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UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 
Rigid bodies and deformable solids - stability, strength, stiffness - tension, compression and shear stresses - 
strain, elasticity, Hooke’s law, limit of proportionately, modules of elasticity, stress-strain curve, lateral strain - 
temperature stresses deformation of simple and compound bars - shear modulus, bulk modulus, relationship 
between elastic constants - bi axial state of stress - stress at a point - stress on inclined plane - principal stresses 
and principal planes – Mohr’s circle of stresses 

 

 When an external force acts on a body, the body tends to undergo some deformation. 

Due to cohesion between the molecules, the body resists deformation. This resistance by 

which material of the body opposes the deformation is known as strength of material, within 

a certain limit (i.e., in the elastic stage). Whenever a load is attached to a thin hanging wire, it 

elongates and the load moves downwards (sometimes through a negligible distance). The 

amount, by which the wire elongates, depends upon the amount of load and the nature as well 

as cross-sectional area of the wire material. 

Elasticity 

 Whenever a force acts on a body, it undergoes some deformation and the molecules 

offer some resistance to the deformation. It will be interesting to know that when the external 

force is removed, the force of resistance also vanishes; and the body springs back to its 

original position. But it is only possible, if the deformation, caused by the external force, is 

within a certain limit. Such a limit is called elastic limit. 

 The property of certain materials of returning back to their original position, after 

removing the external force, is known as elasticity. 

Stress 

 The force of resistance per unit area, offered by a body against deformation is known 

as stress. The external force acting on the body is called the load or force. The load is applied 

on the body while the stress is induced in the material of the body. A loaded member remains 

in equilibrium when the resistance offered by the member against the deformation and the 

applied load are equal. 

 

 

 

    where     F = Load or force acting on the body, and 

     A = Cross-sectional area of the body. 

 The unit of stress depends upon the unit of load (or force) and unit of area. In M.K.S. 

units, the force is expressed in kgf and area in metre square (i.e., m
2
). Hence unit of stress 

becomes as kgf/m
2
. In the S.L units, the force is expressed in newtons (written as N) and area 

is expressed as m
2
. Hence unit of stress becomes as N/m

2
. 

Strain  

 Whenever a single force (or a system of forces) acts on a body, it undergoes some 

deformation. This deformation per unit length is known as strain. Mathematically strain may 

be defined as the deformation per unit length. i.e., strain 

 

 

 

 

Types of Stresses 
 Though there are many types of stresses, yet the following two types of stresses are 

important from the subject point of view: 1. Tensile stress, 2. Compressive stress. 
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1. Tensile Stress 
 When a section is subjected to two equal and opposite pulls and the body tends to 

increase its Length. The stress induced is called tensile stress. The corresponding strain is 

called tensile strain. As a result of the tensile stress, the *cross-sectional area of the body gets 

reduced. 

 
2. Compressive Stress 
 When a section is subjected to two equal and opposite pushes and the body tends to 

shorten its Length. The stress induced is called compressive stress. The corresponding strain 

is called compressive strain. As a result of the compressive stress, the cross-sectional area of 

the body gets increased. 

 
Hooke’s Law 
 It states, “When a material is loaded, within its elastic limit, the stress is proportional 

to the strain.”  

 
Modulus of Elasticity or Young’s Modulus (E) 
 Whenever a material is loaded, within its elastic limit, the stress is proportional to 

strain 

      
Where,  ζ = Stress, 

  ε = Strain, and 

  E = A constant of proportionality known as modulus of elasticity or Young’s 

modulus. 

 Numerically, it is that value of tensile stress, which when applied to a uniform bar 

will increase its length to double the original length if the material of the bar could remain 

perfectly elastic throughout such an excessive strain. 

 
 

 

Deformation of a Body Due to Force Acting on it 
 Consider a body subjected to a tensile stress. 

 Let   P  = Load or force acting on the body, 
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         l  = Length of the body, 

  A = Cross-sectional area of the body,  

  ζ  = Stress induced in the body, 

  E = Modulus of elasticity for the material of the body, 

  ε  = Strain, and 

  δl = Deformation of the body. 

 
Example: A steel rod 1 m long and 20 mm × 20 mm in cross-section is subjected to a tensile 

force of 40 kN. Determine the elongation of the rod, if modulus of elasticity for the rod 

material is 200 GPa. 

Given: 

 Length (l) = 1 m = 1 × 10
3
 mm   

 Cross-sectional area (A) = 20 × 20 = 400 mm
2
 

 Tensile force (P) = 40 kN = 40 × 10
3
 N  

 Modulus of elasticity (E) = 200 GPa = 200 × 10
3
 N/mm

2
 

 

Example A hollow steel tube 3.5 m long has external diameter of 120 mm. In order to 

determine the internal diameter, the tube was subjected to a tensile load of 400 kN and 

extension was measured to be 2 mm. If the modulus of elasticity for the tube material is 200 

GPa, determine the internal diameter of the tube. 

Given:  
 Length (l) = 3.5 m = 3.5 × 10

3
 mm  

 External diameter (D) = 120 mm  

 Load (P) = 400 kN = 400 × 10
3
 N 

 Extension (δl) = 2 mm  

 Modulus of elasticity E = 200 GPa = 200 × 10
3
 N/mm

2
 

 

 
 

Example: Two wires, one of steel and the other of copper, are of the same length and are 

subjected to the same tension. If the diameter of the copper wire is 2 mm, find the diameter of 

the steel wire, if they are elongated by the same amount. Take E for steel as 200 GPa and 

that for copper as 100 GPa.  
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Given:  

 Diameter of copper wire (dC) = 2 mm 

 Modulus of elasticity for steel (ES) = 200 GPa = 200 × 10
3
 N/mm

2
 

 Modulus of elasticity for Copper (EC) = 100 GPa = 100 × 10
3
 N/mm

2
 

Let  dS = Diameter of the steel wire, 

 l = Lengths of both the wires and 

 P = Tension applied on both the wires. 

 

Deformation of a Body Due to Self Weight 

 Consider a bar AB hanging freely under its own weight as shown. 

Let  l  = Length of the bar. 

 A  = Cross-sectional area of the bar. 

 E  = Young’s modulus for the bar material, 

    and w  = Specific weight of the bar material. 

 Now consider a small section dx of the bar at a distance x from B. We know that 

weight of the bar for a length of x, 

P = wAx 

 Elongation of the small section of the bar, due to weight of the bar for a small section 

of length x, 

 
 Total elongation of the bar may be found out by integrating the above equation 

between zero and l. Therefore total elongation, 
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Example A steel wire ABC 16 m long having cross-sectional area of 4 mm
2
 weighs 20N as 

shown in Fig. If the modulus of elasticity for the wire material is 200 GPa, find the 

deflections at C and B. 

Given:  

 Length (l) = 16 m = 16 × 10
3
 mm  

 Cross-sectional area (A) = 4 mm
2 
 

 Weight of the wire ABC (W) = 20 N  

 Modulus of elasticity (E) = 200 GPa = 200 × 10
3
 N/mm

2
 

Deflection of wire at C due to self-weight of the wire AC, 

 
Deflection at B consists of deflection of wire AB due to self-weight plus deflection due to 

weight of the wire BC. We also know that deflection of the wire at B due to self-weight of 

wire AB 

 
and deflection of the wire at B due to weight of the wire BC. 

 

Principle of Superposition 
 A body is subjected to a number of forces acting on its outer edges as well as at some 

other sections, along the length of the body. In such a case, the forces are split up and their 

effects are considered on individual sections. The resulting deformation, of the body, is equal 

to the algebraic sum of the deformations of the individual sections. Such a principle, of 

finding out the resultant deformation, is called the principle of superposition. The relation for 

the resulting deformation may be modified as: 
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Example A steel rod ABCD 4.5 m long and 25 mm in diameter is subjected to the forces as 

shown in Fig. If the value of Young’s modulus for the steel is 200 GPa, determine its 

deformation.  

 

 

 

 

Given:  

 Diameter (D) = 25 mm and  

 Young’s modulus (E) = 200 GPa = 200 kN/mm
2
 

We know that cross-sectional area of the steel rod. 

 
 For the sake of simplification, the force of 60 kN acting at A may be split up into two 

forces of 50 kN and 10 kN respectively. Similarly the force of 20 kN acting at C may also be 

split up into two forces of 10 kN and 10 kN respectively. 

 
 Now it will be seen that the bar AD is subjected a tensile force of 50 kN, part AC is 

subjected to a tensile force of 10 kN and the part BC is subjected to a tensile force of 10 kN 

as shown in Fig. We know that deformation of the bar, 

www.cgaspirants.com 

www.cgaspirants.com 
 

 

 

 

 

Stresses in the Bars of Different Sections 

 A bar is made up of different lengths having different cross-sectional areas 

 
 In such cases, the stresses, strains and hence changes in lengths for each section is 

worked out separately as usual. The total change in length is equal to the sum of the changes 

of all the individual lengths. It may be noted that each section is subjected to the same 

external axial pull or push. 

Let  

 P = Force acting on the body, 

 E = Modulus of elasticity for the body, 

 l1 = Length of section 1, 

 A1 = Cross-sectional area of section 1, 
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 l2, A2 = Corresponding values for section 2 and so on. 

We know that the change in length of section 1. 

 

 
 

Example A compound bar ABC 1.5 m long is made up of two parts of aluminium and steel 

and that cross-sectional area of aluminium bar is twice that of the steel bar. The rod is 

subjected to an axial tensile load of 200 kN. If the elongations of aluminium and steel parts 

are equal, find the lengths of the two parts of the compound bar. Take E for steel as 200 GPa 

and E for aluminium as one-third of E for steel.  

Given:   
 Total length (L) = 1.5 m = 1.5 × 103 mm  

 Cross-sectional area of aluminium bar (AA) = 2 AS 

 Axial tensile load (P) = 200 kN = 200 × 103 N  

 Modulus of elasticity of steel (ES) = 200 GPa = 200 × 103 N/mm2 

 Modulus of elasticity of aluminium (EA) = 
  

 
  

         

 
      

Let,  lA  = Length of the aluminium part, 

 and lS = Length of the steel part. 

We know that elongation of the aluminium part AB, 
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Example A circular steel rod ABCD of different cross-sections is loaded as shown in Fig. 

Find the maximum stress induced in the rod and its deformation. Take E = 200 GPa. 

Given:   

 Length of first part AB (l1)  = 1 m = 1 × 10
3
 mm  

 Diameter of first part AB (D1)  = 70 mm  

 Length of second part BC (l2)  = 2 m = 2 × 10
3
 mm  

 Diameter of second part BC (D2)  = 50 mm  

 Length of third part CD (l3)  = 1 m = 1 × 10
3
 mm 

 Diameter of third part CD (D3)  = 50 mm  

 Internal diameter of hole (d3)  = 30 mm. 

Maximum stress induced in the rod 

         
 For simplification, the force of 100 kN acting at B-B may be split up into two forces 

of 75 kN and 25 kN. Similarly the force of 50 kN acting at C-C may be split up into two 

forces of 25 kN and 25 kN respectively as shown in Fig.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Now it will be seen that the bar AB is subjected to a tensile load of 75 kN, part BC is 

subjected to a compressive load of 25 kN and the part CD is subjected to a tensile load of 25 

kN as shown in Fig. We know that tensile stress in part 1,  
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Stresses in the Bars of Uniformly Tapering Circular Sections 

 Consider a circular bar AB of uniformly tapering circular section as shown in Fig.  

 Let  P = Pull on the bar. 

  l = Length of the bar, 

  d1 = Diameter of the bigger end of the bar, and 

  d2 = Diameter of the smaller end of the bar. 

 Now consider a small element of length dx of the bar, at a distance x from the bigger 

end as shown in Fig. We know that diameter of the bar at a distance x, from the left end A, 
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Example If the tension test bar is found to taper from (D + a) diameter to (D – a) diameter, 

prove that the error involved in using the mean diameter to calculate Young’s modulus is 

 
   

 
  per cent. 

Given: 

 Larger diameter (d1) = (D + a)  

 Smaller diameter (d2) = (D – a). 

Let  P = Pull on the bar, 

 l = Length of the bar, 

 E1 = Young’s modulus by the tapering formula, 

 E2 = Young’s modulus by the mean diameter formula and 

 δl = Extension of the bar. 

 First of all, let us find out the values of Young’s modulus for the test bar by the 

tapering formula and then by the mean diameter formula. We know that extension of the bar 

by uniformly varying formula 
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Example A steel plate of 20 mm thickness tapers uniformly from 100 mm to 50 mm in a 

length of 400 mm. What is the elongation of the plate, if an axial force of 80 kN acts on it? 

Take E = 200 Gpa. 

Given :   
 Plate thickness  = 20 mm ;   

 Width at A  = 100 mm ;  Width at B = 50 mm;   

 Length (l)  = 400 mm ;   

 Axial force (P)  = 80 kN = 80 × 10
3
 N 

 Modulus of elasticity (E)  = 200 GPa = 200 × 10
3
 N/mm

2
 

 Now consider a small element of length dx, of the bar, at a distance x from A as shown 

in Fig. From the geometry of the figure, we find that the width of the plate at a distance x 

from A. 
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Stresses in the Bars of Composite Structures 
 A bar made up of two or more different materials, joined together is called a 

composite bar. The bars are joined in such a manner, that the system extends or contracts as 

one unit, equally, when subjected to tension or compression. Following two points should 

always be kept in view, while solving example on composite bars: 

1. Extension or contraction of the bar is equal.  

2. The total external load, on the bar, is equal to the sum of the loads carried by the 

different materials. 

Consider a composite bar made up of two different materials as shown in Fig.  

Let P = Total load on the bar, 

 l1 = Length of the bar 1 

 l2 = Length of the bar 2 

 A1 = Area of bar 1, 

 E1 = Modulus of elasticity of bar 1. 

 P1 = Load shared by bar 1, and 

 A2, E2, P2= Corresponding values for bar 2, 

 Total load on the bar, 
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Example A reinforced concrete circular column of 400 mm diameter has 4 steel bars of 20 

mm diameter embedded in it. Find the maximum load which the column can carry, if the 

stresses in steel and concrete are not to exceed 120 MPa and 5 MPa respectively. Take 

modulus of elasticity of steel as 18 times that of concrete. 

 

Given:   

 Diameter of column (D)  = 400 mm  

 No. of reinforcing bars  = 4  

 Diameter of bars (d)  = 20 mm  

 Maximum stress in steel (ζS(max))  = 120 MPa = 120 N/mm
2
 

 Maximum stress in concrete (ζC(max))  = 5 MPa = 5 N/mm
2
 

 Modulus of elasticity of steel (ES)  = 18 EC 

Total area of the circular column. 
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Stresses and Strains in Statically Indeterminate Structures 

 Simple equations of statics were sufficient to solve the examples. But, sometimes, the 

simple equations are not sufficient to solve such problems. Such problems are called 

statically indeterminate problems and the structures are called statically indeterminate 

structures. For solving statically indeterminate problems, the deformation characteristics of 

the structure are also taken into account along with the statical equilibrium equations. Such 

equations, which contain the deformation characteristics, are called compatibility equations. 

Types of Statically Indeterminate Structures 

 1. Simple statically indeterminate structures. 

 2. Indeterminate structures supporting a load. 

 3. Composite structures of equal lengths. 

 4. Composite structures of unequal lengths. 

Stresses in Simple Statically Indeterminate Structures 

Example A square bar of 20 mm side is held between two rigid plates and loaded by an axial 

force P equal to 450 kN as shown. Find the reactions at the ends A and C and the extension 

of the portion AB. Take E = 200 Gpa 

 Given:   

Area of bar (A) = 20 × 20 = 400 mm
2
 

Axial force (P) = 450 kN = 450 × 10
3 

N 

Modulus of elasticity (E) = 200 GPa  

        = 200 × 10
3
  N/mm

2
 

Length of AB (lAB) = 300 mm and 

length of BC (lBC) = 200 mm. 

RA = Reaction at A, and 

RC = Reaction at C. 

Since the bar is held between the two rigid plates A and C, therefore, the upper portion will 

be C subjected to tension, while the lower portion will be subjected to compression as shown 
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Stresses in Indeterminate Structures Supporting a Load 

Example A block weighing 35 kN is supported by three wires. The outer two wires are of 

steel and have an area of 100 mm
2
 each, whereas the middle wire of aluminium and has an 

area of 200 mm
2
. If the elastic modulii of steel and aluminium are 200 GPa and 80 GPa 

respectively, then calculate the stresses in the aluminium and steel wires.  

Given: 

 Total load (P)  = 35 kN  

  = 35 × 10
3
 N  

 Total area of steel rods (A)  = 2 × 100 

  = 200 mm
2
 

 Area of aluminium rod (AA)  = 200 mm
2
 

 Modulus of elasticity of steel (E)  = 200 Gpa  

  = 200 × 10
3
 N/mm

2
 

 Modulus of elasticity of aluminium (EA) = 80 GPa  

  = 80 × 10
3
 N/mm

2 
 

 Load supported by wires (P)  = 35 kN = 35 × 10
3
 N 

 

Stresses in Composite Structures of Equal Lengths 

Example A mild steel rod of 20 mm diameter and 300 mm long is enclosed centrally inside a 

hollow copper tube of external diameter 30 mm and internal diameter 25 mm. The ends of the 

rod and tube are brazed together, and the composite bar is subjected to an axial pull of 40 kN 

as shown. If E for steel and copper is 200 GPa and 100 GPa respectively, find the stresses 

developed in the rod and the tube. 
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Given :   
 Diameter of steel rod  = 20 mm;   

 External diameter of copper tube  = 30 mm; 

 Internal diameter of copper tube  = 25 mm;   

 Total load (P)  = 40 kN = 40 × 103 N;   

 Modulus of elasticity of steel (ES)  = 200 GPa and  

 Modulus of elasticity of copper (EC)  = 100 GPa 

Let  ζs = Stress developed in the steel rod and 

 ζc= Stress developed in the copper tube. 

 

 

 

 

 

Stresses in Composite Structures of Unequal Lengths 

Example A composite bar ABC, rigidly fixed at A and 1 mm above the lower support, is 

subjected to an axial load of 50 kN at B as shown. If the cross-sectional area of the section 

AB is 100 mm
2
 and that of section BC is 200 mm

2
, find the reactions at both the ends of the 

bar. Also find the stresses in both the section. Take E = 200 GPa. 

Given:  
 Length of AB (lAB)  = 1 m = 1 × 10

3
 mm  

 Area of AB (AAB)  = 100mm
2
 

 Length of BC (lBC)  = 2 m = 2 × 10
3
 mm  

 Area of BC (ABC)  = 200 mm
2
 

 Axial load (P)  = 50 kN = 50 × 10
3
 N  

 Modulus of elasticity (E)  = 200 GPa = 200 × 10
3
 N/mm

2
 

Reactions at both the ends of the bar 

The bar is rigidly fixed at A and loaded at B, therefore,  

upper portion AB is subjected to tensions. We also know that  

increase in length of the portion AB due to the load at B 
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 We find that of increase in the length of the portion AB would have been less than 1 

mm (i.e., gap between C and lower support), then the lower portion of the bar BC should not 

have been subjected to any stress. Now it will be interesting to know that as the increase in 

length AB is 2.5 mm, therefore, first action of the 50 kN load will be to increase the length 

AB by 1 mm, till the end C touches the lower support. And a part of the load will be required 

for this increase. Then the remaining load will be shared by both the portions of the bar AB 

and BC of the bar.  

Let  P = Load required to increase 1 mm length of the bar AB, 

 We know that increase in length 

 

 

Stresses in Nuts and Bolts 

 Nuts and bolts to tighten the components of a machine or structure. It is generally 

done by placing washers below the nuts as shown. A nut can be easily tightened, till the space 

between the two washers becomes exactly equal to the body placed between them. It will be 

interesting to know that if we further tighten the nut, it will induce some load in the assembly. 

As a result of this, bolt will be subjected to some tension, whereas the washers and body 

between them will be subjected to some compression. And the induced load will be equally 

shared between the bolt and the body. Now consider an assembly consisting of two nuts and a 

bolt along with a tube as shown 
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Let P = Tensile load induced in the bolt as a result of tightening the nut, 

 l = Length of the bolt, 

 A1= Area of the bolt, 

 ζ1 = Stress in the bolt due to induced load, 

 E1 = Modulus of elasticity for the bolt material. 

 A2, ζ2, E2 = Corresponding values for the tube 

The tensile load on the bolt is equal to the compressive load on the tube, therefore 

 

Example A solid copper rod 300 mm long and 40 mm diameter passes axially inside a steel 

tube of 50 mm internal diameter and 60 mm external diameter. The composite bar is 

tightened by using rigid washers of negligible thickness. Determine the stresses in copper rod 

and steel tube, when the nut is tightened so as to produce a tensile load of 100 kN in the 

copper rod.  

Given:  

 Length of copper rod (l )  = 300 mm  

 Diameter of copper rod (DC)  = 40 mm 

 Internal diameter of steel tube (dS)  = 50 mm  

 External diameter of steel tube (DS)  = 60 mm  

 Tensile load in copper rod (P)  = 100 kN = 100 × 10
3
 N 
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Thermal Stresses and Strains 

 Whenever there is some increase or decrease in the temperature of a body, it causes 

the body to expand or contract. A little consideration will show that if the body is allowed to 

expand or contract freely, with the rise or fall of the temperature, no stresses are induced in 

the body. But if the deformation of the body is prevented, some stresses are induced in the 

body. Such stresses are called thermal stresses or temperature stresses. The corresponding 

strains are called thermal strains or temperature strains. 

Thermal Stresses in Simple Bars 
 The thermal stresses or strains, in a simple bar, may be found out as discussed below: 

 1. Calculate the amount of deformation due to change of temperature with the 

assumption that bar is free to expand or contract. 

 2. Calculate the load (or force) required to bring the deformed bar to the original 

length. 

 3. Calculate the stress and strain in the bar caused by this load. 

 The thermal stresses or strains may also be found out first by finding out amount of 

deformation due to change in temperature, and then by finding out the thermal strain due to 

the deformation. The thermal stress may now be found out from the thermal strain as usual. 

Now consider a body subjected to an increase in temperature. 

 Let  l = Original length of the body, 

  t = Increase of temperature and 

  α = Coefficient of linear expansion. 

We know that the increase in length due to increase of temperature 

 
 

Example Two parallel walls 6 m apart are stayed together by a steel rod 25 mm diameter 

passing through metal plates and nuts at each end. The nuts are tightened home, when the 

rod is at a temperature of 100°C. Determine the stress in the rod, when the temperature falls 

down to 60°C, if (a) the ends do not yield, and (b) the ends yield by 1 mm. Take E = 200 GPa 

and α = 12 × 10
–6

 /°C 

Given:  

 Length (l) = 6 m = 6 × 10
3
 mm  
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 Diameter (d) = 25 mm 

 Decrease in temperature (t) = 100° – 60° = 40°C  

 Amount of yield in ends (∆) = 1 mm 

 Modulus of elasticity (E) = 200 GPa = 200 × 10
3
 N/mm

2
 

 Coefficient of linear expansion (α) = 12 × 10
–6

/°C. 

 

Thermal Stresses in Bars of Circular Tapering Section 

 Consider a circular bar of uniformly tapering section fixed at its ends A and B and 

subjected to an increase of temperature as shown  

 
Let  l = Length of the bar. 

 d1= Diameter at the bigger end of the bar, 

 d2= Diameter at the smaller end of the bar, 

 t = Increase in temperature and 

 a = Coefficient of linear expansion. 

 The increase in temperature, the bar AB will tend to expand. But since it is fixed at 

both of its ends, therefore it will cause some compressive stress. We also know that the 

increase in length due to increase in temperature, 
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Example A circular bar rigidly fixed at its both ends uniformly tapers from 75 mm at one end 

to 50 mm at the other end. If its temperature is raised through 26 K, what will be the 

maximum stress developed in the bar. Take E as 200 GPa and α as 12 × 10–6 /K for the bar 

material. 

Given:   

 Diameter at end 1 (d1) = 75 mm  

 Diameter at end 2 (d2) = 50 mm  

 Rise in temperature (t) = 26 K  

 E = 200 GPa = 200 × 10
3
 N/mm

2
 

  α = 12 × 10
–6 

/K 

  

Thermal Stresses in Bars of Varying Section 

 Consider a bar ABC fixed at its ends A and C and subjected to an increase of 

temperature as shown 

Let  

 l1 = Length of portion AB, 

 ζ1 = Stress in portion AB, 

 A1 = Cross-sectional area of portion AB, 

 l2, ζ2, A2 = Corresponding values for the portion BC, 

 α= Coefficient of linear expansion and 

 t = Increase in temperature 

 We know that as a result of the increase in temperature, the bar ABC will tend to 

expand. But since it is fixed at its ends A and C, therefore it will cause some compressive 

stress in the body. Moreover, as the thermal stress is shared equally by both the portions, 

therefore 

 
 

Example A composite bar made up of aluminium and steel, is held between two supports as 

shown. The bars are stress-free at a temperature of 38°C. What will be the stresses in the two 

bars, when the temperature is 21°C, if (a) the supports are unyielding, (b) the supports come 

nearer to each other by 0.1 mm? It can be assumed that the change of temperature is uniform 

all along the length of the bar. Take E for steel as 200 GPa; E for aluminium as 75 GPa and 

coefficient of expansion for steel as 11.7 × 10–6 per °C and coefficient of expansion for 

aluminium as 23.4 × 10-6 per °C. 
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Given:   

 Length of steel bar (lS) = 600 mm  

 Area of steel bar (AS) = 1000 mm
2
 

 Length of aluminium bar (lA) = 300 mm  

 Area of aluminium bar (AA) = 500 mm
2
 

 Decrease in temperature (t) = 38 – 21 = 17°C  

 Modulus of elasticity of steel (ES) = 200 GPa = 200 × 10
3
 N/mm

2
 

 Modulus of elasticity of aluminium (EA) = 75 GPa = 75 x 10
3
 N/mm

2
 

 Coefficient of expansion for steel (αS) = 11.7 × 10
–6

/°C  

 Coefficient of expansion for aluminium (αA) = 23.4 × 10
–6

/°C. 
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Superposition of Thermal Stresses 

Example A rigid slab weighing 600 kN is placed upon two bronze rods and one steel rod 

each of 6000 mm
2
 area at a temperature of 15°C as shown in Fig. Find the temperature, at 

which the stress in steel rod will be zero. Take: Coefficient of expansion for steel = 12 × 10
-6

 

/°C, Coefficient of expansion for bronze = 18 × 10
-6

/°C 

Young’s modulus for steel = 200 Gpa, Young’s modulus for bronze = 80 GPa. 

Given:   

 Weight = 600 kN = 600 × 10
3
 N  

 Area of bronze rod (AB) = AS = 6000mm
2
 

 Coefficient of expansion for steel (αs) = 12 × 10
–6

 /°C 

 Coefficient of expansion for bronze (αB) = 18 × 10
–6

 /°C  

 Modulus of elasticity of steel (ES)  = 200 GPa  

      = 200 × 10
3
 N/mm

2
 

 Modulus of elasticity of bronze (EB)  = 80 GPa  

      = 80 × 10
3
 N/mm

2
 

Let  t = Rise in temperature, when the stress in the steel rod will be zero. 

 Due to increase in temperature all the three rods will expand. The expansion of bronze 

rods will be more than the steel rod (because αB is greater than αS). If the stress in the steel 

rod is to be zero, then the entire load should be shared by the two bronze rods. Or in other 

words, the decrease in the length of two bronze rods should be equal to the difference of the 

expansion of the bronze rods and steel rod. We know that free expansion of the steel rod 

 

 
Thermal Stresses in Composite Bars 

 Whenever there is some increase or decrease in the temperature of a bar, consisting of 

two or more different materials, it causes the bar to expand or contract. The different 

coefficients of linear expansions the two materials do not expand or contract by the same 

amount, but expand or contract by different amounts. The steel and brass could have been 

free to expand, and then no internal stresses would have induced. The two members are 

rigidly fixed, therefore the composite bar, as a whole, will expand by the same amount. 
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 We know that the brass expands more than the steel (because the coefficient of linear 

expansion of the brass is greater than that of the steel).  Therefore the free expansion of the 

brass will be more than that of the steel. But since both the members are not free to expand, 

therefore the expansion of the composite bar, as a whole, will be less than that of the brass; 

but more than that of the steel as shown. It is thus obvious that the brass will be subjected to 

compressive force, whereas the steel will be subjected to tensile force as shown. 

 

 

Example A gun metal rod 20 mm diameter, screwed at the ends, passes through a steel tube 

25 mm and 30 mm internal and external diameters respectively. The nuts on the rod are 

screwed tightly home on the ends of the tube. Find the intensity of stress in each metal, when 

the common temperature rises by 200°F. Take. Coefficient of expansion for steel = 6 × 10–

6/°F Coefficient of expansion for gun metal = 10 × 10 –6 /°F Modulus of elasticity for steel = 

200 Gpa, Modulus of elasticity for gun metal = 100 GPa. 

Given:   

 Diameter of gun metal rod = 20 mm  

 Internal diameter of steel tube = 25 mm 

 External diameter of steel tube = 30 mm  

 Rise in temperature (t) = 200°F  

 Coeff of expansion for steel (αS) = 6 × 10
–6 

/°F  

 Coeff of expansion for gun metals (αG) = 10 × 10
–6 

/°F 

 (ES) = 200 GPa = 200 × 10
3
 N/mm

2
 

 (EG) = 100 GPa = 100 × 10
3
 N/mm

2
 

  

 

 

 

 

The temperature of the gun metal rod and steel tube will increase; the free expansion of gun 

metal rod will be more than that of steel tube. Thus the gun metal rod will be subjected to 

compressive stress and the steel tube will be subjected to tensile stress.  
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Elastic constant 

 The axial deformation of a body, when it is subjected to a direct tensile or 

compressive stress. But we have not discussed the lateral or side effects of the pulls or 

pushes. It has been experimentally found, that the axial strain of a body is always followed by 

an opposite kind of strain in all directions at right angle to it. Thus, in general, there is always 

a set of the following two types of strains in a body, when it is subjected to a direct stress. 

 Primary or linear strain, and 

 Secondary or lateral strain 

Whenever some external force acts on a body, it undergoes some deformation. Now consider 

a circular bar subjected to a tensile force as shown. Let  

  l = Length of the bar, 

  d = Diameter of the bar, 

  P = Tensile force acting on the bar, and 

  dl = Increase in the length of the bar 

  The deformation of the bar per unit length in the direction of the force is known as 

linear strain. The linear deformation of a circular bar of length l and diameter d subjected to 

a tensile force P. The deformation of the bar, we will find that bar has extended through a 

length dl, which will be followed by the decrease of diameter from d to (d – δd) as shown. 

Similarly, if the bar is subjected to a compressive force, the length of the bar will decrease by 

dl which will be followed by the increase of Diameter from d to (d + δd). It is thus obvious 

that every direct stress is always accompanied by a strain in its own direction and an opposite 

kind of strain in every direction at right angles to it. Such a strain is known as secondary or 

lateral strain. 
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Poisson's ratio 

 If a body is stressed within its elastic limit, the lateral strain bears a constant ratio to 

the linear strain. 

 
 

Example A steel bar 2 m long, 40 mm wide and 20 mm thick is subjected to an axial pull of 

160 kN in the direction of its length. Find the changes in length, width and thickness of the 

bar. Take E = 200 GPa and Poisson’s ratio = 0.3. 

Given:  Length (l ) = 2 m = 2 × 103 mm  

               Width (b) = 40 mm ;   

 Thickness (t) = 20 mm; 

 Axial pull (P) = 160 kN = 160 × 103 N ;   

 Modulus of elasticity (E) = 200 GPa = 200 × 10
3
 N/mm

2
 

  poisson’s ratio (1/m) = 0.3 

 
Volumetric strain 

 Whenever a body is subjected to a single force (or a system of forces), it undergoes 

some changes in its dimensions. The change in dimensions of a body will cause some 

changes in its volume. The ratio of change in volume, to the original volume, is known as 

volumetric strain 
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The following are important from the subject point of view: 

 1. A rectangular body subjected to an axial force. 

 2. A rectangular body subjected to three mutually perpendicular force 

 
Volumetric Strain of a Rectangular Body Subjected to an Axial Force 
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Example A steel bar 2 m long, 20 mm wide and 15 mm thick is subjected to a tensile load of 

30 kN. Find the increase in volume, if Poisson’s ratio is 0.25 and Young’s modulus is 200 

GPa. 

Given:  Length (l ) = 2 m = 2 × 10 3 mm ;  Width (b) = 20 mm ;  Thickness (t) = 15 mm 

 
 

Volumetric Strain of a Rectangular Body Subjected to Three Mutually Perpendicular 

Forces 
 Consider a rectangular body subjected to direct tensile stresses along three mutually 

perpendicular axes as shown 

 

 

 

 

 

 

 

 

 

 

The resulting strains in the three directions may be found out by the principle of 

superposition, i.e., by adding algebraically the strains in each direction due to each 

individual stress. For the three tensile stresses shown. (taking tensile strains as +ve and 

compressive strains as –ve) the resultant strain in x-x direction, 
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Example A steel cube block of 50 mm side is subjected to a force of 6 kN (Tension), 8kN 

(Compression) and 4 kN (Tension) along x, y and z direction respectively. Determine the 

change in volume of the block. Take E as 200 GPa and m as 10/3. 

Given:   
 Side of the cube = 50 mm ;   

 Force in x- direction (Px) = 6 kN = 6 × 10
3
 N (Tension) ;   

 Force in y-direction(Py) = 8 kN = 8 × 10
3
 N (Compression) ;   

 Force in z-direction (Pz) = 4 kN = 4 × 10
3
 N (Tension) and  

 modulus of elasticity (E) = 200GPa = 200 × 10
3
 N/mm

2
 

  and m = 10 / 3 
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Shear Stress 
 When a section is subjected to two equal and opposite forces, acting tangentially 

across the resisting section, as a result of which the body tends to shear off across the section 

as shown. The stress induced is called shear stress. The corresponding strain is called shear 

strain. 

 

 

 

   
Principle of Shear Stress 
 It states, “A shear stress across a plane, is always accompanied by a balancing shear 

stress across the plane and normal to it.  

  

 

 Consider a rectangular block ABCD, subjected to a shear  

stress of intensity t on the faces AD and CB as shown. Now consider  

a unit thickness of the block. Therefore force acting on the faces AD  

and CB, 

 These forces will form a couple, whose moment is equal to η × AD × AB i.e., force × 

distance. If the block is in equilibrium, there must be a restoring couple, whose moment must 

be equal to this couple. Let the shear stress of intensity t be set up on the faces AB and CD as 

shown. Therefore forces acting on the faces AB and CD,. 

 

 

 

Relation between Modulus of Elasticity and Modulus of Rigidity 
 Consider a cube of length l subjected to a shear stress of η as shown. due to these 

stresses the cube is subjected to some distortion, such that the diagonal BD will be elongated 

and the diagonal AC will be shortened. Let this shear stress t cause shear strain θ as shown. 

We see that the diagonal BD is now distorted to BD1. 

 

 

 

 

 

Linear strain of the diagonal BD 
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Example  An alloy specimen has a modulus of elasticity of 120 GPa and modulus of rigidity 

of 45 GPa. Determine the Poisson’s ratio of the material.  

Given:   
 Modulus of elasticity (E) = 120 GPa  

 Modulus of rigidity (C) = 45 GPa. 

 
Strain Energy and Impact Loading 
 When the load moves downwards, it loses its *potential energy. This energy is 

absorbed (or stored) in the stretched wire, which may be released by removing the load. On 

removing the load, the wire will spring back to its original position. 

Resilience 
 It is a common term used for the total strain energy stored in a body. Sometimes the 

resilience is also defined as the capacity of a strained body for doing work (when it springs 

back) on the removal of the straining force. 

Proof Resilience 
 It is also a common term, used for the maximum strain energy, which can be stored in 

a body. (This happens when the body is stressed up to the elastic limit). The corresponding 

stress is known as proof stress. 

Modulus of Resilience 
 The proof resilience per unit volume of a material, is known as modulus of resilience 

and is a important property of the material. 

 A load may act in either of the following three ways:   

 1. Gradually  2. suddenly   3. with impact 

Strain Energy Stored in a Body, when the Load is Gradually Applied 
 When loading a body, in which the loading starts from zero and increases gradually 

till the body is fully loaded. e.g., when we lower a body with the help of a crane, the body 

first touches the platform on which it is to be placed. On further releasing the chain, the 
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platform goes on loading till it is fully loaded by the body. This is the case of a gradually 

applied load. Now consider a metallic bar subjected to a gradual load. 

Let  P = Load gradually applied, 

 A = Cross-sectional area of the bar, 

 l = Length of the bar, 

 E = Modulus of elasticity of the bar material and 

 d = Deformation of the bar due to load. 

Since the load applied is gradual, and varies from zero to P, therefore the average load is 

equal to P/2 

  ∴  Work done  = Force × Distance 

             = Average load × Deformation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example Calculate the strain energy stored in a bar 2 m long, 50 mm wide and 40 mm thick 

when it is subjected to a tensile load of 60kN. Take E as 200 GPa. 

Given:  
 Length of bar (l ) = 2 m = 2 × 10

3
  mm  

 Width of bar (b) = 50 mm  

 Thickness of bar (t) = 40 mm  

 Tensile load on bar (P) = 60 kN = 60 × 10
3
 N and  

 Modulus of elasticity (E) = 200GPa = 200 × 10
3
 N/mm

2
 

We know that stress in the bar 

 
Strain Energy Stored in a Body when the Load is Suddenly Applied 
 The load is suddenly applied on a body. e.g., when we lower a body with the help of a 

crane, the body is, first of all, just above the platform on which it is to be placed. If the chain 

breaks at once at this moment the whole load of the body begins to act on the platform. This 

is the case of a suddenly applied load. Now consider a bar subjected to a sudden load. 
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Example An axial pull of 20 kN is suddenly applied on a steel rod 2.5 m long and 1000 mm2 

in cross-section. Calculate the strain energy, which can be absorbed in the rod. Take E = 200 

GPa. 

Given:  
 Axial pull on the rod (P)  = 20 kN = 20 × 10

3
 N;   

 Length of rod (l)  = 2.5 m = 2.5 × 10
3
 mm  

 Cross-sectional area of rod (A)  =1000 mm
2
 

 and modulus of elasticity (E)  = 200GPa = 200 × 10
3
 N/mm

2
 

We know that stress in the rod, when the load is suddenly applied 

 
Strain Energy Stored in a Body, when the Load is applied with Impact 
 The impact load is applied on a body e.g., when we lower a body with the help of a 

crane, and the chain breaks while the load is being lowered the load falls through a distance, 

before it touches the platform. This is the case of a load applied with impact. Now consider a 

bar subject to a load applied with impact as shown. 
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Example A copper bar of 12 mm diameter gets stretched by 1 mm under a steady load of 4 

kN. What stress would be produced in the bar by a weight 500 N, the weight falls through 80 

mm before striking the collar rigidly fixed to the lower end of the bar? Take Young’s modulus 

for the bar material as 100 GPa.  

Given :  
 Diameter of bar (d) = 12 mm 

 Change in length of bar (dl) = 1 mm  

 Load on bar (P1) = 4 kN = 4 × 10
3
 N  

 Weight falling on collar (P2) = 500 N  

 Height from which weight falls (h) = 80 mm  

 Modulus of elasticity (E) = 100 GPa = 100 × 10
3
 N/mm

2
 



37 
 

 
Strain Energy Stored in a Body of Varying Section 
 Sometimes, we come across bodies of varying section. The strain energy in such a 

body is obtained by adding the strain energies stored in different parts of the body. 

Mathematically total strain energy stored in a body. 

 U = U1 + U2 + U3 + ....... 

Where  U1 = Strain energy stored in part 1, 

 U2 = Strain energy stored in part 2, 

 U3 = Strain energy stored in part 3 

Example A non-uniform tension bar 5 m long is made up of two parts as shown. Find the 

total strain energy stored in the bar, when it is subjected to a gradual load of 70 kN. Also find 

the total strain energy stored in the bar, when the bar is made of uniform cross-section of the 

same volume under the same load. Take E = 200 GPa. 

Given:  
 Total length of bar (L) = 5 m = 5 × 10

3
 mm  

 Length of part 1 (L1) = 3 m = 3 × 10
3
 mm  

 Length of part 2 (L2) = 2 m = 2 × 10
3
 mm  

 Area of part 1 (A1) = 1000 mm
2
 

 Area of part 2 (A2) = 2000 mm
2
 

 Pull (P) = 70 kN = 70 × 10
3
 N  

 Modulus of elasticity (E) = 200 Gpa = 200 × 10
3
 N/mm

2
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Strain Energy Stored in a Body due to Shear Stress 
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Example A rectangular body 500 mm long, 100 mm wide and 50 mm thick is subjected to a 

shear stress of 80 MPa. Determine the strain energy stored in the body. Take N = 85 GPa.  

Given:   
 Length of rectangular body (l ) = 500 mm  

 Width of rectangular body (b) = 100 mm  

 Thickness of rectangular body (t) = 50 mm  

 Shear stress (t) = 80 MPa = 80 N/mm
2
  and  

 modulus of rigidity (N) = 85  N/mm
2
 

 
Principal Stresses and Strains 
 At a time one type of stress, acting in one direction only. But the majority of 

engineering, component and structures are subjected to such loading conditions (or 

sometimes are of such shapes) that there exists a complex state of stresses; involving direct 

tensile and compressive stress as well as shear stress in various directions. 

 At any point in a strained material, there are three planes, mutually perpendicular to 

each other, which carry direct stresses only, and no shear stress. These three direct stresses 

one will be maximum, the other minimum, and the third and intermediate between the two. 

These particular planes, which have no shear stress, are known as principal planes. 

 The magnitude of direct stress, across a principal plane, is known as principal stress. 

The determination of principal planes, and then principal stress is an important factor in the 

design of various structures and machine components. 

 The following two methods for the determination of stresses on an oblique section of 

a strained body are important from the subject point of view: 1. Analytical method and     2.  

Graphical method. 

Analytical Method for the Stresses on an Oblique Section of a Body  
 The analytical method for the determination of stresses on an oblique section in the 

following cases, which are important from the subject point of view: 

1. A body subjected to a direct stress in one plane. 

2. A body subjected to direct stresses in two mutually perpendicular directions 

 In the element shown, the shear stress on the vertical faces (or x-x axis) is taken as 

positive, whereas the shear stress on the horizontal faces (or y-y axis) is taken as negative 
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Stresses on an Oblique Section of a Body Subjected to a Direct Stress in One Plane 
 Consider a rectangular body of uniform cross-sectional area and unit thickness 

subjected to a direct tensile stress along x-x axis as shown. Now let us consider an oblique 

section AB inclined with the x-x axis. 

 

 
The face AC will carry the maximum direct stress. Similarly, the shear stress across the 

section AB will be maximum when sin 2θ = 1 or 2θ = 90° or 270°. Or in other words, the 

shear stress will be maximum on the planes inclined at 45° and 135° with the line of action of 

the tensile stress. Therefore maximum shear stress when θ is equal to 45°, 



41 
 

 
NOTE : The planes of maximum and minimum normal stresses (i.e. principal planes) may 

also be found out by equating the shear stress to zero. This happens as the normal stress is 

either maximum or minimum on a plane having zero shear stress. Now equating the shear 

stress to zero, ζ sin θ cos θ =0 

Example Two wooden pieces 100 mm × 100 mm in cross-section are joined together along a 

line AB as shown. Find the maximum force (P), which can be applied if the shear stress along 

the joint AB is 1.3 MPa. 

Given:  
 Section = 100 mm × 100 mm ;   

 Angle made by section with the  

 Direction of tensile stress (θ) = 60° and 

 Permissible shear stress (t) = 1.3 MPa = 1.3 N/mm
2 

 
Stresses on an Oblique Section of a Body Subjected to Direct Stresses in Two Mutually 

Perpendicular Directions 
 Consider a rectangular body of uniform cross-sectional area and unit thickness 

subjected to direct tensile stresses in two mutually perpendicular directions along x-x and y-y 

axes as shown. Now let us consider an oblique section AB inclined with x-x axis 
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Example: The stresses at point of a machine component are 150 MPa and 50 Mpa both 

tensile. Find the intensities of normal, shear and resultant stresses on a plane inclined at an 

angle of 55° with the axis of major tensile stress. Also find the magnitude of the maximum 

shear stress in the component. 

Given: Tensile stress along x-x axis (sx) = 150 MPa;   

 Tensile stress along y-y axis (sy) = 50 MPa and  

 Angle made by the plane with the major tensile stress (θ) = 55°. 

Normal stress on the inclined plane 
We know that the normal stress on the inclined plane 

 
 

Stresses on an Oblique Section of a Body Subjected to a Simple Shear stress 
 Consider a rectangular body of uniform cross-sectional area and unit thickness 

subjected to a positive (i.e., clockwise) shear stress along x-x axis as shown. Now let us 

consider an oblique section AB inclined with x-x axis on which we are required to find out 

the stresses as shown. 

Let  ηxy = Positive (i.e., clockwise) shear stress along x-x axis, and 

 θ = Angle , which the oblique section AB makes with x-x axis in the anticlockwise 

direction. 

 First of all, consider the equilibrium of the wedge ABC. We know that as per the 

principle of simple shear, the face BC, of the wedge will be subjected to an anticlockwise 

shear stress equal to ηxy as shown. We know that vertical force acting on the face AC, 
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Stresses on an Oblique Section of a Body Subjected to a Direct Stress in One Plane and 

Accompanied by a Simple Shear Stress 
 Consider a rectangular body of uniform cross-sectional area and unit thickness 

subjected to a tensile stress along x-x axis accompanied by a positive (i.e. clockwise) shear 

stress along x-x axis as shown. Now let us consider an oblique section AB inclined with x-x 

axis on which we are required to find out the stresses as shown in the figure. 
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Example An element in a strained body is subjected to a tensile stress of 150 MPa and a 

shear stress of 50 MPa tending to rotate the element in an anticlockwise direction. Find (i) 

the magnitude of the normal and shear stresses on a section inclined at 40° with the tensile 

stress; and (ii) the magnitude and direction of maximum shear stress that can exist on the 

element.  

Given:  

 Tensile stress along horizontal x-x axis (ζx) = 150 MPa  

 Shear stress (ηxy) – 50 MPa (Minus sign due to anticlockwise) and angle made by 

section with the tensile stress (θ) = 40°. 

Normal and Shear stress on the inclined section 

 We know that magnitude of the normal stress on the section 
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Stresses on an Oblique Section of a Body Subjected to Direct Stresses in Two Mutually 

Perpendicular Directions Accompanied by a Simple Shear Stress 
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Example A point is subjected to a tensile stress of 250 MPa in the horizontal direction and 

another tensile stress of 100 MPa in the vertical direction. The point is also subjected to a 

simple shear stress of 25 MPa, such that when it is associated with the major tensile stress, it 

tends to rotate the element in the clockwise direction. What is the magnitude of the normal 

and shear stresses on a section inclined at an angle of 20° with the major tensile stress? 

Given:  

 Tensile stress in horizontal x-x direction (ζx) = 250 MPa 

 Tensile stress in vertical y-y direction (ζy) = 100 MPa  

 Shear stress (ηxy) = 25 MPa and angle made by section with the major tensile stress 

(θ) = 20°. 

 
Graphical Method for the Stresses on an Oblique Section of a Body 
The Mohr’s Circle of Stresses for the following cases: 

 1. A body subjected to a direct stress in one plane. 

 2. A body subjected to direct stresses in two mutually perpendicular directions. 

 3. A body subjected to a simple shear stress. 

 4. A body subjected to a direct stress in one plane accompanied by a simple shear 

stress. 
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 5. A body subjected to direct stresses in two mutually perpendicular directions 

accompanied by a simple shear stress. 

 
 

Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to a Direct Stress 

in One Plane 
 

    
 

 
 

Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to Direct Stresses 

in Two Mutually Perpendicular Direction 
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Example The stresses at a point of a machine component are 150 MPa and 50 MPa both 

tensile. Find the intensities of normal, shear and resultant stresses on a plane inclined at an 

angle of 55° with the axis of major tensile stress. Also find the magnitude of the maximum 

shear stresses in the component.  

Given:  

 Tensile stress along horizontal x-x axis (sx) = 150 MPa   

 Tensile stress along vertical y-y axis (sy) = 50 MPa and  

 Angle made by the plane with the axis of major tensile stress (θ) = 55°. 

The given stresses on the planes AC and BC in the machine component are shown. 
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Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to a Direct 

Stresses in One Plane Accompanied by a Simple Shear Stress 
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Example A plane element in a body is subjected to a tensile stress of 100 MPa accompanied 

by a clockwise shear stress of 25 MPa. Find (i) the normal and shear stress on a plane 

inclined at an angle of 20° with the tensile stress; and (ii) the maximum shear stress on the 

plane. 

Given:  

 Tensile stress along horizontal x-x axis (ζx) = 100 MPa  

 Shear stress (ηxy) = 25 MPa and  

 angle made by plane with tensile stress (θ) = 20° 

 

 
 

Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to Direct Stresses 

in Two Mutually Perpendicular Directions Accompanied by a Simple Shear Stress 
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Example A point is subjected to a tensile stress of 250 MPa in the horizontal direction and 

another tensile stress of 100 MPa in the vertical direction. The point is also subjected to a 

simple shear stress of 25 MPa, such that when it is associated with the major tensile stress, it 

tends to rotate the element in the clockwise direction. What is the magnitude of the normal 

and shear stresses inclined on a section at an angle of 20° with the major tensile stress? 

Given:  

 Tensile stress in horizontal direction (ζx) = 250 MPa  

 Tensile stress in vertical direction (ζy) = 100 MPa  

 Shear stress (η) = 25 MPa and  

 angle made by section with major tensile stress (θ) = 20° 
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AND BEAMS 
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UNIT 2 BENDING AND SHEAR STRESS DISTRIBUTION, TORSION AND BEAMS       

Stresses in Beams - Simple bending theory: bending stresses in Symmetrical and 

Unsymmetrical sections - Composite Beams - Combined bending and Direct stress – Shear 

Stress Distribution for Different Sections - Simple Torsion theory - Stresses and deformations 

in Solid and Hollow circular shafts- Double integration method – Shear force and bending 

moment diagram: Simply supported, Cantilever and overhanging beam – various loading 

condition 

 

 A beam may be defined as a structural element which has one dimension considerably 

larger than the other two dimensions, namely breadth and depth, and is supported a few 

points. The distance between two adjacent supports is called span. It is usually loaded normal 

to its axis. The applied loads make every cross-section to face bending and shearing.  

 The load finally gets transferred to supports. The system of forces consisting of 

applied loads and reactions keep the beam in equilibrium. The reactions depend upon the type 

of supports and type of loading. The types of beams are: 

TYPES OF BEAMS 

 Simple supported beam: A beam supported or resting freely on the supports at its 

both ends, is known as simply supported beam. 

                                                     

 Cantilever beam: A beam which is fixed at one end and free at the other end is 

known as cantilever beam. 

 

 

 Over hanging beam: If the end portion of a beam is extended beyond the support 

such beam is known as Overhanging beam 

                                             

 Fixed beam:  A beam whose both ends are fixed or built in walls is known as fixed 

beam. 



4 

 

                                              

 Continuous beam: A beam which is provided more than two supports is known as 

continuous beam.                                                 

 

TYPES OF SUPPORTS 

 The Various types of supports and reactions developed are listed below: 

 Simple supports or knife edged support: in this case support will be normal to the 

surface of the beam. If AB is a beam with knife edges A and B, then RA and RB will be the 

reaction. 

 

 

 

 

 Roller support: here beam AB is supported on the rollers. The reaction will be 

normal to the surface on which rollers are placed.  

 

 

 

 

  

Pin joint (or hinged) support: here the beam AB is hinged at point A. the reaction at the 

hinged end may be either vertical or inclined depending upon the type of loading. If load is 

vertical, then the reaction will also be vertical. But if the load is inclined, then the reaction at 

the hinged end will also be inclined. 
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Fixed or built-in support: in this type of support the beam should be fixed. The reaction will 

be inclined. Also the fixed support will provide a couple. 

 

Types of Loading 

 Concentrated Loads: If a load is acting on a beam over a very small length, it is 

approximated as acting at the midpoint of that length and is represented by an arrow as shown  

 Uniformly Distributed Load (UDL): Over considerably long distance such load has 

got uniform intensity. For finding reaction, this load may be assumed as total load acting at 

the centre of gravity of the loading (middle of the loaded length). For example, in the beam 

the load may be replaced by a     20 × 4 = 80 kN concentrated load acting at a distance 2 m 

from the left support. 

 Uniformly Varying Load: The load varies uniformly from C to D. Its intensity is 

zero at C and is 20kN/m at D. In the load diagram, the ordinate represents the load intensity 

and the abscissa represents the position of load on the beam. 

   

 General Loadings:  The ordinate represents the intensity of loading and abscissa 

represents position of the load on the beam. For simplicity in analysis such loadings are 

replaced by a set of equivalent concentrated loads. 

 External Moment: A beam may be subjected to external moment at certain points. 

The beam is subjected to clockwise moment of 30 kN-m at a distance of 2 m from the left 

support. 
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Concept and significance of shear force and bending moment Sign conventions for 

shear force and bending moment 

 Shear force: A simply supported beam AB. carrying a load of 1000 N at its middle 

point. The reactions at the supports will be equal to 500 N. Hence RA= RB= 500 N. Now 

imagine the beam to be divided into two portions by the section X-X. The resultant of the 

load and reaction to the left of X-X is 500 N vertically upwards. And the resultant of the load 

and reaction to the right of X-X is (1000↓ -500 ↑= 500↓N) 500 N downwards. The resultant 

force acting on any one of the parts normal to the axis of the beam is called the shear force at 

the section X-X is 500N.  

 

 The shear force at a section will be considered positive when the resultant of the 

forces to the left to the section is upwards, or to the right of the section is downwards. 

Similarly the shear force at a section will be considered negative if the resultant of the forces 

to the left of the section is downward, or to the right of the section is upwards. Here the 

resultant force to the left of the section is upwards and hence the shear force will be positive. 

 Bending moment: The bending moment at a section is considered positive if the 

bending moment at that section is such that it tends to bend the beam to a curvature having 

concavity at the top. Similarly the bending moment at a section is considered negative if the 

bending moment at that section is such that it tends to bend the beam to a curvature haling 

convexity at the top. The positive B.M. is often called sagging moment and negative B.M. as 

hogging Moment. 
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Example: Find the reactions at supports A and B in the beam AB shown. 

 

 

 

Example: The cantilever is fixed at A and is free at B. Determine the reactions, when it is 

loaded as shown 
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Example: Determine the reactions at A and B of the overhanging beam shown 

 

 

 

 

 



9 

 

Shear force and Bending moment diagram 

 The following are the important points for drawing shear force and bending moment 

diagrams: 

1. Consider the left or the right portion of the section.  

2. Add the forces (including reaction) normal to the beam on one of the portion. If right 

portion of the section is chosen, a force on the right portion acting downwards is 

positive while force acting upwards is negative.  

3. If the left portion of the section is chosen, a force on the left portion acting upwards 

is positive while force acting downwards is negative. 

4. The positive values of shear force and bending moments are plotted above the base 

line, and negative values below the base line.  

5. The shear force diagram will increase or decrease suddenly i.e., by a vertical straight 

line at a section where there is a vertical point load.  

6. The shear force between any two vertical loads will be constant and hence the shear 

force diagram between two vertical loads will be horizontal. 

7. The bending moment at the two supports of a simply supported beam and at the free 

end of a cantilever will be zero. 
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INTRODUCTION: TORSION 

In machinery, the general term ―shaft‖ refers to a member, usually of circular cross section, 

which supports gears, sprockets, wheels, rotors, etc., and which is subjected to torsion and to 

transverse or axial loads acting singly or in combination. An ―axle‖ is a rotating/non-rotating 

member that supports wheels, pulley and carries no torque. A ―spindle‖ is a short shaft. 

Terms such as line shaft, head shaft, stub shaft, transmission shaft, countershaft, and flexible 

shaft are names associated with special usage. 

 

Analysis of torsion 

 

In a slender member under the action of a torsional moment (also called twisting moment or 

torque) shearing stresses appear, whose moment about the bar axis is equal to the applied 

torque. In the same way as the shearing stresses caused by the shear force, these stresses must 

be tangent to the contour in the points lying close the boundary of the cross-section. These 

two conditions are not sufficient to determine the distribution of shearing stresses in the 

cross-section. Furthermore, the twisting moment is not a symmetrical loading with respect to 

the middle cross-section of a piece of bar. 

 

 

An idealized case of torsional loading is a straight bar supported at one end and loaded by 

two pairs of equal and opposite forces. The first pair consists of the forces P1 acting near the 

midpoint of the bar and the second pair consists of the forces P2 acting at the end. Each pair 

of forces forms a couple that tends to twist the bar about its longitudinal axis. As we know 
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from statics, the moment of a couple is equal to the product of one of the forces and the 

perpendicular distance between the lines of action of the forces; thus, the first couple has a 

moment T1 = P1d1 and the second has a moment T2 = P2d2. 

 

Torsion refers to the twisting of a straight bar when it is loaded by moments (or torques) that 

tends to produce rotation about the longitudinal axis of the bar. For instance, when you turn a 

screwdriver, your hand applies a torque T to the handle and twists the shank of the 

screwdriver. Other examples of bars in torsion are drive shafts in automobiles, axles, 

propeller shafts, steering rods, and drill bits. 

 

The moment of a couple may be represented by a vector in the form of a double-headed 

arrow. The arrow is perpendicular to the plane containing the couple, and therefore in this 

case both arrows are parallel to the axis of the bar. The direction (or sense) of the moment is 

indicated by the right-hand rule for moment vectors—namely, using your right hand, let your 

fingers curl in the direction of the moment, and then your thumb will point in the direction of 

the vector. An alternative representation of a moment is curved arrow acting in the direction 

of rotation. The choice depends upon convenience and personal preference. Moments that 

produce twisting of a bar, such as the moments T1 and T2, are called torques or twisting 

moments. Cylindrical members that are subjected to torques and transmit power through 

rotation are called shafts; for instance, the drive shaft of an automobile or the propeller shaft 

of a ship. Most shafts have circular cross sections, either solid or tubular. In this chapter we 

begin by developing formulas for the deformations and stresses in circular bars subjected to 

torsion. We then analyze the state of stress known as pure shear and obtain the relationship 

between the moduli of elasticity E and G in tension and shear, respectively. Next, we analyze 

rotating shafts and determine the power they transmit. Finally, we cover several additional 

topics related to torsion, namely, statically indeterminate members, strain energy, thin-walled 

tubes of noncircular cross section, and stress concentrations. 

 

Torsional deformations of a circular bar 

 

A prismatic bar with a circular cross-section has a symmetrical geometry with respect to any 

plane passing through the bar axis. If, in addition, the material also has symmetrical 

rheological properties with respect to these planes, which happens if the material is isotropic 

or monotropic with the monotropy direction parallel to the bar axis, the bar is totally 
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symmetric with respect to the bar axis, i.e., it is axisymmetric. As a consequence of this type 

of symmetry, all the points of a cross-section lying on a circumference with the centre in the 

bar axis, are in the same conditions with respect to the centre of the cross-section. If we 

consider a vector applied at the centre of the cross-section, representing the torque acting on 

the bar, all the points of that circumference are also in the same conditions with respect to 

that vector. As a consequence, all the points will undergo the same displacement in relation to 

the bar axis, i.e., the radial, circumferential and longitudinal components of the displacement 

will be the same in all points of the circumference. This means that the circumference will 

remain on a plane perpendicular to the bar axis and that its centre will remain on that axis. 

 

The shear strains in a circular bar in torsion, we are ready to determine the directions and 

magnitudes of the corresponding shear stresses. The directions of the stresses can be 

determined by inspection. We observe that the torque T tends to rotate the right-hand end of 

the bar counterclockwise when viewed from the right. The magnitudes of the shear stresses 

can be determined from the strains by using the stress-strain relation for the material of the 

bar. If the material is linearly elastic, we can use Hooke‘s law in shear, in which G is the 

shear modulus of elasticity and γ is the shear strain in radians. Combining this equation with 

the equations for the shear strains, in which τ max is the shear stress at the outer surface of 

the bar (radius r), τ is the shear stress at an interior point (radius r), and θ is the rate of twist. 

(In these equations, θ has units of radians per unit of length.) 

 

 

 

 

Equations show that the shear stresses vary linearly with the distance from the center of the 

bar, illustrated by the triangular stress diagram. This linear variation of stress is a 
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consequence of Hooke‘s law. If the stress-strain relation is nonlinear, the stresses will vary 

nonlinearly and other methods of analysis will be needed. 

 

The shear stresses acting on a cross-sectional plane are accompanied by shear stresses of the 

same magnitude acting on longitudinal planes. This conclusion follows from the fact that 

equal shear stresses always exist on mutually perpendicular planes. If the material of the bar 

is weaker in shear on longitudinal planes than on cross-sectional planes, as is typical of wood 

when the grain runs parallel to the axis of the bar, the first cracks due to torsion will appear 

on the surface in the longitudinal direction. The state of pure shear at the surface of a bar is 

equivalent to equal tensile and compressive stresses acting on an element oriented at an angle 

of 45. Therefore, a rectangular element with sides at 45° to the axis of the shaft will be 

subjected to tensile and compressive stresses. If a torsion bar is made of a material that is 

weaker in tension than in shear, failure will occur in tension along a helix inclined at 45° to 

the axis. 

 

Torsion of circular shafts 

 

Equation for shafts subjected to torsion "T" 

 

 

 

Torsion Equation 

Where J = Polar moment of inertia,τ = Shear stress induced due to torsion T. 

G = Modulus of rigidity,θ = Angular deflection of shaft, R, L = Shaft radius & length 

respectively. 
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Polar moment of Inertia 

 

            

 

 

Polar section Modulus 
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Polar Moment of Inertia and Section Modulus. 

 

The polar moment of inertia, J, of a cross-section with respect to a polar axis, that is, an axis 

at right angles to the plane of the cross-section, is defined as the moment of inertia of the 

cross-section with respect to the point of intersection of the axis and the plane. The polar 

moment of inertia may be found by taking the sum of the moments of inertia about two 

perpendicular axes lying in the plane of the cross-section and passing through this point. 

Thus, for example, the polar moment of inertia of a circular or a square area with respect to a 

polar axis through the center of gravity is equal to two times the moment of inertia with 

respect to an axis lying in the plane of the cross-section and passing through the center of 

gravity. The polar moment of inertia with respect to a polar axis through the center of gravity 

is required for problems involving the torsional strength of shafts since this axis is usually the 

axis about which twisting of the shaft takes place. 

The polar section modulus  

 

(also called section modulus of torsion), Zp, for circular sections may be found by dividing 

the polar moment of inertia, J, by the distance c from the center of gravity to the most remote 

fiber. This method may be used to find the approximate value of the polar section modulus of 

sections that are nearly round. For other than circular cross-sections, however, the polar 

section modulus does not equal the polar moment of inertia divided by the distance c. 

 

Power Transmission 
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Safe diameter of a shaft (d) 

 

 

 

In Twisting 

 

 

  

Problems on Solid and hollow circular section 

 

1. What torque, applied to a hollow circular shaft of 25 cm outside diameter and 17.5 cm 

inside     

    diameter will produce a maximum shearing stress of 75 MN/m2 in the material. 
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2. A ship's propeller shaft has external and internal diameters of 25 cm and 15 cm. What 

power can be  

    transmitted at 1 10 rev/minute with a maximum shearing stress of 75 MN/m2, and what 

will then      

    be the twist in degrees of a 10 m length of the shaft? G = 80 GN/m2 

 

 

 

 

3. A solid circular shaft of 25 cm diameter is to be replaced by a hollow shaft, the ratio of the 

external to internal diameters being 2 to 1. Find the size of the hollow shaft if the maximum 
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shearing stress is to be the same as for the solid shaft. What percentage economy in mass will 

this change effect? 

 

 

 

 

 

 

4. A ship's propeller shaft transmits 7.5 x 106 W at 240 rev/min. The shaft has an internal 

diameter of 15 cm. Calculate the minimum permissible external diameter if the shearing 

stress in the shaft is to be limited to 150 MN/m2. 
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Problems for practice 

1. A solid steel bar of circular cross section has diameter d =1.5 in., length L =54 in., and 

shear modulus of elasticity G = 11.5 x10
6
 psi. The bar is subjected to torques T acting at the 

ends.  
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(a) If the torques has magnitude T =250 lb-ft, what is the maximum shear stress in the bar? 

What is the angle of twist between the ends? 

(b) If the allowable shear stress is 6000 psi and the allowable angle of twist is 2.5°, what is 

the maximum permissible torque? 

 

2. A steel shaft is to be manufactured either as a solid circular bar or as a circular tube. The 

shaft is required to transmit a torque of 1200 N_m without exceeding an allowable shear 

stress of 40 MPa nor an allowable rate of twist of 0.75°/m. (The shear modulus of elasticity 

of the steel is 78 GPa.)  

(a) Determine the required diameter d0 of the solid shaft. 

(b) Determine the required outer diameter d2 of the hollow shaft if the thickness t of the shaft 

is specified as one-tenth of the outer diameter. 

(c) Determine the ratio of diameters (that is, the ratio d2/d0) and the ratio of weights of the 

hollow and solid shafts. 

 

 

3. A hollow shaft and a solid shaft constructed of the same material have the same length and 

the same outer radius R . The inner radius of the hollow shaft is 0.6R. (a) Assuming that both 

shafts are subjected to the same torque, compare their shear stresses, angles of twist, and 

weights. (b) Determine the strength-to-weight ratios for both shafts. 

 

Stepped shafts 

 

When a shaft is made of different lengths and of different diameters, it is termed as shaft as 

varying cross section. For such a shaft, the torque induced in its individual sections should be 

calculated first. The strength of the shaft is the minimum of all these torques. 

 

Problems 
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A stepped shaft has the appearance as shown in figure. The region AB is aluminum, having G 

= 28 GPa, and the region BC is steel, having G = 84 GPa. The aluminum portion is of solid 

circular cross section 45 mm in diameter, and the steel region is circular with 60-mm outside 

diameter and 30-mm inside diameter. Determine the maximum shearing stress in each 

material as well as the angle of twist at B where a torsional load of 4000 N - m is applied. 

Ends A and C are rigidly clamped. 

 

SOLUTION: The free-body diagram of the system is shown. The applied load of 4000 N-m 

as well as the unknown end reactive torques are as indicated. The only equation of static 

equilibrium is 

 

 

 

 

Since there are two unknowns TL and TR, another equation (based upon deformations) is 

required. This is set up by realizing that the angular rotation at B is the same if we determine 

it at the right end of AB or the left end of BC. We thus have 
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Problems for practice 

 

 

 

 

 

Compound shafts – fixed and simply supported shafts 

 

A compound shaft is made of two or more different materials joined together in such a way 

that the shaft is elongated or compressed as a single shaft. The total torque transmitted by a 

compound shaft is the sum of the torques transmitted by each individual shaft and the angle 

of twist in each shaft will be equal. 

 

1. A compound shaft consisting of a steel segment and an aluminum segment is acted upon 

by two torques as shown. Determine the maximum permissible value of T subject to the 

following conditions: τst = 83 MPa, τal = 55 MPa, and the angle of rotation of the free end is 

limited to 6°. For steel, G = 83 GPa and for aluminum, G = 28 GPa. 
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2. The compound shaft shown is attached to rigid supports. For the bronze segment AB, the 

diameter is 75 mm, τ ≤ 60 MPa, and G = 35 GPa. For the steel segment BC, the diameter is 

50 mm, τ ≤ 80 MPa, and G = 83 GPa. If a = 2 m and b = 1.5 m, compute the maximum 

torque T that can be applied. 
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3. The compound shaft shown is attached to rigid supports. For the bronze segment AB, the 

maximum shearing stress is limited to 8000 psi and for the steel segment BC, it is limited to 
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12 ksi. Determine the diameters of each segment so that each material will be simultaneously 

stressed to its permissible limit when a torque T = 12 kip·ft is applied. For bronze, G = 6 × 

106 psi and for steel, G = 12 × 106 psi. 
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4. A shaft composed of segments AC, CD, and DB is fastened to rigid supports and loaded as 

shown. For bronze, G = 35 GPa; aluminum, G = 28 GPa, and for steel, G = 83 GPa. 

Determine the maximum shearing stress developed in each segment. 
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5. A hollow bronze shaft of 3 in. outer diameter and 2 in. inner diameter is slipped over a 

solid steel shaft 2 in. in diameter and of the same length as the hollow shaft. The two shafts 

are then fastened rigidly together at their ends. For bronze, G = 6 × 106 psi, and for steel, G = 

12 × 106 psi. What torque can be applied to the composite shaft without exceeding a shearing 

stress of 8000 psi in the bronze or 12 ksi in the steel? 
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6. The two steel shaft shown in Fig. P-325, each with one end built into a rigid support have 

flanges rigidly attached to their free ends. The shafts are to be bolted together at their flanges. 

However, initially there is a 6° mismatch in the location of the bolt holes as shown in the 

figure. Determine the maximum shearing stress in each shaft after the shafts are bolted 

together. Use G = 12 × 106 psi and neglect deformations of the bolts and flanges. 

 

Closed Coiled helical springs subjected to axial loads: 

 



31 

 

Definition: A spring may be defined as an elastic member whose primary function is to 

deflect or distort under the action of applied load; it recovers its original shape when load is 

released. Also Springs are energy absorbing units whose function is to store energy and to 

restore it slowly or rapidly depending on the particular application. 

 

Important types of springs are: 

 

There are various types of springs such as 

 

(i) helical spring: They are made of wire coiled into a helical form, the load being applied 

along the axis of the helix. In these type of springs the major stresses is Torsional shear stress 

due to twisting. They are both used in tension and compression. 

 

 

(ii) Spiral springs: They are made of flat strip of metal wound in the form of spiral and 

loaded in torsion. 

In this the major stresses are tensile and compression due to bending. 

 

(iii) Leaf springs: They are composed of flat bars of varying lengths clamped together so as 

to obtain greater efficiency. Leaf springs may be full elliptic, semi elliptic or cantilever types, 

In these type of springs the major stresses which come into picture are tensile & compressive. 

 

Uses of springs: 

(a) To apply forces and to control motions as in brakes and clutches. 

(b) To measure forces as in spring balance. 
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(c) To store energy as in clock springs. 

(d) To reduce the effect of shock or impact loading as in carriage springs. 

(e) To change the vibrating characteristics of a member as inflexible mounting of motors. 

 

Derivation of the Formula : 

In order to derive a necessary formula which governs the behaviour of springs, consider a 

closed coiled spring subjected to an axial load W. 

 

Let 

W = axial load 

D = mean coil diameter 

d = diameter of spring wire 

n = number of active coils 

C = spring index = D / d For circular wires 

l = length of spring wire 

G = modulus of rigidity 

x = deflection of spring 

q = Angle of twist 

 

when the spring is being subjected to an axial load to the wire of the spring gets be twisted 

like a shaft. 

 

If q is the total angle of twist along the wire and x is the deflection of spring under the action 

of load W along the axis of the coil, so that 

 

x = D / 2 . q 

again l = p D n [ consider ,one half turn of a close coiled helical spring ] 
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Assumptions: (1) The Bending & shear effects may be neglected 

 

(2) For the purpose of derivation of formula, the helix angle is considered to be so small that 

it may be neglected. 

 

Any one coil of a spring will be assumed to lie in a plane which is nearly perpendicular to the 

axis of the spring. This requires that adjoining coils be close together. With this limitation, a 

section taken perpendicular to the axis the spring rod becomes nearly vertical. Hence to 

maintain equilibrium of a segment of the spring, only a shearing force V = F and Torque T = 

F. r are required at any X – section. In the analysis of springs it is customary to assume that 

the shearing stresses caused by the direct shear force is 

uniformly distributed and is negligible 

so applying the torsion formula. Using the torsion formula i.e 

 

 

SPRING DEFLECTION 
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Spring striffness: The stiffness is defined as the load per unit deflection therefore 

 

Shear stress 

 

 

WAHL'S FACTOR : 

 

In order to take into account the effect of direct shear and change in coil curvature a stress 

factor is defined, which is known as Wahl's factor 

 

K = Wahl' s factor and is defined as 

 

 

Where C = spring index 

= D/d 

 

if we take into account the Wahl's factor than the formula for the shear stress becomes 
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Strain Energy : The strain energy is defined as the energy which is stored within a material 

when the work has been done on the material. 

 

In the case of a spring the strain energy would be due to bending and the strain energy due to 

bending is given by the expansion 

 

 

Worked examples: 

 

1. A close coiled helical spring is to carry a load of 5000N with a deflection of 50 mm and a 

maximum shearing stress of 400 N/mm2 if the number of active turns or active coils is 

8.Estimate the following: 

 

(i) wire diameter 

(ii) mean coil diameter 

(iii) weight of the spring. 

Assume G = 83,000 N/mm2 ; r = 7700 kg/m3 

 

solution : 

 

(i) for wire diametre if W is the axial load, then 
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Further, deflection is given as 

 

 

 

Therefore, 

D = .0314 x (13.317)3mm 

=74.15mm 

D = 74.15 mm 

 

2. Determine the maximum shearing stress and elongation in a helical steel spring composed 

of 20 turns of 20-mm-diameter wire on a mean radius of 90 mm when the spring is 

supporting a load of 1.5 kN. G = 83 GPa. 
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3. Determine the maximum shearing stress and elongation in a bronze helical spring 

composed of 20 turns of 1.0-in.-diameter wire on a mean radius of 4 in. when the spring is 

supporting a load of 500 lb. G = 6 × 106 psi. 

 

  

 

4. A helical spring is fabricated by wrapping wire ¾ in. in diameter around a forming 

cylinder 8 in. in diameter. Compute the number of turns required to permit an elongation of 4 

in. without exceeding a shearing stress of 18 ksi. G = 12 × 106 psi. 

 

 

Weight 
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Close – coiled helical spring subjected to axial torque T or axial couple. 

 

 

In this case the material of the spring is subjected to pure bending which tends to reduce 

Radius R of the coils. In this case the bending moment is constant through out the spring and 

is equal to the applied axial Torque T. The stresses i.e. maximum bending stress may  

 

 

thus be determined from the bending theory. 

 

Springs in Series: If two springs of different stiffness are joined endon and carry a common 

load W, they are said to be connected in series and the combined stiffness and deflection are 

given by the following equation 

. 

 

Springs in parallel: If the two spring are joined in such a way that they have a common 

deflection ‗x' ; then they are said to be connected in parallel. In this care the load carried is 

shared between the two springs and total load W = W1 + W2 
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1. Two steel springs arranged in series as shown supports a load P. The upper spring has 12 turns of 

25-mm-diameter wire on a mean radius of 100 mm. The lower spring consists of 10 turns of 20-

mmdiameter wire on a mean radius of 75 mm. If the maximum shearing stress in either spring must 

not exceed 200 MPa, compute the maximum value of P and the total elongation of the assembly. G = 

83 GPa. Compute the equivalent spring constant by dividing the load by the total elongation. 
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Design of helical coil springs – stresses in helical coil springs under torsion loads 

Worked problems  
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UNIT 3 SLOPE AND DEFLECTION OF BEAMS        

Deflection and Slope of a Beam – Radius of curvature - Deflection of a Simply Supported 

Beam (various load condition) - Macaulay‟s method - Moment area method – Mohr‟s 

Theorem – Conjugate beam method for simply supported and cantilever beams, (only point 

loads & Uniformly distributed loads.)   

 

Introduction: Elastic Stability of Columns 

Structural members which carry compressive loads may be divided into two broad categories 

depending on their relative lengths and cross-sectional dimensions. The analysis and design 

of compression members can differ significantly from that of members loaded in tension or in 

torsion. If you were to take a long rod or pole, such as a meter stick, and apply gradually 

increasing compressive forces at each end, nothing would happen at first, but then the stick 

would bend (buckle), and finally bend so much as to fracture. Try it. The other extreme 

would occur if you were to saw off, say, a 5-mm length of the meter stick and perform the 

same experiment on the short piece. You would then observe that the failure exhibits itself as 

a mashing of the specimen, that is, a simple compressive failure. For these reasons it is 

convenient to classify compression members according to their length and according to 

whether the loading is central or eccentric. The term column is applied to all such members 

except those in which failure would be by simple or pure compression. 

General comments 

The critical load of a column is proportional to the flexural rigidity EI and inversely 

proportional to the square of the length. Of particular interest is the fact that the strength of 

the material itself, as represented by a quantity such as the proportional limit or the The 

flexural rigidity can be increased by using a “stiffer” material (that is, a material with larger 

modulus of elasticity E) or by distributing the material in such a way as to increase the 

moment of inertia I of the cross section, just as a beam can be made stiffer by increasing the 

moment of inertia. The moment of inertia is increased by distributing the material farther 

from the centroid of the cross section. Hence, a hollow tubular member is generally more 

economical for use as a column than a solid member having the same cross-sectional area. 

Reducing the wall thickness of a tubular member and increasing its lateral dimensions (while 

keeping the cross-sectional area constant) also increases the critical load because the moment 

of inertia is increased. This process has a practical limit, however, because eventually the 

wall itself will become unstable. When that happens, localized buckling occurs in the form of 

small corrugations or wrinkles in the walls of the column. Thus, we must distinguish between 

overall buckling of a column, which is discussed in this chapter, and local buckling of its 

parts. yield stress, does not appear in the equation for the critical load. Therefore, increasing a 

strength property does not raise the critical load of a slender column. It can only be raised by 

increasing the flexural rigidity, reducing the length, or providing additional lateral support. 

 

we assumed that the xy plane was a plane of symmetry of the column and that buckling took 

place in that plane. The latter assumption will be met if the column has lateral supports 

perpendicular to the plane of the figure, so that the column is constrained to buckle in the xy 
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plane. If the column is supported only at its ends and is free to buckle in any direction, then 

bending will occur about the principal centroidal axis having the smaller moment of inertia. If 

the cross section is square or circular, all centroidal axes have the same moment of inertia and 

buckling may occur in any longitudinal plane.  

Limitations 

In addition to the requirement of small deflections, the Euler buckling theory used in this 

section is valid only if the column is perfectly straight before the load is applied, the column 

and its supports have no imperfections, and the column is made of a linearly elastic material 

that follows Hooke‟s law. 

Columns:  

Short, thick members are generally termed columns and these usually fail by crushing when 

the yield stress of the material in compression is exceeded. Columns can be categorized then 

as:  

 Long columns with central loading 

 Intermediate-length columns with central loading 

 Columns with eccentric loading 

 Struts or short columns with eccentric loading  

Struts:  

Long, slender columns are generally termed as struts; they fail by buckling some time before 

the yield stress in compression is reached. The buckling occurs owing to one the following 

reasons. A short bar loaded in pure compression by a force P acting along the centroidal axis 

will shorten in accordance with Hooke‟s law, until the stress reaches the elastic limit of the 

material. At this point, permanent set is introduced and usefulness as a machine member may 

be at an end. If the force P is increased still more, the material either becomes “barrel-like” or 

fractures. When there is eccentricity in the loading, the elastic limit is encountered at smaller 

loads.  

(a) The strut may not be perfectly straight initially.  

(b) The load may not be applied exactly along the axis of the Strut.  

(c) One part of the material may yield in compression more readily than others owing to some 

lack of uniformity in the material properties throughout the strut.  

In all the problems considered so far we have assumed that the deformation to be both 

progressive with increasing load and simple in form i.e. we assumed that a member in simple 

tension or compression becomes progressively longer or shorter but remains straight. Under 

some circumstances however, our assumptions of progressive and simple deformation may 

no longer hold good and the member become unstable. The term strut and column are widely 

used, often interchangeably in the context of buckling of slender members. 
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At values of load below the buckling load a strut will be in stable equilibrium where the 

displacement caused by any lateral disturbance will be totally recovered when the disturbance 

is removed. At the buckling load the strut is said to be in a state of neutral equilibrium, and 

theoretically it should than be possible to gently deflect the strut into a simple sine wave 

provided that the amplitude of wave is kept small.  

Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with 

loads exceeding the buckling load, any slight lateral disturbance then causing failure by 

buckling, this condition is never achieved in practice under static load conditions. Buckling 

occurs immediately at the point where the buckling load is reached, owing to the reasons 

stated earlier.  

The resistance of any member to bending is determined by its flexural rigidity EI and is The 

quantity I may be written as I = Ak
2
,  

Where I = area of moment of inertia  

A = area of the cross-section  

k = radius of gyration.  

The load per unit area which the member can withstand is therefore related to k. There will be 

two principal moments of inertia, if the least of these is taken then the ratio  

 

is called the slenderness ratio. Its numerical value indicates whether the member falls into the 

class of columns or struts. 

   

Euler's Theory: The struts which fail by buckling can be analyzed by Euler's theory. In the 

following sections, different cases of the struts have been analyzed.  

Case A: Strut with pinned ends:  
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Consider an axially loaded strut, shown below, and is subjected to an axial load „P' this load 

„P' produces a deflection „y' at a distance „x' from one end.  

Assume that the ends are either pin jointed or rounded so that there is no moment at either 

end.  

 

Assumption:  

The strut is assumed to be initially straight, the end load being applied axially through 

centroid.  

 

 

In this equation „M' is not a function „x'. Therefore this equation can not be integrated directly 

as has been done in the case of deflection of beams by integration method. 

 

Though this equation is in „y' but we can't say at this stage where the deflection would be 

maximum or minimum.  

 

So the above differential equation can be arranged in the following form  
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Let us define a operator  

D = d/dx  

(D
2
 + n

2
) y =0 where n

2
 = P/EI  

This is a second order differential equation which has a solution of the form consisting of 

complimentary function and particular integral but for the time being we are interested in the 

complementary solution only[in this P.I = 0; since the R.H.S of Diff. equation = 0]  

Thus y = A cos (nx) + B sin (nx)  

Where A and B are some constants.  

 

In order to evaluate the constants A and B let us apply the boundary conditions,  

(i) at x = 0; y = 0  

(ii) at x = L ; y = 0  

Applying the first boundary condition yields A = 0. 

Applying the second boundary condition gives  

 

From the above relationship the least value of P which will cause the strut to buckle, and it is 

called the “ Euler Crippling Load ” Pe from which w obtain.  
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The interpretation of the above analysis is that for all the values of the load P, other than 

those which make sin nL = 0; the strut will remain perfectly straight since 

y = B sin nL = 0  

For the particular value of 

 

Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection 

which it suffers will be maintained. This is subjected to the limitation that „L' remains 

sensibly constant and in practice slight increase in load at the critical value will cause the 

deflection to increase appreciably until the material fails by yielding.  

Further it should be noted that the deflection is not proportional to load, and this applies to all 

strut problems; like wise it will be found that the maximum stress is not proportional to load.  

The solution chosen of nL = p is just one particular solution; the solutions nL= 2p, 3p, 5p etc 

are equally valid mathematically and they do, infact, produce values of „Pe' which are equally 

valid for modes of buckling of strut different from that of a simple bow. Theoretically 

therefore, there are an infinite number of values of Pe , each corresponding with a different 

mode of buckling.  

The value selected above is so called the fundamental mode value and is the lowest critical 

load producing the single bow buckling condition.  

The solution nL = 2p produces buckling in two half – waves, 3p in three half-waves etc.  
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If load is applied sufficiently quickly to the strut, then it is possible to pass through the 

fundamental mode and to achieve at least one of the other modes which are theoretically 

possible. In practical loading situations, however, this is rarely achieved since the high stress 

associated with the first critical condition generally ensures immediate collapse.  

struts and columns with other end conditions: Let us consider the struts and columns 

having different end conditions  

Case b: One end fixed and the other free:  

 

writing down the value of bending moment at the point C  

 

Hence in operator form, the differential equation reduces to ( D
2
 + n

2 
) y = n

2
a  

The solution of the above equation would consist of complementary solution and particular 

solution, therefore  

ygen = A cos(nx) + sin(nx) + P. I  

where 

P.I = the P.I is a particular value of y which satisfies the differential equation  
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Hence yP.I = a  

Therefore the complete solution becomes  

Y = A cos(nx) + B sin(nx) + a  

Now imposing the boundary conditions to evaluate the constants A and B  

(i) at x = 0; y = 0  

This yields A = -a  

(ii) at x = 0; dy/dx = 0  

This yields B = 0  

Hence  

y = -a cos(nx) + a  

Futher, at x = L; y = a  

Therefore a = - a cos(nx) + a     or 0 = cos(nL)  

Now the fundamental mode of buckling in this case would be  

 

Case 3  

Strut with fixed ends: 

 

Due to the fixed end supports bending moment would also appears at the supports, since this 

is the property of the support.  

Bending Moment at point C = M – P.y  
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Thus,  

Case 4  

One end fixed, the other pinned  
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In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary 

in this case to introduce a vertical load F at the pin. The moment of F about the built in end 

then balances the fixing moment.  

With the origin at the built in end, the B,M at C is given as  

 

Also when x = L ; y = 0  

Therefore  

nL Cos nL = Sin nL     or tan nL = nL  

The lowest value of nL ( neglecting zero) which satisfies this condition and which therefore 

produces the fundamental buckling condition is nL = 4.49radian  
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Equivalent Strut Length:  

Having derived the results for the buckling load of a strut with pinned ends the Euler loads 

for other end conditions may all be written in the same form.  

 

Where L is the equivalent length of the strut and can be related to the actual length of the 

strut depending on the end conditions.  

The equivalent length is found to be the length of a simple bow(half sine wave) in each of the 

strut deflection curves shown. The buckling load for each end condition shown is then readily 

obtained. The use of equivalent length is not restricted to the Euler's theory and it will be 

used in other derivations later.  

The critical load for columns with other end conditions can be expressed in terms of the 

critical load for a hinged column, which is taken as a fundamental case.  

For case(c) see the figure, the column or strut has inflection points at quarter points of its 

unsupported length. Since the bending moment is zero at a point of inflection, the freebody 

diagram would indicates that the middle half of the fixed ended is equivalent to a hinged 

column having an effective length Le = L / 2.  

The four different cases which we have considered so far are:  

(a) Both ends pinned          (c) One end fixed, other free  

(b) Both ends fixed               (d) One end fixed and other pinned  



14 
 

 

Solved Problems on deflection of beams 

 

1. Determine the deflection at every point of the cantilever beam subject to the single 

concentrated force P, as shown in Figure shown below 

 

SOLUTION: The x-y coordinate system shown is introduced, where the x-axis coincides with 

the original unbent position of the beam. The deformed beam has the appearance indicated by 

the heavy line in Fig It is first necessary to find the reactions exerted by the supporting wall 

upon the bar, and these are easily found from statics to be a vertical force reaction P and a 

moment PL, as shown. 
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2. The cantilever beam AB is of uniform cross section and carries a load P at its free end A). 

Determine the equation of the elastic curve and the deflection and slope at A. 
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3. The simply supported prismatic beam AB carries a uniformly distributed load w per unit 

length. Determine the equation of the elastic curve and the maximum deflection of the beam. 
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4. A steel rod 5 cm diameter protrudes 2 m horizontally from a wall. (i) Calculate the 

deflection due to a load of 1 kN hung on the end of the rod. The weight of the rod may be 

neglected. (ii) If a vertical steel wire 3 m long, 0.25 cm diameter, supports the end of the 

cantilever, being taut but unstressed before the load is applied, calculate the end deflection on 

application of the load. TakeE = 200GN/m2. 

 

The second moment of are of the cross-section is 
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5. A steel beam rests on two supports 6 m apart, and carries a uniformly distributed load of 10 

kN per metre run. The second moment of area of the cross-section is 1 x 10-3 m4 and E = 

200 GN/m2. Estimate the maximum deflection. 

 

 

 

Solved Problems on columns 

 

1. A 2-m-long pin-ended column of square cross section is to be made of wood. Assuming E 

= 13 GPa, σ =12 MPa, and using a factor of safety of 2.5 in computing Euler‟s critical load 

for buckling, determine the size of the cross section if the column is to safely support (a) a 

100-kN load, (b) a 200-kN load. 
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Deflection of Beams: Problems for practice 

 

1. A cantilever steel beam has a free length of 3m. The moment of inertia of the section 

is 30x10
6
 mm4. A concentrated load of 50kN at the free end. Find the deflection at the 

free end using 

a. Double integration method 

b. Macauley‟s Method 

c. Moment Area Method 
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d. Conjugate Beam Method, Take E= 2x10
5
 N/mm

2 

 

2. A cantilever Beam of 8m carries a UDL of 5kN/m run and a load of W at the free end. 

If the deflection at the free end is 30mm, calculate the magnitude of the load W, and 

the slope at the free end. Take E= 2x10
5
 N/mm

2
, I = 5x10

7 
mm

4
. 

 

3. A cantilever beam of 6m long carries a UDL of 5kN/m throughout its length and a 

concentrated load of 80 kN. Determine the slope and deflection at the free eng by 

using moment area method. Take E= 2x10
5
 N/mm

2
, I = 2x10

9
 mm

4
. 

 

4. A SSB of 6m span carries a concentrated load of 50 kN at 3m from left support. Find 

the slope at the supports and deflection under the load. EI = 2000 kN-m
2
. 

 

5. A SSB of 10 m span carries a concentrated load of 10 kN at its center. It carries a 

UDL of 2 kN/m over its length. Find the maximum Deflection of beam by 

a. Double integration method 

b. Macauley‟s Method 

c. Moment Area Method 

d. Conjugate Beam Method, Take E= 2x10
5
 N/mm

2
, I = 200x106 mm

4
. 

 

6.  A beam is simply supported at its ends over a span of 10 m and carries two 

concentrated loads of 100 kN and 60 kN at a distance of 2 m and 5 m respectively 

from the left support. Calculate (i) slope at the left support (ii) slope and deflection 

under the 100 kN load. Assume EI = 36 × 104 kN-m2. 

 

7. (i) State Moment-Area Mohr‟s theorem.  

(ii) A simply supported beam AB uniform section, 4 m span is subjected to a 

clockwise moment of 10 kNm applied at the right hinge B. Derive the equation to the 

deflected shape of the beam. Locate the point of maximum deflection and find the 

maximum deflection.  

 

 

Columns: Problems for practice 
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1. Find the Euler critical load for a hollow cylindrical cast iron column 150mm external 

diameter, 20 mm wall thickness if it is 6 m long with hinged at both ends. Assume 

Young‟s modulus of cast iron as 80 kN/mm2. Compare this load with that given by 

Rankine formula. Using Rankine constants α = 1/1600 and 567 N/mm2. 

 

2. A column of solid circular section, 12 cm diameter, 3.6 m long is hinged at both ends. 

Rankine‟s constant is 1 / 1600, σc = 54 KN/cm2. Find the buckling load. ii) If another 

column of the same length, end conditions and rankine constant but of 12 cm X 12 cm 

square cross-section, and different material, has the same buckling load, find the value 

of σc of its material. 

 

3. Determine the section of a hollow C.I. cylindrical column 5 m long with ends firmly 

built in. The column has to carry an axial compressive load of 588.6 KN. The internal 

diameter of the column is 0.75 times the external diameter. Use Rankine‟s constants.  

a = 1 / 1600, σc = 57.58 KN/cm2 and F.O.S = 6. 

 

4. Find the euler critical load for a hollow cylindrical cast iron column 150mm external 

diameter, 20mm wall thick ness if it is 6m long with hinged at both ends. Assume 

young‟s modulus of cast iron as 80 KN/mm2.compare this load with that given by 

rankine constants. a=1/1600 and 567N/mm2. 

 

5. A 1.2m long column has a cross section of 45mm diameter one of the ends of the 

column is fixed in direction and position and other end is free. Taking factor of safety 

as 3, calculate the safe load using. I. Rankine‟s formula, take yield stress=560N/mm2 

and a=1/1600 for pinned ends. II. Euler‟s formula Young‟s modulus for cast iron = 

1.2X105 N/mm2. 

 

6. The external and internal diameters of a hollow cast iron column are 50mm and 

40mm respectively. If the length of this column is 3m and both of its ends are fixed, 

determine the crippling load using Euler formula taking E=100Gpa. Also determine 

the rankine load for the column assuming fc=550Mpa and α=1/1600. 

 

7. An I section joists 400mmx200mmx20mm and 6m long is used as a strut with both 

ends fixed. What is Euler‟s crippling load for the column? Take E=200Gpa. 

Deflection of Beams  

In all practical engineering applications, when we use the different components, normally we 

have to operate them within the certain limits i.e. the constraints are placed on the 

performance and behavior of the components. For instance we say that the particular 

component is supposed to operate within this value of stress and the deflection of the 
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component should not exceed beyond a particular value. In some problems the maximum 

stress however, may not be a strict or severe condition but there may be the deflection which 

is the more rigid condition under operation. It is obvious therefore to study the methods by 

which we can predict the deflection of members under lateral loads or transverse loads, since 

it is this form of loading which will generally produce the greatest deflection of beams.  

Assumption: The following assumptions are undertaken in order to derive a differential 

equation of elastic curve for the loaded beam  

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for 

beams that are not stressed beyond the elastic limit.  

2. The curvature is always small.  

3. Any deflection resulting from the shear deformation of the material or shear stresses is 

neglected.  

It can be shown that the deflections due to shear deformations are usually small and hence 

can be ignored. 

Equation of the Elastic curve 

We first recall from elementary calculus that the curvature of a plane curve at a point Q(x,y) 

of the curve can be expressed as 

 

 

where dy/dx and d
2
y/dx

2
 are the first and second derivatives of the function y(x) represented 

by that curve. But, in the case of the elastic curve of a beam, the slope dy/dx is very small, 

and its square is negligible compared to unity. We write, therefore, 

 

 

 

It should be noted that, in this chapter, y represents a vertical displacement, while it was used 

in previous chapters to represent the distance of a given point in a transverse section from the 

neutral axis of that section. 
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The equation obtained is a second-order linear differential equation; it is the governing 

differential equation for the elastic curve. The product EI is known as the flexural rigidity 

and, if it varies along the beam, as in the case of a beam of varying depth, we must express it 

as a function of x before proceeding to integrate. However, in the case of a prismatic beam, 

which is the case considered here, the flexural rigidity is constant. We may thus multiply both 

members of Equations by EI and integrate in x. We write 

 

 

where C1 is a constant of integration. Denoting by u(x) the angle, measured in radians, that 

the tangent to the elastic curve at Q forms with the horizontal, and recalling that this angle is 

very small, we have 

 

 

where C2 is a second constant, and where the first term in the right hand member represents 

the function of x obtained by integrating twice in x the bending moment M(x). If it were not 

for the fact that the constants C1 and C2 are as yet undetermined, would define the deflection 

of the beam at any given point Q, and define the slope of the beam at Q. 

 

The constants C1 and C2 are determined from the boundary conditions or, more precisely, 

from the conditions imposed on the beam by its supports. Limiting our analysis in this section 

to statically determinate beams, i.e., to beams supported in such a way that the reactions at 

the supports can be obtained by the methods of statics, we note that only three types of beams 
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need to be considered here (a) the simply supported beam, (b) the overhanging beam, and (c) 

the cantilever beam. 

 

 

 

In the first two cases, the supports consist of a pin and bracket at A and of a roller at B, and 

require that the deflection be zero at each of these points. Letting first x = xA, y = yA =0 in the 

Equation, and then x = xB, y = yB = 0 in the same equation, we obtain two equations that can 

be solved for C1 and C2. In the case of the cantilever beam, we note that both the deflection 

and the slope at A must be zero. Letting x = xA, y = yA = 0 in Equation and x = xA, u =uA = 0 

in Equation, we obtain again two equations that can be solved for C1 and C2.  

 



26 
 

Consider a beam AB which is initially straight and horizontal when unloaded. If under the 

action of loads the beam deflects to a position A'B' under load or infact we say that the axis of 

the beam bends to a shape A'B'. It is customary to call A'B' the curved axis of the beam as the 

elastic line or deflection curve.  

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending 

moment M varies along the length of the beam and we represent the variation of bending 

moment in B.M diagram. Futher, it is assumed that the simple bending theory equation holds 

good.  

 

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every 

point is different; hence the slope is different at different points. To express the deflected 

shape of the beam in rectangular co-ordinates let us take two axes x and y, x-axis coincide 

with the original straight axis of the beam and the y – axis shows the deflection.  

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us 

construct the normal which intersect at point O denoting the angle between these two normal 

be di But for the deflected shape of the beam the slope i at any point C is defined,  

 

This is the differential equation of the elastic line for a beam subjected to bending in the 

plane of symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection 

curve as it is frequently called.  
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Relationship between shear force, bending moment and deflection: The relationship 

among shear force, bending moment and deflection of the beam may be obtained as 

differentiating the equation as derived 

 

Therefore, the above expression represents the shear force whereas rate of intensity of 

loading can also be found out by differentiating the expression for shear force 

 

Methods for finding the deflection: The deflection of the loaded beam can be obtained 

various methods. The one of the method for finding the deflection of the beam is the direct 

integration method, i.e. the method using the differential equation which we have derived. 

Direct integration method: The governing differential equation is defined as  

 

Where A and B are constants of integration to be evaluated from the known conditions of 

slope and deflections for the particular value of x.  
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Illustrative examples: let us consider few illustrative examples to have a familiarity with the 

direct integration method  

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is subjected 

to a concentrated load W at the free end, it is required to determine the deflection of the beam  

 

In order to solve this problem, consider any X-section X-X located at a distance x from the 

left end or the reference, and write down the expressions for the shear force and the bending 

moment  

 

The constants A and B are required to be found out by utilizing the boundary conditions as 

defined below  

i.e at x= L ; y= 0          -------------------- (1)  

at x = L ; dy/dx = 0      -------------------- (2)  

Utilizing the second condition, the value of constant A is obtained as 
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Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is 

subjected to U.d.l with rate of intensity varying w / length. The same procedure can also be 

adopted in this case  
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Boundary conditions relevant to the problem are as follows:  

1. At x = L; y = 0  

2. At x= L; dy/dx = 0  

The second boundary conditions yields  

 

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply 

supported beam is subjected to a uniformly distributed load whose rate of intensity varies as 

w / length.  

 

In order to write down the expression for bending moment consider any cross-section at 

distance of x metre from left end support.  
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Boundary conditions which are relevant in this case are that the deflection at each support 

must be zero.  

i.e. at x = 0; y = 0 : at x = l; y = 0  

let us apply these two boundary conditions on equation (1) because the boundary conditions 

are on y, This yields B = 0.  

 

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e. 

at the position where the load is being applied ].So if we substitute the value of x = L/2  

 

Conclusions  

(i) The value of the slope at the position where the deflection is maximum would be zero.  

(ii) The value of maximum deflection would be at the centre i.e. at x = L/2.  
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The final equation which is governs the deflection of the loaded beam in this case is 

 

By successive differentiation one can find the relations for slope, bending moment, shear 

force and rate of loading.  

Deflection (y)  

 

 

Slope (dy/dx)  

  

 

Bending Moment  

 

 

So the bending moment diagram would be  

 

Shear Force  

Shear force is obtained by 

taking third derivative.  

 

 

Rate of intensity of loading   
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Case 4: The direct integration method may become more involved if the expression for entire 

beam is not valid for the entire beam.Let us consider a deflection of a simply supported beam 

which is subjected to a concentrated load W acting at a distance 'a' from the left end. 

 

Let R1 & R2 be the reactions then,  

 

 

These two equations can be integrated in the usual way to find „y' but this will result in four 

constants of integration two for each equation. To evaluate the four constants of integration, 

four independent boundary conditions will be needed since the deflection of each support 

must be zero, hence the boundary conditions (a) and (b) can be realized.  

Further, since the deflection curve is smooth, the deflection equations for the same slope and 

deflection at the point of application of load i.e. at x = a. Therefore four conditions required 

to evaluate these constants may be defined as follows: 

(a) at x = 0; y = 0 in the portion AB i.e. 0 ≤ x ≤ a  

(b) at x = l; y = 0 in the portion BC i.e. a ≤ x ≤ l  

(c) at x = a; dy/dx, the slope is same for both portion  
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(d) at x = a; y, the deflection is same for both portion  

By symmetry, the reaction R1 is obtained as  

 

Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence 

letting K1 = K2 = K , Hence 

 

Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the condition 

(d) is that,  

At x = a; y; the deflection is the same for both portion  



35 
 

 

ALTERNATE METHOD: There is also an alternative way to attempt this problem in a 

simpler way. Let us considering the origin at the point of application of the load,  

 



36 
 

 

Boundary conditions relevant for this case are as follows  

(i) at x = 0; dy/dx= 0  

hence, A = 0  

(ii) at x = l/2; y = 0 (because now l / 2 is on the left end or right end support since we have 

taken the origin at the centre)  

 

Hence the integration method may be bit cumbersome in some of the case. Another limitation 

of the method would be that if the beam is of non uniform cross section,  

 

i.e. it is having different cross-section then this method also fails. So there are other methods 

by which we find the deflection like  

1. Macaulay's method in which we can write the different equation for bending moment for 
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different sections.  

2. Area moment methods 

3. Energy principle methods 

THE AREA-MOMENT / MOMENT-AREA METHODS 

The area moment method is a semi graphical method of dealing with problems of deflection 

of beams subjected to bending. The method is based on a geometrical interpretation of 

definite integrals. This is applied to cases where the equation for bending moment to be 

written is cumbersome and the loading is relatively simple. 

The moment-area method provides a semigraphical technique for finding the slope and 

displacement at specific points on the elastic curve of a beam or shaft. Application of the 

method requires calculating areas associated with the beam‟s moment diagram; and so if this 

diagram consists of simple shapes, the method is very convenient to use. Normally this is the 

case when the beam is loaded with concentrated forces and couple moments. To develop the 

moment-area method we will make the same assumptions we used for the method of 

integration: The beam is initially straight, it is 

elastically deformed by the loads, such that the slope and deflection of the elastic curve are 

very small, and the deformations are only caused by bending. The moment-area method is 

based on two theorems, one used to determine the slope and the other to determine the 

displacement at a point on the elastic curve.  

Let us recall the figure, which we referred while deriving the differential equation governing 

the beams.  

 

It may be noted that dq is an angle subtended by an arc element ds and M is the bending 

moment to which this element is subjected. We can assume, ds = dx [since the curvature is 

small]  
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hence, R dq = ds  

 

The relationship as described in equation (1) can be given a very simple graphical 

interpretation with reference to the elastic plane of the beam and its bending moment diagram  

 

Refer to the figure shown above consider AB to be any portion of the elastic line of the 

loaded beam and A1B1is its corresponding bending moment diagram.  

Let AO = Tangent drawn at A  

BO = Tangent drawn at B  

Tangents at A and B intersects at the point O.  

Futher, AA ' is the deflection of A away from the tangent at B while the vertical distance B'B 

is the deflection of point B away from the tangent at A. All these quantities are futher 

understood to be very small.  

Let ds ≈ dx be any element of the elastic line at a distance x from B and an angle between at 
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its tangents be dq. Then, as derived earlier 

 

This relationship may be interpreted as that this angle is nothing but the area M.dx of the 

shaded bending moment diagram divided by EI.  

From the above relationship the total angle q between the tangents A and B may be 

determined as  

 

Since this integral represents the total area of the bending moment diagram, hence we may 

conclude this result in the following theorem  

Theorem I:  

 

Now let us consider the deflection of point B relative to tangent at A, this is nothing but the 

vertical distance BB'. It may be note from the bending diagram that bending of the element ds 

contributes to this deflection by an amount equal to x dq [each of this intercept may be 

considered as the arc of a circle of radius x subtended by the angle q 

Hence the total distance B'B becomes  

The limits from A to B have been taken because A and B are the two points on the elastic 

curve, under consideration]. Let us substitute the value of dq = M dx / EI as derived earlier  

 

[ This is infact the moment of area of the bending moment diagram]  

Since M dx is the area of the shaded strip of the bending moment diagram and x is its 

distance from B, we therefore conclude that right hand side of the above equation represents 

first moment area with respect to B of the total bending moment area between A and B 

divided by EI.  

Therefore, we are in a position to state the above conclusion in the form of theorem as 

follows: 
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Theorem II:  

Deflection of point „B' relative to point A  

Futher, the first moment of area, according to the definition of centroid may be written as 

, where is equal to distance of centroid and a is the total area of bending moment  

 

Therefore,the first moment of area may be obtained simply as a product of the total area of 

the B.M diagram betweenthe points A and B multiplied by the distance to its centroid C.  

If there exists an inflection point or point of contreflexure for the elastic line of the loaded 

beam between the points A and B, as shown below,  

 

Then, adequate precaution must be exercised in using the above theorem. In such a case B. M 

diagram gets divide into two portions +ve and –ve portions with centroids C1and C2. Then to 

find an angle q between the tangentsat the points A and B  

 

Illustrative Examples: Let us study few illustrative examples, pertaining to the use of these 

theorems  

Example 1:  

1. A cantilever is subjected to a concentrated load at the free end.It is required to find out the 
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deflection at the free end.  

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below  

 

Let us workout this problem from the zero slope condition and apply the first area - moment 

theorem  

 

The deflection at A (relative to B) may be obtained by applying the second area - moment 

theorem 

NOTE: In this case the point B is at zero slope.  

 

Example 2: Simply supported beam is subjected to a concentrated load at the mid span 

determine the value of deflection.  

A simply supported beam is subjected to a concentrated load W at point C. The bending 

moment diagram is drawn below the loaded beam.  
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Again working relative to the zero slope at the centre C.  

 

Example 3: A simply supported beam is subjected to a uniformly distributed load, with a 

intensity of loading W / length. It is required to determine the deflection.  

The bending moment diagram is drawn, below the loaded beam, the value of maximum B.M 

is equal to Wl2 / 8  
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So by area moment method,  

 

Macaulay's Methods  

If the loading conditions change along the span of beam, there is corresponding change in 

moment equation. This requires that a separate moment equation be written between each 

change of load point and that two integrations be made for each such moment equation. 

Evaluation of the constants introduced each integration can become very involved. 

Fortunately, these complications can be avoided by writing single moment equation in such a 

way that it becomes continuous for entire length of the beam in spite of the discontinuity of 

loading. 

Note : In Macaulay's method some author's take the help of unit function approximation (i.e. 

Laplace transform) in order to illustrate this method, however both are essentially the same.  

For example consider the beam shown in fig below:  
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Let us write the general moment equation using the definition M = ( ∑ M )L, Which means 

that we consider the effects of loads lying on the left of an exploratory section. The moment 

equations for the portions AB,BC and CD are written as follows  

 

It may be observed that the equation for MCD will also be valid for both MAB and MBC 

provided that the terms ( x - 2 ) and ( x - 3 )2are neglected for values of  x less than 2 m and 3 

m, respectively. In other words, the terms ( x - 2 ) and ( x - 3 )2 are nonexistent for values of 

x for which the terms in parentheses are negative.  

 

As an clear indication of these restrictions,one may use a nomenclature in which the usual 

form of parentheses is replaced by pointed brackets, namely, ‹ ›. With this change in 

nomenclature, we obtain a single moment equation  

 

Which is valid for the entire beam if we postulate that the terms between the pointed brackets 

do not exists for negative values; otherwise the term is to be treated like any ordinary 

expression. 

As an another example, consider the beam as shown in the fig below. Here the distributed 

load extends only over the segment BC. We can create continuity, however, by assuming that 

the distributed load extends beyond C and adding an equal upward-distributed load to cancel 

its effect beyond C, as shown in the adjacent fig below. The general moment equation, 

written for the last segment DE in the new nomenclature may be written as:  
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It may be noted that in this equation effect of load 600 N won't appear since it is just at the 

last end of the beam so if we assume the exploratary just at section at just the point of 

application of 600 N than x = 0 or else we will here take the X - section beyond 600 N which 

is invalid.  

Procedure to solve the problems  

(i). After writing down the moment equation which is valid for all values of „x' i.e. containing 

pointed brackets, integrate the moment equation like an ordinary equation.  

(ii). While applying the B.C's keep in mind the necessary changes to be made regarding the 

pointed brackets.  

llustrative Examples :  

1. A concentrated load of 300 N is applied to the simply supported beam as shown in Fig. 

Determine the equations of the elastic curve between each change of load point and the 

maximum deflection in the beam.  

 

Solution : writing the general moment equation for the last portion BC of the loaded beam,  
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              To evaluate the two constants of integration. Let us apply the following boundary 

conditions:  

1. At point A where x = 0, the value of deflection y = 0. Substituting these values in Eq. (3) 

we find C2 = 0.keep in mind that < x -2 >3 is to be neglected for negative values.  

2. At the other support where x  = 3m, the value of deflection y is also zero.  

substituting these values in the deflection Eq. (3), we obtain  

 

Having determined the constants of integration, let us make use of Eqs. (2) and (3) to rewrite 

the slope and deflection equations in the conventional form for the two portions.  

 

Continuing the solution, we assume that the maximum deflection will occur in the segment 

AB. Its location may be found by differentiating Eq. (5) with respect to x and setting the 

derivative to be equal to zero, or, what amounts to the same thing, setting the slope equation 

(4) equal to zero and solving for the point of zero slope.  

We obtain  

50 x2– 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does 

not yield a value < 2 m then we have to try the other equations which are valid for segment 

BC)  

Since this value of x is valid for segment AB, our assumption that the maximum deflection 

occurs in this region is correct. Hence, to determine the maximum deflection, we substitute x 
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= 1.63 m in Eq (5), which yields  

 

The negative value obtained indicates that the deflection y is downward from the x axis.quite 

usually only the magnitude of the deflection, without regard to sign, is desired; this is denoted 

by d, the use of y may be reserved to indicate a directed value of deflection.  

              if E = 30 Gpa and I = 1.9 x 106 mm4 = 1.9 x 10 -6 m4 , Eq. (h) becomes  

 

Example 2:  

It is required to determine the value of EIy at the position midway between the supports and 

at the overhanging end for the beam shown in figure below. 

 

Solution:  

Writing down the moment equation which is valid for the entire span of the beam and 

applying the differential equation of the elastic curve, and integrating it twice, we obtain  

 

To determine the value of C2, It may be noted that EIy = 0 at x = 0,which gives C2 = 0.Note 

that the negative terms in the pointed brackets are to be ignored Next,let us use the condition 

that EIy = 0 at the right support where x = 6m.This gives  

 

Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the 

deflection equation for the segment BC obtained by ignoring negative values of the bracketed 
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terms á x - 4 ñ4 and á x - 6 ñ3. We obtain  

 

Example 3:  

A simply supported beam carries the triangularly distributed load as shown in figure. 

Determine the deflection equation and the value of the maximum deflection.  

 

Solution:  

Due to symmetry, the reactionsis one half the total load of 1/2w0L, or R1 = R2 = 

1/4w0L.Due to the advantage of symmetry to the deflection curve from A to B is the mirror 

image of that from C to B. The condition of zero deflection at A and of zero slope at B do not 

require the use of a general moment equation. Only the moment equation for segment AB is 

needed, and this may be easily written with the aid of figure(b).  

Taking into account the differential equation of the elastic curve for the segment AB and 

integrating twice, one can obtain  

 

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the 

support A, y = 0 at x = 0.Hence from equation (3), we get C2 = 0. Also,because of symmetry, 

the slope dy/dx = 0 at midspan where x = L/2.Substituting these conditions in equation (2) we 
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get  

 

Hence the deflection equation from A to B (and also from C to B because of symmetry) 

becomes  

 

Example 4: couple acting 

Consider a simply supported beam which is subjected to a couple M at adistance 'a' from the 

left end. It is required to determine using the Macauley's method.  

 

To deal with couples, only thing to remember is that within the pointed brackets we have to 

take some quantity and this should be raised to the power zero.i.e. M á x - a ñ0 . We have 

taken the power 0 (zero) ' because ultimately the term M á x - a ñ0 Should have the moment 

units.Thus with integration the quantity á x - a ñ becomes either á x - a ñ1or á x - a ñ2  Or  

 

Therefore, writing the general moment equation we get 
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Example 5: 

A simply supported beam is subjected to U.d.l in combination with couple M. It is required to 

determine the deflection.  

 

This problem may be attemped in the some way. The general moment equation my be written 

as  

 

Integrate twice to get the deflection of the loaded beam.  
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UNIT 4 FLUID PROPERTIES & EQUATIONS OF MOTION      

Fluid Properties: Density - Specific Weight - Specific Gravity - Viscosity - Surface tension - 

Capillarity - compressibility. Fluid Statics: Hydrostatic Law - Pressure Variation in static 

fluid - Hydrostatic force on submerged plane-surfaces - Location of hydrostatic force. 

Manometers - Simple U tube and differential manometers - Buoyancy - Meta-centric height – 

determination of stability of floating bodies and submerged bodies- Basic equations of 

motion: Types of fluid flow - Continuity, momentum and energy equations - Euler‟s and 

Bernoulli‟s Equation and its applications.-Flow Measurement: Orifice meter, Venturimeter, 

Piezometer, Pitot Tube.   

  

Fluids 

 Substances capable of flowing are known as fluids. Flow is the continuous 

deformation of substances under the action of shear stresses. Fluids have no definite shape of 

their own, but confirm to the shape of the containing vessel. Fluids include liquids and gases.  

Fluid Mechanics 

 Fluid mechanics is the branch of science that deals with the behavior of fluids at rest 

as well as in motion.  The study of fluids at rest is called fluid statics. The study of fluids in 

motion, where pressure forces are not considered, is called fluid kinematics and if the 

pressure forces are also considered for the fluids in motion, that branch of science is called 

fluid dynamics. 

Fluid Properties 

1. DENSITY (or) MASS DENSITY: Density or mass density of a fluid is defined as the 

ratio of the mass of the fluid to its volume.  

 

S.I unit of density is kg/m
3
. The value of density for water is 1000 kg/m

3. 

2. SPECIFIC WEIGHT (or) WEIGHT DENSITY (w): Specific weight or weight density 

of a fluid is the ratio between the weight of a fluid to its volume. 

 

S.I unit of specific weight is N/m
3
. The value of specific weight or weight density of 

water is 9810N/m
3
 or 9.81 kN/m³. 

3. SPECIFIC VOLUME (ʋ):  

Specific volume of a fluid is defined as the volume of a fluid occupied by unit mass.  
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Thus specific volume is the reciprocal of mass density. S.I unit: m
3
 /kg 

4. SPECIFIC GRAVITY or RELATIVE DENSITY (s): Specific gravity is defined as the 

ratio of the specific weight of a fluid to the specific weight of a standard fluid. 

 

 Example:  

 Specific gravity of water=1 

 Specific gravity of mercury=13.6 

5. VISCOSITY: Viscosity is defined as the property of a fluid which offers resistance to the 

movement of one layer of fluid over adjacent layer of the fluid.  

 

NEWTONS LAW OF VISCOSITY: The shear stress between two layers is proportional to 

the rate of change of velocity with respect to y. 

 

where, μ is  co-efficient of dynamic viscosity or viscosity  

du/dy  rate of shear strain or rate of shear deformation or velocity gradient. 

Thus the viscosity is also defined as the shear stress required to produce unit rate of shear 

strain. 

 

S.I unit: Ns/m². It is still expressed in poise (P) as well as centipoises (cP). 

 

 

Specific gravity=
Specific weight or density of liquid

Specific weight or density of water
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Kinematic Viscosity (ν): It is defined as the ratio between the dynamic viscosity and density 

of the fluid. 

 

SI unit: m
2
 /s; CGS unit „stoke‟. 1 stoke = 1 cm

2
 / sec = 10

-4
 m

2
 /s 

6. COMPRESSIBILITY: Compressibility is the reciprocal of the bulk modulus of 

elasticity, K, which is defined as the ratio of compressive stress to volumetric strain. 

         

Cohesion is due to the force of attraction between molecules of same liquid 

Adhesion is defined as the force of attraction between the molecules of two different liquids 

or between the molecules of the liquid and molecules of the solid boundary surface. 

7. SURFACE TENSION: Surface tension is defined as the tensile force acting on the 

surface of a liquid in contact with a gas or on the surface between two immiscible liquids 

such that the contact surface behaves like a membrane under tension. 

 Some important real life examples are 

  (i) Formation of water bubbles. 

  (ii) Formation of rain droplets. 

  (iii) Collection of dust particles on water surface. 

  (iv) A small needle can gently place on the liquid surface without sinking. 

  (v) Breakup of liquid jets. 

  (vi) Capillary rise and capillary siphoning. 
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Surface Tension on Liquid Droplet:  

Consider a small spherical droplet of a liquid of diameter„d‟. On the entire surface of the 

droplet, the tensile force due to surface tension will be acting.  

 

Where,   σ = Surface tension of the liquid  

                p = Pressure intensity inside the droplet (in excess of the outside pressure intensity)  

                d = Dia. of droplet 

Let the droplet is cut into two halves. The forces acting on one half will be 

i) Tensile force (FT)due to surface tension acting around the circumference of the cut 

portion as shown in fig. and this is equal to = σ x Circumference = σ x π d  

ii) Pressure force (Fp) on the area 𝜋𝑑2
/4 is = p x 𝜋𝑑2

/4 as shown in the figure. These two 

forces are equal under equilibrium conditions. 

        i.e., p x 𝜋𝑑2
/4 = σ x π d  

        Therefore, 𝑝 = 4𝜎/p 

Surface Tension on a Hollow Bubble:  

A hollow bubble like a soap bubble in air has two surfaces in contact with air, one inside and 

other outside. Thus two surfaces arc subjected to surface tension. In that case, 

 

8.  CAPILLARITY: Capillarity is defined as a phenomenon of rise or fall of a liquid surface 

in a small tube relative to the adjacent general level of liquid when the tube is held vertically 

in the liquid.  The rise of liquid surface is known as capillary rise while the fall of the liquid 

surface is known as capillary depression.  It is expressed in terms of cm or mm of liquid.  

Its value depends upon the  
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 specific weight of the liquid 

 diameter of the tube and  

 surface tension of the liquid. 

Expression for Capillary Rise 

Consider a glass tube of small diameter „d' opened at both ends and is inserted in a liquid. 

The liquid will rise in the tube above the level of the liquid. 

 

 Let,  h = height of the liquid in the tube. 

  σ = Surface tension of liquid  

  θ= Angle of contact between liquid and glass lube. 

Under a state of equilibrium,  

 The weight of liquid of height h = Vertical component of surface tension force 

 (Area of tube x h) x ρ x g = σ x Circumference x cos θ 

       
 d 

 
 x h x ρ x g  = σ x 𝜋d x cos θ 

                                 h =
   cos   

    g   
   =   

   cos   

wd
                                                 

Example:  5000 litres of an oil weighs 45 kN. Find its Specific weight, mass density and 

relative density. 

Given: Volume, V = 5000 lit = 5000/1000 = 5 m³ Weight, W= 45 kN = 45000 N 

Specific Weight, w = W/V = 45000 / 5 = 9000 N/m³ = 9 kN/m³  

Specific Weight, w = ρg  

Mass density, ρ = w/g = 9000/ 9.81 = 917.43 kg/m³  

Relative density = Density of oil/density of water = 917.43/ 1000 = 0.917 

2. The density of an oil is 850 kg/m³. Find its relative density and Kinematic viscosity if 

the dynamic viscosity is 5 x 10
-3

 kg/ms  

Density of oil, ρoil = 850 kg/m³  

Density of water, ρwater = 1000 kg/m³  
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Relative density of oil = 850/1000 = 0.85  

Dynamic viscosity = µ = 5 x 10
-3

 kg/ms = 5 x 10- ³ N s/m²  

Kinematic viscosity = ν = µ / ρ = 5 x 10- ³/ 850 = 5.882 x 10-6 m²/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



9 
 

 

 

 

Example Determine the viscosity of a liquid having kinematic viscosity 6 stokes and sp. 

Gravity of 1.9. 
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9.VAPOUR PRESSURE 

Vapour pressure is the pressure of the vapor over a liquid which is confined in a closed vessel 

at equilibrium.  Vapour pressure increases with temperature. All liquids exhibit this 

phenomenon. 

Types of fluid 

i. Ideal Fluid:  

  A fluid, which is incompressible and is having no viscosity, is known as an ideal 

fluid. 

ii. Real Fluid:  

  A fluid, which possesses viscosity, is known as real fluid. All the fluids, are real fluids 

in actual practice. 

iii. Newtonian Fluid:  

  A real fluid, in which the shear stress is directly proportional to the rate of shear strain 

(or) velocity gradient, is known as a Newtonian fluid 

iv. Non-Newtonian Fluid:  

  A real fluid, in which the shear stress is not proportional to the rate of shear strain (or) 

velocity gradient, is known as a Non-Newtonian fluid. 

v. Ideal Plastic Fluid:  

  A fluid, in which shear stress is more than the yield value and shear stress is 

proportional to the rate of shear strain (or) velocity gradient, is known as ideal plastic fluid 

 

 

 

Fluid pressure  

Fluid pressure is the force exerted by the fluid per unit area. Fluid pressure is transmitted with 

equal intensity in all directions and acts normal to any plane.  
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S.I unit of fluid pressure are N/m² or Pa,  

where 1 N/m² = 1 Pa.  

Many other pressure units are commonly used: 

 1 bar = 105 N/m²  

1 atmosphere = 101325 N/m² = 101.325kN/m² = 1.01325 bar= 760mm of mercury = 

10.336m of water  

Pressure Head: The pressure intensity exerted at the base of a column of homogenous fluid 

of a given height in metres.  

Atmospheric Pressure: The pressure at the surface of the earth exerted by the head of air 

above the surface  

Gauge Pressure: The pressure measured by a pressure gauge above or below atmospheric 

pressure  

Vacuum pressure: The gauge pressure less than atmospheric is called Vacuum pressure or 

negative pressure  

Absolute Pressure: The pressure measured above absolute zero or vacuum.  

 

                                
                         Fig.5. Barometer, Atmospheric, Gauge and Absolute Pressure 
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Fluid Pressure 

Fluid pressure is the force exerted by the fluid per unit area. 

Fluid pressure or Intensity of pressure or pressure, = Fluids exert pressure on surfaces with 

which they are in contact. 

Fluid pressure is transmitted with equal intensity in all directions and acts normal to any 

plane. In the same horizontal plane the pressure intensities in a liquid are equal. 

Hydrostatic law 

The hydrostatic law is a principle that identifies the amount of pressure exerted at a specific 

point in a given area of fluid. 

It states that, “The rate of increase of pressure in the vertically downward direction, at a point 

in a static fluid, must be equal to the specific weight of the fluid.” 

Pressure Variation in static fluid 

Consider a small vertical cylinder of static fluid in equilibrium. 

Pressure Variation in static fluid 

Consider a small vertical cylinder of static fluid in equilibrium. 

                                   
                                            Fig.6. Pressure variation in static fluid 

Assume that the sectional area is “A” and the pressure acting upward on the bottom surface 

is p and the pressure acting downward on the upper surface (dz above bottom surface) is (p 

+ dp)dz. 
Let the free surface of the fluid be the origin, i.e., Z = 0. Then the pressure variation at a depth Z = - 

h below the free surface is governed by 

(p + dp) A + W = pA 

dpA + ρgAdz = 0 [W= w x volume = ρg Adz] dp = -ρgdz 

= - ρg = - w 

 

Therefore, the hydrostatic pressure increases linearly with depth at the rate of the specific weight, w 

= ρg of the fluid. 

If fluid is homogeneous, ρ is constant.  By simply integrating the above equation, ʃdp = - ʃρg dz =>

 p = - ρg Z + C Where C is constant of integration. 

When z = 0 (on the free surface), p = C = po = the atmospheric pressure. Hence, p = - ρgZ + po 

Pressure given by this equation is called absolute pressure, i.e., measured above perfect vacuum. 

However, it is more convenient to measure the pressure as gauge pressure by setting atmospheric 

pressure as datum pressure. By setting po = 0, 
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p = -ρgz+0 = -ρgz = ρgh 

p = wh 

The equation derived above shows that when the density is constant, the pressure in a liquid at rest 

increases linearly with depth from the free surface. 

Here, h is known as pressure head or simply head of fluid. 

In fluid mechanics, fluid pressure is usually expressed in height of fluids or head of fluids. 

Hydrostatic force 

Hydrostatic pressure is the force exerted by a static fluid on a plane surface, when the static 

fluid comes in contact with the surface. This force will act normal to the surface. It is also 

known as Total Pressure. 

The point of application of the hydrostatic or total pressure on the surface is known as Centre 

of pressure. 

The vertical distance between the free surface of fluid and the centre of pressure is called 

depth of centre of pressure or location of hydrostatic force. 

 

Total Pressure on a Horizontally Immersed Surface 

Consider a plane horizontal surface immersed in a liquid as shown in figure. 

Let, w = Specific weight of the liquid, kN/m³ A = Area of the immersed surface in m² 

= Depth of the horizontal surface from the liquid level in m We know that, 

Total pressure on the surface, P = Weight of the liquid above the immersed surface 

P = Specific weight of liquid x Volume of liquid 

= Specific weight of liquid x Area of surface x Depth of liquid P = wA kN 

Fig:7. Horizontal Plane surface submerged in liquid 

Total Pressure and depth of centre of pressure on a Vertically Immersed Surface 

Consider an irregular plane vertical surface immersed in a liquid as shown in figure. Let, 

w = Specific weight of liquid 

A = Total area of the immersed surface 

= Depth of the center of gravity of the immersed surface from the liquid surface 

Now. consider a strip of width „b‟, thickness „dx‟ and at a depth x from the free surface of 

the liquid 
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                                 Fig: 9. Vertical Plan immersed in liquid 

Moment of pressure on the strip about the free surface of liquid =   x b dx X x =  x² b dx Total 

moment on the entire plane immersed surface = ∫   x² b dx 

M = ∫ ² 

But, ∫  ² = second moment of area about free liquid surface = Io 

therefore, M =  Io 

Io = IG + A x², according to parallel axis theorem. 

Therefore, M =  (IG  + A x²) (1) 

Also = x h =Ax xh (2) 

Since equations 1 & 2 are equal, 

           

A   x h = (IG + A x²) 

Depth of centre of pressure, h= (IG  + A x²) / A 

Total Pressure and depth of Centre of Pressure on an Inclined Immersed Surface 

Consider a plane inclined surface, immersed in a liquid as shown in figure. Let, 

w = Specific weight of the liquid 

A = Total area of the immersed surface 

x = Depth of the centroid of the immersed plane surface from the free surface of liquid. θ = Angle at 

which the immersed surface is inclined with the liquid 

Surface h= depth of centre of pressure from the liquid surface 

b = width of the considered thin strip dx = thickness of the strip 

O = the reference point obtained by projecting the plane surface with the free surface of liquid 

x = distance of the strip from O 
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Fig: 10. Inclined Immersed Plain 
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                              Table: M.I and Geometric Properties of some plane surfaces 
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Pascal's law 

The basic property of a static fluid is pressure. 

Pressure is the surface force exerted by a fluid against the walls of its container. Pressure also 

exists at every point within a volume of fluid. 

For a static fluid, as shown by the following analysis, pressure turns to be independent 

direction. 

    Fig:11. Pascal Law 

Consider a triangular prism of small fluid element ABCDEF in equilibrium. Let Px is the 

intensity of pressure in the X direction acting at right angle on the face ABFE, Py is the 
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intensity of pressure in the Y direction acting at right angle on the face CDEF, and Ps is the 

intensity of pressure normal to inclined plane at an angle θ as shown in figure at right angle to 

ABC .. 

For a fluid at rest there will be no shear stress, there will be no accelerating forces, and 

therefore the sum of the forces in any direction must be zero. 

Thus the forces acting on the fluid element are the pressures on the surrounding and the 

gravity force. Force due to px = px x Area ABFE = px dydz 

Horizontal component of force due to pN = - (pN x Area ABC ) sin(θ) = - pNdNdz dy/ds = -

PNdydz As Py has no component in the x direction, the element will be in equilibrium, if 

px dydz + (-pNdydz) = 0 

i.e. px = pN 

Similarly in the y direction, force due to py = pydxdz 

Component of force due to pN = - (pN x Area ABC ) cos(θ) = - pNdsdz dx/ds = - pNdxdz 

Force due to weight of element is negligible and the equation reduces to, py = pN 

Therefore, px = py = pN 

Thus, Pressure at a point in a fluid at rest is same in all directions. 

Manometers: 

Manometer is an instrument for measuring the pressure of a fluid, consisting of a tube filled 

with a heavier  gauging liquid, the level of the liquid being determined by the fluid pressure 

and the height   of the liquid being indicated on a scale. A U-tube manometer consists of a 

glass tube bent in U-Shape, one end of which is connected to gauge point and the other end is 

exposed to atmosphere. 

Manometric liquids: 

1. Manometric liquids should neither mix nor have any chemical reaction 

with the liquid whose pressure intensity is to be measured. 

2. It should not undergo any thermal variation. 

3. Manometric liquid should have very low vapour pressure. 

4. Manometric liquid should have pressure sensitivity depending upon the 

magnitude of pressure to be measured and accuracy requirement. 

Simple U-Tube Manometer: It consist of glass tube in U shape one end of which is 

connected to a point at which pressure is to be measured and other end remains open to the 

atmosphere as shown in fig. The tube generally contains mercury or any other liquid whose 

specific gravity is greater than the specific gravity of the liquid whose pressure is to be 

measured. 

 

Fig: 12. Simple U tube Manometer 

For Gauge Pressure. Let B is the point at which pressure is to be measured, whose value is p. 

The datum line is A-A  Let,H1 = Height of light liquid above the datum line 
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H2 = Height of heavier liquid above the datum line S1 = Specific gravity of light liquid 

ρ1 = Density of light liquid = 1000 x S1 S2 = Specific gravity of heavy liquid 

ρ2 = Density of heavy liquid = 1000 x S2 

 

Differential U-Tube Manometer: 

Let, A and B are the two pipes carrying liquids of specific gravity s1 
and s3 & s2 = specific gravity of manometer liquid. 

 Fig:13. Differential U-tube Manometer 

Let two point A & B are at different level and also contains liquids of different sp.gr. These points are connected 

to the U-tube differential manometer. Let the pressure at A and B are PA and PB 
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Buoyant force: The upward force exerted by a liquid on a body when the body is immersed 

in the liquid is known as buoyancy or buoyant force. 

The point through which force of buoyancy is supposed to act is called centre of  buoyancy.  

The buoyant force acting on a body is equal to the weight of the liquid displaced by the body. 

For a fluid with constant density, the buoyant force is independent of the distance of the body 

from the free surface. It is also independent of the density of the solid body. 

Archimedes principle: The buoyant force acting on a body immersed in a fluid is equal to 

the weight of the fluid displaced by the body, and it acts upward through the centroid of the 

displaced volume. For floating bodies, the weight of the entire body must be equal to the 

buoyant force, which is the weight of the fluid whose volume is equal to the volume of the 

submerged portion of the floating body. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig:14. Floating Body 

 Stability of immersed and floating bodies 

 A floating body possesses vertical stability, while an immersed neutrally buoyant 
body is neutrally stable since it does not return to its original position after a 
disturbance. 

                    
Fig:15. An immersed neutrally buoyant body is (a) stable if the 

center of gravity G is directly below the center of buoyancy 

B of the body, (b) neutrally stable if G and B are coincident, 

and (c) unstable if G is directly above B. 

Metacentre: The point about which a body starts oscillating when the body is tilted is known 

meta- centre. 
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Metacentric height GM: The distance between the center of gravity G and the metacenter M 

is known as Meta centric height. It is the point of intersection of line of action of buoyant 

force with the line passing through centre of gravity, when the body is slightly tilted. 

Fig.16. Metacentric Height 

 

The length of the metacentric height GM above G is a measure of the stability: If the metacentric 

height increases, then the floating body will be more.. The meta-centric height (GM) is.given by, GM 

= V - BGWhere, I = Moment of Inertia of the floating body (in plan) at water surface about the axis 

Y- Y V = Volume of ihe body sub merged in waterBG = Distance between centre of gravity and 

centre of buoyancy. Conditions of equilibrium of a floating and submerged body are : 

                                   Table.2. Condition of Equilibrium of a Floating bodies 

Equilibrium Floating Body Sub-merged Body 

(i) Stable Equilibrium 
(a) Unstable Equilibrium 

(Hi) Neutral Equilibrium 

M is above G 
M is below G 
Af and G coincide 

B is above G 
B is below G 
B and G coincide 

 
 

Stability of floating bodies .A floating body is stable if the body is bottom-heavy and thus 

the center of gravity G is below the centroid B of the body, or if the metacentre M is above 

point G. However,  the body is unstable if point M is below point G. 
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Fig.17.Stability of Floating Bodies 

Problems: 

1.Calculate the sp.weight, density and sp.gravity of one litre of liquid which weights 7N. 

 

2.Calculate the density, sp.weight and weight of one litre of petrol of specific gravity = 0.7 

 

3.A plate 0.023 mm distant from a fixed plate moves at 60 cm/s and requires a force of 2N 

per unit area i.e 2 N/m
2
 to maintain this speed. Determine the fluid viscosity between the 

plates. 
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4.The dynamic viscosity of oil used for lubrication between a shaft and sleeve is 6 poise. The 

shaft is of diameter 0.4 m and rotates at 190 rpm. Calculate the power lost in the bearing for a 

sleeve length of 90mm. The thickness of the oil film is 1.5mm. 

 

 

 

5.The surface tension of water in contact with air at 20
◦
C is 0.0725N/m. The pressure 

inside a droplet of water is to be 0.02 N/cm
2
 greater then the outside pressure. 

Calculate the diameter of the droplet of water. 
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6.Calculate the capillary rise in a glass tube of 2.5mm diameter when immersed vertically in 

a) water b) Mercury. Take surface tension of 2.5 mm diameter when immersed vertically in 

contact with air. The specific gravity for mercury is given as 13.6 and angle of contact = 130◦ 

 

7.The right limb of a single U-tube manometer containing mercury is open to the atmosphere 

while the left limb is connected to a pipe in which a fluid of sp.gravity is 0.9 is flowing. The 

centre of the pipe is 12cm below the level of mercury in the right limb. Find the pressure of 

fluid in the pipe if the difference of mercury in the two limbs is 20cm. 
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8.A differential manometer is connected at the two points A and B of two pipes as shown in 

fig. The pipe A contains a liquid of Sp.gravity = 1.5 while pipe B contains a liquid of 

sp.gravity = 0.9. The pressure at A and B are 1 Kgf/cm
2
 and1.80 Kgf/cm

2
 respectively. Find 

the difference in mercury level in the differential manometer. 
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.A rectangular plane surface is 2m wide and 3m deep. It lies in vertical plane in water. 

Determine the total pressure and position of centre of pressure on the plane surface when its 

upper edge is horizontal and a) coincide with water surfaceb) 2.5 m below the free water surface. 

10.A rectangular plane surface 2m wide and 3m deep lies in water in such a way that its 

plane makes an angle of 30◦ with the free surface of water. Determine the total surface and 

position of centre of pressure when the upper edge is 1.5m below the free water surface. 
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11.Find the volume of the water displaced and position of centre of buoyancy for a wooden 

block of width 2.5m and depth 1.5m. When it floats horizontally in water. The density of 

wooden block is 650 kg/m
3
 and its length 6m. 

 

12.A rectangular pontoon is 5m long, 3m wide and 1.20m high. The depth of immersion of 

the position is 0.80 m in sea water. If the centre of gravity is 0.6m above the bottom of the 
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position, determine the meta centric height. The density for sea water is 1025 kg/m
3
. 

 

Types of fluid flow 
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 If  Re < 2000, the flow is Laminar 

      Re > 4000, the flow is turbulent 

  2000 < Re < 4000, the flow may be Laminar or turbulent  
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Rate of flow or Discharge (Q) 

 It is defined as quantity of flow per second through the section of pipe or channel. 

 
Continuity Equation 

 
Rate of flow at section 1 – 1 = rate of flow at section 2 – 2 

        ρ1A1V1 = ρ2A2V2 

If the fluid flow is incompressible, the ρ1 = ρ2 

    A1V1 = A2V2 

 

Equation of motion 
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Problem 2: 

The water is flowing through a pipe having diameters 20 and 10 cm at sections 1 and 2 

respectively. The rate of flow through the pipe is 35 litres/sec. the section 1 is 6 m  above 

the datum and section 2 is 4 m above the datum. If the pressure at section 1 is 39.24 

N/cm
2
. Find the intensity of pressure at section 2 
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Problem 3: 
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Problem 4: 
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Practical applications of Bernoulli’s equation: 

Although Bernoulli‟s equation is applicable in all problems of incompressible flow where 

there is involvement of energy considerations. But we shall consider its application to the 

following measuring devices. 1) Venturimeter 2) Orifice meter 3) Pitot tube 

Venturimeter: is a device used for measuring the rate of flow of a fluid flowing through a 

pipe. It consists of three parts: 

• A short converging part  

• Throat  

• Diverging part 

 



39 
 

             

                                                Figure 4.4. Venturimeter 
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Problem 5: 
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Problem 6: 
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 Problem 7: 
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 Problem 8: 
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Orifice Flow Measurement – History: 

The first record of the use of orifices for the measurement of fluids was by Giovanni 

B.Venturi, an Italian Physicist, who in 1797 did some work that led to the development of the 

modern Venturi Meter by Clemons Herschel in 1886. It has been reported that an orifice 

meter, designed by Professor Robinson of Ohio State University was used to measure gas 

near Columbus, Ohio, about 1890. About 1903 Mr. T.B. Weymouth began a series of tests in 

Pennsylvania leading to the publication of coefficients for orifice meters with flange taps. At 

the same time Mr. E.O. Hickstein made a similar series of tests at Joplin, Missouri, from 

which he developed data for orifice meters with pipe taps. An orifice in a pipeline is shown in 

Figure 4.5 with a manometer for measuring the drop in pressure (differential) as the fluid 

passes thru the orifice. The minimum cross sectional area of the jet is known as the “vena 

contracta.”  

 

                                                  Figure 4.5.Orificemeter 
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What is an Orifice Meter?  

An orifice meter is a conduit and a restriction to create a pressure drop. An hour glass is a 

form of orifice. A nozzle, venturi or thin sharp edged orifice can be used as the flow 

restriction. In order to use any of these devices for measurement it is necessary to empirically 

calibrate them. That is, pass a known volume through the meter and note the reading in order 

to provide a standard for measuring other quantities. Due to the ease of duplicating and the 

simple construction, the thin sharp edged orifice has been adopted as a standard and extensive 

calibration work has been done so that it is widely accepted as a standard means of measuring 

fluids. Provided the standard mechanics of construction are followed no further calibration is 

required.  

Major Advantages of Orifice Meter Measurement  

Flow can be accurately determined without the need for actual fluid flow calibration. Well 

established procedures convert the differential pressure into flow rate, using empirically 

derived coefficients. These coefficients are based on accurately measurable dimensions of the 

orifice plate and pipe diameters as defined in standards, combined with easily measurable 

characteristics of the fluid, rather than on fluid flow calibrations. With the exception of the 

orifice meter, almost all flow meters require a fluid flow calibration at flow and temperature 

conditions closely approximating service operation in order to establish accuracy. 

Problem 9: 
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Problem 10: 
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 Pitot tube for Flow Measurement Construction:  

The principle of flow measurement by Pitot tube was adopted first by a French Scientist 

Henri Pitot in 1732 for measuring velocities in the river. A right angled glass tube, large 

enough for capillary effects to be negligible, is used for the purpose. One end of the tube 

faces the flow while the other end is open to the atmosphere as shown in Fig.4.6. 
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                                              Figure 4.6. Pitot tube 
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                                  Figure 4.7. Velocity of flow in a pipe by Pitot tube 

Problem 11: 
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 Problem 12: 

 

 

 

Problem 13: 
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                                                   Figure4.8. Forces on bend 
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Problem 14: 
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UNIT 5 PUMPS & TURBINES          
Centrifugal Pumps: Definition - Operations - Velocity Triangles - Performance curves - Cavitations - Multistaging. 
Reciprocating Pumps: Operation - Slip - indicator Diagram - Separation - Air vessels. Hydraulic Turbines:  
Classification of hydraulic turbines - Working principle of Pelton wheel, Francis and Kaplan turbines - velocity 
triangles - draft tube – hydraulic turbine characteristics. Dimensional Analysis: Buckingham’s Theorem, Non-
Dimension Numbers, Similarities of Flow- Model studies   
 

Hydraulic Pump 

  A hydraulic pump is a mechanical source of power that converts mechanical power 

into hydraulic energy. It generates flow with enough power to overcome pressure induced by 

the load at the pump outlet. When a hydraulic pump operates, it creates a vacuum at the pump 

inlet, which forces liquid from the reservoir into the inlet line to the pump and by mechanical 

action delivers this liquid to the pump outlet and forces it into the hydraulic system.  

Classifications of Pump 

 

 Centrifugal Pump 

 The main components of a centrifugal pump are:  

i) Impeller  

ii) Casing  

iii) Suction pipe 

iv) Foot valve with strainer,  

v) Delivery pipe  

vi) Delivery valve.  

Impeller is the rotating component of the pump. It is made up of a series of curved vanes. 

The impeller is mounted on the shaft connecting an electric motor.  

Casing is an air tight chamber surrounding the impeller. The shape of the casing is designed 

in such a way that the kinetic energy of the impeller is gradually changed to potential energy. 

This is achieved by gradually increasing the area of cross section in the direction of flow. 

         

Fig. Types of Casing 
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Suction pipe: It is the pipe connecting the pump to the sump, from where the liquid has to be 

lifted up.  

Foot valve with strainer: The foot valve is a non-return valve which permits the flow of the 

liquid from the other words the foot valve opens only in the upward direction. The strainer is 

a mesh surrounding the valve, it p debris and silt into the pump.  

Delivery pipe is a pipe connected to the pump to the overhead tank. Delivery valve is a valve 

which can regulate the pump.  

 
Fig. Main parts of a centrifugal pump 

Working 

 A centrifugal pump works on the principle that when a certain mass of fluid is rotated 

by an external source, it is thrown away from the central axis of rotation and a centrifugal 

head is impressed which enables it to rise to a higher level.  

 Working operation of a centrifugal pump is explained in the following steps:  

1. Close the delivery valve and prime the pump.  

2. Start the motor connected to the pump shaft, this causes an increase in the impeller 

pressure.  

3. Open the delivery valve gradually, so that the liquid starts flowing into the deliver pipe.  

4. A partial vacuum is created at the eye of the centrifugal action, the liquid rushed from the 

sump to the pump due to pressure difference at the two ends of the suction pipe.  

5. As the impeller continues to run, move & more liquid are made available to the pump at 

its eye. Therefore impeller increases the energy of the liquid and delivers it to the 

reservoir.  

6. While stopping the pump, the delivery valve should be closed first; otherwise there may 

be back flow from the reservoir.  

  It may be noted that a uniform velocity of flow is maintained in the delivery pipe. 

This is due to the special design of the casing. As the flow proceeds from the tongue of the 

casing to the delivery pipe, the area of the casing increases. There is a corresponding change 

in the quantity of the liquid from the impeller. Thus a uniform flow occurs in the delivery 

pipe.  

  Centrifugal pump converts rotational energy, often from a motor, to energy in a 

moving fluid. A portion of the energy goes into kinetic energy of the fluid. Fluid enters 
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axially through eye of the casing, is caught up in the impeller blades, and is whirled 

tangentially and radially outward until it leaves through all circumferential parts of the 

impeller into the diffuser part of the casing. The fluid gains both velocity and pressure while 

passing through the impeller. The doughnut-shaped diffuser, or scroll, section of the casing 

decelerates the flow and further increases the pressure. The negative pressure at the eye of the 

impeller helps to maintain the flow in the system. If no water is present initially, the negative 

pressure developed by the rotating air, at the eye will be negligibly small to suck fresh stream 

of water. As a result the impeller will rotate without sucking and discharging any water 

content. So the pump should be initially filled with water before starting it. This process is 

known as priming.  

 Use of the Casing 

 From the illustrations of the pump so far, one speciality of the casing is clear. It has an 

increasing area along the flow direction. Such increasing area will help to accommodate 

newly added water stream, and will also help to reduce the exit flow velocity. Reduction in 

the flow velocity will result in increase in the static pressure, which is required to overcome 

the resistance of pumping system.  

NPSH - Overcoming the problem of Cavitation 

 If pressure at the suction side of impeller goes below vapour pressure of the water, a 

dangerous phenomenon could happen. Water will start to boil forming vapour bubbles. These 

bubbles will move along with the flow and will break in a high pressure region. Upon 

breaking the bubbles will send high impulsive shock waves and spoil impeller material 

overtime. This phenomenon is known as cavitation. More the suction head, lesser should be 

the pressure at suction side to lift the water. This fact puts a limit to the maximum suction 

head a pump can have. However Cavitation can be completely avoided by careful pump 

selection. The term NPSH (Net Positive Suction Head) helps the designer to choose the right 

pump which will completely avoid Cavitation. NPSH is defined as follows: 

 

Where Pv is vapour pressure of water  

 V is speed of water at suction side 

 

Work done by the centrifugal pump (or by impeller) on water 

Velocity triangles at inlet and outlet 

 



6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definitions of Heads and Efficiencies of a centrifugal pump 
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Example The internal and external diameters of the impeller of a centrifugal pump are 

200 and 400 mm respectively. The pump is running at 1200 rpm. The vane angles of the 

impeller at inlet and outlet are 20 and 30 respectively. The water enters the impeller 

radially and velocity of flow is constant. Determine the work done by the impeller per unit 

weight of water. 

Given: 

Example A centrifugal pump is to discharge 0.118 m
3
/s at a speed of 1450 rpm against a 

head of 25m. the impeller diameter is 250 mm, its width at outlet is 50 mm and 

manometric efficiency is 75%. Determine the vane angle at the outer periphery of the 

impeller. 

Given: 
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Example A centrifugal pump delivers water against a net head of 14.5 m and a design 

speed of 1000 rpm. The vanes are curved back at an angle of 30° with the periphery. The 

impeller diameter is 300 mm and outlet width is 50 mm. determine the discharge of the 

pump if manometric efficiency is 95%. 

Given: 
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Example A centrifugal pump having outer diameter equal to two times the inner diameter 

and running at 1000 rpm works against a total head of 40 m. the velocity of flow through 

the impeller is constant and equal to 2.5 m/s. the vanes are set back at an angle of 40° at 

outlet. If the outer diameter of the impeller is 500 mm and width at the outlet is 50 mm, 

determine: i) Vane angle at inlet, ii) work done by impeller on water per second               

iii) manometric efficiency 

Given: 
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Example The outer diameter of an impeller of a centrifugal pump is 400 mm and outlet 

width is 50 mm. the pump is running at 800 rpm and is working against a total head of 15 

m. the vanes angle at outlet is 40° and manometric efficiency is 75%. Determine:             

i) Velocity of flow at outlet, ii) velocity of water leaving the vane, iii) angle made by the 

absolute velocity at outlet with the direction of motion at outlet and iv) discharge 

Given: 
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Example The internal diameter and external diameter of an impeller of a centrifugal 

pump which is running at 1000 rpm are 200 and 40 mm respectively. The discharge 

through pump is 0.04 m3/s and velocity of flow is constant and equal to 2.0 m/s. the 

diameter of the suction and delivery pipes are 150 and 100 mm respectively and suction 

and delivery heads are 6 m (abs.) and 30 m (abs.) of water respectively. If the outlet vane 

angle is 45° and power required to drive the pump is 16.168 kW, determine: i) Vane angle 

of the impeller at inlet, ii) the overall efficiency of the pump and iii) manometric efficiency 

of the pump 

Given: 
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RECIPROCATING PUMP 

 If the mechanical energy is converted into hydraulic energy by sucking the liquid into 

a cylinder in which a piston is reciprocating, which exerts the thrust on the liquid and 

increases its hydraulic energy is known as reciprocating pump. A reciprocating pump is a 

positive displacement pump. It is often used where relatively small quantity of liquid is to be 

handled and where delivery pressure is quite large.  

 Reciprocating pump consists of following parts.  

  1. A cylinder with a piston  5. suction pipe  

  2. piston rod    6. delivery pipe  

  3. connecting rod   7. suction valve  

  4. crank     8. delivery valve 

  

WORKING OF A SINGLE-ACTING RECIPROCATING PUMP 

Single acting reciprocating pump:-  

 A single acting reciprocating pump, which consists of a piston which moves forwards 

and backwards in a close fitting cylinder. The movement of the piston is obtained by 

connecting the piston rod to crank by means of a connecting rod. The crank is rotated by 

means of an electric motor. Suction and delivery pipes with suction valve and delivery valve 

are connected to the cylinder. The suction and delivery valves are one way valves or non-

return valves, which allow the water to flow in one direction only. Suction valve allows water 

from suction pipe to the cylinder which delivery valve allows water from cylinder to delivery 

pipe.  

 The rotation of the crank brings about an outward and inward movement of the piston 

in the cylinder. During the suction stroke the piston is moving towards right in the cylinder, 

this movement of piston causes vacuum in the cylinder. The pressure of the atmosphere 

acting on the sump water surface forces the water up in the suction pipe. The forced water 

opens the suction valve and the water enters the cylinder. The piston from its extreme right 

position starts moving towards left in the cylinder. The movement of the piston towards left 

increases the pressure of the liquid inside the cylinder more than atmospheric pressure. Hence 

suction valve closes and delivery valve opens. The liquid is forced into the delivery pipe and 

is raised to a required height.  

  For one revolution of the crank, the quantity of water raised up in the delivery pipe is 

equal to the stroke volume in the cylinder in the single acting pump and twice this volume in 

the double acting pump. Discharge through a single acting reciprocating pump. 

   D = diameter of the cylinder  

  A = cross section are of the piston or cylinder  

  r = radius of crank  

  N = r.p.m of the crank  

  L = Length of the stroke = 2 x r  

  hs = Suction head or height of axis of the cylinder from water surface in sump.  

  hd = Delivery head or height of the delivery outlet above the cylinder axis. 

   Discharge of water in one revolution = Area x Length of stroke 

       = A x L  

   Number of revolution per second =  N/60 

  Discharge of the pump per second  

Q = Discharge in one revolution x No.of revolution per second 
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Double acting reciprocating pump 
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 The actual discharge of the pump is always less than theoretical discharge. The 

difference between theoretical discharge and actual discharge is known as Slip of the 

reciprocating pump 

 

 

 

 

 

 

 

 

 

Example A single acting reciprocating pump, running at 50 rpm, delivers 0.01m3/s of 

water. The diameter of the piston is 200 mm and stroke length 400 m. Determine:             

i) theoretical discharge of the pump ii) Co – efficient of discharge and iii) Slip and the 

percentage of slip of the pump. 

Given: 
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Example 
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SEPARATION OF LIQUID 

  If the pressure in the cylinder is below the vapour pressure, dissolved gasses will be 

liberated from the liquid and cavitation will takes place. The continuous flow of liquid will 

not exist which means separation of liquid takes place. The pressure at which separation takes 

place is called separation pressure and head corresponding to the separation pressure is called 

separation pressure head. 

 The ways to avoid cavitation in reciprocating pumps: 

1. Design: Ensure that there are no sharp corners or curvatures of flow in the system while 

designing the pump. 

2. Material: Cavitation resistant materials like Bronze or Nickel can be used. 

3. Model Testing: Before manufacturing, a scaled down model should be tested. 

4. Admission of air: High pressure air can be injected into the low pressure zones of 

flowing liquid to prevent bubble formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

friction in suction and delivery pipes 



25 
 

 

 

TURBINES 

Hydraulic machines are defined as those machines which convert either hydraulic energy 

(energy possessed by water) into mechanical energy (which is further converted into 

electrical energy) or mechanical energy into hydraulic energy. The hydraulic machines, 

which convert the hydraulic energy into mechanical energy, are called turbines while the 

hydraulic machines which convert the mechanical energy into hydraulic energy. The study of 

hydraulic machines consists of turbines and pumps. 

 Turbines are defined as the hydraulic machines which convert hydraulic energy into 

mechanical energy. This, mechanical energy is used in running an electric generator which is 

directly coupled to the shaft of the turbine. Thus the mechanical energy is converted into 

electrical energy. The electric power which is obtained from the hydraulic energy (energy of 

water) is known as Hydroelectric power. At present the generation of hydroelectric power is 

the cheapest as compared by the power generated by other sources such as oil, coal etc. 

General Layout of a Hydroelectric Power Plant 

1. A dam constructed across a river to store water.  

2. Pipes of large diameters called penstocks, which carry water under pressure from the 

storage reservoir to the turbines. These pipes are made of steel or reinforced concrete.  

3. Turbines having different types of vanes fitted to the wheels.  

4. Tail race, which is a channel which carries water away from the turbines after the water 

has worked on the turbines. The surface of water in the tail race channel is also known as 

tail race. 
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Fig. Layout of hydroelectric power plant 

Definitions of Heads and Efficiencies of a Turbine 

1. Gross Head. The difference between the head race level and tail race level when no water 

is flowing is known as Gross Head. It is denoted by 'Hg". 

2. Net Head. It is also called effective head and is defined as the head available at the inlet 

of the turbine, when water is flowing from head race to the turbine, a loss of head due to 

friction between water and penstock occurs. Though there are other losses also such as 

loss due to bend, Pipes, fittings, loss at the entrance of penstock etc., yet they are having 

small magnitude as compared to head loss due to friction. In ‘hf’ is the head loss due to 

friction between penstocks and water then net heat on turbine is given by 

H = Hg - hf 
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Main parts of Pelton Wheel 
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FRANCIS TURBINE 

 The Francis turbine is a mixed flow reaction turbine. This turbine is used for medium 

heads with medium discharge. Water enters the runner and flows towards the center of the 

wheel in the radial direction and leaves parallel to the axis of the turbine.  

 Turbines are subdivided into impulse and reaction machines. In the impulse turbines, 

the total head available is converted into the kinetic energy. In the reaction turbines, only 

some part of the available total head of the fluid is converted into kinetic energy so that the 

fluid entering the runner has pressure energy as well as kinetic energy. The pressure energy is 

then converted into kinetic energy in the runner.  

 The Francis turbine is a type of reaction turbine that was developed by James B. 

Francis. Francis turbines are the most common water turbine in use today. They operate in a 

water head from 40 to 600 m and are primarily used for electrical power production. The 

electric generators which most often use this type of turbine have a power output which 

generally ranges just a few kilowatts up to 800 MW. 

Main components of Francis turbine 

1. Spiral Casing 

 The water flowing from the reservoir or dam is made to pass through this pipe with 

high pressure. The blades of the turbines are circularly placed, which means the water 

striking the blades of the turbine should flow in the circular axis for efficient striking. So, the 

spiral casing is used, but due to the circular movement of the water, it loses its pressure. 
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 To maintain the same pressure, the diameter of the casing is gradually reduced, to 

maintain the pressure uniformly, thus uniform momentum or velocity striking the runner 

blades. 

2. Stay Vanes 

 This guides the water to the runner blades. Stay vanes remain stationary at their 

position and reduces the swirling of water due to radial flow and as it enters the runner 

blades. Hence, makes the turbine more efficient.  

 
3.   Guide Vanes 

 Guide vanes are also known as wicket gates. The main function or usages of the guide 

vanes are to guide the water towards the runner and it also regulates the quantity of water 

supplied to runner. It also guides the water to flow at an angle and that is appropriate for the 

design.  

 
4. Runner Blades: 

 Absorbs the energy from the water and converts it to rotational motion of the main 

shaft. The runner blades design decides how effectively a turbine is going to perform. The 

runner blades are divided into two parts. The lower half is made in the shape of a small 

bucket so that it uses the impulse action of water to rotate the turbine. 

 The upper part of the blades uses the reaction force of water flowing through it. These 

two forces together make the runner rotate. 

Draft Tube 

 The draft tube is an expanding tube which is used to discharge the water through the 

runner and next to the tailrace. The main function of the draft tube is to reduce the water 
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velocity at the time of discharge. Its cross-section area increases along its length, as the water 

coming out of runner blades, is at considerably low pressure, so its expanding cross-section 

area helps it to recover the pressure as it flows towards the tailrace.  

 
Working principles of Francis turbine 

 The water is admitted to the runner through guide vanes or wicket gates.  The opening 

between the vanes can be adjusted to vary the quantity of water admitted to the turbine. 

This is done to suit the load conditions. 

 The water enters the runner with a low velocity but with a considerable pressure. As the 

water flows over the vanes the pressure head is gradually converted into velocity head. 

 This kinetic energy is utilized in rotating the wheel Thus the hydraulic energy is 

converted into mechanical energy. 

 The outgoing water enters the tailrace after passing through the draft tube. The draft tube 

enlarges gradually and the enlarged end is submerged deeply in the tailrace water. 

 Due to this arrangement a suction head is created at the exit of the runner. 
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Velocity Triangle 
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Main components of Kaplan turbine 
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Dimensional analysis  

 Dimensional analysis is a method of dimensions. It is a mathematical technique used 

in research work for design and for conducting model tests. It deals with the dimensions of 

the physical quantities involved in the phenomenon. All physical quantities are measured by 

comparison, which is made with respect to an arbitrarily fixed value. Length L, mass M and 

time T are three fixed dimensions which are of importance in Fluid Mechanics. If in any 

problem of fluid mechanics, heat is involved then temperature is also taken as fixed 

dimension. These fixed dimensions are called fundamental dimensions or fundamental 

quantity. 

  Secondary or derived quantities are those quantities which possess more than one 

fundamental dimension. For example, velocity is denoted by distance per unit time (L/T), 

density by mass per unit volume| (M/L
3
) and acceleration distance per second Square (L/T

2
). 

Then velocity, density, deceleration become as secondary or derived quantities. The 

expressions (L/T), (M/L
3
) and (L/T

2
) are called the dimensions of velocity, density and 

acceleration respectively. The dimensions of mostly used physical quantities in Fluid 

Mechanics. 

Dimensional Homogeneity 

 If an equation truly expresses a proper relationship among variables in a physical 

process, then it will be dimensionally homogeneous. The equations are correct for any system 

of units and consequently each group of terms in the equation must have the same 

dimensional representation. This is also known as the law of dimensional homogeneity. 

Dimensional variables  

 These are the quantities, which actually vary during a given case and can be plotted 

against each other. Dimensional constants: These are normally held constant during a given 

run. But, they may vary from case to case.  

Pure constants 

 They have no dimensions, but, while performing the mathematical manipulation, they 

can arise. 
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 It should be ensured that the dimensions of the variables on the left side of the 

equation are equal to the dimensions of any term on the right side of equation. Now, it is 

possible to rearrange the above equation into a set of dimensionless products (pi terms), so 

that   
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Flow Similarity 

  In order to achieve similarity between model and prototype behavior, all the 

corresponding pi terms must be equated to satisfy the following conditions. 

Geometric similarity  

 A model and prototype are geometric similar if and only if all body dimensions in all 

three coordinates have the same linear-scale ratio. In order to have geometric similarity 

between the model and prototype, the model and the prototype should be of the same shape, 

all the linear dimensions of the model can be related to corresponding dimensions of the 

prototype by a constant scale factor. Usually, one or more of these pi terms will involve ratios 

of important lengths, which are purely geometrical in nature.  
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Kinematic similarity 

 The motions of two systems are kinematically similar if homogeneous particles lie at 

same points at same times. In a specific sense, the velocities at corresponding points are in 

the same direction (i.e. same streamline patterns) and are related in magnitude by a constant 

scale factor.   

Dynamic similarity  

 When two flows have force distributions such that identical types of forces are 

parallel and are related in magnitude by a constant scale factor at all corresponding points, 

then the flows are dynamic similar. For a model and prototype, the dynamic similarity exists, 

when both of them have same length-scale ratio, timescale ratio and force-scale (or mass-

scale ratio). 

 In order to have complete similarity between the model and prototype, all the 

similarity flow conditions must be maintained. This will automatically follow if all the 

important variables are included in the dimensional analysis and if all the similarity 

requirements based on the resulting pi terms are satisfied. For example, in compressible 

flows, the model and prototype should have same Reynolds number, Mach number and 

specific heat ratio etc. If the flow is incompressible (without free surface), then same 

Reynolds numbers for model and prototype can satisfy the complete similarity. 
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