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UNIT I INTRODUCTION



UNIT | CONCEPT OF VIBRATION

Classification of vibrations- mechanical vibrating systems, single degree of freedom, two degree
of freedom, multi degree of freedom, free, forced and damped vibrations, modelling and
simulation studies, model of an automobile, magnification factor, transmissibility, vibration
absorber.

VIBRATION
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It is defined as any motion that repeats itself after an interval of time.
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It involves transfer of potential energy to kinetic energy and vice versa.

% Vibration is the motion of a particle or a body or system of connected bodies
displaced from a position of equilibrium
% Aim of vibration analysis:
* Why:
» Vibrations can lead to excessive deflections and failure on the machines
and structures.
» To reduce vibration through proper design of machines and their mountings.
» To utilize profitably in several consumer and industrial applications.
» To improve the efficiency of certain machining, casting, forging &
welding processes.
» Cause rapid wear.
> Create excessive noise.
> Leads to poor surface finish (eg: in metal cutting process, vibration cause
chatter).
» Resonance — natural frequency of vibration of a machine/structure coincide
with the frequency of the external excitation.
» To stimulate earthquakes for geological research and conduct studies in
design of nuclear reactors.
CLASSIFICATION OF VIBRATION
Free vibration:
» When no external force acts on the body, after giving it an initial displacement, then

the body is said to be under free or natural vibrations.



» The frequency of the free vibration is called free or natural frequency.
The following three types of free vibrations are important from the subject point of view :
1. Longitudinal vibrations,
2. Transverse vibrations,

3. Torsional vibrations.
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(a) Longitudinal vibrations. (b) Transverse vibrations. (¢) Torsional vibrations.
Figure 1: Types of free vibration.

Forced vibration:
%+ When the body vibrates under the influence of external force, then the body is said to
be under forced vibrations.

%+ The external force applied to the body is a periodic disturbing force created by unbalance.

% The vibrations have the same frequency as the applied force.

% When the frequency of the external force is same as that of the natural vibrations,
resonance takes place.

% Resonance occurs when the frequency of the external force coincides with one of the
natural frequencies of the system

Damped vibration:
% When there is a reduction in amplitude over every cycle vibration, the motion is said to
be damped vibration.

% This is due to the fact that a certain amount of energy possessed by the vibration system
is always dissipated in overcome friction resistances to the motion.

Linear Vibration:
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%+ When all basic components of a vibratory system, i.e. the spring, the mass and the



damper behave linearly
¢ Nonlinear Vibration:
If any one of the components behave non linearly
%+ Deterministic Vibration:
If the value or magnitude of the excitation (force or motion) acting on a vibratory
system is known at any given time

Nondeterministic or random Vibration:

When the value of the excitation at a given time cannot be predicted

Force Force \
r
Time
Time
{a) A deterministic {periodic) excitation {b) A random excitation

Figure 2: examples of deterministic and random vibration.

BASIC TERMS OF VIBRATION

Oscillatory motion: repeats itself regularly.

Cycle: It is the motion completed during one time period.
Periodic motion: This motion repeats at equal interval of time T

Period : the time taken for one repetition. Period of vibration or time period. It is the time

interval after which the motion is repeated itself. The period of vibration is usually expressed
in seconds
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Figure 3: Periodic Motion

Time period: tp = 2/ w



Frequency: (1/ tp) it is the reciprocal of time period: Frequency. It is the number of cycles
described in one second. In S.1. units, the frequency is expressed in hertz (briefly written as Hz)
which is equal to one cycle per second.

Natural frequency:

Damped vibration.

When there is reduction in amplitude over every cycle of vibration, the motion is said to be
damped vibration.

Damping.

Damping is the dissipation of energy with time or distance

Viscous damping

The damping provided by fluid friction is known as viscous.

Critical damping.
It is the minimum viscous damping that will allow a displaced system to return to its initial
position without oscillation.
Degree of freedom:
» The minimum number of independent co-ordinates required to define completely the
position of all parts of the system at any instance of time.

» How many mass or masses will be there in a system.

Single degree-of-freedom systems:

The number of degree of freedom of a mechanical system is equal to the minimum number of
independent co-ordinates required to define completely the positions of all parts of the system at
any instance of time.
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Figure 4: Examples of single degree of freedom.
Two degree-of-freedom systems:
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Figure 5: Examples of two degree of freedom.

Three degree of freedom systems:
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Figure 6: Examples of three degree of freedom.
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Multi-degree of freedom:
(1 Infinite number of degrees of freedom system
(1 For which 2 or 3 co-ordinates are required to define completely the position of the
system at any inst/ance of time.
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Figure 7: Examples of multi degree of frgedom.

COMPONENTS OF MECHANICAL VIBRATION SYSTEMS

It consist of mass, spring and damper.
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Figure 8: Mechanical vibrating system

Mass Element:

The mass provides inertia force to the system, spring provides the restoring force and the damper
provides the resistance.

Spring Elements:

Linear spring is a type of mechanical link that is generally assumed to have negligible mass and
damping.

Spring force is given by: F = k.x

F = spring force, k = spring stiffness or spring constant, and x = deformation (displacement of
one end with respect to the other)

Combination of Springs:



Springs in parallel — if we have n spring constants k1, k2, ..., kn in parallel, then the equivalent
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spring constant keq is: :

S — - - Kify  Kaf
iy o
K *a Ry Ky
Ak
N 1 (i 1
* r
W L

Laj) c)

Figure 9: Springs ir_fparallel position

Springs in series — if we have n spring constants k1, k2, ..., kn in series, then the equivalent
spring constant keq is:

Figure 10: Springs in series position

Damping Element

» The process of energy dissipation is referred to in the study of vibration as damping. A
damper is considered to have neither mass nor elasticity.
» The three main forms of damping are viscous damping, Coulomb or dry-friction damping,



and hysteresis damping. The most common type of energy-dissipating element used in
vibrations study is the viscous damper, which is also referred to as a dashpot.

» In viscous damping, the damping force is proportional to the velocity of the body.
Coulomb or dry-friction damping occurs when sliding contact that exists between
surfaces in contact are dry or have insufficient lubrication. In this case, the damping force
is constant in magnitude but opposite in direction to that of the motion. In dry-friction
damping energy is dissipated as heat.

NATURAL FREQUENCY

1. Vehicle vibration with SINGLE DEGREE of freedom:

The natural frequency of the free longitudinal vibrations may be determined by the
following three methods

1. Equilibrium Method
2. Energy method (summation of kinetic energy and potential energy must be a constant
quantity which is same at all the times.)

4 KE+PE)=0
dt

3. Rayleigh’s method ( the maximum kinetic energy at the mean position is equal to the
maximum potential energy (or strain energy) at the extreme position )

() FREQUENCY OF FREE-UNDAMPED VIBRATIONS:
Consider a constraint (i.e. spring) of negligible mass in an unstrained position

s = Stiffness of the constraint. It is the force required to produce unit
displacement in the direction of vibration. It is usually expressed in N/m.
m = Mass of the body suspended from the constraint in kg,
W = Weight of the body in newton = m.g,
0 = Static deflection of the spring in meters due to weight W newton, and
X = Displacement given to the body by the external force, in meters

(c)
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Figure 11: Free undamped vibration system
In the equilibrium position, the gravitational pull W = m.g, is balanced by a force of spring,




such that W = s. § .Since the mass is now displaced from its equilibrium position by a distance
X, and is then released, therefore after time t,

Restoring force =W — s (6 + X) =W — 5.8 — $.X = 5.6— S.6— S. X = —s.X(Taking upward force as
negative)

Accelerating force = Mass x Acceleration
d’x
=X —
.

dr”
d?x

=—5X
ol
dr-

X

d-x
Mmx——+sx=0
dt
¥
d“x s
5 +—xx=0
dr= m

We know that the fundamental equation of simple harmonic motion is

2
d-x 7
+m-.x=0
2
dt”
0=, [|—
m
5
_ , 2n m
Time period. ty =—=2m,|—
® s
natural frequency. £ = 1 _ 1 s £
" - o
fp 2m\m 0

_ L
=
s (m.g =5.9)
4985
7, = 1 [9.81 _ 0.4985 Hy
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(b) FREQUENCY OF FREE DAMPED VIBRATIONS (VISCOUS DAMPING)

» The motion of a body is resisted by frictional forces, the effect of friction is referred to
as damping.

» The damping provided by fluid resistance is known as viscous damping.
> In damped vibrations, the amplitude of the resulting vibration gradually diminishes.

10



» Certain amount of energy is always dissipated to overcome the frictional resistance. The

resistance to the motion of the body is provided partly by the medium in which the
vibration takes place and partly by the internal friction

Let m = Mass suspended from the spring,

s = Stiffness of the spring,

x = Displacement of the mass from the mean position at time t,

& = Static deflection of the spring = m.g/s, and

¢ = Damping coefficient or the damping force per unit velocity

Figure 12: Free damped vibration system

Damping force or frictional force on the mass acting in opposite direction to the motion of the
mass

dx
=cX—

dt

Accelerating force on the mass, acting along the motion of the mass

)

“y
=mX—-

dt’
Spring force on the mass, acting in opposite direction to the motion of the mass,

= 5X

Therefore the equation of motion becomes

d*x dx
MA——=— cX—+s5.X
dt- dt

R

11



This is a differential equation of the second order.

Assuming a solution of the form kwhere K is aconstant to be determined

X =€

2kt € Sk : 2x
k‘.e“ +—><]c.e]‘{ +—X e;‘r =0 é:ke"", and ﬂ:i.-z.ef"’
m m h

m m

c c\ =
e — t - _
2m 2m m

c c ¥ s
=——+| — | ——
2m 2m m

c c ¥ s
= | — | -2
2m 2m m

The most general solution of the differential equation, with its right hand side equal to zero has

The two roots of the equation are:

]\'lf ]\'2 f

x=Ce
only complementary function and it is given by

+ (jz e

The roots k1 and k2 may be real, complex conjugate (imaginary) or equal.

1. When the roots are real (over damping)

[ 5
If [ 2 ] """ then the roots k1 and k2 are real but negative. This is a case of overdamping
or large damping and the mass moves slowly to the equilibrium position. This motion is
known as aperiodic. When the roots are real, the most general solution of the differential
equation is

12
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In actual practice, the over damped vibrations are avoided

+Ce

2. When the roots are complex conjugate (underdamping)
A C ¥
JR— > —_
If [211;

J then the radical (i.e. the term under the square root) becomes negative. The two

roots k1 and k2 are then known as complex conjugate. This is a most practical case of
damping and it is known as underdamping or small damping. The two roots are

C
ey =——+i
2mi
c
ky=———i
2m
For the sake of mathematical calculations, let
2
C Ay o) A C 2 2
s—-=a—=(0,)": and ——(— ] =0, =4(®,)" —a”
2m m m |\ 2m
Therefore the two roots may be written as

k=—a+iwg : and |k, =—a—-iwy
We know that the general solution of a differential equation is

o= Cl eklr 3 C: ekgt - Cl e(—a+ia)d )t + C: e(—a—i(od )t

= (e +Cy e ") .(Using " =¢" x ") ...
Now according to Euler’s theorem

] i : —i0
e"'® =cos@+isin® : and €~

=cosB—isinb
Therefore the equation (7i/) may be written as

x=e U [Ci(cos g 1 +isinwmy 1)+ Cy(cosy .t —isinwy.r)]

e [(C, +Cy)coswy.t+i(Cp —C,)sinmy 1)]
G+C,=4. and i(C;-C,)=B
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x=¢e ¥ (4cos Wy .t+Bsinwgy.t) ... (@)
Again. let 4=Ccos0.and B=Csin®. therefore

B
T 2 _and tanB=—
C=NA"+B 4

Now the equation (iv) becomes
x=e (CcosBcos (. +Csin Osin 0 1)

=Ce ™ cos (.t —6) ()
If 7 is measured from the instant at which the mass m is released after an initial displace-
ment 4. then
A=CcosO . .. [Substituting x = 4 and 7 = 0 in equation (v)]
and when 0=0.then4=C
The equation (v) may be written as

x=Ade " cosmy.t ... ()

where Wy = M (L ]- :,f((n),,)l —a* iand a=—

m 2m 2m

The motion of the mass is simple harmonic whose circular damped frequency is  and “d the
amplitude is 4e—4th diminishes exponentially with time as shown in Figure below.Though
the mass eventually returns to its equilibrium position because of its inertia, yet it overshoots and
the oscillations may take some considerable time to die away.

Exponential decreasing curve
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Figure 13: Condition of Logarithmic Decrement
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3. When the roots are equal (critical damping)

C z 5

£f-:
I[ " " then the radical becomes zero and the two roots k1 and k2 are equal. This is acase
of critical damping. In other words, the critical damping is said to occur when frequency of
damped vibration (fd) is zero (i.e.motion is aperiodic). This type of damping is also avoided

c
r

r=(C1+Cy)e m = (C1+Cr) E?_w”f
because the mass moves back rapidly to its equilibrium position, in the shortest possible time

Thus the motion is again aperiodic. The critical damping coefficient (cc) may be obtained by
substituting cc for ¢ in the condition for critical damping,

|
c. | s ) 5
< | == 01 c, :21;34’— =2mxX,
2m m m

The critical damping coefficient is the amount of damping required for a system to be critically
damped

Damping Factor or Damping Ratio

The ratio of the actual damping coefficient (c) to the critical damping coefficient (cc) is known
as damping factor or damping ratio. Mathematically

C

. c
Damping factor S
¢, 2mo,

Logarithmic Decrement

It is defined as the natural logarithm of the amplitude reduction factor. The amplitude reduction
factor is the ratio of any two successive amplitudes on the same side of the mean position. If x1
and x2 are successive values of the amplitude on the same side of the mean position, as shown in
Fig. 23.18, then amplitude reduction factor,

v o Ae™™ _
T sy € 7 = constant
X2 4e a(r+rp)

& X t
5= log[—1 ]: loge™™”
L

15



where tp is the period of forced oscillation or the time difference between two
consecutive amplitudes. As per definition, logarithmic decrement

N > 2n ax2m
bzloge[—lJ:(l.rp:(lx =

"

= >
g ((l)n )~ —a-

c
—X2R
2m

2
) C
(w,)" —
" 2m
c

—x2n
2m cx2m

2 2
c c
o, |1— c.,|1—
" [ 2m.m, ] ¢ [q, ]

In general, amplitude reduction factor

X o Xz _ X3 _ o Xy . )ﬂf'
T T T--T =€ = constant
Xy X3 Xy Yn+1
Logarithmic decrement
. X, 2 X c
d=log, =atl, = —F—m—m—
X 2.2
n+l J(c ) —c

Forced damped vibration system: (Frequency of Under Damped Forced Vibrations)
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Figure 14: Forced damped vibration system

Consider a system consisting of spring, mass and damper as shown in Figure above.
Let the system is acted upon by an external periodic (i.e. simple harmonic) disturbing
force,

F,=Fcosmt

F = Static force, and

(0 = Angular velocity of the periodic disturbing force.

When the system is constrained to move in vertical guides, it has only one degree of freedom.
Let at sometime t, the mass is displaced downwards through a distance x from its mean
position.

the equation of motion may be written as

a9

d-x dx
mx—zz —cX——s.x+ Fcoswr

dr dt

2

“x dx
MX ——+cX—+s.x=Fcosmr
dt? dt
This equation of motion may be solved either by differential equation method
or by graphical method as discussed below :

1. Differential equation method
The equation (i) is a differential equation of the second degree whose right hand side is some

function in t. The solution of such type of differential equation consists of two parts ; one part is
the complementary function and the second is particular integral. Therefore the solution may be
written as

17



X =x;, T X,
x1 = Complementary function, and
x2 = Particular integral.
The complementary function is same as discussed in the previous article,
x, = Ce " cos(wyt—0)

co=Xsing: and s —mw” = X cos )

X =4t o’ + (s —me’ )l
F
X2 = xcos(wr—d)
2 2 242
\/c‘ 0 +(s—mo”)
In actual practice, the value of the complementary function x1 at any time t is much smaller as

. c.0)
¢ =tan™! -
S—m.m

compared to particular integral x2. Therefore, the displacement x, at any time t, is given by the
particular integral x2 only

xX= £ % COS (. — )

\/Cz @ +(s—mw’)?

The equations (vii) and (viii) hold good when steady vibrations of constant amplitude takes

Maximum displacement or the amplitude of forced vibration,

F
P
max 2 2 2.2
cC.O +(s—mwm)
, X
F/s = 2 -
Ymax = PR P 2 U)l (Ul i
cc.o  (s—-mw ) e R
) + ) 2 5
2 2 A
s 5
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where xo is the deflection of the system under the static force F.
x
0

Ymax =

2 2 2
c . -
_ ] - —

2 ()

At resonance () = {!}” Therefore the angular speed at which the resonance occurs is

Magnification Factor or Dynamic Magnifier

It is the ratio of maximum displacement of the forced vibration (xmax ) to the deflection due
to the static force F(xo0). We have proved in the previous article that the maximum
displacement or the amplitude of forced vibration, Magnification factor:

e It is the ratio between the maximum actual amplitude of the body and the maximum
actual amplitude of the road.

max
7 7 2

c . [
_|_

.32 [:(l)n )2
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Figure 15: Magnification factor Vs damping ratio.

Magnification factor or dynamic magnifier,

2 2

2em | o |
+1- ,
[Cc-(ﬂn ] [ (m,)" ]
The magpnification factor or dynamic magnifier gives the factor by which the static deflection
produced by a force F (i.e. xo) must be multiplied in order to obtain the maximum amplitude
of the forced vibration (i.e. xmax) by the harmonic force F coswt

Xmax = Yo XD

20



If there is no damping (i.e. if the vibration is undamped), then ¢ = 0. In
that case, magnification factor,

2
D LL '\771(11' . ‘I' _ ((0?2)
I 5 > 2 2
Xo » ¥ (0,) —o
®
L 3
(®,)"
W=, I
At resonance, Therefore magnification factor,
p=tmax _ 3

Xo C.0),

Vibration Isolation and Transmissibility

A little consideration will show that when an unbalanced machine is installed on the foundation,

it produces vibration in the foundation. In order to prevent these vibrations or to minimize the

transmission of forces to the foundation, the machines are mounted on springs and dampers or

on some vibration isolating material, as shown in Fig. 16. The arrangement is assumed to have

one degree of freedom, i.e. it can move up and down only.

I F cos ot
Machine
Damper
Spring nh Spring

AUV RRRRRAAAN
Foundation
Figure 16: Condition for vibration isolation.

It may be noted that when a periodic (i.e. simple harmonic) disturbing force F cos ot is applied

to a machine of mass m supported by a spring of stiffness s, then the force is transmitted by means

of the spring and the damper or dashpot to the fixed support or foundation. The ratio of the force

21



transmitted (FT) to the force applied (F) is known as the isolation factor or transmissibility ratio

of the spring support.

We have discussed above that the force transmitted to the foundation consists

of the following two forces :

1. Spring force or elastic force which is equal to s. xmax, and
2. Damping force which is equal to c.[].xmax.
Since these two forces are perpendicular to one another, as shown in Fig.23.23, therefore the

' 2 , ) 2
FT - \/ (.S’..\‘,,m_\- )" +(c . X 0x )

force transmitted,

Transmissibility ratio,

“max ~ e

the magnification factor,
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2 2 2
2c.0 "
H1-——
.0, {mn )-

D=

2 2 2
2c.m O
H1-——
Cp .y, (m, )
When the damper is not provided, then ¢ = 0, and

1

€= ——
I-(o/o,)”

From above, we see that when w/mwn >1, Y is negative. This means that there is a phase
difference of 180° between the transmitted force and the disturbing force (F cosw.t) . The value
of w/wn must be greater than 2 if ) is to be less than 1 and it is the numerical value of ),
independent of any phase difference between the forces that may exist which is important. It
is therefore more convenient to use equation (ii) in the following form, i.e.

1

£= =
(0/w, )" -1

| Fig. 17 is the graph for different values of damping factor c/cc to show the variation of
transmissibility ratio (D ) against the ratio w/mn .
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1. When ®/wn = 2 , then all the curves pass through the point )_ = 1 for all values of damping
factor c/cc
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No damping
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Figure 17: Transmissibility Vs Damping ratio.

2. When o/on < 2, then Y > 1 for all values of damping factor c/cc. This means that the

force transmitted to the foundation through elastic support is greater than the force

applied.

2. When o/@mn > 2 , then Y < 1 for all values of damping factor c/cc. This shows that the force
transmitted through elastic support is less than the applied force. Thus vibration isolation is
possible only in the range of ®w/wn > 2.We also see from the curves in Fig. 23.24 that the
damping is detrimental beyond w/wn > 2 and advantageous only in the region o/wn > 2. It
is thus concluded that for the vibration isolation, dampers need not to be provided but in order
to limit resonance amplitude,stops may be provided.

Transmissibility:

e Itis the ratio between the force transmitted to the body and force acting on the road.

e It is the ratio between the force transmitted to the body and force acting on the road.
Transmissibility is the non dimensional ratio of the response amplitude of a system in
steady state forced vibration on the excitation amplitude. The ratio may be one for
forces, displacement, velocities or accelerations.

Vibration absorber:
e |t is an additional spring mass system used to make the amplitude values of vibration

equal to zero.
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Vehicle dynamics and its classification.

e Vehicle dynamics has been a pivotal domain in the field of automotive engineering. It
is primarily divided into three subgroups: Performance, Ride and Handling.
Performance mainly deals with the efficiency and effectiveness of the vehicle in its
ability to accelerate, brake and overcome obstacles. Ride is related to the vibration of
the vehicle due to road excitations and its effect on occupants and cargo. Handling is
concerned with the overall behaviour or response of the vehicle to driver inputs.

Generalized co-ordinates
Rolling: Angular oscillation of vehicle about longitudinal
axis. Pitching: Angular oscillation of vehicle about
transverse axis. Yawing: Angular oscillation of vehicle

about vertical axis.

Vertical

Fig. 1.4 SAE Vehicle Axis System.
Figure 18: Vehicle axis system

The source of vibration of the vehicle may be
due to The road roughness
The unbalance of the engine
The whirling of shafts
The cam forces
Torsional fluctuations

What is Modeling and simulation?

e Writing the equation corresponding to a physical system.
e This equation may be algebraic or differential equation.
e Writing the program and then fed in to the computer.
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e Solving the problem by use of computer is called simulation

Model of an automobile used in vehicle dynamics analysis.

<Epe ]
B, I—JI:I B ,
Tx,

Figure 1 Model of vehicle and driver
Figure 19: Model of an automobile

TEXT / REFERENCE BOOKS

Giri N.K - Automotive Mechanics, Khanna Publishers, 2002,

Rao J.S and Gupta. K "Theory and Practice of Mechanical Vibrations”, Wiley Eastern Ltd., New Delhi - 2002.
Ellis,J.R - "Vehicle Dynamics'- Business Books Ltd,, London- 1991

Giles.J.G.Steering - "Suspension and Tyres" - lllffe Books Ltd., London- 1998

Wong J.Y. Theory of Ground Vehicles, 4th edition, Wiley

Thomas D. Gilespie, "Fundamental of Vehicle Dynamics, Society of Automotive Enginers’, USA 1992,
Rajesh Rajamani, "Vehicle Dynamics and Control’, Springer, 2012.

26



UNIT Il APPLIED NUMERICAL METHODS



UNIT 2 APPLIED NUMERICAL METHODS

Close coupled and far coupled systems, determination of mass and stiffness matrices- eigen value
problems, orthogonality of mode shapes, modal analysis, approximate methods for determining
functional frequency. Dunkerley’s lower bound, Reyleigh upper bound, Holzer methods for closed
coupled system and branched system.

MULTIPLE DEGREES OF FREEDOM (MDOF):
e A system having more than one degree of freedom system. Various methods are
employed to determine the natural frequencies, mode shapes.
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PRINCIPAL MODE OF VIBRATION OR NORMAL MODE OF VIBRATION:

e  When the mass of a system are oscillating in such a manner that they reach maximum
amplitude simultaneously and pass their equilibrium points simultaneously or all the
moving parts of the system are oscillating in the same frequency and phase, such mode of
vibration is called principal mode of vibration

e If at the principle mode of vibration, the amplitude of one of the masses is considered
equal to unity, the mode of vibration is called normal mode of vibration

e Normal mode vibrations are free vibrations that depend only on the mass and stiffness of
the system and how they are distributed

e In case of two degree of freedom system, mass will vibrate in two different modes
o First principal mode and second principal mode
ORTHOGONALITY PRINCIPLE:

e The principal mode or normal modes of vibration for system having two or more degrees
of freedom are orthogonal. This is known as Orthogonality Principle

e Itis an important property while finding the natural frequency.

e It states that the principal nodes are orthogonal to each other. In other words, expansion
theorem applied to vibration problems indicates that any general motion (x) for n masses



may be broke into components each of which corresponds to a principal node. This
forms the basis of obtaining the response of vibration systems and is called modal
analysis.
Types of coupling:
e n-degree of freedom system requires n-independent coordinates to specify the system
completely at any instant.
e When these coordinates are independent of each other and equal in number of degree of
freedom of the system, they are called as generalized coordinates
e To represent the motion of system one may use a number of generalized coordinate
system. While using these coordinates the mass and stiffness matrices may be coupled or
uncoupled.
e When the mass matrix is coupled, the system is said to be dynamically coupled and the
stiffness matrix is coupled, the system is known as statically coupled.
e Static coupling due to static displacement. It contains terms as functions of coordinates
like spring force coupling
e Dynamic coupling due to inertia force. It contains coupling terms as function of time
derivatives of coordinates, like inertia coupling, damping.
PRINCIPAL COORDINATES:
An n degree freedom system requires ‘n’ independent coordinates and there will be ‘n” number
of differential equation of motion. It is always possible to fine a particular set of coordinates such
that each equation of motion contains only one unknown quantity. Then the equation of motion
can be solved independently and the unknown quantity can be found out. Such a particular set of
coordinates is called Principal Coordinates:

CLOSED COUPLED SYSTEM:

k1 ke K3 kiv)
%’\/VW\/\/\A Ml SO RTAVLYAY e RV, i /\/WE

In fig, an n degree translational and rotational close coupled system is given. For free vibration,
the following equations can be written:

X=€

mé+Ke;+ Kz(Cl- 62)=O

m &+Ka(es - e+ Ki(ex —e3)=0

m;€i+Ki(e; — ei 1)+ Kiyi(ei— eir1)=0
We can ignore damping for free vibration, as the natural frequencies are not significantly
affected by presence of damping. The above equations can also be used directly for torsion with
appropriate alternation.
[M] {&}+[K] {e}=0
[M] is a square mass matrix
[K] is a stiffness matrix

In above equation, [K]{e} defines local force under static condition. The method of
writing equation in this form called stiffness method using the displacements also called
displacement method. In fact, for close coupled systems, the finite element method yields
identical equations as above.



For free vibrations, the above solutions of can written as
{x}={X} cos ot

Where {X} represents the amplitudes of all the masses and @ is the natural frequency. These

above equations reduce to
{[K]- o2[M]]{X} =0

The above equations known as Eigen value problem in matrix algebra and it can be
solved with the aid of computer for a fairly large no of masses. ®2 is called as the characteristic
value of equation.

There will be n such values of an n degree system. For each of the Eigen value, there exists a

corresponding Eigen vector{x}, also called as a characteristic vector. This Eigen vector will
represent the mode shape for a given frequency of the system

FAR COUPLED SYSTEM:

i

=

In fig an n degree far coupled system is shown with masses m1,m2,....,mi,at station 1,2,......1
respectively. For a freely vibrating beam,the only external load is the inertia load due to masses
ml.m2..... Following the influence coefficient procedure discussed two degree of freedom, we
can write

X=€
Ol M€+ Olpamapesrt........... + oy;m;éi+e =0
O M€+ Oppmoéort........... + opim;éi+er=0
0o M€+ OppMmpEst........... + o;;m;€+e;=0

In arriving at the above equations, the forces are treated as unknowns and expressed in terms of
flexibility factor or influences coefficients, hence this approach is called force or flexibility
method, contrary to the method adopted for close coupled systems where displacement are
considered unknowns and the stiffness matrix setup.
Denoting [a] as the influences coefficient matrix, the above equation can be written as
[D] { &} + (1] {e} =0
Or
{&)+[a]'fe} =0
[D] is the dynamic matrix
For a four degree of freedom, the natural frequencies are obtained by setting the determinant
equation to zero.

[[D] o s m:[ (X} =0
P



DETERMINATION OF MASS & STIFFNESS MATRIX- EIGEN VALUE PROBLEMS

Multiple degrees of freedom systems and mode shapes
e The simple mass—spring damper model is the foundation of vibration analysis, but what
about more complex systems? The mass—spring—damper model described above is called
a single degree of freedom (SDOF) model since the mass is assumed to only move up and

down. In the case of more complex systems the system must be discretized into more
masses which are allowed to move in more than one direction — adding degrees of
freedom.

e The major concepts of multiple degrees of freedom (MDOF) can be understood by
looking at just a 2 degree of freedom model as shown in the figure.

The equations of motion of the 2DOF system are found to be:
my &1 + (€1 + C2)F1 — ez + (k1 + Ka)xy — koxp = [,
MoXa — CpXy + (Cz -+ 63)'13.2 — koxy + (kg -+ kg)‘l'-z = Ty,
This can be rewritten in matrix format

my 0 T 7 Ci + Cg e ) e ki + ks —ko | _ fi
0 mg| |2 —Cy o +ca| | *2 —ks ks + Ea| | 22 fa|

A more compact form of this matrix equation can be written as:
[M]{} + [€] {2} + [K]{=} = {5}

are symmetric matrices referred respectively as the mass, damping,

[M].[C], anal K]

and stiffness matrices. The matrices are NxN square matrices where N is the number of degrees

where *and
of freedom of the system.
In the following analysis involves the case where there is no damping and no applied forces (i.e.
free vibration). The solution of a viscously damped system is somewhat more complicated 2
[M]{£} + | K] {z} = 0.
This differential equation can be solved by assuming the following type of solution:
[z} = {X}e".

e G o {X } gt 2 . , .
Note: Using the exponential solution of is a mathematical trick used to solve linear
differential equations. Using Euler's formula and taking only the real part of the solution it is the

same cosine solution for the 1 DOF system. The exponential solution is only used because it is
easier to manipulate mathematically.



The equation then becomes: )
[—wg [J’li"] e [KH {X}-e“"f =],
Since €' cannot equal zero the equation reduces to the following.
[[K] —«?[M]]{X} =0.
EIGENVALUE PROBLEM

This is referred to an eigenvalue problem in mathematics and can be put in the standard format

i1
by pre-multiplying the equation by [‘Mr]

[[M] VK] — w2 [M] 7 [M] | {X} =0
and if: [ﬂﬂ o [[{] — [‘{] and A = w?

4] - Al {x} = 0.

] |2 r 12' E s
e The solution to the problem results in N eigenvalues (i.e. ““1 2> wN), where N
corresponds to the number of degrees of freedom.
e The eigenvalues provide the natural frequencies of the system. When these eigenvalues

are substituted back into the original set of equations, the values of {X} that correspond
to each eigenvalue are called the Eigenvectors.

e These eigenvectors represent the mode shapes of the system. The solution of an
eigenvalue problem can be quite cumbersome (especially for problems with many
degrees of freedom), but fortunately most math analysis programs have eigenvalue
routines.

The eigenvalues and eigenvectors are often written in the following matrix format and describe
the model of the system:

[rein] =

0 o W] L [9] = [} {we) - {on)].

Eigen value problem:

ORTHOGONALITY OF MODE SHAPES:

The mode shapes of a dynamic system exhibit orthogonality property, which is very useful in
simplifying the analysis for forced and transient vibrations.

In general, the differential equation of motion for any vibrating system can be written in matrix

form as follow[*ru] {17} + [K] {.1‘,‘}- = 0.

Let [M] and [K] represent the mass and stiffness properties of a system,
Assuming harmonic motion i.e

x = X sin ot



ol
A=
The equation for the ith mode be

KW, = AN

Premultiplying by the transpose of mode j,

‘X, j.K-X:' — ‘X'jl} Lz.i?l‘iilx'i = ﬂ‘f (‘X'Ji}‘ LX’I )

(1
Now start with the equation for the jth mode and premultiplying by “*1 o obtain,
X, KX, = 4,(X,MX,) o

Since K and M are symmetric matrices

X, MX,=X,MX, and X,KX, =X,KX,

Subtracting (2) from (1)

(4 —-A)X,MX =0

As A, # A,

X,MX, =0and X,KX, =0

The above equation shows the orthogonal character of the normal modes.

If i=j,

X, MX, = M,
X, KX, =K,

7

M: and Ki are known as the generalized mass and generalized stiffness of the ith mode

Modal analysis:

An engineering system, when given an initial disturbance and allowed to execute fiee
vibrations without a subsequent forcing excitation, will tend to do so at a particular
“preferred” frequency and maintaining a particular “preferred” geometric shape.

This frequency is termed a “natural frequency” of the system, and the corresponding
shape (or motion ratio) of the moving parts of the system is termed a “mode shape.” Any
arbitrary motion of a vibrating system can be represented in terms of its natural
frequencies and mode shapes.

The subject of modal analysis primarily concems determination of natural frequencies
and mode shapes of a dynamic system.

Once the modes are determined, they can be used in understanding the dynamic nature of
the systems, and also in design and control.

Modal analysis is extremely important in vibration engineering. Natural frequencies and
mode shapes of a vibrating system can be determined experimentally through procedures
of modal testing.

The subject of modal testing, experimental modeling (or model identification), and
associated analysis and design is known as experimental modal analysis



DunKerlyes equation.

It relates the fundamental frequency of a composite system to the frequencies of its
component parts. It is based on the fact that modal frequencies of most system for higher
modes are high wth respect to their fundamental frequency. It is an approximate equation and
can be derived from an algebraic rule.

Damped Natural frequency.

The damped natural frequency is that frequency of free vibration of a damped linear
system. The free vibration of a damped system may be considered periodic in the limited
sense that the time interval between zero crossings in the same direction is constant. Even
though successive amplitudes decrease progressively.

Dunkerleys lower bound method to determine the frequency of a system.

Consider the eigen value problem in the form of for n degree of freedom system , the

frequency equation will be

2* =By L HieH Gy =10 (1.1)

Where C ,; coefficient from theory of questions represents sum of all the roots of the
equation from (6.24), we can write

C p1=0qmy + Opolp+...+0 py My

= l/p12+p22+. X ..+1/p,,2
(1.2)

Since influence coefficient a ;= 1/K;; we define

pn =1/ opmy (1.3)
Where p; represents the natural frequency of the system with only the i™ mass considered
Equation (1.2) now becomes

1/p12+p22+. v .+l/pn2 = l/p112+p322+. i -+1/pnn2



(1.4)
Since p;<p,<.... <p,,we can write the above as

l/pn2 =Xl pii2 (1.5)

The above is Dunkereley’s formula and because of the removal of p, =
pn terms of the left hand side of equation (1.4), p; estimated by (1.5) is always less than the
exact value . The simplicity of the method lies in the fact that p; can be estimated by
considering several single freedom systems with masses ml, m2 etc., considered
individually, thus reducing the multi degree of freedom system calculations to single degree
of freedom system calculations.

Rayleighs upper bound method to determine the frequency of a system.

Consider the multi degree of freedom system with [M] and [K] representing its mass
and stiffness matrices as in equation (6.7). Let [X] be a modal vector ( as in equation (6.11)
with its column representing ith mode shape corresponding to its natural frequency pi1) and
for the case of harmonic motion with a frequency ®, the maximum kinetic and potential
energies are

T=%o’ {X}7 (M} {X}
U=%{X} T {K} {X} (1.6)

So
o~ {X} T {K} X}{X}T M} (X} (1.7)

The above equation is known as Rayleigh’s quotient. If ® 1s a natural frequency and
{X} 1s corresponding modal vector, (1.7) will be exactly satisfied. However, neither of them
1s known at this stage of calculations. Let us assume a modal vector {X} consistent with the
kinematics boundary conditions of the system. As in modal expansion, let {X} be expressed
in terms of orthonormal modal vectors
X} = X'+ GEAHC{X .. (1.8)
Substituting the above for {X} in (1.7) and noting that
0)2= p12+ sz p22+. sl 1 C22+“"
If {X} is close to {X'}, then C,<< 1, C3< C, then
o’=pi’ (1+ C° p,/ pri'+....)
= Pl2 (1.9

o’ determined from (1.9) is always greater than the exact value p;> Since Dunkerleys



lower bound method gives a lower bound value, the exact frequency of a system lies in
between Dunkereley’s and Rayleighs approximations.

Holzer method for closed coupled system.

i bivd
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Consider the close coupled system of fig. again, the i™ mass and neighboring elements of
which are shown. We measure the displacement, velocity and acceleration positive along the
outward normal. The displacement X and the force F will define the state vector.

8 = X
{F}

We use a suffix to denote the station number and a superscript R or L to denote the quantities
to the right or left of a station respectively. The equation of motion for i™ mass is

mx; =Ff - Fi"
The displacement of mass m; is

Xit = Xi" = Xi
We combine the equations

{S}i*=[P]i {S}i"

[P] is the point matrix which defines the transfer function to obtain the state vector to the
right of a station in terms of the state vector to the left of a station.

The point matrix is a function of the mass of the station and the harmonic frequency ®. For an
assumed value of ®, the point matrices for all station can be set up.

Now we consider the force field of the spring Ki and observe that
{S}"=[F]; {S} "

[F] is the field matrix which define the transfer function across field. The field matrix is a
function of the stiffness of the system only and can be set up for all stations 1.

{SH*=[TL {S} it"

10



[T] is the transfer matrix.
It is important to maintain the order of matrix multiplication and the station

numbering in using the above transfer matrix. We can use equation for transfer of state vector
from station successively to obtain the overall transfer matrix of the systems.

{Sh*=[Th {S}o

{S}a1 =[U] {S} 0

[U] 1s the overall transfer matrix of the system.

Procedure to find determine a natural frequency, we adopt the following procedure.

1. Assume a value of ®2 representing the desired natural frequency. This may be
obtained by making a crude model with few stations or by experience.

2. Set up transfer matrices as in equation for all stations. At the end points
determine the required point or field matrices.

3. Determine the overall transfer matrix as in equation.
4. Change ®° by a suitable increment and repeat steps 1 to 3.

5. Plot u;, vs @ and find the value »” for which u;, is zero. This value of ®’is a
natural frequency.

Holzer method for branched system.

In several mechanical systems, like ship propulsion systems, strip steel mill stands,
machine tool drives etc.., there may be one or two branch points, as the employ one or two
drivers driving one or two driven members.

The Holzer’s Method

Consider the system shown in fig.
Equations of motion are

11
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K, K, K,
I | _. _ .Iz '_ n o W
“« - & 4 L

16+K.(6,-6,)=0
1,6, +K,(8,-6,)-K,(6,-6,)=0 — ()
16, +K,(6,-6,)-K, (6,-6,)=0

e, +K,(6,-6,)=0
Assuming

6, =v,cos ot
8, =v,cos ot —(2)
0, =y,cos o t
0, =v,cos ot
and substituting in equation (1) and rearranging, we get
Lo 2y, =K (y,-v,)
-L &, 2y, ==K /(1,~¥,)+K,(,~¥.) —(3)
Loy, ==K, 0r, =)+ K (5, ~15)

-1,o,2y, =-K (v, -v,)
Adding these, equation (3) results in the right hand side being zero.

So in general
> lo2y, =0 —(4)

Where summation is for all the masses.
This means that we can find the natural frequency by trial till equation (4) is satisfied. This is
the basis Holzer’s Method.

Further assuming that y; = 1 radian (since we are interested only in the relative amplitudes)

12



we get

_ I1(’0n 2y1

B Lo 2y, +1 o 2y,
K

2

- (5)

Lo2y,+Lo2y,+Lo 2y,
K

a

Y. =Y,

Or in general,

i-1

1
Y, :[ - )[Ki_lyi_l -0,2 Z’I ys} —(6)

The Holzer’s method then consists in assuming value for the natural frequency and
displacement of one of the rotors. Equation (6) then may be used to find the displacements of
any other rotor and the sum of the inertia forces. If the system is free at the ends, equation (4)
must hold. If it is fixed at same point, equation (6) which can be used to obtain the
displacement of that point should yield zero displacement. If it 1s not zero, another trial must
be made with another frequency. Thus a graph may be plotted for displacement vs assumed
frequency. The frequency for zero displacement is then the natural frequency. The mode
shapes may then be obtained with the help of equation (6).

The method is equally applicable to translational systems.

Holzer’s method can be applied to branched systems. Any end rotor could be given a
unit displacement to state with without affecting the final result. All amplitudes and moments
have to be proportional to this mitially assumed displacements. It may be further seen that the
joint must be equal, and that the total; moment at the joint including its inertia moment must
equal zero.

A single degree of freedom spring mass system has a natural frequency of 10 cycles per
second. Another single degree of freedom spring mass system is attached to it. The latter
had a natural frequency of 20 cycles/second. What is the approximate fundamental
frequency of composite system?

Solution : from Dunkerley’s equation

13



n

1 1
e
100 400

> _1
400 80

or o , =80
therefore o =+/80 =[] 8.95 cycle / second.

6. Find the principal modes of the system shown in fig.

Solution :

Inertia or mass matrix is

(@ m

and the stiffness matrix is K

o

So dynamic matrix C is

14



[m]"[K]
:%((1) (1))[—51 _51)
:E[—i ;1)

Eigen values of this matrix are given as

2 2
;\_%) _[Ej =0
m m
5K K
m m
=0 2
or K 5K —(2)
s, ooy
m m
so k=—K or ﬁ
m m
Hence
6K 4K
con:,,— and ,’—
m m
The adjoint of (2) 1s
K K
m m
K, K
m m

and hence the two principal modes are

L=

For the two cases,

For displacements in vertical direction

15



1ny1+6Ky1 =0
and my,+4Ky, =0 2>3)

and hence the natural frequencies are

\/& \/R
— and ,[—
m m
in vertical direction. This is a system which has same natural frequencies in both the

directions.

Find one natural frequency of the system shown in fig. (a) by the Holzer’s Method.

Ky | LS

=0.615 kg cm/sec’
K,, = 24.1 kg cm/radian
K, =25.84 kg cm/radian

Solution : Let us first find approximate natural frequency of the system. For this we will be
grouping together discs that have shafts with high relative stiffness between them.

Since here K;; 1s comparatively greater than K;;, we group together discs 2 and 3, thus
the system reduces to a two degree system shown in fig.

16



= 24.1[L+Lj
0.615 1.230

= 4/59
®> =59
So let us start with &> =59
Trial 1
o’ =59
1
SNo I y lyo ., Yo, Kt ?,[Zh/co2
1 0.615 1 36.30 36.30 24.1 1.535
2 0.615 -0.535 -18.15 17.15 25.84 0.664
3 0.615 -1.199 -42.5 -25:35

The external Torque Zlyco2 should be zero, so choose next approximation so as to achieve

this.
Trial 2
@, =40.3
1
SNo I Y lye? Yo’ Kt Ezwmz
1 0615 1.0 248 24.8 24.1 1.03

17



2 0.615 -0.03 -0.745 24.055 24.84 093
3 0.615 -0.96 -23.1 0.955
Trial 3
o =42
1
SNo I y lyw? Yo' Kt = > lyo?
1 0.615 1.0 25.81 25.84 24.1 1.072
2 0.615 -0.072 -1.84 23.94 25.84 0.925
3 0.615 -0.997 -25.7 -1.76
Trial 4
®’=41.0
1
SNo 1 Y ly? DI < = > lyw?
1 0.615 1.0 25.2 25:2 24.1 1.04
2 0.615 -0.047 -1.185 24.015 25.84 093
3 0.615 -0.977 -24.6 -0.585
Trial 5
®* =408
1
SNo I y lye? Zlyo)2 Kt 5 > lyo?
1 0.615 1.0 251 25.1 24.1 1.042
2 0.615 -0.042 -1.055 24.045 25.81 093
3 0.615 -0.972 -24.39 -0.345
Trial 6

o’ =40.5



SNo I Y lyw? Yo' Kt R{ZIV")Z
1 0.615 1.0 249 24.9 24.1 1.035
2 0.615 -0.035 -0.872 24.028 25.84 0.93
3 0.615 -0.965 -24.028 0
Hence ®>40.5

So exact natural frequency of the system is
o, =40.5
e o, = J40.5
=6.37 rad/sec.

Find the natural frequencies and mode shapes of the torsional three rotor system show
in fig. diameter of each rotor is 25.4 ¢m. weight of each rotor and its thickness are

shown in the diagram. G for the material = 8.5 x 10° kg/cmz.

Solution : If 6,, 6,, 65 are the displacements of the three rotors, the equations of motion of
the three rotors are,

l}‘l,'.‘ - »* h n, ) g hy
W, 27-5Kq T WL E?Skg  Wy=7Skg
‘ —— -, o ¥ . .linq . % o
T T R &
b mm
AP 8
-.Ju-o- 1aem o] o 1Bem h‘-. Sem

I191 = _Kt1(e1 _92)
1,6, = K(6, _61)_Kt2(62 _63) — (1)
|a93 = _K12(93 _92)

Assuming simple harmonic motion with yy, -, v3, as amplitudes and frequency @,.

19



0, =7, Sin o, 0, =10, Sin o,
8, =7, Sin o, 0, =—7,0 Sino, —(2)

0, =y, Sin ®, 0; = —Y,0_, Sin o,
From (1) and (2)
Lo +Ki(¥:—75)
or ¥, {Ky - Lo, } -K.8, =0 —(a)
-Lon’y, +Ky (1, —7,) +Kp (1, = 7,) =0
or Ky +{Ky+Kp Lo}y, -Kuy; =0 —(b)
and -Iaconzy3 +K,(Y;—7,)=0

or YK 75K, =@ ;) =0 (c)

This 1s a set of homogeneous equations. It will have a non-zero solution only if determinant
formed out of coefficients of y;, y» and y; vanishers.

Or

(Kn o I1(’3,]2 ) _Kn 0

Ky Ky +Kp, —Lo) K, |=0
0 K5 Ky, — ko,

on expanding

(Kn -lo, ){(Kn +Kyp — Lo, )(ktZ -Lo, )_ KtZ} +Ky {_Ku (Kt2 Lo, )}

or

0w, —| Ky T+ oK, | L+ | |od+k K, itk 5(3)

: . |1 IZ I2 |3 |1|2|3

Mode Shapes

The amplitude ratio of principal modes of vibration can be obtained from equation I and are
found to be

20



and “£=

2 - - -
When o, is zero, amplitude ratios of the discs are

Yi_ Yo _y
Yo Y3
This indicates that whole assembly rotates as a rigid body when

0, =0
Since one of the frequencies of this system is zero, this system is a semidefinite system.

Equation (3) 1s cubic in ®,>. One root may be ®y1”> = 0. The two other natural frequencies can
be obtained by solving fourth power equation in ®, in equation (3)

O, 0 :1[(&+KN+KQ+&H

n22’ ~n3?
2(1 1, , I,

- &+Kt1+Kt2 +& _AK K, P
I1 |2 |3 I1|2|3

2
|1=% er:% %[%) :%.%(12.7)2

=0.616 kg cm sec®

_nd,G _8.5x10* x1x(0.314)"

"= =24.7 kg cm.rad
321, 32%33.2

4
8.5><105><7t><(3'14)
10

Ky =

=26.5 kg cm/rad
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1 [ 247 247x26.5 26.5 J
O _,,0 , == - -
ot 2110.616 0.616 0.616

) J( 247 247+265 265 )2  4x24.7x26.5(0.616 x3)
“\lo.616

0616 0616 0616x0.616x0.616
- %[166i83.8]

o . = [166-83.8]41.4

ro? 5
or ®,=+41.4=64rad/sec

o :%(166+ 83.8)=124.9

or ®,=+124.9=11.2 rad/sec

a) Mode shape for @, =0

b) Mode shape for m,, = 6.4 rad/sec

Y _ 247 B
Y, 24.7-0.616x41.1

Y 26.5—0.616x41.1:0.0434

Ys 26.5

¢) Mode shape for @,, = 11.2 rad/sec

Vi _ 247 0472
Yy, 24.7-0616x1249

Y 26.5-0.616><124.9:_1_905

Ys 26.5



Mode shapes are plotted in fig.

)

()

. Fig. B4'16

Natural frequencies of the torsional system shown in fig.

e T

=30

K;=20

K¢=35

-2

Solution :

6

I*6

I-4

23



Ys =72

4conz + 6[

B 4y,0 , +67,0 ,

20

1_&

7.5

J'Y1°)n2

20

0w, O, O,
1—_n° __n° 4, n Y1
78 75 25

® , 0)n“  ,
6con2 =D o
0, O, O, (100, -8 . )y, 2 25 7
Vi = L I | SNl | TS, | Y, — n n 2t
2 25 715 35 35
=05+ 0.0403n4 — 0.5050)nZ — 0.0066mn6 )i
Let us now construct a Holzer’s table
No I 7a 10 Xl
1 4 1 17.64 17.64
2 6 0413 10.9 28.54
0,=2.1
3 6 -1.012 -26.7 2.84
4 4 -0.96 -16.9 -1500
1 4 1 4 4
2 6 0.867 52 9.2
(Dnzl
3 6 0.407 2.442 11.64
4 4 0074 0.296 11.94
®,=1.5 1 4 1 9 9
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2 6 0.7 9.45 18.45

3 6 -0225 -3.04 1541

4 4  -0.666 -6.00 9.41

1 4 1 15.24 15.24

2 6 0492 11.29 26.49
0,=1.9

3 6 -0.833 -19.1 7.39

4 4 -14 213 -13.97

1 4 1 11.55 11.55

2 6 0.615 10.70 22.25
o,=1.7

3 6 -0.50 -8.67 13.58

4 4  -0.888 -10.25 +2.33

1 4 1 36 36

2 6 -02 -10.8 252
O=3

3 6 -146 -78.8 -53.6

4 4 -0.07 2.52 -51.08

1 4 1 64 64

2 6 -1.13 -108.5 -445
m[[:

3 6 1.095 105 60.5

4 4  -0.63 -44.2 193

1 4 1 57.75 57.75

2 6 -0925 -80.0 -22.25
p=3.8

3 6 0.187 16.1 -6.25

4 4 0357 20.6 14.35

1 4 1 52 52

2 6 -0.733 -57.2 -5.2
®,=3.6

3 6 0473 -36.9 -42.1

4 4 0.727 378 -43

1 4 1 100 100
=5

2 6 -233 -350 -250
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6 10.17 1520 1270

4 4 -26.33 -2613 -1343

1 4 1 81 81

2 6 -1.7 -206.5 -125
®,=4.5

3 6 4.57 544.0 419.0

4 4 17.33 -583.0 -164.0

1 4 1 81 81

2 6 -1.7 -206.5 -125
o,=4.2

3 6 4.57 544.0 419.0

4 4 -17.33 -583.0 -164.0

1 4 1 70.4 70.4

2 6 -1.35 -143 -72.6
w,=4.2

3 6 2.28 242 169.4

4 4 -2.55 -180 -10.6

Now we can plot a graph between ® and >Iwy. fig (b) shows this graph. From this natural

frequencies re found to be 1.73, 3.64, 4.17.
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Using Holzer’s method, determine the natural frequencies of the system shown in fig.

K:=1 kg-cm/radian
I=1kg-cm’
Both in consistent S.I units.

41
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Solution :  In this example we shall use the Holzer’s method but the criterion applied to
determine the natural frequency will be that when the trial is made with the natural frequency,
the displacement at the left hand support will be zero.

One can estimate first natural frequency by Dunkerley’s equation but the trials are
made without that help.

27



Different trials are recorded in the following table.

I 0)2v
Item I I Y To%y Tloy K Z

Trial with ® = 0.2

1 4 016 1 0.16 0.16 1 0.16

2 3 012 084 0.101 0.261 2 0.13

3 2 008 0.71 0.056 0317 3 0.105
4 1 004 0605 0.025 0342 4 0.0855
5 0 ® 0.5195

Trial with ® = 0.3

1 4 036 1 0.36 0.36 1 0.36

2 3 027 0.64 0.173 0.533 2 0.267
3 2 018 0373 0.067 0.600 3 0.200
4 1 009 0.173  0.0155 0.6155 4 0.1539
5 0 0.0192

Trial with @ =0.4

1 4 0.64 1 0.64 0.64 1 0.64
2 3 048 0.36 0.173 0.813 2 0.406
3 2 032 -0.046 0.0147 0.798 3 0.266
4 1 0.16 -0.312 0.049 0.748 4 0.187
5 0 o -0.499

Trial with © = 0.6

1 4 1.44 1 141 1.44 1 1.44
2 3 1.08 -0.44 -0.475 0.965 2 0.482

3 2 072 -0922 -0.664 0.301 3 0.100



4 1 0.36 -1.023  -0.368 -0.067 4 0.017
5 0 o -1.006

Trial with ® =0.8

1 4 256 1 2.56 2.56 1 2.56
2 3 1.92 -1.56 -3.00 0.44 2 -0.22
3 2 1.28 -1.34 -1.72 2.16 3 -0.73
4 1 0.64 0.61 0.39 2.55 4 0.64
5 o0 ™ 0.03

Trial with ® =1.0

1 4 4 1 4 4 1 4

2 3 3 -3 9 -5 2 2.5
3 2 2 -0.5 -1 -6 3 2.0
4 1 1 1.5 1.5 4.5 4 -1.13
5 o0 o 2.63

Trial with ®=1.5

1 4 9 1 9 9 1 9

2 3  6.75 -8 -54 -45 2 -22.5
3 2 X5 14.5 65.3 20.3 3 6.77
4 1 225 7.73 17.4 379 4 943
5 o0 o0 -1.70




Trial with ®=1.8

1 4 1296 1 12.96 12.96 1 12.96
2 3 972 -11.96 -1164 103.44 9 -51.72
3 2 648 -39.76  257.7 13426 3 51.42
4 1 324 -11.66 -37.8 11646 4 29.12
5 0 -40.78

Trial with © =2.0

1 4 16 1 16 16 1 16

2 3 12 -15 -180 -164 2 -82

3 2 8 +67 536 372 3 124
4 1 4 -57 -228 144 4 36

5 0 ™ -93

Trial with ® =2.5

1 4 25 1 25 25 1 25

2 3 18.75 -25 -450 -425 2 -212.5
3 2 125 188.5 2360 1935 3 645

4 1 625 -456.5 -2860 -1925 4 -231
S 0 -225.5

Trial with © = 3.0

1 4 36 1 36 36 1 36

2 3 27 -35 -945 -909 2 -455
3 2 18 420 7560 6651 3 2220
4 1 9 -1800 -16200 -9550 4 -2388
5 0 ™ 588
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Fig.

Now plotting displacement of the fixed end y versus @ we get natural frequencies
where the curve intersects the x-axis. Natural frequencies are the frequencies which make the
displacement of the support zero. They are red off the graph fig.(b) as

™y = 0.30 rad./sec
o = 0.81 rsd/sec
®n3 = 1.45 rad./sec

®ns = 2.83 rad./sec

Student should check the validity of the Dunkerley’s equation.

Find the fundamental natural frequency of the system shown in fig(a). The gear ratio
for both the branches is /10.
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Solution :  The equivalent system is given in fig.(b).

8400 «800

180 £ 10° 72310°

Key Kep

Fig.

Let us take 1200 as a unit for inertia and 36 x 10° as a unit for K;. since K¢, Ky, and K are

all too large, we can lump
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7 4 10
Fig.
3,4, 5, 6, 7 together. So our equivalent approximate system becomes fig. (c)
We can use 70:+5(01-63)=0

46,+5(0,-01)+4(0,-03)=0
1 093+2(63-63=0

55
0, 75 77 0,
0)2 62 — —Z Z -05 62
%) 002 0.2 9,

The above model however is a crude one. We shall therefore treat the problem as that

of a branched system as shown in fig.(b). we shall use the Holzer’s method to obtain the
natural frequency.

Let us assume a unit displacement for mass 7. the displacement of masses 6 and 3 can
than be determined from equation, If unit displacement for mass 3 will result. These two
values of displacement for mass 3 must be made the same by suitably modifying
proportionately the displacement of one of the branches. After this is done, displacement of
masses 2 and 1 are calculated and sum of all inertias is found. This process is repeated for
each assumed frequency. Frequency corresponding to which the sum zero is naturally
frequency. Let us start with o = 1.

2
Item I Io® vy Io’y oy K Z}I((o k
t
7 1 1 1 1 1 1 1
6 2 2 0 0 1 3 0.33
3 4 4 -0.33 -1.33 -0.33
5 1 1 1 1 1 6 0.167
4 2 2 0.833 1.67 2.67 4 0.67
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3 4 4 +0.167

Hence Ys = % =2

and we can re-construct the table for masses 5, 4, 3 and add for rotors 1 and 2.

lo?
Item I Io® v Ioy oy K %
t
5 1 1 -2 -2 -2 6 -0.333
4 2 2 -1.67 -3.33 -5.33 4 -1.33
3 4 4 -0.33 -1.33 -6.66 2 -2.83
Torque acting on mass Ky, = 1-5.30-1.33=-5.66
2 4 4 2:5 10.0 4.34 5 0.87
1 T 7 1.63 11.41 15.75
Trial with ® = 1.5
l?
Item 1 Io® vy Ioy Jloy K ZK !
t
7 1 225 1 225 2.25 1 2.25
6 2 15 -125 -5.6 -3.35 3 -1.12
3 1 90 -0.13 -1.17  -4.52
5 1 225 1 225 2.25 6 0.39
4 2 45 0.61 2.75 5.0 4 1.25
3 4 90 -0.64
0.64Y"
= = =02
Ye (0.13)

Let us reconstruct the table for masses 5, 4, 3 and add for masses 1 and 2.

1%
Item I Io® vy Iy Jloy K ZK 4
t
5 1. 225 02 0.450 0.45 6 0.0715
4 2 45 0125 0.56 1.01 4 0.25

2 4 90 -0.13 -1.17  -3.51 2 -175




Torque acting in Ky, =-3.35+1.01-1.17=-3.51
2 4 90 1.62 13.58 10.07 5 2.01
1 7 15.8 -0.39 -6.15 3.82

Trial with ® =2.0

lw?
Item I I vy Ioy Sloy K %
t
7 1 4 a a 1 4
6 2 8 -3 -24 -20 3 -6.67
3 4 16 3.37
S 1 4 1 4 4 6 0.67
4 2, 8 0.33 2.64 6.64 4 1.66
3 4 16 -133
-3.37
= =-2.53
¥s =133

Let us now re-construct table for masses 5, 4, 3 and add for masses 1 and 2.

2
Item I I vy Ioy Sloy K ¥
t
S 1 4 -2.53 -10.12 -10.12 ©6 -1.68
4 2 8 -0.85 -6.75 -17 4 -4.21
3 4 16 3.37 53.9 16.9* 2 8.45
2 4 16 -5.03 -80.48 63.6 5 -12.7
1 74 28 -7.67 -2.5 -278.6

Now we plot a graph between XIwn’y and ®. Natural frequency equals ® when curve
intersects the ® axis.

e Torque acting in Ky, =-20-17+53.9=16.9
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From graph fig. ®, = 1.52, But this must be modified because of our units for inertias and
stiffnesses taken to facilitates calculations. Thus m,, the natural frequency is given by

36 x10°

o, =1.52x
1200

= 283 radians/sec.
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UNIT 111 SUSPENSION SYSTEM



UNIT 3 SUSPENSION SYSTEM

Vehicle dynamics and suspension requirements, natural spring frequencies, force acting on a semi-
elliptic suspension, design of laminated spring, design of coil spring and torsion bar, spring
characteristics, mechanics of an independent suspension system, roll axis and the vehicle under
the action of side forces, coupled front and rear suspension effects, relative pitch and bounce
frequencies, anti-roll rates, roll angles in cornering, attributes changes due to brakes, traction and
independent suspension.

Function of suspension system

» It must provide a high degree of isolation between a passenger/ goods of the vehicle from
irregularities of the road surface, forces due to non-balancing of the wheel.

» It has to maintain the close contact of the wheel with the road surface to get adequate
adhesion for acceleration, braking and cornering.

Requirements of suspension system:

A X4

The main requirement of the good spring system is that it should allow the wheels to have
a vertical movement.

It should resist the roll of chassis

It must keep the tires in contact with the road with the minimum road variations

It must provide vertical compliance so that wheels can follow the even road, isolating the
chassis form the roughness in the road

It maintain the wheel in the proper steer

Stiffness/Displacement bound

Compatibility

Minimum wear

Low Maintenance

Low Initial cost

Suspension terminology

X/ R/
L X EIR X 4

e

*

e

AS

X/
X4

K/
0‘0 L)

>

X/
*

L)

K/ X/ K/
LCIIR X X4

Sprung mass frequency

It is the resonant condition of the sprung mass acting on the suspension spring in series with the
tire spring with the interposed unsprung mass.
o =2af
f=w/2n

Wheel hop

The vertical oscillating motion of the wheel between the road surface and the sprung mass of the
vehicle.



Contact area of the tire is very less at the time of wheel hop.

Wheel hop occurs
1.Road irregularities

2. Wheel out of round balance

Wheel wobble

A self- excited oscillation of steerable wheels about their steering axes, occurring without appreciable
tramp

Horizontal vibration of front axle assembly around the longitudinal axis

Front axle is mounted between two springs namely 1. Chassis spring 2. Tire spring when there is wheel
wobble chassis spring on one side tire on the other side compresses simultaneously while other spring
on the tire rebumb this condition called wheel wobble

Wheel shimmy:

A self-excited oscillation of a pair of steerable wheel about their steering axes, accompanied by
appreciable tramp.

A violent front wheel shake caused by over corrective action
Spring Rate: The change of load of a spring per unit deflection, taken as a mean between loading and
unloading at a specified load.
Sprung Weight: All weight which is supported by the suspension, including portions of the weight of the
suspension members
Unsprung Weight: All weight which is not carried by the suspension system, but is supported directly by
the tire or wheel and considered to move with it
Suspension Rate(Wheel Rate): the change of wheel load, at the center of tire contact, per unit vertical
displacement of the sprung mass relative to the wheel at a specified load
Tire Rate:(static) the static rate measured by the change of wheel load per unit vertical displcement of the
wheel load per unit vertical displacement of the wheel relative to the ground at a specified load and inflation
pressure
Ride Rate: the change of wheel load, at the centre of tire contact per unit vertical displacement of the
sprung mass relative to the ground at a specified load.
Caster angle: the angle in side elevation between the steeing axis and the vertical. It is considered positive
when the steering axis is inclined rearward and negative when the steering axis is inclined forward
Jounce: the condition of the suspension which causes spring compression
Rebound:

» An expansion of a suspension spring after it has been compressed as a result of jounce.

» the relative displacement of the sprung and unsprung masses in a suspension system in which the
distance between the masses increases from that at static condition.

Camber angle: the inclination of the wheel plane to the vertical. It is considered positive when the wheel
leans outward at the top and negative when it leands inward.

Choice of suspension spring rate
187.8
vd

Wnat =



Where the d is the static deflection in inch when spring rate is linear
Let us consider the system having:

Unladen mass = m

Laden mass= m+L

Change in deflection= x

Then

laden mass — unladen mass

» —

change in deflection
M+L-M

= Sl

Sprung mass frequency,

m

(B
")

To provide maximum isolation of the vehicle from irregularities the minimum possible spring rate is
the best.

1 /JgS
Wyat = E

CALCULATION OF EFFECTIVE SPRING RATE

Let W Dbe the load acting on the tire and L be the load acting on the spring.

Due to some disturbance on the wheel due to road irregularities there will be some displacement
in wheel and spring.

The corresponding values assume to be dx and dy respectively.
Spring rate = (Effective spring rate) X (Installation ratio)2
Installation ratio = dx/dy

Effective spring rate = dW/dx

Actual spring rate = dL/dx



Differentiating the above, we get

dW_ d(
dx  dx

dL d
Xy
dy dx

Multiplying and dividing by dy in first term

_dLdydy

~ dydxdx

_dL gdyy®
-3 (@)

Neglecting the second order terms

d
=

dx

&y

dx?

d?y
dx?

d?y

+L—

dx?



dw _ dL (dy\*
dx dy (d,x:)

Now as per the law if conservation of energy, the work done by the movement of wheels must be
equal to the potential energy stored in the spring

W.dx=L.dy

The ratio between the small displacements at the wheel corresponding small displacement of
spring is called as installation ratio. Installation ratio is assumed to be a constant value

Vehicle suspension in fore and aft,
Roll axis and vehicle under the action of side forces, the dynamics,

R/
L X4

e

%

X/
°

X/
X4

L)

e

AS

*.
%

*.
%

To describe the characteristics of a tire and the forces and moments acting on it, it is
necessary to define an axis system that serves as a reference for the definition of various
parameters. One of the commonly used axis systems recommended by the Society of
Automotive Engineers is shown

The origin of the axis system is the center of tire contact.

The X axis is the intersection of the wheel plane and the ground plane with a positive
direction forward.

The Z axis is perpendicular to the ground plane with a positive direction downward.

The Y axis is in the ground plane, and its direction is chosen to make the axis system
orthogonal and right hand

There are three forces and three moments acting on the tire from the ground.

Tractive force (or longitudinal force) F, is the component in the X direction of the resultant
force exerted on the tire by the road.

Lateral force F, is the component in the Y direction, and normal force F, is the component
in the Z direction. Overturning moment M, is the moment about the X axis exerted on the
tire by the road.

Rolling resistance moment My is the moment about the Y axis, and aligning torque M, is
the moment about the Z axis

The longitudinal shift of the center of normal pressure is determined by the ratio of the
rolling resistance moment to the normal load.

The lateral shift of the center of normal pressure is defined by the ratio of the overturning
moment to the normal load.

The integration of longitudinal shear stresses over the entire contact patch represents the
tractive or braking force.

A driving torque about the axis of rotation of the tire produces a force for accelerating the
vehicle, and a braking torque produces a force for decelerating the vehicle.



+ Slip angle a is the angle formed between the direction of wheel travel and the line of
intersection of the wheel plane with the road surface.

+ Camber angle y is the angle formed between the XZ plane and the wheel plane. The lateral
force at the tire-ground contact patch is a function of both the slip angle and the camber angle.
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X
ROLLUING RESISTANCE
MOMENT (My]
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SLIP ANGLE

OVERTURNING

MOMENT (M, )
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NORMAL FORCE (F,)

l

Zz
Figure 1: Forces and moments acting on tire

DESIGN OF LEAF SPRING

There are several geometric variations in leaf spring-. Semi-elliptic single stage multi-leaf spring
is the most commonly used in light passenger vehicles, which is shown in Fig.1 below The
unloaded spring is cambered, the magnitude of the camber being such that the spring is
approximately straight under the full load. The individual leaves of steel leaf spring are in a sliding
contact that allows the spring to deflect more easily. The dimensional details are listed in Tablel.
According to Indian standards the recommended



Rebound clip

U-Clamp

Axle

Figure 2: Leaf suspension system

Shackle

Steel
leaves

Table 1: Leaf suspension system dimension (Passenger car)

Parameter Value
Straight length 1219 mm
Leaf thickness 6.45 mm
Leaf width 37.8 mm
Camber 160.5 mm
Number of leaves 7

Table 3.2 Material properties of steel leaf spring

! Parameter Value
uUTS 1820 - 2060 N/mm?
| Tensile Strength | 1680 - 1920 N/mm?
Young's Modulus (E) 210X10°  N/mm?
?Polsson's ratio (v) 0.3
Density (p) 7800 Kg/m®




THEORETICAL ANALYSIS OF STEEL LEAF SPRING

An accurate analysis of multi-leaf steel spring is complicated because of the interaction-taking
place between the leaves. Based on the following simplified theory, the leaf spring is assumed to
be statically equivalent to a flat trapezoidal beam of uniform thickness. Two symmetrical
trapezoids linked together are shown in Fig. 2. By using the symbols shown in the Fig.2, maximum
deflection (8) and maximum bending stress (o;,) can be determined using the equation (1) and
equation (2).

_ KFL(1-v?)

6 SE' ------------ (1)

_6FL o
b =
bt?
Maximum width of the trapezoidal beam b = Nb’

Where N= Number of leaves. The moment of inertia 1 of the cross section at the middle section

is 1=bt3/12 and Ki is a function of ratio b’/b. Fig. 3.3 shows the variation of with respect to ratio
b’/b.

4 . |
i_r‘ T : — 1 p—
J_ iZF
a KIS >>>H
T 2L |

Figure 3: Analytical view of Leaf suspension system.
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Fig. 3.3 Variation of factor K, of trapezoidal beam with ratio b'/b

Figure 4: Variation of K of trapezoidal beam

Selection of Design Method

The leaf springs behave like a simply supported beam with three point bending and hence the
flexural analysis is done considering it as a simply supported beam. The simply supported beam
is subjected to both bending stress and transverse shear stress. Among these stresses the main stress
is the tensile stress acting on one side of the neutral axis and the compressive stress on the other
side of the neutral axis. The magnitude of the other stress namely the shear stress is less and hence
neglected. Flexural rigidity is an important parameter in the leaf spring design and it should
increase from two ends to the center. This concept gives the following three design possibilities.

I. Constant thickness, varying width design

In this design the thickness is kept constant over the entire length of the leaf spring, while the
width varies from a minimum at the two ends to a maximum at the center.

I1. Constant width, varying thickness design

In this design the width is kept constant, while the thickness varies from a minimum at the two
ends to a maximum at the center.

I11. Constant cross section design

In this design, both the thickness and width are varied through out the leaf spring such that the
Ccross section area remains constant along the length of the leaf spring.

DESIGN OF COIL SPRINGS

The design of a new spring involves the following considerations:-Space into which the spring
must fit and operate. -Values of working forces and deflections. -Accuracy and reliability needed

Design Consideration

10



The primary consideration in the design of the coil springs are that the induced stresses are below
the permissible limits while subjected to or exerting the external force F capable of providing the
needed deflection or maintaining the spring rate desired

Stresses In Helical Springs

The flexing of a helical spring creates torsion in the wire and the force applied induces a direct
stress. The maximum stress in the wire may be computed by super position. The result is:

4 4
T=E.r=c—l J=Hd al].d.:‘:i:i
2 2 32 4
F
— D
F| 2
" T
] T
d F
F

Figure 5: Analysis of coil spring
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And re-arranging,

SFD SFC

T=K_ 3 or =K =
md md”~

b=

5

Where Ks is the shear-stress correction
factor and is defined by the equation:
_2C+1

K =—f1
s 2C

(a) direct shear '
stress distribution (b) Torsional shear

across section stress distribution

(c) combined direct
shear and torsional stress

Figure 6: Stress analysis on coil spring
Whal’s correction factor

The combined effect of direct shear and curvature correction is accounted by Wahl’s correction
factor and is given as:

-

_4C-1 0615
Woo4c-4 C

Deflection and Stiffness of the spring

A systems strain energy is related to its force deflection behaviour and using the Castigliano’s
theorem the deflection of a spring can be estimated using the strain energy stored in it. The total
strain energy for a helical spring is composed of torsional component and a shear component. The
shear component is quite negligible, and the final equation is,

12



21 F? 1
n=——+——
2GJ 2AG

The spring rate and hence,

4 2
d and A = ﬁ
4

T=FE: l1=mDN: J=m.
2 32

_4F’D°N F’DN
G.d* Gd?

U

Where N is the number of active coils. The deflection in the spring, using Castigliano’s theorem

_8U _SFD N 4FDN
F @t Gd?

¥

Substituting C=D/d and rearranging

SFD3N{ 1 ]
V= 1+

SN 20 2

For normal range of C, the term within bracket (contribution of direct shear) is so negligible we
can write

or
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k=

3N spN

Efed LI Gdt
Y 8C

The spring stiffness or springs rate,

k:

F Gd Gd?f
Y s8N DN

Using the equation the number of active coils needed to maintain the desired deflection or spring
stiffness will be determined. In order to maintain proper contact and align the force along the
spring axis the ends are to be properly shaped.

End Construction

Coil compression springs generally use four different types of ends. These are illustrated in Fig.
below. and Table shows how the type of end used affects the number of coils and the spring length.
Foe important applications the ends of springs should always be of both squared and ground,
because a better or even transfer of the load is obtained.

N3= N‘[‘ N3= Nr '1 Na= N‘t _2 Na= Nt '2

Plain ends Plain ground ends Squared ends Squared ground ends

Figure 7: End construction of coil spring.
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Figure 8: Deflection analysis on coil spring.
Analysis of Suspension Mechanisms
» 3D mechanisms
» Compliant bushes create variable link lengths
» 2D approximations used for analysis

Requirement
» Guide the wheel along a vertical path

» Without change in camber
» Suspension mechanism has various SDOF mechanisms
The mobility of suspension mechanisms

Guide motion of each wheel along (unique) vertical path relative to the vehicle body without
significant change in camber.

Mobility (DOF) analysis is useful for checking for the appropriate number of degrees of
freedom,

Does not help in synthesis to provide the desired motion

15



Trunnion c
(2DOF) 7=

A B
Chassis Chassis
- link link
D C

B A

(a) Double wishbone (b) MacPherson strut

Figure 9: Two-dimensional kinematics of common suspension mechanisms
M =3(n-1)-jh-2jl

Semi-dependent Suspension

» The rigid connection between pairs of wheels is replaced by a compliant link.

» A beam which can bend and flex providing both positional control of the wheels as well as
compliance.

» Tend to be simple in construction but lack scope for design flexibility

» Additional compliance can be provided by rubber or hydro-elastic springs.

» Wheel camber is, in this case, the same as body roll

Figure 10: Trailing twist axle suspension

Suspension Types — Independent
e Motion of wheel pairs is independent, so that a disturbance at one wheel is not directly

transmitted to its partner
e Better ride and handling

16
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Figure 11: different types of independent suspension system
Roll centre analysis

» A point in the transverse plane through any pair of wheels at which a transverse force may
be applied to the sprung mass without causing it to roll

> Kinematics : the roll centre is the point about which the body can roll without any lateral
movement at either of the wheel contact areas

Rear roll
centre
Front roll
centre Roll axis

N\

Figure 10.16 Roll axis location
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Limitations of Roll Centre Analysis
» As roll of the sprung mass takes place, the suspension geometry changes, symmetry of the
suspension across the vehicle is lost and the definition of roll centre becomes invalid.
> It relates to the non-rolled vehicle condition and can therefore only be used for
approximations involving small angles of roll .
» Assumes no change in vehicle track as a result of small angles of roll.

Force Analysis - spring and wheel rates

e Relationship between spring deflections and wheel displacements in suspensions is non-
linear

e Desired wheel-rate (related to suspension natural frequency) has to be interpreted into a
spring-rate

W T

Figure 12: Force analysis on independent suspension system

» W and S are the wheel and spring forces respectively
» vand u are the corresponding deflections
> Notation for analysing spring and wheel rates in a double wishbone suspension

18



Spring and wheel rates

Begin by defining the suspension ratio as: R = T;
The spring stiftness 1s: f, = _ds dW@
‘ ke = = AR = R
From principle of virtual work
Sdu=Wdv
S _dv
R=2=49
W du
Wheel rate o= dw [
w dU WT

Combined Equation is

k = kyR? + s9R
dv

Similarly can be derived for other suspension
geometries

19
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Wheel-rate for constant natural frequency with variable payload
Simplest representation of undamped vibration

w — kh‘
n \! m

k, — wheel rate s

m_ — proportion of un-sprung mass

Change in wheel rate required for change in payload.

Static displacement 5. = M8
q k\x.’

To maintain w, constant, the static deflection needs to be
constant. Combining both equations

_w
dW/dv

5 aw _dv
0, = constant, or T

Integrating the equation and substituting with initial
conditions provides the following expression

U—Usg
W= We °
Substituting back , we obtain
U—Ug
W dU 55

20



Wheel load v. wheel deflection Wheel rate v. wheel deflection

3 I I 20 I I
J
z Ms E 15 —
B o
2 § 10 :
4] —
£ 11— — S
= ] £ 5 —
R
Pre-load y
0 A | Vs | 0 | ° |
0 0.1 0.2 0.3

0 0.1 0.2 0.3
Wheel deflection, m

Typical wheel load and wheel rate as functions of wheel displacement

Wheel deflection, m

R and dR/dv are known from geometric analysis
fl',; = f(w R> + S‘% gives k. if k,, is known from the above graphs
¢

k. can be obtained as a function of v and u so as to get constant frequency

Forces in suspension members — Basics

R/
L4

Mass of the members is negligible compared to that of the applied loading.

X/
X4

L)

to be known

Familiar with the use of free-body diagrams for determining internal forces in structures
Conditions for equilibrium

X/
X4

L)

e

%

F. A B__ Fg

O O For equilibrium: Fy = Fg and

forces must be collinear

For equilibrium
>F=0
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Friction and compliance at the joints assumed negligible and the spring or wheel rate needs



Equilibrium of two and three force members, (a) Requirements for equilibrium of a two force
member (b) Requirements for equilibrium of a three-force member

Anti-squat / Anti-dive

» During braking there is a tendency for the sprung mass to “dive” (nose down) and
» During acceleration the reverse occurs, with the nose lifting and the rear end “squatting”

Figure 13: Free body diagram of a vehicle during braking
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UNIT IV PERFORMANCE OF VEHICLE



PERFORMANCE OF AUTOMOBILE

Forces and couples on the wheels, tractive and breaking properties of tires, cornering properties of
the tires, slip angle, cornering force, camber thrust, deformation of wheel and ground, power of

propulsion, road performance curves, resistances- air, rolling and grade, deformation of center of
gravity of vehicle, load distribution, stability on a curved track slope and banked road. Calculation

of tractive effort and reactions for different drive.

TIRE

A modern tire is a mixture of steel, fabric, and rubber. The main composites of a passenger car
tire with an overall mass of 8:5 kg are listed in Table below.

Table 1: Tire composites

Reinforcements: steel, rayon, nylon 16%
Rubber: natural/synthetic 38%
Compounds: carbon, silica, chalk 30%
Softener: oil, resin 10%
Vulcanization: sulphur, zinc oxide, 4%
Miscellaneous 2%

TIRE FORCES AND TORQUES
In any point of contact between the tire and the road surface normal and friction forces are

transmitted. According to the tire’s profile design the contact patch forms a not necessarily

coherent area
180 mm >|

- A

»

140 mm

Y

Figure 1: Footprint of a test tire of size 205/55 R16 at Fz = 4700 N and p = 2:5 bar

The effect of the contact forces can be fully described by a resulting force vector applied at a
specific point of the contact patch and a torque vector. The vectors are described in a track-fixed
reference frame. The z-axis is normal to the track, the x- axis is perpendicular to the z-axis and

2



perpendicular to the wheel rotation axis eyR. Then, the demand for a right-handed reference frame
also fixes the y-axis.

Fx longitudinal force

Fy lateral force

Fz vertical force or wheel load
Tx tilting torque

Ty rolling resistance torque

Tz self aligning and bore torque

Figure 2: Contact forces and moments of tire.

The components of the contact force vector are named according to the direction of the axes, Fig.
2. A non-symmetric distribution of the forces in the contact patch causes torques around the x and
y axes. A cambered tire generates a tilting torque Tx. The torque Ty includes the rolling resistance
of the tire. In particular, the torque around the z-axis is important in vehicle dynamics. It consists
of two parts,
Tz=TB + TS - 1

The rotation of the tire around the z-axis causes the bore torque TB. The self-aligning torque TS
takes into account that, in general, the resulting lateral force is not acting in the center of the contact

patch.
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Figure 3: Tire axis system

There are three forces and three moments acting on the tire from the ground. Tractive force (or
longitudinal force) Fx is the component in the X direction of the resultant force exerted on the tire
by the road. Lateral force Fy is the component in the Y direction, and normal force Fz is the
component in the Z direction. Overturning moment Mx is the moment about the X axis exerted on
the tire by the road. Rolling resistance moment My is the moment about the Y axis, and aligning
torque Mz is the moment about the Z axis With this axis system, many performance parameters of
the tire can be conveniently defined. For instance, the longitudinal shift of the center of normal
pressure is determined by the ratio of the rolling resistance moment to the normal load. The lateral
shift of the center of normal pressure is defined by the ratio of the overturning moment to the
normal load. The integration of longitudinal shear stresses over the entire contact patch represents
the tractive or braking force. A driving torque about the axis of rotation of the tire produces a force
for accelerating the vehicle, and a braking torque produces a force for decelerating the vehicle.
There are two important angles associated with a rolling tire: the slip angle and the camber angle.
Slip angle (a)is the angle formed between the direction of wheel travel and the line of intersection
of the wheel plane with the road surface. Camber angle (Y) is the angle formed between the XZ
plane and the wheel plane. The lateral force at the tire—ground contact patch is a function of both
the slip angle and the camber angle.

ROLLING RESISTANCE OF TIRES

The rolling resistance of tires on hard surfaces is primarily caused by the hysteresis in tire materials
due to the deflection of the carcass while rolling. Friction between the tire and the road caused by
sliding, the resistance due to air circulating inside the tire, and the fan effect of the rotating tire on
the surrounding air also contribute to the rolling resistance of the tire, but they are of secondary
importance When a tire is rolling, the carcass is deflected in the area of ground contact.



As a result of tire distortion, the normal pressure in the leading half of the contact patch is higher
than that in the trailing half. The center of normal pressure is shifted in the direction of rolling.
This shift produces a moment about the axis of rotation of the tire, which is the rolling resistance
moment. In a free-rolling tire, the applied wheel torque is zero; therefore, a horizontal force at the
tire—ground contact patch must exist to maintain equilibrium. This resultant horizontal force is
generally known as the rolling resistance.

The ratio of the rolling resistance to the normal load on the tire is defined as the coefficient of
rolling resistance.

A number of factors affect the rolling resistance of a pneumatic tire. They include the structure of
the tire (construction and materials) and its operating conditions (surface conditions, inflation
pressure, speed, temperature, etc.). Tire construction has a significant influence on its rolling
resistance. Figure 1.3 shows the rolling resistance coefficient at various speeds of a range of bias-
ply and radial-ply passenger car tires at rated loads and inflation pressures on a smooth road. The
difference in rolling resistance coefficient between a bias-ply and a radial-ply truck tire of the same
size under rated conditions is shown in Fig. 1.4. Thicker treads and sidewalls and an increased
number of carcass plies tend to increase the rolling resistance because of greater hysteresis losses.

Tires made of synthetic rubber compounds generally have higher rolling resistance than those
made of natural rubber.
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Figure 4: Variation of rolling resistance coefficient of radial ply and bias ply tire in different road
condition.
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Figure 5: Variation of rolling resistance coefficient of radial ply and bias ply tire in different road
condition and inflation pressure.
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Figure 6: Variation of rolling resistance coefficient of radial ply, bias and belted bias ply tire in
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TRACTIVE (BRAKING) EFFORT AND LONGITUDINAL SLIP (SKID) OF TIRE

When a driving torque is applied to a pneumatic tire, a tractive force is developed at the tire—
ground contact patch, as shown in Fig. 1.15 [1.6]. At the same time, the tire tread in front of and
within the contact patch is subjected to compression. A corresponding shear deformation of the
sidewall of the tire is also developed.

As tread elements are compressed before entering the contact region, the distance that the tire
travels when subject to a driving torque will be less than that in free rolling. This phenomenon is
usually referred to as longitudinal slip. The longitudinal slip of the vehicle running gear, when a
driving torque is applied, is usually defined by

Iy o I

V)
f=(|—— X |m%=(1—%]>«: 100%

Few )

where V is the linear speed of the tire center, o is the angular speed of the tire, r is the rolling radius
of the free-rolling tire, and re is the effective rolling radius of the tire, which is the ratio of the
linear speed of the tire center to the angular speed of the tire.



TABLE 1.1 Coefficient of Rolling Resistance

Road Surface

Coefficient of Rolling Resistance

Car tires
Concrete, asphalt
Rolled gravel
Tarmacadam
Unpaved road
Field

Truck tires
Concrete, asphalt

NORMAL
PRESSURE

LONGITUDINAL
STRESS

0.013
0.02
0.025
0.05
0.1-0.35

0.006-0.01

Figure 8: Behaviour of a tire under the action of a driving torque.

When a driving torque is applied, the tire rotates without the equivalent translatory progression;
therefore, 7,,> V and a positive value for slip results. If a tire is rotating at a certain angular speed
but the linear speed of the tire center is zero, then in accordance with Eq. 1.5, the longitudinal slip
of the tire will be 100%. This is often observed on an icy surface, where the driven tires are
spinning at high angular speeds, while the vehicle does not move forward.

Longitudinal slip is defined as ‘‘the ratio of the longitudinal slip velocity to the spin velocity of
the straight free-rolling tire expressed as a percentage.”’

The longitudinal slip velocity is taken as ‘‘the difference between the spin velocity of the driven
or braked tire and the spin velocity of the straight free-rolling tire

CORNERING PROPERTIES OF TIRES

Slip Angle and Cornering Force



When a pneumatic tire is not subject to any force perpendicular to the wheel plane (i.e., side force),
it will move along the wheel plane. If, however, a side force Fs is applied to a tire, a lateral force
will be developed at the contact patch, and the tire will move along a path at an angle (o) with the
wheel plane, as OA shown in Fig.9. The angle (a) is usually referred to as the slip angle, and the
phenomenon of side slip is mainly due to the lateral elasticity of the tire.

Figure 9: Behaviour of tire subjected to side force.

The lateral force developed at the tire—ground contact patch is usually called the cornering force
Fy_when the camber angle of the wheel is zero. The relationship between the cornering force and
the slip angle is of fundamental importance to the directional control and stability of road vehicles.
At small slip angles, the cornering force in the ground plane is normally behind the applied side
force, giving rise to a torque (or couple), which tends to align the wheel plane with the direction
of motion. This torque is called the aligning or self-aligning torque, and is one of the primary
restoring moments which help the steered tire return to the original position after negotiating a
turn. The distance tp between the side force and the cornering force is called the pneumatic trail,
and the product of the cornering force and the pneumatic trail determines the self-aligning torque.

Typical plots of the cornering force as a function of the slip angle for a bias-ply and a radial-ply
passenger car tire are shown in Fig.9. It can be seen that for slip angles below a certain value, such
as 4_shown in Fig 10, the cornering force is approximately proportional to the slip angle. Beyond



that, the cornering force increases at a lower rate with an increase of the slip angle, and it reaches
a maximum value where the tire begins sliding laterally. For passenger car tires, the maximum
cornering force may occur at a slip angle of about 18°, while for racing car tires, the cornering
force may peak at approximately 6°. Figure 10 shows that the cornering force of a bias-ply tire
increases more slowly with an increase of the slip angle than that of a radial-ply tire. These
characteristics are considered to be more suited to two-wheeled vehicles, such as motorcycles. A
more gradual increase of the cornering force with the slip angle enables the driver to exercise better
control over a two-wheeled vehicle. This is one of the reasons why bias-ply tires are used for
motorcycles.
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Figure 10: Cornering characteristics of a bias ply and radial ply car tire.
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Figure 11: Cornering characteristics of a bias ply and radial ply of truck tire.

10



LOAD DISTRIBUTION ON VEHICLE
1. LOAD DISTRIBUTION

THREE WHEELED VEHICLE:
The forces acting on a vehicle at rest are shown in figure.

; e
_-_'_E:_'_'_' C'___C_-_G'_'_-—'___'_-_'—o_
s e
O LIRS
@It A
= = -
~ | g

Where,
W= weight of the wheel, N,
b= wheelbase, m,
I=distance of CG from the rear axle, m,
h=height of CG from road surface, m,
c=distance of CG from the central axis, m,
a= wheel track, m,
RF = vertical reaction at front wheel, N,
RR 1, RR2 = vertical reaction at the rear wheels, N

There are three unknowns which can be determined as follows:
Moment about rear axle gives

pr == Wl
wi
Therefore, Rp = o

Moment about central axis gives,
(Rr1 + Rz)5 = We
Therefore,
2W,

RRZ . RRl &y

a
Moment about central axis of the front wheel gives,

(Rry + Rr2)b =W (b — 1)
Therefore

11



(b-1D l
RR1+RR2= T=W(1_ )

b

Addition and subtraction of last two equations respectively gives,

And

e w (1 l ZC)
B2 b a
Also W = Ry + Rp; + R, must be satisfied and server as an extra equation for alternative solution.

FOUR-WHEELED VEHICLE:

Forces acting on a four-wheeled vehicle at rest, we can form three independent equations to take care of
four unknown viz., four reactions at the wheels. Thus the problem is simplified by considering it as a two-wheeled
vehicle, i.e. the reactions on both rear wheels is equal and also on both front wheels. Let R and Ry be vertical
reactions at front and rear wheel respectively,

The,
0=10
h—s'2td
: R
Re "
Z V=0
Gives,
W =Ri +Rp
Z MR =0
Gives,
Wl = pr
74!
Rp = T
Substituting the value of Ry in the above,
l
Rp=W(1—-—
R=WA-7)

2. STABILITY ON A SLOPE, CURVED TRACK AND A BANKED ROAD

STABILITY OF A VEHICLE ON A SLOPE:

12



Let the vehicle rests on a slope of inclination © to the horizontal. This alters the distribution of the weight between
the front and back axle and gives rise to reaction which can have components along the perpendicular to the inclined
plane as shown.

Now, resolving forces parallel and perpendicular to the slope respectively,
Wsin@ = Fp + Fy
W cos@ = Rp + Ry

And Z Mp =0
Whsin@ + Rgb = W (b — 1) cos 8
Therefore,
w :
Ry =?[(b —1)cosf — hsinf]
And hence

Rp =W cos8 — Ry

Wh

wl
= Wcos@ —Wcos 0 +Tc056 +Tsin0

w
o [lcosB + hsinf]

If an angle O is gradually increased a situation arises when
(a)Either the vehicle is about to overturn or
(b)The vehicle is about to slide down the slope
The Instability due to case (a) happens at a point when RF becomes zero and hence,

w
= [(b — Dcos@ — hsinf]

Thus the limiting angle ©L for overturning is given by,
oo, = ()
This indicates that at the point of overturning, the lines of action of weights W passes through the contact point F.
For the case (b) to arise, the limiting value of © is given b
W sin 0 — Fp + FR
The value of (FR+ FL) can be determined under following condition. Let the brakes be applied to prevent this
situation.
Then two cases may arrive:
(1) The brakes are not efficient enough to prevent the wheels from turning before they slide. In case the
limiting value of © can be determined by the brake Torques available.
If TF and TR are the braking Torques at front and rear wheels respectively then,
TF o FFT
TR = FRT
Where r is the radius of the wheel



Now,

Or

(ii)

But

The Brakes are Sufficiently powerful for the coefficient of adhesion p to limit the sliding of the vehicle,
then,
Fp+ Fp = u(Rp + Rg) = uW cos@
FF + FR == MW Sin@

Therefore, OL is given by,

Or

Wsin8, = uW cos 6,

tan@, = pu

It should be noted up that when the vehicle is being driven up, the angle of overturning is in,
General, smaller than in the present case and also the condition of instability becomes different from those
discussed above.

STABILITY OF A VEHICLE ON A BANKED TRACK:

The force, which are acting are shown in fig.

Where,

Then,

W= weight of vehicle

V= velocity of vehicle on banked track.

C=radius of curved path measured at CG of vehicle.

R; and R ,=normal reaction at inner and outer wheels respectively,
F; and E,=normal reaction at inner and outer wheels respectively,
u= coefficient of adhesion between tyre and road surface

a = length of wheel track,

©= inclination of wheels axes to the horizontal,

2

e centrifugal force actign at CG

Equating sum of vertical force to zero:

Zv=0

14



VZ

Rop +R; =W cos@ + sinf
Equating sum of Horizontal force to zero:
Z H=0
wvy?
cosf — Wsin6

Fo+Fy =
0TIy gC

ZMO=0

L —,
(R, I)Z_QC cos sin

Equating sum of moment about ‘0’ equal to zero:

o _ wVZ22h 0w o
(R, ’)_gCaCOS —sin

wv?, 2h 2h
2R, = ——(sm@ +—c050) + W(cos@ ——sm0>
g € a a

And subtracting equation (iii) from equation (i)
2

wve, 2h 2h
2R, = ——(sme ——cose) + W (cose +—sme)
g € a a

If the vehicle begins to slide outward along the banking at the limiting speed, V, then,
Fy + Fo = u(Ry + Ry)
Substitution of equation (i) and (ii) in equation (iii) gives,
45 WV .
uW cos @ + y=——sin@ = ——cosf — Wsin6
g cC g c
Or,

Limiting speed: V§ =gC sin 0+ cos 0

cos O@—psiné
If Vj is the overturning speed of vehicle then putting R; = 0 in equation (i) and (iii), gives
wWVz W V2 2h 2h
W cos @ + ——sinf = ———cosf — W —sin8
g C g C a a
or,
Overturning Speed:

(asinB + 2h cos0O)

Vi=
° =9 3L cos0 — asind




CURVED TRACK
Stability of a Vehicle Taking a Turn

a) A four-wheeled vehicle

0ly |

¥

Let a vehicle take a turn to the left as shown in fig.

Where C =radius of curved path measured at C.G. of the vehicle, m
r = wheel radius, m
a = wheel track, m
b = wheel base, m
h = height of C.G of the vehicle from ground, m
| = distance of C.G. in front of rear axle axis, m
V = linear speed of the vehicle on the road, m/sec
W = weight of the vehicle, kgf.

I) Reaction at the wheels due to weight

Let Rjp and Ry be the normal reactions at the inner front and inner rear wheels respectively and Ry and
Ror be the normal reactions at the outer front and outer rear wheels respectively.

Wi
R + R = —
IF OF b
Rp+Ren = W[1—l]
b
Since, Re =Rg
and R, =R

therefore, R =Rz = %kgf

w |
RIR = ROR = ?[1—F]kgf



ii) Reaction at the wheels due to centrifugal force

W V2

C

The centrifugal force acts outward through C.G of the vehicle with magnitude = 9

W Vv?
[: 5c
horizontal reaction that constitutes a couple g tending to overturn the vehicle. This couple is balanced
by vertical reactions at the wheels which are downward at the two inner wheels and upward at the two outer wheels,
as shown in above fig.

. This produces a

If Pyr and Py are the inner and outer normal reactions at front wheels and similarly P and Pog for the rear wheels,
then

W VZh
Pr +Pr = For +Por = Enggf
2
Now PlF: OF:MV_nkgf
2b gCa
W 1\ V2 h
and P, +P,.=—|1-—|—=kgf
RoOR Zb[ b]gCag

iii) Reaction at the wheels due to Gyroscopic effect

*If a body revolves about OX and if a couple, called Gyroscopic couple, is applied along OY, then the body tries to
process about axis OZ. this is called Gyroscopic effect. The planes of spin, gyroscopic couple and precession are
mutually perpendicular. The direction of precession is such that the axis of spin tends to place itself in line with the
axis of the applied torque (i.e gyroscopic torque) and in the same sense.

The magnitude of applied gyroscopic couple = Iwa,

Where [ = the polar moment of inertia of the body
o = angular velocity of spin
and o, = angular velocity of precession

The reaction couple exerted on the body is equal in magnitude to the applied couple but opposite in direction.
When the vehicle takes a turn the gyroscopic* effect appears

a) due to the precession of rotating wheels and other parts either rotating at the engine speed or the wheel
speed but parallel to the plane of rotation of the wheel.

b) due to the precession of engine parts and also others rotating either at engine or wheel speed but
perpendicular to the plane of rotation of wheel. The axes of rotation in (a) and (b) are horizontal.

Let  Ir=moment of inertia of the rotating parts of the engine (faster moving), kgf-m”
I, = moment of inertia of the slower rotating parts like wheels, kgf-m”

oy, o, = angular velocity of the engine and the wheel respectively (velocity of spin), rad/sec

G = overall gear ration = o/ o,
N =r.p.m. of the engine = (60/27) .



Case (a) we have

GV _V
—(l, £

I, Gl
(,61)

S

Then, ZI o=l —+I

-ve sign has been incorporated to take care of situations where the direction of o is opposite to that of ..
The angular velocity of precession,

2n

® :Xrad/sec——N—rad/sec
A & 60 GC

Hence the gyroscopic couple

The magnitude of vertical reaction due to this couple is same at the outer and inner wheels and its effect (reaction
couple is to roll the car in an outward manner similarly to that caused by the centrifugal effect. The situation is
shown in fig.

If Qi and Qop are respectively inner and outer vertical reactions at the front wheels and Q and Qog are
similarly at the rear wheels, then

Qi=Qir+Qir=Qor+ Qor=Qo

I‘)
1@
CraJ (I£6I))

Gyro. \
c°‘ip'e N\ Gyro. reaction
‘\ COUple -~
pes ‘.\
__q\
8 J : P S
(a) ' (b)

Fig. 99

Qir=QoF= R Qor
‘70 (Is+G'I/) kgs
Where Q;r and Qg act downward and Qg and Qog act upward.
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In this analysis, I represents the moment of inertia of all the wheels taken together; and the moment of
inertia of the individual wheels have been assumed to equal one another. If the moment of inertia of front and rear
wheels are different then while calculating individual reactions at the wheels, the respective moment of inertia
should be used; but for the calculation of the total gyroscopic torque, individual moment of inertia can be added,
giving I, = X 1w, where I = moment of inertia of the wheels. This is because the velocity of spin and the velocity of
precession are the same for all the wheels.

Case (b) In this case also we can write

Gv .V

o= l.— | —
2 Yo " g

But here L stands for the moment of inertia of the slower moving parts rotating in a plane parallel to the plane of the

rotation of the engine. The —ve sign takes care of the rotation in a direction opposite to that of the engine.
The angular velocity of precession

& M rad/sec
C

Hence gyroscopic couple

V3Crg

[1G I, ]kgf —m

Let the engine rotate in the clockwise direction when viewed from the front. then the reaction couple will
tend to lift the rear wheels and depress the front ones as shown in fig.

Gyro. reaction couple
»

Thus the effect is to increase the front wheel loads or decrease the rear wheel loads by

\
2Crag

LG +1, Jkgf

If during a left-hand turn, the engine rotates in the anti-clock-wise direction when viewed from the front, the
effect of the reaction couple due to the engine gyroscopic couple will be just the reverse of the above situation, i.e
the reaction couple will tend to lift the front wheels and depress the rear ones.

Now if the vehicle takes a right-hand turn, the above results for the inner and outer wheels will not be
affected both in magnitude and direction but the gyroscopic torque due to the engine will be only affected in
direction and will be opposite that in the above cases.

When the vehicle takes a turn, the present analysis reveals that precessional (that of wheels) and centrifugal
effects are added together and act in a direction opposite to the static distribution of the load at the wheels tending to



overturn it. Considering the sum total of the reactions at the inner and outer wheels it can be stated that the
parameters responsible for overturning are as follows.

If the vehicle taking a turn at high speed. i.e wis high.

If the loaded vehicle is sufficiently high over the ground making h high.
If the vehicle is taking a sharp turn, i.e C is small.

If the vehicle is overloaded, i.e W is high.

0o

In this article, the case of the vehicle taking a turn on a level is considered. If the turning of the vehicle on a banked
track is considered, then an additional parameter 0, the inclination of the wheel axes to the horizontal will appear.
Art 9.10 gives partial treatment of this situation where gyroscopic effects have not been considered.

3. CALCULATION OF TRACTIVE EFFORT AND REACTIONS FOR DIFFERENT DRIVES

Calculation of Maximum Acceleration, Maximum Tractive Effort and Reactions for Different Drives:

Front Wheel Drive:
The forces acting on the vehicle and giving rise to dynamic equilibrium are shown in fig.
If

b = wheel base,

h =height of C.G from the road surface,

| = distance of C.G from rear axle,

1= coefficient of adhesion between the tyres and road surface

RF and RR = total normal reactions at front and rear wheels respectively,

W = weight of the car.
Then the maximum tractive effort, Fz = uRp produces maximum forward acceleration, f and (W/g)f is the inertia
force opposite to acceleration, f.
Hence YV =0 gives,

W=RF+RR
YH =0 gives,

Fr =puR —Wf

F = URF g
And
YMR =0 gives,

w
Rpb + 3 fh=wl
Substituting the value of RF, gives

Wf1b+wfh—Wl
TR

g
£<§+h)=l

Therefore,
g b+ph
Solving Ry and Ry become
l
RF N b+th
b—1+
R I w



Rear Wheel Drive:
Here the tractive effort acts only on rear wheels. Hence eliminating FF and applying FR to the rear wheels in fig.,
maximum tractive effort becomes,

Fr = IRy
Now, Y V=0 gives, W=RR+RF
YH=0 gives, FR = uRR=(W /g)f
And
Y MF=0 gives,

RRb=W(b -1)+ W/g)fh
Substituting the value of RR gives,

Wf w
—=b=WOh-)+—fh
gu g
Or,
b
L(— - h) =l
g\u
Therefore,
f_u®-D
g b—ph
Solving of RR and RF gives,
RR=——W and,
b=puh
RFEl_”h
b=ph

FOUR WHEEL DRIVE
This may be with or without third differential
(1) Without third differential:-in this case both FF and FR come into play. Assuming that limiting friction occurs at
all the four wheels simultaneously, the maximum tractive effect,
F=FR+FF =pRR+pRF

V=0,
Gives
W=RF+RR
SH=0,
Gives
(W\g) f= pRR+PRF =l RR+RF =W
Hence,

Tg=n
(2)With third differential:-The torque at the front and rear wheels becomes equal with the application of third
differential. Slip occurs at the wheels where the normal reaction is smaller and thus limits the tractive effect. In
case, the load distribution to the front and rear wheels is equal, the slip has to occur first at the front wheels because
the static normal reaction at front wheels is reduced due to inertia effect.

Thus,
V=0
Gives
W=RR+RF
TH=0
Gives,

(W/g) f= yRR+pRF
And psRR=pRF due to application of third differential, where ps is the critical working coefficient of friction
being less than p, the limiting value.



Assuming slip to occur at front wheels first, RF<RR, then
2uRF = (W/g)f
ZMR =0 gives,
RF b+ (W/g) f h=WI
Substituting the value of

PROBLEMS 1:

A car weighing 2175 kgf has a static weight distribution on the axles of 50 : 50. The wheel base in 3 m and the
height of centre of gravity above ground is 0.55 m. if the coefficient of friction on the highway is 0.6, calculate
the advantage of having rear wheel drive rather than front wheel drive as far as gradiability is concerned, if
engine power is not a limitation.

Solution: C.G. bisects the wheel base as distribution of static weight on the axle is 50 : 50.

I:E:1.5 m.

Hence,
Rear Wheel Drive
Considering the car moving at constant speed up a grade of angle 0, the forces giving equilibrium are as
shown in fig.
Then, we have
Rr+Rr= W cosb
and FR=}JRR =Wsin 6

Motion
—_

tan6 = KRy
By division, Rt RF
Taking moment about G.G
Rp 1.5+uR; 0.55 =Ry 1.5
n0.55
or R. =R [1-——
PR ( 1.5 j
=R, [1_ 0.6x O.55j
18
=R;(1-0.2) =0.78,
0.6R; 06

Therefore, tan6= =0.337

R.+0.78R, 178

22



Percentage grade = -tan 6 x 100 =33.7%
Hence in case of rear wheel drive the maximum grade which the car can negotiate is 33.7%.

Front Wheel Drive
In this case also, similarly as last one, we have

Rg+ Rp=Wcos 6
Rp=uRp=Wsin 0.
Hence, tan e=-LRF—-
Re #R,
> Mc.G.=0 gives,

R.1.5+uR.0.55=R 1.5

-122R.

di RR:RF(HO'GXO'SSJ

06R. 06
R+1.20R. 227

Therefore, tan6=

=0.27 or 27%

Therefore, the car having rear wheel drive can negotiate

33.7-27 _6.7 _ 24 8%
27 7

more than the car having front wheel drive, so far as gradiability is concerned
PROBLEMS 2:
A motor car with wheel base 275 cm with a centre of gravity 85 cm above the ground and 115 ¢cm
behind the front axle has a coefficient of adhesion 0.6 between the tyre and the ground. Calculate the
maximum possible acceleration when the vehicle, is.
a) driven on four wheels,
b) driven on the front wheels only
c) driven on the rear wheels only
Solution :
b=275m
1=375-115=3.6m
h=085m
pn=0.6
a) Four wheel drive
Since it has not been mentioned about the use of third differential we shall take up both the cases.
i) Without third differential ;
f=pg=06x9.81=>5886m/sec.
ii) With third differential ; assuming that the slip occurs first at the front wheels, then
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_ 2ulg  2x0.6x1.6x9.81
b+2uh  2.75+2x0.6x0.85

_ 18.82 18.82
= = = 5m/sec2
2.75+1.02 3.77
| 1.6
check Re= W= —— W=0.425 W.
b+ 2uh 37T

i.e Rr < Rr (=0.575 W), hence our assumption is correct.
b) Front wheel drive

_plg  0.6x1.6x9.81

~ btph 2.75+0.6x0.85

_ 941 94
2.75+0.51 3.26

= 2.89 m/sec?
c) Rear wheel drive

_ub-) g 0.6(2.75-1.6)9.81
bpuh  2.75-06x0.85

_06x1.15x9.81 6.765
2.75-0.51 2.24

= 3.02 m/sec®

PROBLEMS 3:
A vehicle of total weight 5000 kg, is held at rest on a slope of 10°. It has a wheel base of 225 cm and its
centre of gravity is 100 cm in front of the rear axle and 150 cm above the ground level.
Find:
a) What are the normal reactions at the wheels?
b) Assuming that sliding does not occur first, what will be the angle of slope so that the vehicle will
overturn?
¢) Assuming all the wheels are to be braked, what will be the angle of the slope so that the vehicle
will begin to slide if the co-efficient of adhesion between the type and the ground is 0.35?
Solution:

a) R.+R;=Wcosb
= 5000 x cos 10=5000x 0.9848
=4924.0 kg'.

Ris %[(b%)cos 6-h sin 6]

_5000

[(2.25— 1.0)x0.9848 - 1.5x 0.1736]
226

24



_ 5000[
2.25

= (5000x0.9706)/2.25 = 21.59 kdf.
Therefore, Re =4924 - 2159 = 2765 kdf.

1.25x0.9848 - 0.2604]

b) tan 6, =(b-1)/h
=(2.25-1.0)/1.5=0.8337

Hence 6, =39 49.

C) tan 6, =n=0.35

Hence 6, =19 17"
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UNIT V WHEELS AND TIRES



UNIT 5 WHEELS AND TYRES

Automobile wheels, pneumatic tires- construction, properties, characteristics, tread, bite, operation
and inflation pressure, wheel balancing, tire dynamics, ride characteristics, power consumed by
tire, over steer, under steer, steady state cornering, effect of breaking, driving torques on steering,
effect of camber, transient effects in cornering.

WHEELS

Modern vehicle wheels generally comprise a rim and nave or wheel disc. The rim is that part of
the wheel on which the tire is mounted. The nave joins the rim to the wheel hub. Wheel size is
primarily determined by the wheel-brake diameter and by the load-bearing capacity of the tire. The
most important terms are: rim width, rim diameter, center hole, hole circle diameter, number of
mounting holes, countersunk and stud design, and rim offset.
Rim designs
Rims differ from one another (depending upon the type of tire) in terms of number of parts and
cross-sectional rim shape. The most important rim details are: rim flange, rim bead seat and rim
base. Rims have one of the following cross-sectional shapes:

» Drop center,

> Flat base,

» 5°tapered bead seat or

» 15° tapered bead seat.

Figure 1: Cross sectional view of Disc wheel (e.g. 6J x 14 H 2).
Rim flange (e.g. "J" section), 2 5° tapered bead seat, 3 Hump (e.g. double hump H 2), 4 Rim, 5
Rim well, 6 Vent hole, 7 Wheel disc. D Rim diameter (e.g. 14"), L Hole circle diameter, M Rim
width (e.g. 6"), N Center hole, ET Rim offset.

Passenger Car wheel



Mass-produced wheels are made of sheet steel, with forged or cast aluminum and (less commonly)
magnesium being used primarily for special wheels and aftermarket wheels. Sheet aluminum,
although used in some cases, has not become popular for reasons of cost.

The wheels in particular feature considerable potential when it comes to complying with the
general trend towards lightweight construction in the automobile industry. The sheet-aluminum
wheel (with the wheel cap in the form of a full cover or painted in silver as a styling variant), and
the split wheel derived from the classical forged wheel, are among the lightest wheel versions
while at the same time being reasonably priced considering the weight savings involved.
Whereas the manufacturing process for the two-piece sheet-aluminium wheels and for the steel
wheel are practically identical, a difference is made between two different versions of 1-piece split
wheel:

1. An extruded section formed by a forging process. This is rolled and split at its circumference.
2. A circular blank stamped from the coil and deep-drawn.

There are further important lightweight-wheel versions on the market although these have still not
become very widespread. They include the cast-aluminium wheel with pressure-rolled rim and the
structured wheel which is designed primarily for maximum force transfer and less with regard to
an attractive appearance. Since wheel covers in different materials, shapes and colors can be fitted,
this provides a wide range of design possibilities.

The disc and rim are welded together on sheet-steel wheels; in the case of forged and cast light-
alloy wheels, these two components are usually manufactured in one piece. Multiple-piece designs,
even those which are made of different materials (e.g., magnesium disc and aluminum rim), are
available only in special cases and for racing vehicles. Car-wheel rims are almost always drop-
centre rims with double humps H2 (rarely with flat hump FH), tapered bead seats and "J" section
rim flange. The lower flange shape is frequently found on smaller vehicles; the higher flange
shapes JK and K are only rarely seen, and only on higher-weight vehicles.

Tires

The tire is the connecting link between the vehicle and the road. It is at that point that
the safe handling of a vehicle is ultimately decided. The tire transmits motive, braking and
lateral forces within a physical environment whose parameters define the limits

of the dynamic loads to which the vehicle is subjected. The decisive criteria for the
assessment of tire quality are:

» Straight-running ability

Stable cornering properties

Ability to grip on a variety of road surfaces

Ability to grip in a variety of weather conditions

Steering characteristics

Ride comfort (vibration absorption and damping, quietness)

Durability and

Economy

Tire Design

The design of a conventional tire is determined by the characteristics required of

it in normal conditions and emergency situations.

Radial tires

In a radial tire, the type which has now become the standard for cars, the cords of the
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tire-casing plies run radially, following the shortest route from bead to bead (Fig. 1).
A reinforcing belt runs around the perimeter of the relatively thin, flexible casing.

1 Rim bead seat
2 Hump

3 Rim flange

4 Casing

5 Air-tight rubber layer
6 Belt

7 Tread

8 Sidewall

9 Bead

10 Bead core
11 Valve

Figure 1: cross sectional view of a radial ply tire

Cross-ply tires

The cross-ply tire takes its name from the fact that the cords of alternate plies of the tire casing
run at right angles to one another so that they cross each other. This type of tire is now only of
significance for motorcycles, bicycles, and industrial and agricultural vehicles. On commercial
vehicles it is increasingly being supplanted by the radial tire.

TIRE SLIP

When a wheel rotates under the effect of power transmission or braking, complex physical
processes take place in the contact area between tire and road which place the rubber parts
under stress and cause them to partially slide, even if the wheel does not fully lock. In other
words, the elasticity of the tire causes it to deform and “flex” to a greater or lesser extent
depending on the weather conditions and the nature of the road surface.

As the tire is made largely of rubber, only a proportion of the “deformation energy” is
recovered as the tread moves out of the contact area. The tire heats up in the process and energy
loss occurs.

Ilustration of slip
The slip component of wheel rotation is referred to by A, where A = (VF—oU)/Yf



Figure 2: Effect of braking on a rolling wheel

The quantity vF is the vehicle road speed, vU is the circumferential velocity of the wheel
(Fig. 3). The formula states that brake slip occurs as soon as the wheel is rotating more
slowly than the vehicle road speed would normally demand. Only under that condition
can braking forces or acceleration forces be transmitted.

Since the tire slip is generated as a result of the vehicle’s longitudinal movement,

it is also referred to as “longitudinal slip”.

The slip generated during braking is usually termed “brake slip”.

If a tire is subjected to other factors in addition to slip (e.g. greater weight acting on the
wheels, extreme wheel positions), its force transmission and handling characteristics will
be adversely affected.

FORCES ACTING ON TIRE

A motor vehicle can only be made to move or change its direction in a specific way by
forces acting through the tires. Those forces are made up of the following components

Circumferential force
The circumferential force FU is produced by power transmission or braking. It acts on the
road surface as a linear force in line with the longitudinal axis of the vehicle and enables

the driver to increase the speed of the vehicle using the accelerator or slow it down with the

brakes.

Vertical tire force (normal force)

The vertical force acting downwards between the tire and road surface is called the vertical tire
force or normal force FN. It acts on the tires at all times regardless of the state of motion of

the vehicle, including, therefore, when the vehicle is stationary.

The vertical force is determined by the proportion of the combined weight of vehicle and
payload that is acting on the individual wheel concerned. It also depends on the degree of

upward or downward gradient of the road that the vehicle is standing on.



The highest levels of vertical force occur on a level road. Other forces acting on the vehicle
(e.g. heavier payload) can increase or decrease the vertical force. When cornering, the force is
reduced on the inner wheels and increased on the outer wheels.

Lateral force

Lateral forces act upon the wheels when steering or when there is a crosswind, for example.
They cause the vehicle to change direction.

Braking torque

When the brakes are applied, the brake shoes press against the brake drums (in the case of
drum brakes) or the brake pads press against the disks (in the case of disk brakes). This
generates frictional forces, the level of which can be controlled by the driver by the pressure
applied to the brake pedal.

The product of the frictional forces and the distance at which they act from the axis of rotation
of the wheel is the braking torque MB. That torque is effective at the circumference

of the tire under braking (Fig. 1).

Figure 3: Components of tire force and pressure distribution over the footprint of a radial tire

Coefficient of friction

When braking torque is applied to a wheel, a braking force FB is generated between the

tire and the road surface that is proportional to the braking torque under stationary conditions
(no wheel acceleration). The braking force transmitted to the road (frictional force FR) is
proportional to the vertical tire force FN:

FR = uHF -FN



The factor uHF is the coefficient of friction.
It defines the frictional properties of the various possible material pairings between tire
and road surface and the environmental conditions to which they are exposed.
The coefficient of friction is thus a measure of the braking force that can be transmitted.
It is dependent on

» the nature of the road surface,

> the condition of the tires,

» the vehicle’s road speed, and

> the weather conditions.
The coefficient of friction ultimately determines the degree to which the braking torque
is actually effective. For motor-vehicle tires, the coefficient of friction is at its highest on a
clean and dry road surface; it is at its lowest on ice. Fluids (e.g. water) or dirt between the
tire and the road surface reduce the coefficient of friction.

vx Linear velocity of wheel

FN Vertical tire force (normal force)
FB Braking force

MB Braking torque

Figure 4: Linear wheel velocity, vX, with
braking force, FB, and braking torque, MB

Table 1: Coefficients of friction, uHF, for tires in various conditions of wear, on various road
conditions and at various speeds



Vehicle

Tire Dry road Wetroad  Heavyran  Puddles loy

road speed  condition (depthof ~ (depthof  (depthof (blackice)

km/h
50

90

130

water 0.2 mm) water 1 mm)  water 2 mm)

PHF HHF HHF HHF HF
new 0.85 0.65 0.95 0.5 0.1
worn out 1 0.5 04 0.25 and below
new 0.8 0.6 03 0.05
worn out 0.95 0.2 0.1 0.0
new 0.75 0.55 0.2 0
worn out 0.9 0.2 0.1 0

Kinetic friction

>

When describing processes involving friction, a distinction is made between static
friction and kinetic friction. With solid bodies, the static friction is greater than kinetic
friction.

Accordingly, for a rolling rubber tire there are circumstances in which the coefficient
of friction is greater than when the wheel locks.

Nevertheless, the tire can also slide while it is rolling, and on motor vehicles this is
referred to as slip. curve represents the “stable zone” (partial braking zone), while the
falling slope is the “unstable zone”.

Most braking operations involve minimal levels of slip and take place within the stable
zone so that an increase in the degree of slip simultaneously produces an increase in
the usable adhesion. In the unstable zone, an increase in the amount of slip generally
produces a reduction in the level of adhesion.

When braking in such situations, the wheel can lock up within a fraction of a second,
and under acceleration the excess power-transmission torque rapidly increases the
wheel’s speed of rotation causing it to spin.

When a vehicle is traveling in a straight line, ABS and TCS prevent it entering the
unstable zone when braking or accelerating.
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Figure 5: Lateral slip angle, a, and the ~ Figure 6: Position of tire contact area
effect of lateral force, FS, relative to wheel in a right-hand bend
(overhead view) showing lateral force, FS, (front view)

There is a nonlinear relationship between the slip angle a and the lateral-force coefficient xS that
can be described by a lateral slip curve. In contrast with the coefficient of friction xHF that occurs
under acceleration and braking, the lateral-force coefficient xS is heavily dependent on the wheel
contact force FN. This characteristic is of particular interest to vehicle manufacturers when
designing suspension systems so that handling characteristics can be enhanced by stabilizers.

Effect of brake slip on lateral forces

When a vehicle is cornering, the centrifugal force acting outwards at the center of gravity must be
held in equilibrium by lateral forces on all the wheels in order for the vehicle to be able to follow
the curve of the road.

However, lateral forces can only be generated if the tires deform flexibly sideways so that the
direction of movement of the wheel’s center of gravity at the velocity, va, diverges from the wheel
center plane “m” by the lateral slip angle, a (Fig. 6).

Steady State cornering

Assume that a lateral force Fyis applied at the center of gravity of a car driving straight
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Figure 7: Vehicle behaviour on straight road condition

A wheel moving in the lateral lateral direction give rise to a cornering force.
Fy och self-aligning torque Mz =tp . Fy :

The slip angle a is the angle between the direction of the wheel and the direction of the velocity
vector v.

To begin with, a simple linear model will be used to represent the relation between the slip angle
o and the cornering force Fy
Fy=C,. A
where C, is called the cornering stiffness.
L I-'Ih{::: kg
R ——1 ]
Cer T P
TN X, l-'ll

L |
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Triangle to the left: &, + (90° — &, ) 4+ 90° = 180°

Triangle to the right: (8 — ar) + (90° — (ér — ar)) + 90° = 1807

Approximation of the angle at 00 o, + (& —ar) = &

Equations of mation with solutions:

W V2 kW
Fe+Fr=ma, = —— Fyr =may T =—FT

[ [ YT g R PR
FI_FW :Lﬂ;:[] g .,—1= L
i F T g RL
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Equations of motion with solutions

B L WWVaL
. B L Wveh
Foehh — R le = 152, =0 Fo = ma, - = = FRL
Equations of motions with solutions
mg W _mgh Wk
Wr+ W = 5=+ Wr=ZT-21T
E I Wl
Wl — Wb = L, =0 _MEL N
Fl L ) W = 1 51

A comparison of the solutions gives the relations

Fo =2W, . Fr =2W

Using the tire models, Fr = 20 rar and F; = 20, o, the slip angles
can be written as

For Wr a,
k¥r — — — -
T G g
_h _Wea
TR
The steering angle is
P L_I_ L W-a, W.a L a,
=40y —0r == 4+ —— — _= = us——
¢ R f R 'r_-nf g 'I:ctr g R g
where the understeer gradient is defined as
o w.l' Wr
o = T
W W W
Kus — '::u" - '::tr — ELCEfCDr[Cﬁrb_ Cnl"'ri}

K. = 0: The car is said to be understeer.
K, = 0: The car is said to be neutral steer.

ws <= 02 The car is said to be oversteer.
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The steering angle is

_ L vz L a,
ﬂr—E+KmE—E——E+ng
where the understeer gradient can be rewritten as
W W W
Kus = A = [r—-ﬂr& — L_n:l"-ri}

Cm" L_cu‘ B ELI::tffc-r

The sign of K gives the answer to (Question 3:

a Positive sign: You have to turn the steering wheel clockwise to make

the car stay on the same dircle.
The car turns towards the direction of the unperturbed path.

@ Egual to zero: You don't have to do anything. Just lie back and relax.

o Megative sign: You have to turn the steering wheel counterclockwise
to make the car stay on the same circle.

Understeer Coefficient (K,;)

Consider the relation

Interpretation:

The understeer gradient is equal to the difference between the ratios of the

load and cornering stiffness at the front and rear wheels, respectively.

13



The understeer gradient can be rewritten as

. L W Ve
oF = T —m[fm& — Cnf'riiﬁ
=H

Interpretation:

The sign of the understeer gradient depends on the difference between the
products of the comering stiffness and the distance to the center of gravity
at the rear and front wheels, respectively.

To give a more direct interpretation we shall only consider the equilibrium
of moments

'ri-F_l.rl" - 'F]'E_HT = 2h Coray — 2R (e, = 10,
which gives the relation
h Carar = hara,,

and the relation

between the angles.
Case of Neutral Steer

Assume that the radius of the curve R is constant and the speed V'
increases_ In this case Iy Cor — b, = 0 and the relation

I Coroy = b, 0,

gives oy = o, and
_ L
0 = 5 + ofF — oy
e S

R

does not depend on the speed.
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Case of under steer

In this case hCar — Ty = 0 and it follows from
hCorar = bCarax,

that the increase of ar has to larger than the increase of «,, when ¥V
increases.

Hence, the steering angle
O = — 4+ o — %,

has to be increasad.

Case of Oversteer
In this case b Car — i Car = 0 and it follows from

hlarar = BCarar

that the increase of o has to larger than the increase of of, when V'
inCreases.

Hence, the steering angle

4+ oy — r

. L
-b,r:ﬁ

has to be increasad.

Observation: f Kz <= 0and V = Vi = /gl/—K, then

L V=

and does not depend on R.
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Figure 8 : Basic analysis of steering behaviour
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