heads.
heads.

5. Cost of centrifugal pump is less as compared 5. Cost of reciprocating pump is approximately
to reciprocating pump. four times the cost of centrifugal pump.

6. Centrifugal pump runs at high speed. They can 6. Reciprocating pump runs at low speed. Speed
be coupled to electric motor. is limited due to consideration of separation

and cavitation.

7. The operation of centrifugal pump is smooth 7. The operation of reciprocating pump is
and without much noise. The maintenance cost complicated and with much noise. The
is low. maintenance cost is high.

8. Centrifugal pump needs smaller floor area and 8. Reciprocating pump requires large floor area
installation cost is low. and installation cost is high.

0. Efficiency is high. 9. Efficiency is low.

TURBINES

Hydraulic machines are defined as those machines which convert either hydraulic energy
(energy possessed by water) into mechanical energy (which is further converted into
electrical energy) or mechanical energy into hydraulic energy. The hydraulic machines,
which convert the hydraulic energy into mechanical energy, are called turbines while the
hydraulic machines which convert the mechanical energy into hydraulic energy. The study of
hydraulic machines consists of turbines and pumps.

Turbines are defined as the hydraulic machines which convert hydraulic energy into
mechanical energy. This, mechanical energy is used in running an electric generator which is
directly coupled to the shaft of the turbine. Thus the mechanical energy is converted into
electrical energy. The electric power which is obtained from the hydraulic energy (energy of
water) is known as Hydroelectric power. At present the generation of hydroelectric power is
the cheapest as compared by the power generated by other sources such as oil, coal etc.

General Layout of a Hydroelectric Power Plant

1. A dam constructed across a river to store water.

2. Pipes of large diameters called penstocks, which carry water under pressure from the
storage reservoir to the turbines. These pipes are made of steel or reinforced concrete.

3. Turbines having different types of vanes fitted to the wheels.

4. Tail race, which is a channel which carries water away from the turbines after the water
has worked on the turbines. The surface of water in the tail race channel is also known as
tail race.
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HEAD RACE

)
\

hy

///f N TURBINE

Fig. Layout of hydroelectric power plant

Definitions of Heads and Efficiencies of a Turbine

1.

2.

Gross Head. The difference between the head race level and tail race level when no water
is flowing is known as Gross Head. It is denoted by 'Hg".

Net Head. It is also called effective head and is defined as the head available at the inlet
of the turbine, when water is flowing from head race to the turbine, a loss of head due to
friction between water and penstock occurs. Though there are other losses also such as
loss due to bend, Pipes, fittings, loss at the entrance of penstock etc., yet they are having
small magnitude as compared to head loss due to friction. In ‘h¢’ is the head loss due to
friction between penstocks and water then net heat on turbine is given by

2
where ‘q_;;:GrGSS head, h}_= 4><fD><sz
Xig

in which V= Velocity of flow in penstock,
L = Length of penstock,

D = Diameter of penstock.
Efficiencies of a Turbine.

(a) Hydraulic Efficiency (1,;,).

n, = Power delivered to runner _ R.P.
=

Power supplied atinlet ~ W.P.
Power supplied at the inlet of turbine in S.I.units is known as water power. It is given by
_pxgx OxH K

1000

R.P. = Power delivered to runner i.e., runner power

W.P.

1714 [Vw tV, ]Xu
=—L ' 2 kW ...for Pelton Turbine
g 1000

W [V, £V, 1
" g 1000

...for a radial flow turbine
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(b) Mechanical Efficiency (1n,,).

: Power at the shaft of the turbine _ S.P.
Power delivered by water to the runner  R.P.

Nm

(c) Volumetric Efficiency (n,)

Volume of water actually striking the runner

v

Volume of water supplied to the turbine
(d) Overall Efficiency (n,)

_ Volume available at the shaft of the turbine _ Shaft power

? Power supplied at the inlet of the turbine ~ Water power

_ S.P.
" W.P.

= Tlm X rlh
CLASSIFICATION OF HYDRAULIC TURBINES

1. According to the type of energy at inlet :
(a) Impulse turbine, and (b) Reaction turbine.
2. According to the direction of flow through runner :

(a) Tangential flow turbine, (b) Radial flow turbine,
(c) Axial flow turbine, and (d) Mixed flow turbine.
3. According to the head at the inlet of turbine :
(a) High head turbine, (b) Medium head turbine, and

(¢) Low head turbine.
4. According to the specific speed of the turbine :

(a) Low specific speed turbine, (b) Medium specific speed turbine, and

(c) High specific speed turbine.
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Impulse Turbine Reaction Turbine

1. All the available energy of the fluid is converted 1. Only a portion of the fluid energy is transformed
into kinetic energy by an efficient nozzle that into kinetic energy before the fluid enters the
forms a free jet. turbine runner.

2. The jet is unconfined and at atmospheric pres- 2. Water enters the runner with an excess pressure,
sure throughout the action of water on the runner, and then both the velocity and pressure change
and during its subsequent flow to the tail race. as water passes through the runner.

3. Blades are only in action when they are in front 3. Blades are in action all the time,
of the nozzle.

4. Water may be allowed to enter a part or whole of 4. Water is admitted over the circumference of the
the wheel circumference. wheel.

5. The wheel does not run full and air has free ac- 5. Water completely fills the vane passages
cess to the buckets. throughout the operation of the turbine.

6. Casing has no hydraulic function to perform; it 6. Pressure at inlet to the turbine is much higher
only serves to prevent splashing and to guide the than the pressure at outlet ; unit has to be sealed
water to the tail race. from atmospheric conditions and, therefore, cas-

ing is absolutely essential.

7. Unit is installed above the tail race. 7. Unit is kept entirely submerged in water below

the tail race.

8. Flow regulation is possible without loss. 8. Flow regulation is always accompanied by loss.

9. When water glides over the moving blades, its 9. Since there is continuous drop in pressure dur-
relative velocity either remains constant or reduces ing flow through the blade passages, the rela-
slightly due to friction. tive velocity does increase.

PELTON WHEEL (OR TURBINE)

The Pelton wheel or Pelton turbine is a tangential flow impulse turbine. The water strikes the bucket
along the tangent of the runner. The energy available at the inlet of the turbine is only kinetic energy.
The pressure at the inlet and outlet of the turbine is atmospheric. This turbine is used for high heads
and is named after L.A. Pelton, an American Engineer.

Buckets
— Runner
Hand wheel <
e | Pitch circle
. Casing
= ~ orey
= 7
J Support /1 ~ v
Spear 1
= Spear Rod oy
Tail stock
—

Fig. : Pelton Turbine




Main parts of Pelton Wheel

1. Nozzle and Flow Regulating Arrangement. The amount of water striking the buckets (vanes)
of the runner is controlled by providing a spear in the nozzle as shown in Fig. 18.2. The spear is a
conical needle which is operated either by a hand wheel or automatically in an axial direction
depending upon the size of the unit. When the spear is pushed forward into the nozzle the amount of
water striking the runner is reduced. On the other hand, if the spear is pushed back, the amount of water
striking the runner increases.

2. Runner with Buckets. Fig. 18.3 shows the runner of a Pelton wheel. It consists of a circular disc
on the periphery of which a number of buckets evenly spaced are fixed. The shape of the buckets is of
a double hemispherical cup or bowl. Each bucket is divided into two symmetrical parts by a dividing
wall which is known as splitter.

The jet of water strikes on the splitter. The splitter divides the jet into two equal parts and the jet
comes out at the outer edge of the bucket. The buckets are shaped in such a way that the jet gets
deflected through 160° or 170°. The buckets are made of cast iron, cast steel bronze or stainless steel
depending upon the head at the inlet of the turbine.

3. Casing. Fig. 18.4 shows a Pelton turbine with a casing. The function of the casing is to prevent
the splashing of the water and to discharge water to tail race. It also acts as safeguard against accidents.
It is made of cast iron or fabricated steel plates. The casing of the Pelton wheel does not perform any
hydraulic function.

4. Breaking Jet.

Velocity Triangles and Work done for Pelton Wheel.

THIS IS
CONNECTED TO
RUNNER

SPLITTER

(b)
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Let H = Net head acting on the Pelton wheel

=Hy—hy
4fLV?
where Hg = Gross head and hf= f—
D*x2g
where  D* = Dia. of Penstock, N = Speed of the wheel in r.p.m.,
D = Diameter of the wheel, d = Diameter of the jet.
Then V, = Velocity of jet at inlet = /2gH
DN
U= ul = u2 = .
60

The velocity triangle at inlet will be a straight line where
V,=Vi—uy=V,—u
Vi, =V,
oo=0° and 6 =0°
From the velocity triangle at outlet, we have
V.=V, and V, =V, cos - u,
The force exerted by the jet of water in the direction of motion is given by equation
Fe=paV, [V, +V, 1]

As the angle B3 is an acute angle, +ve sign should be taken.
a = Area of jet = gdz.
Now work done by the jet on the runner per second

=F . xXu=paV, [V, +V, ] xuNm/s
Power given to the runner by the jet

paVl[le +V, ] X u
) 1000

Work done/s per unit weight of water striking/s

kW

paV, [V + sz] X 1l

- Weight of water striking/s

_ paVl[le + sz])(u

=1[Vw +V,, | xu
paV, X g gr

The energy supplied to the jet at inlet is in the form of kinetic energy and is equal to m V2

K.E. of jet per second = % (paV,) x ‘V]2
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Work done per second

Hydraulic efficiency, =
y Yo M K.E. of jet per second

i paVi[V,, +V,, |xu ) 2[vw] +V,, |xu

2
%(paVl)fo Y
Now Vi =V, V, =V —u; =(V, - u)
V, =V, -u)
and Vy,=V,cos0-u,=V, coso-u=(V—u)cos¢-u

Substituting the values of V,, and V,, in equation

_ ZZ[V1 +(Vl—u)cos¢—u]><u
V12

up

2V —u+ (Vi —u)cos o] xu 2V, —u)[1+ cos p]u
= V12 = Vlz ’

The efficiency will be maximum for a given value of V, when

y [zum - ) + cos ¢>]

d
—m,)=0 =
y M) or

du V12
1+
or ﬂi(hﬂ—mz):() or 4wy, —2d=0 [0
Vi u du V
2V, —4u=0 or u:i
2
4

substituting the value of u = o

V. V,
2V——1)l+ X —-
[] 5 (1+ cos ¢) >

%%

Max. T]h =

V, |74
i 2x§(l+cos¢’)?] ) (1+ cos )

v 2
Points to be Remembered for Pelton Wheel
(i) The velocity of the jet at inlet is given by V| = C,/2gH
where C, = Co-efficient of velocity = 0.98 or 0.99
H = Net head on turbine

(ii) The velocity of wheel (u) is given by u = ¢.,/2gH

where O = Speed ratio. The value of speed ratio varies from 0.43 to 0.48.
(iit) The angle of deflection of the jet through buckets is taken at 165° if no angle of deflection is
given.
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(iv) The mean diameter or the pitch diameter D of the Pelton wheel is given by
u= ﬂ orD= 60_11.
60 N
(v) Jet Ratio. It is defined as the ratio of the pitch diameter (D) of the Pelton wheel to the diameter
of the jet (d). It is denoted by ‘m’ and is given as
m= 3 ( = 12 for most cases)
(vi) Number of buckets on a runner is given by
D
Z=15+ —=15+05m
2d

where m = Jet ratio
(vii) Number of Jets. It is obtained by dividing the total rate of flow through the turbine by the rate
of flow of water through a single jet.

Example A Pelton wheel has a mean bucket speed of 10 metres per second with a jet of water
flowing at the rate of 700 litres/s under a head of 30 metres. The buckets deflect the jet through an
angle of 160°. Calculate the power given by water to the runner and the hydraulic efficiency of the
turbine. Assume co-efficient of velocity as 0.98.

Speed of bucket, u=u =u,=10m/s
Discharge, Q = 700 litres/s = 0.7 m3/s, Head of water, H= 30 m
Angle of deflection = 160°

Angle, ¢ = 180° — 160° = 20°

Co-efficient of velocity, C,=0.938.

The velocity of jet, V,=C,J2gH =0.98 /2 x9.81x30 =23.77 m/s

fe——V,=V,, %

Vn =V, -u;=23.77-10
= 13.77 m/s

Ve, =V =23.77Tm/s

o
From outlet velocity triangle,
V, =V, =13.77T m/s

r

V,

w

, =V, cosd—u,
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= 13.77 cos 20° - 10.0 = 2.94 m/s

Work done by the jet per second on the runner is given by equation (18.9) as

= paV, [le +V,, ] Xu

= 1000 x 0.7 X [23.77 + 2.94] x 10 (v aV;=0=07 m?>/s)

= 186970 Nm/s

~ 186970
1000
The hydraulic efficiency of the turbine is given by equation (18.12) as

= 186.97 kW. Ans.

Power given to turbine

v} 2377 x 23.77
= 09454 or 94.54%. Ans.

" = 2[V,, + Y, | xu _2[23.77+2.94]x10
, =

[ Example A Pelton wheel is to be designed for the following specifications :

diameter is not to exceed one-sixth of the wheel diameter. Determine :
(i) The wheel diameter, (ii) The number of jets required, and
(iii) Diameter of the jet.
Take K, = 0.985 and K, = 0.45

Shaft power = 11,772 kW ; Head = 380 metres ; Speed = 750 r.p.m. ; Overall efficiency = 86% ; Jet

\

Shaft power, S.P.=11,772 kW
Head , H =380 m
Speed, N =750 r.p.m.
Overall efficiency, Ny = 86% or 0.86
Ratio of jet dia. to wheel dia. = i = %
Co-efficient of velocity, K, = C,=0.985
Speed ratio, Ku, =045

The velocity of wheel, U= =u,

= Speed ratio X ,2gH = 0.45 X 4/2x 9.81x 380 = 38.85 m/s

DN nDN
u=—" . 3885=-——
60 60
D= 60 x 38.85 _ 60 x 38.85 — 0.989 m.
T XN Tt X750
But i = l
D 6
Dia. of jet, d= % xD= 096£ = 0.165 m. Ans.
Discharge of one jet, q = Area of jet X Velocity of jet
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= % LV, = %(.165) x 85.05 m%/s = 1.818 m%/s

Now _S.P. 1772
Mo = W.P. pgXQOXH
1000
11772 x 1
0.86 = x 1000 , where Q = Total discharge
1000 % 9.81x Q x 380
11772 x1
Total discharge, 0= x 1000 =3.672 m’/s
1000 % 9.81 x 380 x 0.86
Number of jets _ _Totldischarge _ O _ 3672 _, coc. Ans.
Discharge of one jet ¢ 1818
g Example The penstock supplies water from a reservoir to the Pelton wheel with a gross head

of 500 m. One third of the gross head is lost in friction in the penstock. The rate of flow of water
through the nozzle fitted at the end of the penstock is 2.0 m’/s. The angle of deflection of the jet is 165°.
Determine the power given by the water to the runner and also hydraulic efficiency of the Pelton

\wheel. Take speed ratio = 0.45 and C, = 1.0. )
Solution. Given :
Gross head, Hg =500 m
H
Head lost in friction, he=—L = 0 1667m
3 3
Net head, H=H,— he=500-166.7 = 333.30 m
Discharge, Q=2.0m’s
Angle of deflection = 165°
Angle, ¢ = 180° - 165° = 15°
Speed ratio = 0.45
Co-efficient of velocity, C,=1.0
Velocity of jet, V,=C,2gH =1.0X J2 x9.81x333.3 = 80.86 m/s
Velocity of wheel, u = Speed ratio X J2gH
or u=u=u,=0.45x ,/2x9.81x3333 = 36.387 m/s
V, =V, —u,;=80.86 - 36.387
=44.473 m/s
Also V., =V, =280.86 m/s

w

From outlet velocity triangle, we have
V, =V,=44.473
V,cosdo=u+V,

44.473 cos 15° = 36.387 + Ve,
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or V,, =44.473 cos 15° - 36.387 = 6.57 m/s.
Work done by the jet on the runner per second is given by equation (18.9) as
pavi[V,, +V, 1xu=pQlV, +V, 1xu (v a¥y=Q)
= 1000 x 2.0 x [80.86 + 6.57] x 36.387 = 6362630 Nm/s

Power given by the water to the runner in kW

_ Work done per second _ 6362630
1000 ~ 1000

Hydraulic efficiency of the turbine is given by equation (18.12) as

= 6362.63 kW

2 [le +V,, ] Xu  2[80.86 +6.57] x 36.387
- V2 - 80.86 x 80.86
= 0.9731 or 97.31%. Ans.

Ny

Example A Pelton wheel is to be designed for a head of 60 m when running at 200 r.p.m. The
Pelton wheel develops 95.6475 kW shaft power. The velocity of the buckets = 0.45 times the velocity of
the jet, overall efficiency = 0.85 and co-efficient of the velocity is equal to 0.98.

Head, H=60m

Speed N=200r1r.p.m

Shaft power, S.P.=95.6475 kW

Velocity of bucket, u = 0.45 x Velocity of jet
Overall efficiency, n, = 0.85

Co-efficient of velocity, C,=0.98

(1) Velocity of jet, V,=C,%x /2gH =0.98 x /2 x9.81x60 = 33.62 m/s
Bucket velocity, u=u;=uy=045xV, =0.45x33.62=15.13 m/s
But u= %, where D = Diameter of wheel
15.13=w or D=M=l.44m. Ans.
60 7t < 200
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(ii) Diameter of the jet (d)
Overall efficiency n, = 0.85

S.P. _ 95.6475 _ 95.6475x 1000

But = = = v W.P.=
= wor. (W.P.) PXgXQxH ( PgCH
1000
_ 956475 %1000
1000 x 9.81 x O x 60
0= 95.6475 x 1000 _ 956475x1000  _ 0.1912 m¥s
M, 1000 x9.81 x60  0.85x1000 x 9.81 x 60
But the discharge, Q = Area of jet X Velocity of jet

0.1912 = %dz XV, = ;a‘z X 33.62

g= [AXO0IO1Z ) es i = 85 mm.
Tt X 33.62

(iif) Size of buckets

Width of buckets =5Xd=5x%x85=425mm
Depth of buckets =12xd=12x%x85=102 mm.
(iv) Number of buckets on the wheel is given by equation (18.17) as
D 1.44

Z=15+E=15+ =15 + 8.5 = 23.5 say 24.

2 x.085
FRANCIS TURBINE

The Francis turbine is a mixed flow reaction turbine. This turbine is used for medium
heads with medium discharge. Water enters the runner and flows towards the center of the
wheel in the radial direction and leaves parallel to the axis of the turbine.

Turbines are subdivided into impulse and reaction machines. In the impulse turbines,
the total head available is converted into the kinetic energy. In the reaction turbines, only
some part of the available total head of the fluid is converted into kinetic energy so that the
fluid entering the runner has pressure energy as well as kinetic energy. The pressure energy is
then converted into kinetic energy in the runner.

The Francis turbine is a type of reaction turbine that was developed by James B.
Francis. Francis turbines are the most common water turbine in use today. They operate in a
water head from 40 to 600 m and are primarily used for electrical power production. The
electric generators which most often use this type of turbine have a power output which
generally ranges just a few kilowatts up to 800 MW.

Main components of Francis turbine
1. Spiral Casing

The water flowing from the reservoir or dam is made to pass through this pipe with
high pressure. The blades of the turbines are circularly placed, which means the water
striking the blades of the turbine should flow in the circular axis for efficient striking. So, the
spiral casing is used, but due to the circular movement of the water, it loses its pressure.
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To maintain the same pressure, the diameter of the casing is gradually reduced, to
maintain the pressure uniformly, thus uniform momentum or velocity striking the runner
blades.

2. Stay Vanes

This guides the water to the runner blades. Stay vanes remain stationary at their
position and reduces the swirling of water due to radial flow and as it enters the runner
blades. Hence, makes the turbine more efficient.

Main Shaft Operating Ring

Water Inlet Water Guiding Device

Spiral case

Head Cover

Guide Vane

N\
/' Stay Ring Guide Vane
Draft Tube N
Runner

Francis Turbine
3. Guide Vanes
Guide vanes are also known as wicket gates. The main function or usages of the guide
vanes are to guide the water towards the runner and it also regulates the quantity of water
supplied to runner. It also guides the water to flow at an angle and that is appropriate for the
design.

STAY VANES

GUIDE VANES

4. Runner Blades:

Absorbs the energy from the water and converts it to rotational motion of the main
shaft. The runner blades design decides how effectively a turbine is going to perform. The
runner blades are divided into two parts. The lower half is made in the shape of a small
bucket so that it uses the impulse action of water to rotate the turbine.

The upper part of the blades uses the reaction force of water flowing through it. These
two forces together make the runner rotate.

Draft Tube

The draft tube is an expanding tube which is used to discharge the water through the

runner and next to the tailrace. The main function of the draft tube is to reduce the water
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velocity at the time of discharge. Its cross-section area increases along its length, as the water
coming out of runner blades, is at considerably low pressure, so its expanding cross-section

area helps it to recover the pressure as it flows towards the tailrace.
( Shaft To regulating rod

Guide vane
or
Wicket gate

Teil race \

Scroll casing
To regulating rod
Runner

—Water inlet
from penstock

< Spiral casing

— Link

Working principles of Francis turbine

» The water is admitted to the runner through guide vanes or wicket gates. The opening
between the vanes can be adjusted to vary the quantity of water admitted to the turbine.
This is done to suit the load conditions.

» The water enters the runner with a low velocity but with a considerable pressure. As the
water flows over the vanes the pressure head is gradually converted into velocity head.

» This kinetic energy is utilized in rotating the wheel Thus the hydraulic energy is
converted into mechanical energy.

» The outgoing water enters the tailrace after passing through the draft tube. The draft tube
enlarges gradually and the enlarged end is submerged deeply in the tailrace water.

» Due to this arrangement a suction head is created at the exit of the runner.
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Velocity Triangle

velocity of whirl at outlet (i.e., V,.) will be zero. Hence the work done by water on the runner per
second will be

= POV, 1]

1
And work done per second per unit weight of water striking/s = —[leul]
8

V, u

W)

Hydraulic efficiency will be given by, n, =

gH

148.25 kW power. It is working under a head of 7.62 m. The peripheral velocity = 0.26 \|2gH and the

radial velocity of flow at inlet is 0.96/2¢H . The wheel runs at 150 r.p.m. and the hydraulic losses in
the turbine are 22% of the available energy. Assuming radial discharge, determine :

(i) The guide blade angle, (ii) The wheel vane angle at inlet,

(iii) Diameter of the wheel at inlet, and (iv) Width of the wheel at inlet.

Overall efficiency N, =75% =0.75

Power produced, S.P. = 148.25 kW

Head, H=7.62m
Peripheral velocity, u, =0.26 \J2gH =0.26 X \[2 X981x7.62 =3.179 m/s
Velocity of flow atinlet,  V, =0.96 ~2gH =0.96 x J2 X 981%x7.62 =11.738 m/s.
Speed, N =150 r.p.m.

Hydraulic losses = 22% of available energy

Discharge at outlet = Radial

V,, =0and V, =V,
Hydraulic efficiency is given as
_ Total head at inlet — Hydraulic loss

Head at inlet

un
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_H-22H 0J8H

=0.78
H H
B leul
ut =—
Ny oH
W ul
— =0.78
gH
v, = 078xgx H
Hy
_ 0.78 x 9.81x 7.62 = 1834 mis.
3179
(i) The guide blade angle, i.e., o.. From inlet velocity triangle,
Vv
tan o= 2 = 11738 _ 64
V. 18.34

Wi
o = tan"' 0.64 = 32.619° or 32° 37". Ans.
(ii) The wheel vane angle at inlet, i.e., ©

Vi, 11738
V, —u,  1834-3179

w

tan O = 0.774

0 =tan”' .774 = 37.74 or 37° 44.4". Ans.
(iiif) Diameter of wheel at inlet (D,).

Using the relation, U, = DN
60
D, = 60 u = 00 x 3179 = 0.4047 m. Ans.
TXN 7 % 50
(iv) Width of the wheel at inlet (B,)
_ S.P. 14825
No=We = wr.
But p. WH _pXgxQxH _1000x981xQx762
1000 1000 1000
148.25 148.25 x 1000

Mo = 7000 x 981X O x 7.62

1000 x9.81 x Q x 7.62

1000
0= 148.25 X 1000 _ 148.25 X 1000
1000 x9.81x7.62xm, 1000 x9.81x7.62 x0.75
Q=nD,xB; XV,
2.644 =t X .4047 X B; X 11.738
= 2644 =0.177 m.

Tt X.4047 x11.738

=2.644m’/s
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( Example  The following data is given for a Francis Turbine. Net head H = 60 m ; Spee%
N =700 r.p.m.; shaft power = 294.3 kW ; 1, = 84% ; n, = 93%; flow ratio = 0.20 ; breadth ratio
n = 0.1; Outer diameter of the runner = 2 x inner diameter of runner. The thickness of vanes occupy
5% of circumferential area of the runner, velocity of flow is constant at inlet and outlet and discharge
is radial at outlet. Determine :

(i) Guide blade angle, (ii) Runner vane angles at inlet and outlet,
\(iii ) Diameters of runner at inlet and outlet, and (iv) Width of wheel at inlet. /

Net head, H=60m

Speed, N =700 r.p.m.

Shaft power = 2943 kW

Overall efficiency, N, = 84% = 0.84

Hydraulic efficiency, N, =93% =0.93

. Vi
Flow ratio, =0.20

J2gH

V, =0.20 x 2¢H
= 0.20 X /2X9.81X 60 = 6.862 m/s

Breadth ratio, B =0.1
DI
Outer diameter, D, =2 X Inner diameter = 2 X D,
Velocity of flow, Vf. = sz = 6.862 m/s.
Thickness of vanes = 5% of circumferential area of runner
Actual area of flow =0.95 D, X B,
Discharge at outlet = Radial
sz = 0 and sz = V2
S.P.
Using relation, 0= ——
£ o= Wp.
294,
0.84 = 2243
W.P.
294,
W.P.= 2243 = 350.357 kW.
0.84
But WP = WH =pxngxH:1000><9.81><Q><60
1000 1000 1000
1000 x9.81 x Q x 60 — 350357
1000
0= 350.357 1000 _ 0.5952 ms.
60 %1000 x9.81
Using equation (18.21), Q = Actual area of flow x Velocity of flow
=095 D, x B, x V,
=0.95xn x D, x0.1D; XV, (- B;=0.1D))

41



or 0.5952 =0.95 x T x D, x 0.1 X D, X 6.862 = 2.048 D/

D= [0 _ocum
V2048

But —=0.1

R B, =0.1xD;=0.1x.54=.054 m = 54 mm
Tangential speed of the runner at inlet,

_ DN mx0.54 %700

U = =19.79 m/s.

60 60
Using relation for hydraulic efficiency,

o Uy v, x19.79

n,=——o0r093=—"———
gH 9.81x 60

vV, = 0.93x981X60 _ o7 c6 s,

‘ 19.79
(i) Guide blade angle (o)

ﬁ _ 6.862

From inlet velocity triangle, tan o = =0.248

27.66

Wy

o = tan"' 0.248 = 13.928° or 13° 55.7". Ans.
(i) Runner vane angles at inlet and outlet (6 and @)

V., 6862

= =0.872
-, 27.66-19.79

tan 6 =

wy

0 =tan"' 0.872 = 41.09° or 41° 5.4’. Ans.

4 V
From outlet velocity triangle, tan ¢ = MU RS 6362 ..(0)
U, u, u,
But Uy = LN _nxD N [ D, = —lgiven]
60 2 60
=T X Exm = 9.896 m/s.
2 60

Substituting the value of u, in equation (i),

tan ¢ = w =0.6934
9.896
AR o= tan"' .6934° = 34.74 or 34° 44.4’. Ans.
(iii) Diameters of runner at inlet and outlet
D, =0.54 m, D, = 0.27 m. Ans.
(iv) Width of wheel at inlet
B, = 54 mm. Ans.
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AXIAL FLOW REACTION TURBINE

If the water flows parallel to the axis of the rotation of the shaft, the turbine is known as axial flow
turbine. And if the head at the inlet of the turbine is the sum of pressure energy and kinetic energy and
during the flow of water through runner a part of pressure energy is converted into kinetic energy, the
turbine is known as reaction turbine.

For the axial flow reaction turbine, the shaft of the turbine is vertical. The lower end of the shaft is
made larger which is known as *hub’ or ‘boss’. The vanes are fixed on the hub and hence hub acts as a
runner for axial flow reaction turbine. The following are the important type of axial flow reaction
turbines :

1. Propeller Turbine, and 2. Kaplan Turbine.

When the vanes are fixed to the hub and they are not adjust-
able, the turbine is known as propeller turbine. But if the vanes
on the hub are adjustable, the turbine is known as a Kaplan
Turbine, after the name of V Kaplan, an Austrian Engineer.
This turbine is suitable where a large quantity of water at low
head is available. Fig. 18.25 shows the runner of a Kaplan
turbine, which consists of a hub fixed to the shaft. On the hub,
the adjustable vanes are fixed as shown in Fig. 18.25.

The main parts of a Kaplan turbine are :

1. Scroll casing,

2. Guide vanes mechanism,

3. Hub with vanes or runner of the turbine, and

4. Draft tube.

Main components of Kaplan turbine

Fig. 18.25 Kaplan turbine runner.

INLET OF RUNNER VANES
i - OUTLET OF VANE
TAIL RACE

0= (D} - D})xv,

where D, = Outer diameter of the runner,
D, = Diameter of hub, and

V; = Velocity of flow at inlet.
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Some Important Point for Propeller (Kaplan Turbine)

1. The peripheral velocity at inlet and outlet are equal

nD,N

Uy =iy =
2. Velocity of flow at inlet and outlet are equal
Vi=V..

3. Area of flow at inlet = Area of flow at outlet

= g(oj -D}).

, where D, = Outer dia. of runner

\_ (it) Speed of the turbine.

4 Example A Kaplan turbine working under a head of 20 m develops 11772 kW shaft power.\
The outer diameter of the runner is 3.5 m and hub diameter is 1.75 m. The guide blade angle at the
extreme edge of the runner is 35°. The hydraulic and overall efficiencies of the turbines are 88% and
84% respectively. If the velocity of whirl is zero at outlet, determine :

(i) Runner vane angles at inlet and outlet at the extreme edge of the runner, and

J

Solution. Given :

Head, H=20m
Shaft power, S.P. = 11772 kW
Outer dia. of runner, D,=35m
Hub diameter, D,=175m
Guide blade angle, o = 35°
Hydraulic efficiency, n, = 88%
Overall efficiency, n,=84%
Velocity of whirl at outlet =0.
S.P.
Using the relation, =
sing the relation Mo WP,
where W.P. = W.P. = PXgxXOXH , we get
1000 1000
11772
0.84 = SxgxOxH

1000
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11772 %1000

= (.‘. Pp= 1000)
1000 x 9.81x @ %20
0= 11772 x 1000 = 71.428 mYs.
0.84 x 1000 x 9.81x 20
Using equation (18.25), Q= %(Dj - D})xV,
n T
or 71428 =7 (35 - 1759 x V, = 7 (1225-3.0625) V;
=7.216 V,
= 71428 = 9.9 m/s.
' 7216
Vs
From inlet velocity triangle, tan ot = —=%
v
S TR VRPN
' tano tan35 .7
Using the relation for hydraulic efficiency,
Vit
- v V. =0
U gH ( Wa )
0.88 = 14.14 x u,
9.81x20
(7) Runner vane angles at inlet and outlet at the extreme edge of the runner are given as :
V 9.9
tan @ = — =5.13

V, —u,  (1414-1221)

"

0 =tan'5.13 = 78.97° or 78° 58’. Ans.

For Kaplan turbine, uy=u,=1221mfsand V, =V, =99 m/s
. — Ve _ 99 _
.. From outlet velocity triangle, tan ¢ = =_27 =0.38I11
U, 1221

0 = tan"' .811 = 39.035° or 39° 2. Ans.

(if) Speed of turbine is given by u, = u, = ﬂ?"ON
12.21 = TX35XN
60
N = S0x12.21 = 66.63 r.p.m. Ans.
7 %X 3.50

Example A Kaplan turbine runner is to be designed to develop 9100 kW. The net available
head is 5.6 m. If the speed ratio = 2.09, flow ratio = 0.68, overall efficiency = 86% and the diameter of
the boss is 1/3 the diameter of the runner. Find the diameter of the runner, its speed and the specific
speed of the turbine.
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Power, P =9100 kW

Net head, H=56m
Speed ratio =2.09
Flow ratio =0.68
Overall efficiency, N, = 8% = 0.86
Diameter of boss = 1 of diameter of runner
1
or D,=—=D,
3
. u
Now, speed ratio =
2gH
=209 x /2x981%x56 =21.95m/s
i

Flow ratio =

~2gH
Vf. =0.68 X \/2x981%x56 =7.12m/s

The overall efficiency is given by, n, = W

1000

__ Px1000  _ 9100 x 1000
pxgxHxmn, 1000x981x5.6x0.86

(v pg=1000%9.81 N/m?)

or

= 192.5 m’/s.
The discharge through a Kaplan turbine is given by

T 2 2
Q=Z[D0—Db]><1/}1

_
O
o
n
I

or

&(a &|a

[ B —
T o
| D
O | = I
| I P
w|o
S—
[

D,= M =6.21 m. Ans.
TxX8x712

DN
60
_60xu;  60x21.95

= = 67.5 r.p.m. Ans.
nxD 7 x6.21

NP _ 67.5%+/9100

HSM - 5'6514

The speed of turbine is given by, u, =

N

= 746. Ans.

The specific speed is given by, N, =
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Example A Kaplan turbine runner is to be designed to develop 7357.5 kW shaft power. The
net available head is 5.50 m. Assume that the speed ratio is 2.09 and flow ratio is 0.68, and the overall

1
efficiency is 60%. The diameter of the boss is Erd of the diameter of the runner. Find the diameter of

the runner, its speed and its specific speed.

Shaft power, P =7357.5kW
Head, H=550m
u
Speed ratio = ——=2.09
2gH
u; =2.09 % 4/2x981x550 =21.71 m/s
. Vf
Flow ratio = 2—IH = (.68
8
o Vfu =2.68 X 4/2x9.81x5.50 =7.064 m/s
Overall efficiency, N, =60% = 0.60
Diameter of boss, D, = % xD,
, . _ Shaftpower 73575
Using relation, °” Water power PX8XQXH
1000
or 0.60 = 7357.5x1000 _ 7357.5 x 1000
' pXgXQXH 1000x9.81xQx5.5
0= —T3XN000 55759 ms.
1000 x 9.81x 5.5 X 0.60
T
Q= E(Dj - D;)xV;
2
227.27 = E[Dj - (&] } X 7.064 [ D, = &]
4 3 3
=T 8 D2 % 7.064 = 4.9316 D
4 9
_ 22727 6788 m. A
°= V49316 ~ 00 M AN
1
And D, = 3 % 6.788 = 2.262 m. Ans.
Using the relation, Hy = %
N = 60 X u, _ 60 x21.71 = 61.08 r.p.m. Ans.
D T X 6.788

a

The specific speed (N,) is given by,

_ NJP _ 6108 x+/7357.5
NS_ H5|’4 - 5-50514

=622 r.p.m. Ans.



Dimensional analysis

Dimensional analysis is a method of dimensions. It is a mathematical technique used
in research work for design and for conducting model tests. It deals with the dimensions of
the physical quantities involved in the phenomenon. All physical quantities are measured by
comparison, which is made with respect to an arbitrarily fixed value. Length L, mass M and
time T are three fixed dimensions which are of importance in Fluid Mechanics. If in any
problem of fluid mechanics, heat is involved then temperature is also taken as fixed
dimension. These fixed dimensions are called fundamental dimensions or fundamental
quantity.

Secondary or derived quantities are those quantities which possess more than one
fundamental dimension. For example, velocity is denoted by distance per unit time (L/T),
density by mass per unit volume| (M/L%) and acceleration distance per second Square (L/T?).
Then velocity, density, deceleration become as secondary or derived quantities. The
expressions (L/T), (M/L®) and (L/T?) are called the dimensions of velocity, density and
acceleration respectively. The dimensions of mostly used physical quantities in Fluid
Mechanics.

Dimensional Homogeneity

If an equation truly expresses a proper relationship among variables in a physical
process, then it will be dimensionally homogeneous. The equations are correct for any system
of units and consequently each group of terms in the equation must have the same
dimensional representation. This is also known as the law of dimensional homogeneity.
Dimensional variables

These are the quantities, which actually vary during a given case and can be plotted
against each other. Dimensional constants: These are normally held constant during a given
run. But, they may vary from case to case.

Pure constants
They have no dimensions, but, while performing the mathematical manipulation, they

can arise.
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Buckingham pi Theorem

The dimensional analysis for the experimental data of unknown flow problems leads
to some non-dimensional parameters. These dimensionless products are frequently
referred as pi ferms. Based on the concept of dimensional homaogeneity, these
dimensionless parameters may be grouped and expressed in functional forms. This
idea was explored by the famous scientist Edgar Buckingham (1867-1940) and the
theorem is named accordingly.

Buckingham pi theorem, states that if an equation involving & variables is

dimensionally homogeneous, then it can be reduced to a relationship among (k—r}

independent dimensionless products, where r is the minimum number of reference
dimensions required to describe the variable. For a physical system, involving &

variables, the functional relation of variables can be written mathematically as,

y= f{x,,xz..........,xk}

It should be ensured that the dimensions of the variables on the left side of the
equation are equal to the dimensions of any term on the right side of equation. Now, it is
possible to rearrange the above equation into a set of dimensionless products (pi terms), so
that

Here, ¢(I1,,11;.......... ,I1,_.) is a function of I1, through I1,_, . The required number
of pi terms is less than the number of original reference variables by r. These
reference dimensions are usually the basic dimensions M, L and T (Mass, Length

and Time).

Determination of pi Terms

Several methods can be used to form dimensionless products or pi terms that arise in
dimensional analysis. But, there is a systematic procedure called method of repeating
variables that allows in deciding the dimensionless and independent pi ferms. For a

given problem, following distinct steps are followed.
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Step I: List out all the variables that are involved in the problem. The ‘variable’ is any
quantity including dimensional and non-dimensional constants in a physical situation
under investigation. Typically, these variables are those that are necessary to describe
the “geometry” of the system (diameter, length etc.), to define fluid properties
(density, viscosity etc.) and to indicate the external effects influencing the system
(force, pressure etc.). All the variables must be independent in nature so as to
minimize the number of variables required to describe the complete system.

Step II: Express each variable in terms of basic dimensions. Typically, for fluid

mechanics problems, the basic dimensions will be either M, L and T or F, L and T.

Dimensionally, these two sets are related through Newton’s second law (F = m.a) S0

that F=MLT > e;g. p=ML" or p=FL*T". It should be noted that these basic
dimensions should not be mixed.
Step IlI: Decide the required number of pi terms. It can be determined by using

Buckingham pi theorem which indicates that the number of pi terms is equal to

(k—r), where k is the number of variables in the problem (determined from Step I)

and r is the number of reference dimensions required to describe these variables
(determined from Step II).

Step IV: Amongst the original list of variables, select those variables that can be
combined to form pi terms. These are called as repeating variables. The required
number of repeating variables is equal to the number of reference dimensions. Each
repeating variable must be dimensionally independent of the others, i.e. they cannot
be combined themselves to form any dimensionless product. Since there is a
possibility of repeating variables to appear in more than one pi term, so dependent
variables should not be chosen as one of the repeating variable.

Step V: Essentially, the pi terms are formed by multiplying one of the non-repeating

variables by the product of the repeating variables each raised to an exponent that will

make the combination dimensionless. It usually takes the form of x, x{ x; x; where
the exponents a, b and ¢ are determined so that the combination is dimensionless.

Step VI: Repeat the ‘Step V’ for each of the remaining non-repeating variables. The

resulting set of pi terms will correspond to the required number obtained from Step
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I11.
Step VII: After obtaining the required number of pi terms, make sure that all the pi

terms are dimensionless. It can be checked by simply substituting the basic dimension

(M, L and T) of the variables into the pi terms.

Step VIII: Typically, the final form of relationship among the pi ferms can be written

in the form of Eq. (6.1.2) where, Il, would contain the dependent variable in the

numerator. The actual functional relationship among pi terms is determined from
experiment.

Non Dimensional numbers in Fluid Dynamics

Forces encountered in flowing fluids include those due to inertia, viscosity, pressure,

gravity, surface tension and compressibility. These forces can be written as follows;

i dv
Inertia force: m.a = p V.E- « pVr?

Viscousforce: 74 =u A ?nc uv L
Ay

Pressure force: (Ap) Ao (Ap) L

Gravity force: mg oc gpf

Surface tension force: o L

Compressibility force: E, Ao E, I
The notations used in Eq. (6.2.1) are given in subsequent paragraph of this section. It
may be noted that the ratio of any two forces will be dimensionless. Since, inertia
forces are very important in fluid mechanics problems, the ratio of the inertia force to
each of the other forces listed above leads to fundamental dimensionless groups.

Some of them are defined as given below;
Reynolds number (Re): It is defined as the ratio of inertia force to viscous force.

Mathematically,

Re=—=

J7i

where ¥ is the velocity of the flow, L is the characteristics length, o, and v are

pVL E
v

the density, dynamic viscosity and kinematic viscosity of the fluid respectively. If

Re is very small, there is an indication that the viscous forces are dominant compared
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to inertia forces. Such types of flows are commonly referred to as “creeping/viscous
flows™. Conversely, for large Re, viscous forces are small compared to inertial effects
and such flow problems are characterized as inviscid analysis. This number is also

used to study the transition between the laminar and turbulent flow regimes.

Euler number (E, ]: In most of the aerodynamic model testing, the pressure data are

usually expressed mathematically as,

where Ap 1s the difference in local pressure and free stream pressure, V 1is the
velocity of the flow, p is the density of the fluid. The denominator in Eq. (6.2.3) 1s

called “dynamic pressure”. E is the ratio of pressure force to inertia force and many

a times the pressure coefficient (cp) is a also common name which is defined by same
manner. In the study of cavitations phenomena, similar expressions are used where,
Ap is the difference in liquid stream pressure and liquid-vapour pressure. This
dimensional parameter is then called as “cavitation number”.

Froude number (F,): It is interpreted as the ratio of inertia force to gravity force.

Mathematically, it is written as,

v
F=——

JeL

where V' is the velocity of the flow, L is the characteristics length descriptive of the
flow field and g is the acceleration due to gravity. This number is very much
significant for flows with free surface effects such as in case of open-channel flow. In
such types of flows, the characteristics length is the depth of water. F less than unity
indicates sub-critical flow and values greater than unity indicate super-critical flow. It
is also used to study the flow of water around ships with resulting wave motion.

Weber number (W ): It is defined as the ratio of the inertia force to surface tension

e

force. Mathematically,

52



where V is the velocity of the flow, L is the characteristics length descriptive of the

flow field, p is the density of the fluid and o is the surface tension force. This

number is taken as an index of droplet formation and flow of thin film liquids in

which there is an interface between two fluids. The inertia force is dominant

compared to surface tension force when, W [ 1 (e.g. flow of water in a river).

Mach number (M) It is the key parameter that characterizes the compressibility

effects in a fluid flow and is defined as the ratio of inertia force to compressibility

yr__rv _r
c [dp [E,
dp \p

where V' is the velocity of the flow, ¢ is the local sonic speed, p is the density of the

force. Mathematically,

fluid and E, is the bulk modulus. Sometimes, the square of the Mach number is

called “Cauchy number” (C,) i.e.

C =M= PV2
a EP

Both the numbers are predominantly used in problems in which fluid compressibility
1s important. When, M is relatively small (say, less than 0.3), the inertial forces
induced by fluid motion are sufficiently small to cause significant change in fluid
density. So, the compressibility of the fluid can be neglected. However, this number is
most commonly used parameter in compressible fluid flow problems, particularly in

the field of gas dynamics and aerodynamics.

Strouhal number (S,] : It 1s a dimensionless parameter that is likely to be important in

unsteady, oscillating flow problems in which the frequency of oscillation is @ and is

defined as,

where V' is the velocity of the flow and L is the characteristics length descriptive of
the flow field. This number is the measure of the ratio of the inertial forces due to

unsteadiness of the flow (local acceleration) to inertia forces due to changes in
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Parameter Mathematical expression Qualitative definition Importance

¢ Dissipati :
Prandtl number P = HEy M Heat convection

k Conduction

2 . .
Kinet .
Eckert number E = v oTC eneTey Dissipation
c, T Enthalpy
. : ¢ Enthal :
Specific heat ratio y=-"L apy Compressible flow
c, Internal energy

Wall roughness

. £
Roughness ratio -
L Body length

Turbulent rough walls

AT)gLp’ B
Grashof number G =’3 { )g £ buoyancy

" 1 Viscosity

Natural onvection

Wall temperature

&

Heat transfer

Temperature ratio
T, Stream temperature

p—p, Static pressure

Pressure coefficient C =

= Hydrodynamics,
? (1/2)pV’ Dynamic pressure yarody

Aerodynamics

L Lift force

Lift coefficient = .
: (1/'2)14,017“ Dynamic force

Hydrodynamics,Aero

dynamics

D Drag force
(1/2) A pV? Dynamic force

Drag coefficient C,= Hydrodynamics,

Aero dynamics

Flow Similarity

In order to achieve similarity between model and prototype behavior, all the
corresponding pi terms must be equated to satisfy the following conditions.
Geometric similarity

A model and prototype are geometric similar if and only if all body dimensions in all
three coordinates have the same linear-scale ratio. In order to have geometric similarity
between the model and prototype, the model and the prototype should be of the same shape,
all the linear dimensions of the model can be related to corresponding dimensions of the
prototype by a constant scale factor. Usually, one or more of these pi terms will involve ratios

of important lengths, which are purely geometrical in nature.
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Kinematic similarity

The motions of two systems are kinematically similar if homogeneous particles lie at
same points at same times. In a specific sense, the velocities at corresponding points are in
the same direction (i.e. same streamline patterns) and are related in magnitude by a constant
scale factor.

Dynamic similarity

When two flows have force distributions such that identical types of forces are
parallel and are related in magnitude by a constant scale factor at all corresponding points,
then the flows are dynamic similar. For a model and prototype, the dynamic similarity exists,
when both of them have same length-scale ratio, timescale ratio and force-scale (or mass-
scale ratio).

In order to have complete similarity between the model and prototype, all the
similarity flow conditions must be maintained. This will automatically follow if all the
important variables are included in the dimensional analysis and if all the similarity
requirements based on the resulting pi terms are satisfied. For example, in compressible
flows, the model and prototype should have same Reynolds number, Mach number and
specific heat ratio etc. If the flow is incompressible (without free surface), then same

Reynolds numbers for model and prototype can satisfy the complete similarity.
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