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UNIT1 - INTRODUCTION

1.1.1 Introduction

The Finite Element Method (FEM) is a numerical technique to find approximate solutions of partial
differential equations. It was originated from the need of solving complex elasticity and structural
analysis problems in Civil, Mechanical and Aerospace engineering. In a structural simulation, FEM
helps in producing stiffness and strength visualizations. It also helps to minimize materialweight and
its cost of the structures. FEM allows for detailed visualization and indicates the distribution of
stresses and strains inside the body of a structure. Many of FE software are powerful yet complex
tool meant for professional engineers with the training and education necessary to properly interpret
the results.

Several modern FEM packages include specific components such as fluid, thermal,
electromagnetic and structural working environments. FEM allows entire designs to be constructed,
refined and optimized before the design is manufactured. This powerful design tool has significantly
improved both the standard of engineering designs and the methodology of the design process in
many industrial applications. The use of FEM has significantly decreased the time to take products
from concept to the production line. One must take the advantage of the advent of faster generation
of personal computers for the analysis and design of engineering product with precision level of
accuracy.

1.1.2 Background of Finite Element Analysis
The finite element analysis can be traced back to the work by Alexander Hrennikoff (1941)and
Richard Courant(1942). Hrenikoff introduced the framework method, in which a plane elastic
medium was represented as collections of bars and beams.These pioneers share one essential
characteristic: mesh discretization of a continuous domain into a set of discrete sub-domains, usually
called elements.
e In 1950s, solution of large number of simultaneous equations became possible because of the
digitalcomputer.
e In 1960, Ray W. Clough first published a paper using term “Finite Element Method”.
e In 1965, First conference on “finite elements” was held.
e In 1967, the first book on the “Finite Element Method” was published by Zienkiewicz and
Chung.

e In the late 1960s and early 1970s, the FEM was applied to a wide variety of engineering
problems.



e In the 1970s, most commercial FEM software packages (ABAQUS, NASTRAN, ANSYS,
etc.) originated.Interactive FE programs on supercomputer lead to rapid growth of CAD
systems.

e In the 1980s, algorithm on electromagnetic applications, fluid flow and thermal analysis were
developed with the use of FE program.

e Engineers can evaluate ways to control the vibrations and extend the use of flexible,
deployablestructures in space using FE and other methods in the 1990s. Trends to solve fully
coupled solution of fluid flows with structural interactions, bio-mechanics related problems
with a higher level of accuracy were observed in this decade.

With the development of finite element method, together with tremendous increases in computing
power and convenience, today it is possible to understand structural behavior with levels of
accuracy. This was in fact the beyond of imagination before the computer age.

1.1.3 Numerical Methods

The formulation for structural analysis is generally based on the three fundamental relations:
equilibrium, constitutive and compatibility. There are two major approaches to the analysis:
Analytical and Numerical. Analytical approach which leads to closed-form solutions is effective in
case of simple geometry, boundary conditions, loadings and material properties. However, in reality,
such simple cases may not arise. As a result, various numerical methods are evolved for solving such
problems which are complex in nature. For numerical approach, the solutions will be approximate
when any of these relations are only approximately satisfied. The numerical method depends heavily
on the processing power of computers and is more applicable to structures of arbitrary size and
complexity. It is common practice to use approximate solutions of differential equations as the basis
for structural analysis. This is usually done using numerical approximation techniques. Few
numerical methods which are commonly used to solve solid and fluid mechanics problems are given
below.

e Finite Difference Method
e Finite Volume Method

e Finite Element Method

e Boundary Element Method
e Meshless Method

The application of finite difference method for engineering problems involves replacing the
governing differential equations and the boundary condition by suitable algebraic equations. For



example in the analysis of beam bending problem the differential equation is reduced to be solution
of algebraic equations written at every nodal point within the beam member. For example, the beam
equation can be expressed as:
d'w ¢
dx* ZE
To explain the concept of finite difference method let us consider a displacement function variable
namely w= f(x)
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Thus, eg. (1.1.1) can be expressed with the help of eq. (1.1.5) and can be written in finite difference
form as:
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Fig. 1.1.2 Finite difference equation at node i

Thus, the displacement at node i of the beam member corresponds to uniformly distributed load can
be obtained from eq. (1.1.6) with the help of boundary conditions. It may be interesting to note that,
the concept of node is used in the finite difference method. Basically, this method has an array of
grid points and is a point wise approximation, whereas, finite element method has an array of small
interconnecting sub-regions and is a piece wise approximation.

Each method has noteworthy advantages as well as limitations. However it is possible to
solve various problems by finite element method, even with highly complex geometry and loading
conditions, with the restriction that there is always some numerical errors. Therefore, effective and
reliable use of this method requires a solid understanding of its limitations.

1.1.4 Concepts of Elements and Nodes

Any continuum/domain can be divided into a number of pieces with very small dimensions. These
small pieces of finite dimension are called ‘Finite Elements’ (Fig. 1.1.3). A field quantity in each
element is allowed to have a simple spatial variation which can be described by polynomial terms.
Thus the original domain is considered as an assemblage of number of such small elements. These
elements are connected through number of joints which are called ‘Nodes’. While discretizing the
structural system, it is assumed that the elements are attached to the adjacent elements only at the
nodal points. Each element contains the material and geometrical properties. The material properties
inside an element are assumed to be constant. The elements may be 1D elements, 2D elements or 3D
elements. The physical object can be modeled by choosing appropriate element such as frame



element, plate element, shell element, solid element, etc. All elements are then assembled to obtain
the solution of the entire domain/structure under certain loading conditions. Nodes are assigned at a
certain density throughout the continuum depending on the anticipated stress levels of a particular
domain. Regions which will receive large amounts of stress variation usually have a higher node
density than those which experience little or no stress.

Typical Element

MNodal Point

Fig. 1.1.3 Finite element discretization of a domain

1.1.5 Degrees of Freedom

A structure can have infinite number of displacements. Approximation with a reasonable level of
accuracy can be achieved by assuming a limited number of displacements. This finite number of
displacements is the number of degrees of freedom of the structure. For example, the truss member
will undergo only axial deformation. Therefore, the degrees of freedom of a truss member with
respect to its own coordinate system will be one at each node. If a two dimension structure is
modeled by truss elements, then the deformation with respect to structural coordinate system will be
two and therefore degrees of freedom will also become two. The degrees of freedom for various

types of element are shown in Fig. 1.1.4 for easy understanding. Here (u,v,w) and (Q,QV,HZ)

represent displacement and rotation respectively.
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Basic Concepts of Finite Element Analysis

1.2.1 Idealization of a Continuum
A continuum may be discretized in different ways depending upon the geometrical configuration of
the domain. Fig. 1.2.1 shows the various ways of idealizing a continuum based on the geometry.

General Solid

|

Regular Solid
(Orthoganal dimensions)

b . Beam
{Thickness small {H. B much less than L)
v compared to Lengths)

! Bl

Membrane Plate Shell .
(In-Ptane, Only Axial) {Out of Plane, Only) {in-Flane and Bending)

Fig. 1.2.1 Various ways of Idealization of a Continuum

1.2.2 Discretization of Technique

The need of finite element analysis arises when the structural system in terms of its either geometry,
material properties, boundary conditions or loadings is complex in nature. For such case, the whole



structure needs to be subdivided into smaller elements. The whole structure is then analyzed by the
assemblage of all elements representing the complete structure including its all properties.

The subdivision process is an important task in finite element analysis and requires some
skill and knowledge. In this procedure, first, the number, shape, size and configuration of elements
have to be decided in such a manner that the real structure is simulated as closely as possible. The
discretization is to be in such that the results converge to the true solution. However, too fine mesh
will lead to extra computational effort. Fig. 1.2.2 shows a finite element mesh of a continuum using
triangular and quadrilateral elements. The assemblage of triangular elements in this case shows
better representation of the continuum. The discretization process also shows that the more accurate
representation is possible if the body is further subdivided into some finer mesh.

(b) Quadrilateral mesh

Fig. 1.2.2 Discretization of a continuum

1.2.3 Concepts of Finite Element Analysis

FEA consists of a computer model of a continuum that is stressed and analyzed for specific results.
A continuum has infinite particles with continuous variation of material properties. Therefore, it
needs to simplify to a finite size and is made up of an assemblage of substructures, components and
members. Discretization process is necessary to convert whole structure to an assemblage of
members/elements for determining its responses. Fig. 1.2.3 shows the process of idealization of
actual structure to a finite element form to obtain the response results. The assumptions are required
to be made by the experienced engineer with finite element background for getting appropriate
response results. On the basis of assumptions, the appropriate constitutive model can be constructed.



For the linear-elastic-static analysis of structures, the final form of equation will be made in the form
of F=Kdwhere F, K and d are the nodal loads, global stiffness and nodal displacements respectively.
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Varieties of engineering problem like solid and fluid mechanics, heat transfer can easily be solved by
the concept of finite element technique. The basic form of the equation will become as follows
where action, property and response parameter will vary for case to case as outlined in Table 1.2.1.

{Fi=[K]{d} OR {d}=[K]"{F}

!
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Table 1.2.1 Response parameters for different cases

Property Action Response
Solid Stiffness Load Displacement
Fluid Viscosity Body force Pressure/Velocity
Thermal Conductivity Heat Temperature

1.3.1 Advantages of FEA
1. The physical properties, which are intractable and complex for any closed bound solution,
can be analyzed by this method.
It can take care of any geometry (may be regular or irregular).
It can take care of any boundary conditions.
Material anisotropy and non-homogeneity can be catered without much difficulty.
It can take care of any type of loading conditions.
This method is superior to other approximate methods like Galerkine and Rayleigh-Ritz
methods.
In this method approximations are confined to small sub domains.
In this method, the admissible functions are valid over the simple domain and have nothing
to do with boundary, however simple or complex it may be.
9. Enable to computer programming.

o 0~ wDN

1.3.2 Disadvantages of FEA
1. Computational time involved in the solution of the problem is high.
2. For fluid dynamics problems some other methods of analysis may prove efficient than the
FEM.

1.3.3 Limitations of FEA




1. Proper engineering judgment is to be exercised to interpret results.

It requires large computer memory and computational time to obtainintend results.

3. There are certain categories of problems where other methods are more effective, e.g., fluid
problems having boundaries at infinity are better treated by the boundary element method.

4. For some problems, there may be a considerable amount of input data. Errors may creep up
in their preparation and the results thus obtained may also appear to be acceptable which
indicates deceptive state of affairs. It is always desirable to make a visual check of the input
data.

5. In the FEM,many problems lead to round-off errors. Computer works with a limited number
of digits and solving the problem with restricted number of digits may not yield the desired
degree of accuracy or it may give total erroneous results in some cases. For many problems
the increase in the number of digits for the purpose of calculation improves the accuracy.

1.3 4 Errorsand Accuracy in FEA

Every physical problem is formulated by simplifying certain assumptions. Solution to the problem,
classical or numerical, is to be viewed within the constraints imposed by these simplifications. The
material may be assumed to be homogeneous and isotropic; its behavior may be considered as
linearly elastic; the prediction of the exact load in any type of structure is next to impossible. As
such the true behavior of the structure is to be viewed with in these constraints and obvious errors
creep in engineering calculations.

1. The results will be erroneous if any mistake occurs in the input data. As such, preparation of
the input data should be made with great care.

2. When a continuum is discretised, an infinite degrees of freedom system is converted into a
model having finite number of degrees of freedom. In a continuum, functions which are
continuous are now replaced by ones which are piece-wise continuous within individual
elements. Thus the actual continuum is represented by a set of approximations.

3. The accuracy depends to a great extent on the mesh grading of the continuum. In regions of
high strain gradient, higher mesh grading is needed whereas in the regions of lower strain,
the mesh chosen may be coarser. As the element size decreases, the discretisation error
reduces.

4. Improper selection of shape of the element will lead to a considerable error in the solution.
Triangle elements in the shape of an equilateral or rectangular element in the shape of a
square will always perform better than those having unequal lengths of the sides. For very
long shapes, the attainment of convergence is extremely slow.

5. In the finite element analysis, the boundary conditions are imposed at the nodes of the
element whereas in an actual continuum, they are defined at the boundaries. Between the



nodes, the actual boundary conditions will depend on the shape functions of the element
forming the boundary.

. Simplification of the boundary is another source of error. The domain may be reduced to the
shape of polygon. If the mesh is refined, then the error involved in the discretized boundary
may be reduced.

During arithmetic operations, the numbers would be constantly round-off to some fixed
working length. These round—off errors may go on accumulating and then resulting accuracy
of the solution may be greatly impaired.



Stepsin Finite Element Analysis

1.4.1 Loading Conditions
There are multiple loading conditions which may be applied to a system. The load may be internal
and/or external in nature. Internal stresses/forces and strains/deformations are developed due to the
action of loads.Most loads are basically “Volume Loads” generated due to mass contained in a
volume. Loads may arise from fluid-structure interaction effects such as hydrodynamic pressure of
reservoir on dam, waves on offshore structures, wind load on buildings, pressure distribution on
aircraft etc. Again, loads may be static, dynamic or quasi-static in nature. All types of static loads
can be represented as:

e Point loads

e Line loads

e Area loads

e Volume loads
The loads which are not acting on the nodal points need to be transferred to the nodes properly using
finite element techniques.

1.4.2 Support Conditions
In finite element analysis, support conditions need to be taken care in the stiffness matrix of the
structure. For fixed support, the displacement and rotation in all the directionswill be restrained and
accordingly, the global stiffness matrix has to modify. If the support prevents translation only in one
direction, it can be modeled as ‘roller’ or ‘link supports’. Such link supports are commonly used in
finite element software to represent the actual structural state. Sometimes, the support itself
undergoes translation under loadings. Such supports are called as ‘elastic support” and are modeled
with ‘spring’. Such situation arises if the structures are resting on soil. The supports may be
represented in finite element modeling as:

e Point support

e Line support

e Area support

e Volume support



1.4.3 Type of Engineering Analysis
Finite element analysis consists of linear and non-linear models. On the basis of the structural system
and its loadings, the appropriate type of analysis is chosen. The type of analysis to be carried out
depends on the following criteria:

e Type of excitation (loads)

e Type of structure (material and geometry)

e Type of response

Considering above aspects, types of engineering analysis are decided. FEA is capable of using
multiple materials within the structure such as:
« Isotropic (i.e., identical throughout)
« Orthotropic (i.e., identical at 90°)
o General anisotropic (i.e., different throughout)
The Equilibrium Equations for different cases are as follows:
1. Linear-Static:

Ku=F (1.4.1)
2. Linear-Dynamic

MU(t) + Cu(t) + Ku(t) = F(t) (1.4.2)
3. Nonlinear - Static

Ku+F, =F (1.4.3)
1. Nonlinear-Dynamic

MU(t) + Cu(t) + Ku(t) + F(t),, = F(t) (1.4.4)

Here, M, C, K, F and U are mass, damping, stiffness, force and displacement of the structure
respectively. Table 1.4.1 shows various types of analysis which can be performed according to
engineering judgment.



Table 1.4.1 Types ofanalysis

Excitation | Structure | Response | Basic analysis type

Static Elastic Linear Linear-Elastic-Static Analysis

Static Elastic Nonlinear | Nonlinear-Elastic-Static Analysis
Static Inelastic Linear Linear-Inelastic-Static Analysis

Static Inelastic Nonlinear | Nonlinear-Inelastic-Static Analysis
Dynamic Elastic Linear Linear-Elastic-Dynamic Analysis
Dynamic Elastic Nonlinear | Nonlinear-Elastic-Dynamic Analysis
Dynamic Inelastic Linear Linear-Inelastic-Dynamic Analysis
Dynamic Inelastic Nonlinear | Nonlinear-Inelastic-Dynamic Analysis

1.4.4 Basic Steps in Finite Element Analysis
The following steps are performed for finite element analysis.

1.

Discretisation of the continuum: The continuum is divided into a number of elements by
imaginary lines or surfaces. The interconnected elements may have different sizes and
shapes.

Identification of variables: The elements are assumed to be connected at their intersecting
points referred to as nodal points. At each node, unknown displacements are to be prescribed.
Choice of approximating functions: Displacement function is the starting point of the
mathematical analysis. This represents the variation of the displacement within the element.
The displacement function may be approximated in the form a linear function or a higher-
order function. A convenient way to express it is by polynomial expressions. The shape or
geometry of the element may also be approximated.

Formation of the element stiffness matrix: After continuum is discretised with desired
element shapes, the individual element stiffness matrix is formulated. Basically it is a
minimization procedure whatever may be the approach adopted. For certain elements, the
form involves a great deal of sophistication. The geometry of the element is defined in
reference to the global frame. Coordinate transformation must be done for elements where it
IS necessary.

Formation of overall stiffness matrix: After the element stiffness matrices in global
coordinates are formed, they are assembled to form the overall stiffness matrix. The
assembly is done through the nodes which are common to adjacent elements. The overall
stiffness matrix is symmetric and banded.



6. Formation of the element loading matrix: The loading forms an essential parameter in any
structural engineering problem. The loading inside an element is transferred at the nodal
points and consistent element matrix is formed.

7. Formation of the overall loading matrix: Like the overall stiffness matrix, the element
loading matrices are assembled to form the overall loading matrix. This matrix has one
column per loading case and it is either a column vector or a rectangular matrix depending on
the number of loading cases.

8. Incorporation of boundary conditions: The boundary restraint conditions are to be
imposed in the stiffness matrix. There are various techniques available to satisfy the
boundary conditions. One is the size of the stiffness matrix may be reduced or condensed in
its final form. To ease computer programming aspect and to elegantly incorporate the
boundary conditions, the size of overall matrix is kept the same.

9. Solution of simultaneous equations:The unknown nodal displacements are calculated by
the multiplication of force vector with the inverse of stiffness matrix.

10. Calculation of stresses or stress-resultants: Nodal displacements are utilized for the
calculation of stresses or stress-resultants. This may be done for all elements of the
continuum or it may be limited to some predetermined elements. Results may also be
obtained by graphical means. It may desirable to plot the contours of the deformed shape of
the continuum.

The basic steps for finite element analysis are shown in the form of flow chart below:
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Fig. 1.4.1 Flowchart for steps in FEA

1.4.5 Element Library in FEA Software
A real structure can be modeled with various ways with appropriate assumptions. The structure may
be divided into following categories:

e Cable or tension structures

e Skeletal or framed structures
e Surface or spatial structures
e Solid structures

e Mixed structures



The configuration of structural elements depends upon the geometry of the structural system and the
number of independent space coordinates (i.e., X, y and z) required to describe the problem. Thus, the
element can be categorized as one, two or three dimensional element. One dimensional element can
be represented by a straight line whose ends will be nodal points. The skeletal structures are
generally modeled by this type of elements. The pin jointed bar or truss element is the simplest
structural element. This element undergoes only axial deformation. The beam element is another
type of element which undergoes in-plane transverse displacements and rotations. The frame
element is the combination of truss and beam element. Thus, the frame element has axial and in-
plane transverse displacements and rotations. This element is generally used to model 1D, 2D and
3D skeletal structural systems. Two-dimensional elements are generally used to model 2D and 3D
continuum. These elements are of constant thickness and material properties. The shapes of these
elements are triangular or rectangular and it consists of 3 to 9 or even more nodes. These elements
are used to solve many problems in solid mechanics such as plane stress, plane strain, plate bending.
Three-dimensional element is the most cumbersome which is generally used to model the 3-D
continuum. The elements have 6 to 27 numbers of nodes or more. Because of large degrees of
freedom, the analysis is time consuming using 3-D elementsand difficult to interpret its results.
However, for accurate analysis of the irregular continuum, 3-D elements are useful. To analyze any
real structure, appropriate elements are to be assigned for the finite element analysis. In standard
FEA software, following types of element library are used to discretize the domain.

e Truss element

e Beam element

e Frame element

e Membrane/ Plate/Shell element

o Solid element

o Composite element

e Shear panel

e Spring element

e Rigid/Link element

e Viscous damping element
The different types of elements available in standard finite element software are shown in Fig. 1.4.2.
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Fig. 1.4.2Varioustypes of elements for computer modeling



Finite Element Formulation Techniques
Virtual Work and Variational Principle

1.5.1 Introduction

Finite element formulation can be constructed from governing differential equations over a domain.
This can be formulated by various ways like Virtual Work Method, VariationalMethod, Weighted
Residual Method etc.

1.5.2 Principle of Virtual Work
The principle of virtual work is a very useful approach for solving varieties of structural mechanics
problem. When the force and displacement are unrelated to the cause and effect relation, the work is
called virtual work. Therefore, the virtual work may be caused by true force moving through
imaginary displacements or vice versa. Thus, the principle of virtual work can be divided into two
categories: (a) principle of virtual forces and (b) principle of virtual displacements. The principle of
virtual forces establishes the compatibility conditions. The principle of virtual displacements
establishes the conditions of equilibrium and is used in the displacement model of the finite element
technique.

The external virtual work is the work done by real load moving through imaginary
displacements in a structure. These loads include both the load distributed over the entire surface and
volume. Thus, the virtual work done by the external force is:

FFx FQX
OW_ = [:0u ov owiF, Wdl'+ | i0u ov owiiF, w2
- [t e J1 e o

Where, 6u, ov and dw are the components of the virtual displacements in x, y and z direction
respectively. Fry, Fry and Fr; are the surface forces and Fox, Foyand Fq, are the body forces in x, y
and z direction respectively. In the above equation, the integration is carried out over the entire
surface in the first term and over the entire volume in the second term. The above expression can be
rewritten as:

oW, = [ofa}" {F Jor + [[5{a}" {F, oo

Here,{d}T:{u v W}.For the three dimensional stress-strain condition, there are six

(15.2)

components of stresses (O'X,O'y,O'Z,’I' ’I'yz,’TZX) and six components of strains in virtual

Xy !
displacement fields (de,,0e,,0¢,,0,,,0v,,,0v,, ). Therefore, the virtual internal work can be

expressed as follows:



U= |10 0 0 0 0 0 1E O
{{ g, 08, O0E, OV, OV, “fzx} N (153)

Or
U= [ §{cV {5l
{{}{}d (1.5.4)

According to principle of virtual work, the work done by external forces due to the virtual
displacement of a structure in equilibrium is equal to the work done by the internal forces for the

virtual internal displacement. Therefore, W, =08U Thus egs. (1.5.2) and (1.5.4) can be made
equal and can be related as follows:

Joldy {Ryar+ [o{d}" {R,Jd0= [8{c}" {o})do

(15.5)

1.5.3 Variational Principle

Variational formulation is the generalized method of formulating the element stiffness matrix and
load vector using the variational principle of solid mechanics. The strain energy in a structural body
is given by the relation

U:%Jy{g}T{a}dQ

. T
For a 3D structural problem, stress has six components: {o} :{O'X,O'y,O'Z,’I'

(1.5.6)
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Similarly, there are six components of strains: {e} = {ex,ey,ez,ﬂ{xy,wyz,'\(zx}. Now the strain-

displacement relationship can be expressed as {&} =[B]{d}, where {d} is the displacement vector in
X, y and z directions and [B] is called as the strain displacement relationship matrix. Again, the stress
can be represented in terms of its constitutive relationship matrix: {o}=[D]{¢}. Here [D] is

called as the constituent relationship matrix.Using the above relationship in the strain energy
equation one can arrive

U =5 [ITe1ta} T [o)i8) 0} o

Applying the variational principle one can express

(1L5.7)
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Now, from the relationship of {F} =[K]{d}, one can arrive at the element stiffness matrix as:

[K]=I£I[B]T [D][B]de

(15.9)

Thus, by the use of variational principle, the stiffness matrix of a structural element can be obtained
as expressed in the above equation.

1.5.4Weighted ResidualM ethod
Virtual work and Variational method are applicable and adequate for most of the problems.
However, in some cases functional analogous to potential energy cannot be written because of not
having clear physical meaning. For some applications, such as in fluid mechanics problem,
functional needed for a variational approach cannot be expressed. For some types of fluid flow
problems, only differential equations and boundary conditions are available. For Such problems
weighted residual method can be used for obtaining the solutions. Approximate solutions of
differential equation satisfy only part of conditions of the problem. For example a differential
equation may be satisfied only at few points, rather than at each. The strategy used in weighted
residual method is to first take an approximate solution and then its validity is assessed. The
different methods in weighted Residual Method are
e Collocation method
e Least square method
e Method of moment
e Galerkin method
The mathematical statement of a physical problem can be defined as:
In domainQ,
Du—f=0 (1.5.10)
Where,
D is the differential operator
u = u(x) = dependent variables such as displacement, pressure, velocity,
potential function
X = independent variables such as coordinates of a point
f = a function of x which may be constant or zero

If U is an approximate solution then residual in domaing,
R=Du-f (1.5.11)
According to the weighted residual method, the weak form of above equation will become



[w,Rd2=0 fori=123,.,n
Q

or (15.12)
[ w,(Du—fyn=0
Q

Where weighting function w;= w;(x) is chosen from the approximate basis function used for
constructing approximated solutionU.



Galerkin Method

1.6.1 Introduction

Galerkin method is the most widely used among the various weighted residual methods. Galerkin
method incorporates differential equations in their weak form, i.e., before starting integration by
parts it is in strong form and after by parts it will be in weak form, so that they are satisfied over a
domain in an integral. Thus, in case of Galerkin method, the equations are satisfied over a domain in
an integral or average sense, rather than at every point. The solution of the equations must satisfy the
boundary conditions. There are two types of boundary conditions:

e Essential or kinematic boundary condition

e Non essential or natural boundary condition
4

'y

4
X

For example, in case of a beam problem ( EI — q = 0) differential equation is of fourth order.

As a result, displacement and slope will be essential boundary condition where as moment and shear
will be non-essential boundary condition.

1.6.2 Galerkin Method for2D Elasticity Problem
For a two dimensional elasticity problem, equation of equilibrium can be expressed as

0
88(; 1 (;yy +F, =0 (1.6.1)
dT,, 0o,
K‘F dy -|-FQy =0 (1.6.2)

Where, F, and FQy are the body forces im X and Y direction respectively. Let assume,

I'., and FFy are surface forces in X and Y direction and o as angle made by normal to surface with

X—axis (Fig. 2.2.1). Therefore, force equilibrium of element can be written as:

E.(PQ)t=0,(OP)t+T1, (OQ)t

P .
F., = 0X0—+ T, 0Q_ o, cosa+ T _sina=o cosa+T, Cos(90—a)
PQ y PQ y y
Thus, F, =0 l+T, m (1.6.3)

Where, £ and m are direction cosines of normal to the surface. Similarly,
F, = Txyﬁ +o0,m (1.6.4)
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Fig. 1.6.1 Elemental stressesin 2D

AdoptingGalerkin’sapproach using eq. (1.6.2 and 1.6.3)
ff[ "y+ ]6u—|—ff[ "y+ ]6v

Where Ou and Ovare weighting functions i.e elemental displacements in X and Y directions

dxdy =0 (1.6.5)

respectively. Now one can expand above equation by using Green’s Theorem.
Green Theorem states that if d)(x, y)andlb(x, y) are continuous functions then their first and

second partial derivatives are also continuous. Therefore,

0600 99 00| 0™ o, O
— —_— dxd V4 d 1.6.6
ffaxax oy oy | ff¢a2+ +f¢l Ty ls (160
Assuming, ¢ =0, a_lb = du; a—w = 0 one can rewrite with the use of above relationas
" 0x oy
0o, B 8(6u)
f g&l dx dy——ffcxwdx dy+f0x£ ou ds (1.6.7)

f %—(;yfw dx dy:—ffcy%iv)dx dy—i—fcym ov ds (1.6.8)



Again, assuming o =T, ; g—ﬂ) =0V (?;P 0
X y
ff—6vdxdy——ff¢ Xdy+fT ¢ &v ds (1.6.9)
And assuming, & =T, ; g—ll) ZIIJ ou
X y

St axay—- ffny@—y“dx dy+ [7mbu s

Putting values of egs.(2.2.7), (2.2.8) and (2.2.9), in eq. (2.2.5), one can get the following relation:

Mg

+f[oX€6u +o0,mdv + 1, £dv + ’rxymf)u]ds + ffFQxéu dx dy + ffFQYBV dx dy=0
(1.6.10)

0, < (ou) +0y§y(av)+TXy ;X (8v) + 7., (fy( )]dx dy

Rearranging the terms of above expression, the following relations are obtained.

e

+f o l+ Txym 6uds +f Tl +oym) ovds =0 (1.6.11)

o, — 6u )40 §(6V)+Txy§—x(6")+7 ag(fiu)]dx dy+ff<FQX6u+FQy6v>dx dy

Here, F, and FQy are the body forces and Ou & Ov are virtual displacements in X and Ydirections

respectively.

Considering firstterm of eq. (2.2.11), virtual displacement Ou is given to the element of unit

thickness. Dotted position in Fig. 2.2.2 shows the virtual displacement. Thus, work done by &

o dy

Su + 88 (Su)dx

0
—o.dybu =0, —(6u)dxd 1.6.12
o, dyou GX8X(U)XY ( )

Similarly, considering secondterm of eq. (1.6.11), virtual work done by body forces is



f f (FQXSu + FQy6V>dX dy

Putting eqs.(1.6.3)  &(1.6.4) in third term of eq. (1.6.11) we get the virtual work done by surface
forces as:

f E. 6uds + f F, dvds
Y .
— du .0
du+—(du)d
A [ lli M+5x( u)dx
el
' l
' |
: |
I
Gx B I | Gx
dy | I
' |
L ..
“« dx >
> X

Fig. 2.2.2 Element subjected to stresses

Due to virtual displacementOu , change in strain 0 €, 1s given by:

6u+§(6u)dx —du 5
- X
de,= ™ = —(bu) (1.6.13)

The virtual work doneby o, 1s 0 .0 € .dxdy. Similarly all the individual term in the first term of
eq. (1.6.11) can be derived from eq. (1.6.13) which will be as follows:

ffcrx%(fiu)dxdy:ffcxii €, dxdy
ffoy§(6v)dxdy:ffoy6 €, dxdy (1.6.14)

I/ "y{ax (bv)+ } [[ 7yt dxdy




Now, the work done by internal forces will be

6U= [[(00e, +o,6€, +7,8,)dxdy (1.6.15)

If external work done is represented by Wg and U is the internal work done then,

—oU 4 6w, =0 or dU = dw, (1.6.16)

Thus in elasticity problems, Galerkin’s method turns out to be the principle of virtual work, which
can be stated that “A Deformable body is said to be in equilibrium,if the total work done by external
forces is equal to the total work done by internal forces.” The work done above is virtual as either
forces or deformations are also virtual. Thus, Galerkin’sapproach can be followed in all problems
involving solution of a set of equations subjected to specified boundary values.

1.6.3 Galerkin Method for 2D Fluid Flow Problem
Let consider the two dimensional incompressible fluid equation which can be expressed by pressure
variable only as follows.

Vp=0 (1.6.17)
Where p is the pressure inside the fluid domain. The above equation can be expressed in 2D form as:
op O _,
ox> Oy’
or (1.6.18)
p,; =0
Applying weighted residual method, the weak form of the above equation will become
fWi p,; d2=0 (1.6.19)
Q

Integrating by parts of the above expression, the following relation can be obtained.

fwi Ps; dr_fwi,i p; d2=0
T )

or fwi,i p,, d Q:fwi p,, dI' (1.6.20)
Q r

If the nodal pressure and interpolation functions are denoted by pand N respectively, then the
pressure at any point inside the fluid domain can be expressed as

p=[NJ{p}
Similarly, the weighted function can also be written with the help of interpolation function as

w=[N|{w)



Thus, p,, = [L{p} = [L]N]{p} = [B]{p} . where, [L] = |- -

= differential operator.

ox dy
St v, = [LJ{W} [ H Hv‘v}:[BHv‘v}
Thus, fw“ p,, d Q= f B|[pld (1.6.21)
[wip, dT=[{F}' N %dl“ (1.6.22)

Here, I'denotes the surface of the fluid domain and n represents the direction normal to the surface.
Thus, from eq. (1.6.20), one can write the expression as:

Thus, [{w}"[B]'[B{p}a= [{w}"[N]' Lar

or, [G]{p}={s} 162
Wher

)= [ 18] [Blao= 2N 2N+ NN

and{S} = f INJ' gidf o

Here, n is the direction normal to the surface. Thus, solving the above equationwith the prescribed
boundary conditions, one can find out the pressure distribution inside the fluid domain by the use of
finite element technique.



Stiffness M atrix and Boundary Conditions

1.7.1Element Stiffness M atrix
The stiffness matrix of a structural system can be derived by various methods like
variationalprinciple, Galerkin method etc. The derivation of an element stiffness matrix has already
been discussed in earlier lecture. The stiffness matrix is an inherent property of the structure.
Element stiffness is obtained with respect to its axes and then transformed this stiffness to structure
axes.The properties of stiffness matrix are as follows:

e Stiffness matrix issymmetric and square.

e In stiffness matrix, all diagonal elements are positive.

e Stiffness matrix is positive definite
For example, ifK is a symmetric n x n real matrix and x is non-zero column vector, thenK will
bepositive definitewhilex”Kxis positive.

1.7.2Global StiffnessMatrix

A structural system is an assemblage of number of elements. These elements are interconnected
together to form the whole structure. Therefore, the element stiffness of all the elementsarefirst need
to be calculated and then assembled together in systematic manner. It may be noted that the stiffness
at a joint is obtained by adding the stiffness of all elements meeting at that joint.

To start with, the degrees of freedom of the structure are numberedfirst. This numbering will
start from 1 to » where # is the total degrees of freedom. These numberings are referred to as degrees
of freedom corresponding to global degrees of freedom. The element stiffness matrix of each
element should be placed in their proper position in the overall stiffness matrix. The following steps
may be performed to calculate the global stiffness matrix of the whole structure.

a. Initialize global stiffness matrix [K] as zero. The size of global stiffness matrix will be equal

to the total degrees of freedom of the structure.

b. Compute individual element properties and calculate local stiffness matrix [k] of that
element.

c. Add local stiffness matrix [£ | to global stiffness matrix[K ] using proper locations

d. Repeat the Step b. and c. till all local stiffness matrices are placed globally.

The steps to be followed in the computer program are shown in the form of flow chart in Fig. 1.7.1
for assembling the local stiffness matrix to global stiffness matrix.



Read geometry, material
properties, boundary condition
and load of the structure

Y

Diseretize structure with number of elements

!

Initialize global stiffness matrix as zero

Calculate element properties

J,J

Compute local stiffness matrix of individual element

Add element stiffness matrix to global
Mext element stiffness matrix using proper location
F 3

Are all elements over?

Store Global Stiffness Matrix

Fig. 1.7.1Assembly of stiffnessmatrix from local to global



1.7.3Boundary Conditions

Under this section, procedure to include the effect of boundarycondition in the stiffness matrix for
the finite element analysis will be discussed. The solution cannot be obtained unless support
conditions are included in the stiffness matrix. This is because, if all the nodes of the structure are
included in displacement vector, the stiffness matrix becomes singular and cannot be solved if the
structure is not supported amply, and it cannot resist the applied loads.A solution cannot be achieved
until the boundary conditions i.e., the known displacements are introduced.

In finite element analysis, the partitioning of the global matrix is carried out in a systematic
way for the hand calculation as well as for the development of computer codes. In partitioning,
normally the equilibrium equations can be partitioned by rearranging corresponding rows and
columns, so that prescribed displacements are grouped together. For example, let considerthe
equation of equilibrium is expressed in compact form as:

{F}=[K]{d} (17.1)

Where,
[K] is the global stiffness matrix,
{d} is the displacement vector consisting of global degrees of freedom, and
{F%} is the load vector corresponding to degrees of freedom.
By the method of partitioning the above equation can be partitioned in the following manner.

ey el

Where,subscripts o refers to the displacements free to move andp refers to the prescribed support
displacements.As the prescribed displacements {d} are known,eq. (1.7.2) may be written in
expanded form as:

{Fa}:[Kaa]{da}+[Kaﬂ]{dﬂ} (173)
Thus it is possible to obtain the free displacement of the structure{d,} as
{d,} =K. U} - [Ka )ld,)} (17.4)

If the displacements at supports {dg}are zero, then the above equation can be simplified to the
following expression.

{d,) =K, ]J'{F,) (1.7.5)
Thus, by rearranging assembled matrix, the portion corresponding to the unknown displacements in
eq.(2.4.4) can be taken out for the solution purpose. This is possible as the known displacements
{dg}are restrained, i.e., displacementsare zero. If the support has some known displacements, then
eq. (2.4.4) can be used to find the solution. If the few supports of the structures yield, then the above
method may be modified by partitioning the stiffness matrix into three parts as shown below:



R Kl Ky
{Fﬁ} :[Km] [KBB
e} ] [k

Here, o refers to unknown displacement; 8 refers to known displacement (£0) and vy refers to zero
displacement. Thus, the above equation can be separated and solved independently to find required
unknown results as shown below.

{F} =K Hd}+ K l{d} +[K. [{d.}
or, [K, J{d, } = {F. } = [K,, [{d} as {d, }={0}
Thus, {d,}=[K,.] " {{F.} - [K.J{d.}} (1.7.7)

For computer programming, several techniques are available for handling boundary conditions. One
of the approachesis to make the diagonal element of stiffness matrix corresponding to zero
displacement as unity and corresponding all off-diagonal elements as zero. For example,let consider
a 3x3 stiffness matrix with following force-displacement relationship.

Fi kll klZ kl3 dl

Fyr=\ky ky ky|\d,

in k31 k32 k33 d3 (178)
Now, if the third node has zero displacement (i.e., d;= 0) then the matrix will be modified as follows
to incorporate the boundary condition.

Fi kll k12 O dl

Fyr=\ky ky 0|4,

0 0 0 1]|d, (2.7.9

{d.}
{d.}
dw

{d.} (1.7.6)

| K.
(K.
| K.

3

Thus, while inverting whole matrix, d; will become zero automatically.

To incorporate known support displacement in computer programming following procedure may be
adopted. Considering the displacement d;has known value of d, 1% row of eq. (2.4.8) can be written
as:
F =kyxd +k,xd,+kgyxd,
(1.7.10)
Or
F—k,x0=k,xd +kjxd, (1.7.12)

Now the 2" row of eq. (2.4.8) has to become:



{0} ={d,} (17.12)
Similarly 3 row will be:
Fy—kyy <0 =ky xd, + kyy xd, (1.7.13)
Thus above three equations can be written in a combined form as
Fi - k125 k11 0 k13 dl
s =0 1 0 {4,

Fs _k325 k31 0 ksa da (1.7.14)
Another approach may also be followed to take care the known restrained displacementsby assigning

a higher value é(say 6 =10°%) in the diagonal element corresponding to that displacement.

F;l. kll klZ k13 dl
Ox10® xky, v =| ky kyx10” Ky |1d,
I ke ks, kas | | ds

(1.7.15)
-.6x10%° xk,, =k,,d, +k,, x10®° xd, +k,, xd,

As ds is corresponding to zero displacement, the above equation can be simplified to the following.
-.6x10%° x k,, =k,,d, +k,, x10* xd,

or §x10% xk,, =k,, x10% xd,

= d, = &— known displacement is ensured

If the overall stiffness matrix is to be formed in half band form then the numbering of nodes should
be such that the bandwidth is minimum. For this the labels are put in a systematic manner
irrespective of whether the joint displacements are unknowns or restraints. However, if the unknown
displacements are labeled first then the matrix operations can be restricted up to unknown
displacement labels and beyond that the overall stiffness matrix may be ignored.
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UNIT — 11
BEAM BENDING

1. Introduction

A beam is a structural member which is capable of withstanding load primarily by resisting
bending. The primary tool for analysis of beam is the Euler—Bernoulli beam equation. Other
methods for determining the deflection of beams include "slope deflection method" and
"method of virtual work". For calculation of internal forces of beam include "moment
distribution method", force or flexibility method and stiffness method. However, all these
methods have limitations if either of geometry, loading, material properties or boundary
conditions becomes arbitrary in nature. Finite element techniques can well handle such cases
and relieve the analyzer of making simplifications to arrive approximate solutions.

Types of Beams
The following are the important types of beams.
(@) Cantilever Beam
(b) Simply Supported Beam
(c) Overhanging Beam
(d) Fixed Beam
(e) Continuous Beam

1.1 Derivation of Shape Function:

The degrees of freedom at each node for a beam member will be (i) vertical deflection and

(11) rotation. For a beam member, the slope of the elastic curve 0 is given by: 4 = 3—1’ , where
X

the variable v is the displacement function of the beam. As the beam has two degrees of

freedom at each node, the variation of v will be cubic and can be expressed using Pascal’s

triangle as:

HL"
Wx)=a, +ax+ax’ +ax’ -} x 2 21@
a,
£,
e (21)
and
"
L s
o-L_[o 1 2x 3:2]”
dx €,
&,

e (222)
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Fig. 2.1 Beam element

Now, applying boundary conditions, the following expressions from the above relations can

be obtained:
At x=0:
o, oy,
(3 . [ 4
F=[1 0 0 0 '"Ysag=[01 0 0"
= IS e
[I] ql
At x=L:
&,
e

v=(1 L LR

Lo.=[0 1 20 32

Thus combining the above expressions one can write:

v, 1 0 0 0][a
gl |01 0 0 ||g
il bt 2 2|la
6, |0 1 2L 3 ||a,

=[4]{a]



a, [1 0 o1 (¥ 1o 0 0],
0 1 0 0 :
74 _ 01 g l-! 32 _ _i _E 1 _l &,
o (1L LN Z I £ Iln
a,| |0 1 2L 3| |8 2 1 2 1\
| LS L: LH .LE_ =
....... 2.4
Therefore,
! 0 0 0
I’l I
0 1 0 0 o EI
1 3 2 3 1 1 |
x)=ll r ¥ |- = = _=Z =|IN, N, N, N
{ } [ 4 !2 ‘f !2 ‘f Ir: [ 1 2 kS 4 i‘;1
ERNE R )
L[ I [
..(2.5)
Where
3 2 3
N, =1- %x:+%xl, N, =x—£x: *_. ’_1_=3Iﬁ __Ex and N, = =-2 +Z
- L - L I- -
......... (2.6)

N is called shape function which interpolates the beam displacement in terms of its nodal displacements.

1.2 Derivation of Element Stiffness Matrix

Now, the strain displacement relationship matrix [B] can be expressed from the following
expressions with the help of eq (2.1)

r‘-!ILI
Jv a, L
p="2= 0 2 e} 't=[8la}=[8]4]"{d]
&,
|y
O (2.2.1)
1 0 0 0 v
01 0 0 o,
Where, [B]=[0 0 2 6x]; [4]= s Ady=4"
ere, [B]=] DM, pop [l
0 1 2L 3I° 8,

From the moment curvature relationship, we can write:

M=Ely= E!d—_zE![BIA] d}



Strain energy,

v = [30T ke =5y - T1BY Tl Y

i

nn(2.2.3)
Thus,
AU AT el y
{F}—W—EI_![A I [BY [B] 4~ ]ia }ax
........ (2.2.4)
So, the stiffness matrix will be:
L T J"i _
(k)= Er[[4” ] [BY [B]4~ kix = £2a” ] [[B] [Blax[4]"
] [1]
....... (2.2.5)
0 00 0 0 00 0 0]
r 0 S0 0 0 0 00 0 0
Now, [|B" H]a'x: [ﬂ 0 2 ﬁ_x']dx = dx —
{[I !2 !”ﬂ“-‘lh 0 0 4L 6L
bx 0 0 12x 36x° .
0 0 6* 120

.......... (2.2.6)



So

0 0 0 0
0 0 0 0
[k]= E1[a] [4]”
0 0 4L 6L
0 0 617 121 |
I 3 2 ]
L0 -7 5o o o
2 1
01 -—— —=1fo o o
[k)=Er L L
o0 = -= 0 0 4L
L L
o o | iﬂ 0 0 6L
L L 1]
_ _ 12
i [t 0o o o T
00 0 6l g 1 o o 6
=Efn 0 -2 0 _3 _E 3 _l . L"
00 0 -6 2 L ' L 12
00 2 eff2 1 2 1 r
L . 6
LE

Thus, the element stiffness of a beam member 1s:

(12 6L -12 6L |
6L 4L’ —6L 2
-12 -6L 12 6L

6L 20 —6L A4’

(K=

0 0
1 0
2 3
-2 2
1 2
. r

.

A

2

L

6

e

4

L

n(2.2.7)




1.3 Equivalent Loading on Beam Member
In finite element analysis, the external loads are necessary to be acting at the joints, which does not happen

always; as some forces may act on the member. The forces acting on the member should be replaced by
equivalent forces acting at the joints. These joint forces obtained from the forces on the members are called
equivalent joint loads. These joint loads are combined with the actual joint loads to provide the combined

joint loads, which are then utilized in the analysis.

1.4 Varying Load
Let a beam is loaded with a linearly varying load as shown in the figure below. The equivalent forces at

nodes can be expressed using finite element technique. If w(x) is the function of load, then the nodal load
can be expressed as follows.

;
{0} =J[NT w(x)dx
......... (2.4.1)
The loading function for the present case can be written as:
w(x)=w, + “L;“'x
........ (2.4.2)

w(x):Force/ Length

wi

| L |2

Fig. 2.4.1 Varying load on beam

From egs. (2.4.1) and (2.4.2), the equvalent nodal load will become

L 3
J‘[Zi,_'—— + l)u{x)dx [h_l_ 3w, JL
£ o L 20 20
f(x 2x° woow
——+x wlx)dx i § 2 |r?
%()}:-:ﬂdf]r: !:(L L ] { }i = (2[}-’-3{]}
| F, j - 2 + 3x° 11{x}dx [ﬁ+h}£
v . I? 20 20
M, Lf 2 w,oow
X X __1_ 72 |2
j[ B _L_]H-{_THT ‘[ 3{} 2{]}11
0




Now, 1if w;=w>=w, then the equivalent nodal force will be:
wL
2
wl’
12
wil
2
Wk
[ 12

h!

(244
With the above approach, the equivalent nodal load can be found for
various loading function acting on beam members.

1.5 Worked Out Example
Analyze the beam shown below by the finite element method. Assume the moment
of inertia of member 2 as twice that of member 1. Find the bending moment and
reactions at supports of the beam assuming the length of span, L as 4 m,

concentrated load (P) as 15 kN and udl, w as 4 kN/m.
P AN

w AN / m

ALY

Y
A

Fig 2.5.1 Example of a continuous beam



Solution

Step 1: Numbering of Nodes and Members The analysis of beam starts with

the numbering of members and joints as shown below:

PN
wikN /m
Z| :
g El
_ 7
k L/2 > < L/2 * L
L ] L]

Fig 2.5.2 Numbering of nodes and members

The member AB and BC are designated as (1) and (2). The points A,B,C are designated by
nodes 1, 2 and 4. The member information for beam is shown in tabulated form as shown

in Table 4.4.1. The coordinate of node 1 is assumed as (0, 0). The coordinate and restraint joint
information are shown in Table 4.4.2. The integer 1 in the restraint list indicates the restraint

exists and 0 indicates the restraint at that particular direction does not exist. Thus, in

node no. 2, the integer O in rotation indicates that the joint is free rotation.

Table 2.5.1 Member Information for Beam

Member Starting node Ending node Rigidity modulus
number
1 2 El
2 2 2E1

Table 2.5.2 Nodal Information for Beam

Node No. | Coordinates Restraint List
X v Vertical Rotation
1 1, 0 1 1
2 L 0 1 0
3 2L 0 1 0




Step 2: Formation of member stiffness matrix:
The local stiffness matrices of each member are given below based on their individual
member properties and orientations. Thus the local stiffness matrix of member (1) is:

1 2 3 4
C12ET 6EI  12EI 6EI |
I I’ I I’
6E] 4EI  6EI 2EI 5
[k], = L L r L
'7| 12EI  6EI 12EI  6EI| 4
I L I’ I’
6El 2E] _ 6EI 4E] 4
A L I} L

Similarly, the local stiffness matrix of member (2) is:

3 4 5 6
[ 24EI  12EI  24EI  12El | 4
L L L L
12E1 BEI  12EI  4EI | 4
[k], = I’ L L L
*7| 24E1  12EI 24EI 12EI| 5
L L L L
12E1 4EI  12EI  BEI | ¢
L L r L




Step 3: Formation of global stiffness matrix:

The global stiffness matrix is obtained by assembling the local stiffness matrix of members
(1) and (2) as follows:

1 2 3 4 5 6
" 12ET 6El 12E1 6Ll i
3 2 T 2 0 0 1
L L L L
ﬁE:f 4E1 3 EE;‘.’ 2E] 0 0 2
L L iy L
C12E1 6EI 36E] 6EI  24E1 12E] 3
[K] - r I’ L L’ r I’
6El 2E1 6El 12Ef B 12Ef 4ET 4
L’ L I’ L L’ L
24E1 12EI  24E] 12E1
0 0 T T3 T 3 T T2 3
IZEI 43’ I%Ef ﬂé.;
0 0 - 6
L I? I I? I

Step 4: Boundary condition:
The boundary conditions according to the support of the beam can be expressed in terms of
the displacement vector. The displacement vector will be as follows

== = R = |

=

Step 5: Load vector:
The concentrated load on member (1) and the distributed load on member (2) are replaced by
equivalent joint load. The equivalent joint load vector can be written as

Poowl

P2 o+ wL/2
¢ ’ . >

PL FPL N wi wil’
] 3 12 12

Fig. 2.5.3 Equivalent Load



Step 6 : Determination of unknown displacements:.

The unknown displacement can be obtained from the relationship as given below:

(F}=[k){a}
-1
tdi=[K] {F}
[ 12E 6El  12EI  GEI 0 a T _F
L_: Lﬁ L_: L_' F%L
0 6E. 4EI  6E 2EI 0 a _e
o I 2 r L P B .
_I12EI GEI  36E 6EI  24EI 12Kl _(_+“_)
0 _ r IZ I 2 IE IZ . 2 2*
@, 6E] 2E1 6E] 1281 12E 4Kl PL wiL’
0 r L r L L L & 12
24EI  12EI  24E 12E1 I
% ! QT L — _wk
] nr I* r L 2
o o |2;:zf 4EI _12EI  SEI i
L L L L] =T
The above relation may be condensed into following
12E1  4ErT' [PL wi? PL wi?
&l_| L Lo 8 12{__ L [2 -1l]g 12
&, 4E7 BET wi? 20EF -1 3 wi?
L L 12 12
PL  wL®
{g:} B L 4 4 :
0, 20Er | PL  wL®
8 3
2 53
9. = PL _ wilL
B B0 ES B0 ES
. PL N wi®
PTO160EN  60E!

Step 7: Determination of member end actions: The member end actions can be obtained from

The corresponding member stiffness and the nodal displacements. The member end actions for
each member are derived as shown below.



Member-(1)

[12EI  6EI 12EI GEI ] 3P 3wl
P LS Ll L!- LE 0 40 4{]1
! 6EI  4EI  6EI 2Kl o PL wl
Mil_ L L L |, _l a0 a0 |
F,| 20£r| 12EI  6EI 12EI  6EI 0 : 3P 3wl
M, L L’ r I’ PL_ wL 40 40
- 6ET 2ET _EE.’ 4E7 4 4 PL  wI’
r L L L | 20 20 |
Member-(2)
(24 12 24 1] WL, 3P ]
F L L L U 20 40
; 12 2o, PL wL’ IPL WL
M, _EI 7} L Jo4 4 [_|a0 T30
Fl oo 24 12 24 12 0 | |[_wL_3P
M L 1*  L| | PL wL 20 40
’ 12 2. 8 3 w2
L L ] 12
Actual member end actions:
Member (1)
%—% £ 3P 3wl
_ 3 23P _Jwl
F g 40 40
B L R I Y
M _] 30 a0 |, ] s T
AR RTe S
2 L £ 17P 3wl
M, 40 40 2 a0 40
YolpL wl | | PL 3PL wl
L 20 20 .8 40 20
Member (2)
WL 3P| [ wl]
20 40 2 11H‘L+£
B1olae wez| | we 20 40
My |0 0,2 | 2RELnE
—_ = | F | F=9 40 M [
F| | wl 3P | wl 9wl 3P
E 20 ﬂ4ﬂ 2 ETT)
Wil _H'LJ 0
12 12
(23P 3wl
R1 |40 40
A
The support reactions at the supports A, B and C are [Fy=1R, | = 25wl P
40 2
R. QH'L_?rP
20 40




Putting the numerical values of L, P and w (P=15, L=4, w=4) the member actions and support
reactions will be as follows:

Member end actions:

F ] [9.925 F | (7425
M, 7.7 M, 7.4
4 po=< ’ 5 < L =< >
F,| |6.075 F, | |[7.575
M, | 0 | M, |-77

Support reactions:
R, 7.425
{Fe}={R,}=1175
R.| 16.075
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UNIT =111
ANALYSISOF TRUSSES AND FRAMES

Trusses Using FEA

We started this series of lectures looking at truss problems. We limited the
discussion to statically determinate structures and solved for the forces in elements and
reactions at supports using basic concepts from statics.

In this section, we will apply basic finite element techniques to solve general two
dimensional truss problems. The technique is a little more complex than that originally
used to solve truss problems, but it allows us to solve problems involving statically
indeterminate structures.

3.1 Local and Global Coordinates

We start by looking at the beam or element shown in the diagram below. This
element attaches to two nodes, 1 and 2. In the Figure we are showing two coordinate
systems. One is a one dimensional coordinate system that aligns with the length of the
element. We will call this the local coordinate system. The other is a two dimensional
coordinate system that does not align with the element. We will call this the global
coordinate system. The (X', y’) coordinates are the local coordinates for the element and

(X, y) are the global coordinates.

YA

\ Local coordinate

system
Global coordinate

] — System

> x

Figure 1 - Local and global coordinate systems

We can convert the displacements shown in the local coordinate system by
looking at the following diagram. We will let g, and q, represent displacements in the
local coordinate system and q;, q2, g3, and q4 represent displacements in the x-y (global)
coordinate system. Note that the odd subscripted displacements are in the x direction and
the even ones are in the y direction as shown in the following diagram.



Un-deformed elemen

q, sin @

—

Deformed element

q1

Figure 2 - The deformation of an element in both local and global coordinate systems.

We know that for small deformations in tension or compression a beam, acts like
a spring. The amount of deformation is linearly proportional to the force applied to the
beam. As the beam is stretched or compressed, we are added potential energy to the
beam. This energy is called strain energy and it can be modeled with Hook’s law. The
law states that the force is directly proportional to the deformation.

F = kAx (3.1)

We can compute the energy by integrating over the deformation

1, 2
u _ijdx_EkQ (3.2)

AE . )
where k = — the element stiffness, A = the cross sectional area of the element,

E = Young’s modulus for the material, and L = the length of the element. Q is the total
change in length of the element. Note that we are assuming the deformation is linear
over the element. All equal length segments of the element will deform the same
amount. We call this a constant strain deformation of the element.

We can rewrite this change in length as

Q=(a-a) 3-3)

Substituting this into equation (3.2) gives us

1 ’ [
uzgk(%_%)z (3-4)



or expanding

1 ! ’ ’ !
u= Ek(qzz _2q2q1 + q12)

Rewriting this in vector form we let

;o
q =1,
{qz}

k'zﬁl -1
L|-1 1

With this we can rewrite equation (3.5) as:

and

L o
u=— !kr!
2q q

(3.5)

(3.6)

(3.7)

(3.8)

We can do the indicated operations in (3.8) to see how the vector notation works.

We do this by first expanding the terms then doing the multiplication.

_AE a1 1]
u=2- qz}{_l IH%}

AE ! ! ! ! q'
U=I{ql—q2 —ql+qz}{q,‘2}

AE

u =I(q{(q{ —g)+;(a; —a)))

AE [ ! ! !~
u= I(qlz — 0,0, +q22 _qqu)

AE ! I ! !
u =I(qf —20q,0; +05")

Which is the same as equation (3.5).

Equation (3.7) is the stiffness matrix for a one dimensional problem.

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)



6.2 Two Dimensional Stiffness Matrix

We know for local coordinates that

;o
q = ’
{qz}

and for global coordinates (See Figure 2)

a4

0>
q —

a;

0y

(3.6)

(3.14)

We can transform the global coordinates to local coordinates with the equations

q; =q,cosé+Q,sinéd
and

g, =Q,cos@+q,siné

This can be rewritten in vector notation as:

q'=Mq
where
c s 0O
M = ,
0 0 c s
C=cosf,and s=sind.
Using
-
u:_ !k!l
2q q

we can substitute in equation (3.17)
u= %qT [M Tk'M ]q

Now we will let

(3.15)

(3.16)

(3.17)

(3.18)

(3.8)

(3.19)



k=MTk'M (3.20)

and doing the multiplication, k our stiffness matrix for global two dimensional
coordinates becomes

¢ ¢ -c* —cs
AE| cs s* —cs -—¢?
k=— (3.21)
L{-c* —-cs ¢ cs
-¢s -s* ¢ §?
where:
E = Young’s modulus for the element material
A = the cross sectional area of the element
L = the length of the element
C=cost
S=sind
3.3 Stress Computations
The stress can be written as
oc=E¢ (3.22)

where ¢ is the strain, the change in length per unit of length. We can rewrite this as:

total deformation

/
=L (3.23)

L\

length of element

In vector form we can write the equation as

o= %{—1 1}{%} (3.24)

as

From our previous discussion, we know that in local coordinates

q
"= 3.6
| {q;} (30



and in global coordinates

a
q= Q.
s
a,
From equation (3.17) we know that

q'=Mq
where
c s 00
M =
0 0 c s
Substituting this in to the equation (3.24) yields
o= %{—1 1}Mq

Now we multiply M by the vector

E
G_f{_c —s ¢ sjq

(3.14)

(3.17)

(3.18)

(3.25)

(3.26)



3.4  Truss Example

We can now use the techniques we have developed to compute the stresses in a
truss. Consider

l 25,000 Ibs
ds
de

L"V Ol L>q5 E =29.5x10°

T D 4 Area = 1.0 in’
30” @ @

qz

o
@ 2 20,000 1bs
s G )

q1
— i —

Computing Displacements

There are 4 nodes and 4 elements making up the truss. We are going to do a two
dimensional analysis so each node is constrained to move in only the X or Y direction.
We call these directions of motion degrees of freedom or dof for short. There are 4 nodes
and 8 degrees of freedom (two degrees of freedom for each node). We can number the
degrees of freedom with the formulas:

Vertical degree of freedom dof =2*node (3.27)
Horizontal degree of freedom dof =2*node-1 (3.28)

where node is the node number.

We can locate each node by its coordinates. The table below shows the
coordinates of the nodes in the problem we are solving. We can use these coordinates to
determine the lengths and angles of the elements.

Node | X | Y
1 00
2 40| 0
3 40130
4 0 (30

Table 1 - Coordinates of the nodes in the truss.



Each element can be described as extending from one node to another. This also
can be defined in a table below.

Element | From Node | To Node
1 1 2
2 3 2
3 1 3
4 4 3

Table 2 - The elements and the nodes they connect in the truss.

From these two tables we can derive the lengths of each element and the cosine
and sine of their orientation. This is shown in the table below.

Element | Length | Cosine | Sine
1 40 1 0
2 30 0 -1
3 50 0.8 0.6
4 40 1 0

Table 3 - Elements with sines and cosines to be used in the stiffness matrix.

In the previous sections we developed the stiffness matrix for an element. This is
shown in equation (3.21) below.

¢ ¢ -c* —cs
_AE| cs s° -cs -¢’

3.21
L|{-c® —cs c¢c* cs (3-21)

k
—¢cs —-s* ¢ s?

This stiffness matrix is for an element. The element attaches to two nodes and
each of these nodes has two degrees of freedom. The rows and columns of the stiffness
matrix correlate to those degrees of freedom.

Using the equation shown in (3.21) we can construct that stiffness matrix for
element 1 defined in the table above. The stiffness matrix is:

A/ Global dof
3 4

1 2

1 0 -1 01
" :29.5x10"’ 0 0 0 02 (3.29)
‘ 40 |-1 0 1 0|3

0 0 0 04



Flement 2

5 6 3 4
0O 0 0 O0]5
0 1 0 -116
K, :m (3.30)
30 0O 0 0 0]3
0 -1 0 114
Element 3
1 2 5 6
.64 48 —.64 -—.48]1
K _29,5x10"’ 48 36 —48 —-361|2 (3.31)
50 |—.64 —48 64 48 |5
|—.48 —-36 48 .36 |6
Element 4
7 8 5 6
1 0 -1 017
0 0 0 018
K, = 29.5x10 (3.32)

40 -1 0 1 0}5
0 0 0 O0}6

The next step is to add the stiffness matrices for the elements to create a matrix
for the entire structure. We can facilitate this by creating a common factor for Young’s
modulus and the length of the elements.

For element 1, we divide the outside by 15 and multiply each element of the
matrix by 15. Multiplying and dividing by the same number is the same as multiplying
and dividing by 1.

1 2 3 4
15 0 -15 0]1

K= 205x10°/ 0 0 0 0]2 533
1 600 |[-15 0 15 0]3
0 0 0 04



We multiply and divide element 2 by 20.

5 6 3 4
0 0 0 075

o _295X10°(0 20 0 =206

600 [0 0O 0 0 |3
0 —20 0 20 |4

Multiply and divide element 3 by 12.

1 2 5 6
7.68 576 -7.68 -5.76]|1

295x10°| 576 432 -5.76 -4.32(2
600 | 768 576 768 576 |5
576 -432 576 4326

k3

We do the same for element 4 by multiplying and dividing it by 15.

7 8 5 6
15 0 -15 0]7

 _295x10°0 00 0 08

! 600 |-15 0 15 0|5
0 0 0 06

(3.34)

(3.35)

(3.36)

The coefficient for each stiffness matrix is the same so we can easily add the
matrices. We add the degree of freedom for each element stiffness matrix into the same
degree of freedom in the structural matrix. The resulting structural stiffness matrix is

shown below.

1 2 3 4 5 6
2268 576 —150 0 —7.68 —5.76
576 432 0 0 -576 —432

~150 0 150 0 0 0
( _29:5x10°| 0 0 0 200 0 =200
600 |-7.68 -576 0 0 2268 5.76
~576 432 0 -200 576 2432

0 0 0 0 -150 0

0 0 0 0 0 0

|

S = O O O O

15.0

O O O O O O O o

0 9 N N KW N~

(3.37)



Remembering our basic equation
KQ=F (3.38)

where K is the structural or global stiffness matrix, Q is the displacement of each node,
and F is the external force matrix. This results in

(2268 576 —150 0 -768 -576 0 0](q 0
576 432 0 0 -576 -432 0 0|lg, 0
150 0 150 0 0 0 0 O0fg| [20000
95| 0 0 0 200 0 =200 0 Olja| | 0 | .0
600 |-7.68 =576 0 0 2268 576 -15 0]|q 0
~576 432 0 -200 576 2432 0 0||q| |-25000
o 0 0 0 -150 0 150 0||g, 0
0 0 0 0o 0 0 0 0fg 0

We have boundary conditions at the fixed supports. Our assumption is that these
joints will not move in the constrained direction. We remove these from our matrix. The
constrained displacements are dof 1, 2, 4, 7, and 8. The lines in equation (3.40) show the
rows and columns that are removed.

-150 15.0 20,000
° ¢ 0 2 0
29.5x10 - (3.40)
600 |-78 =576 0 0
-5[6 4.32 0 - —25,000
U U
The resulting matrix is:
150 0 |lq, 20,000
29:X1071 68 576 Hal=] o (3.41)
600

0 5.76 2432||q, —-25,000



We can use Gaussian elimination or any number of other solution techniques to
solve the system of equations shown above. Doing so yields

q, 27.12x107
Jsr =1 5.65x107 inches (3.42)
qs) |—22.25%x107

Computing Stresses

Previously we showed that

azf{—c —-s ¢ sjq (3.26)

We use this equation to compute the stress in each element.

29.5%10° 0 2
=222 L1010 3.43
=" | Na7.12x10°(3 3.43)
0 4
or
o, = 20,000 psi (3.44)
5.65x107 |5
B M{O 1o -1 —22.25%x107 |6 (3.45)
2 ~27.12x10°(3
0 4
o, =—-21,875psi (3.46)
Using a similar technique we get
o, =-5,208 psi (3.47)

and

o, = 4,167 psi (3.48)



Computing the Reactions

The last step is to compute the support reactions. We need to determine the
reaction forces along dof 1, 2, 3, 7, and 8 which correspond to the fixed supports. These
are obtained by substituting Q into the original finite element equation.

R=KQ-F (3.48)

We only need to use those rows of the structural stiffness matrix that correspond
to the fixed supports. At these supports, we are not supplying an external force so F=0.
Our equation becomes

R=KQ (3.50)
or
0
) _ 0
R, 2268 576 -150 0 -7.68 -576 0 0 |
R 576 432 0 0 -576 —432 o of 220
’ O I 0 3.51
R=22M00 g 0 20 0 20 0 L 3-31)
600 5.65x10
R, 0 0 0 0 -150 0 150 0 |
~2225x10
R, o 0 0 0 0 0 0 0 .
0

We multiply the stiffness matrix K and the deformation vector Q to get the reactions.
They are shown in the following equation.

R, —-15,833.3

R, 3,126 (3.52)
R ¢t=4 21879

R -4,167

R, 0




Problems
1. Element area = 1.5 in’

Element length = 5 feet

E=30,000,000

Write the stiffness matrix for the structure. The

bar is vertical. Show all work.

2. Using a different load, the element shown in

2

8,000 Ibs

Problem 1 deforms by 0.02 inches in length. What is the stress in the material? Use a

finite element approach to solve the problem. Show all work.

3. Use a finite element approach, solve for the stress, joint displacement, and

reaction force on the element shown in Problem 1. Use the 8,000 Ibs force as shown in

the diagram. Show all work.

4. The structure shown in the diagram results in the stiffness matrix shown in the
table. Manually solve for the displacement of node 4. Show all work.

1.0¢+006 *
3

2

1

0.6293 | 0.4720 | 0 0]0 0 -0.6293 | -0.4720
0.4720 |0.3540 |0 0|0 0 -0.4720 | -0.3540
0 0.6146 |00 0 -0.6146 | 0
0 0 0|0 0 0 0
0 0 01]0.6293 | -0.4720 | -0.6293 | 0.4720
0 0 0| -0.4720 | 0.3540 | 0.4720 | -0.3540
-0.6293 | -0.4720 | -0.6146 | 0 | -0.6293 | 0.4720 | 1.8733 |0
-0.4720 |-0.3540 | 0 0]0.4720 |-0.3540 | 0 0.7080
Element | Area | E
3 1 2in" | 29.5¢6
2 1in° |29.5¢6
3 2in° | 29.5¢6
4 Node X feet | Y feet
1 0 0
1 2 0 3
10,000 Ibs 3 0 6
4 4 3




5. Element area = 1 in’

Node X Y
1 0 40
2 30 0
3 60 40
A. Find the joint displacements
B. Find the stress in the elements
C. Find the reactions
6. Element area = 1 in’ Material = steel
2 4
5,000 Ibs
1 3
D. Find the joint displacements
E. Find the stress in the elements
F. Find the reactions

Material = steel

1 3
2
10,000 Ibs
Node X Y
1 0 0
2 4 3
3 8 0
4 12 3
Element | From To
Node Node
1 1 2
2 2 3
3 2 4
4 3 4

Write a Matlab program that uses the finite element technique discussed in class to solve
for the displacements, stresses, and reactions in a finite element truss. You may want to
modify the static stress program you wrote earlier to create this new program. The two

programs should be able to use the same input file.

Solve the problem shown above to turn in. Use both this new program and the static truss
program to run the data file. Compare the results.




3.5.1 Plane Frame Analysis
The plane frame is a combination of plane truss and two dimensional beam. All the members

lie in the same plane and are interconnected by rigid joints in case of plane frame. The
internal stress resultants at a cross-section of a plane frame member consist of axial force,
bending moment and shear force.

3.5.2 Member StiffnessMatrix

In case of plane frame, the degrees of freedom at each node will be (i) axial deformation, (ii)
vertical deformation and (iii) rotation. Thus the frame members have three degrees of
freedom at each node as shown in Fig. 4.5.1 below.

F.u

A

M8,

e

Foa.u,
—»
/ T[ 22V
‘”.—:‘0.—:

Fig. 4.5.1 Plane frame element

Therefore, the stiffness matrix of the frame in its local coordinate system will be the
combination of 2-d truss and 2-d beam matrices:

U Vi 0, Uz \4) 0,
AE AE
— 0 0 - — 0 0
L L
12E1 6EI 0 12E1  6EI
L3 Iz E Iz
6EI 4EI 6EI  2EI
— % = T ° = T
Ld iy B 0 Y . . (3.5.1)
L L
0 12E1 6EL 12EI 6EI
3 12 L3 Tz
6EI 2EI 6E  4EI
6E1 2E1 0 _6EI  4EI
i 12 L 12 L

3.5.3 Generalized Stiffness Matrix

In plane frame the members are oriented in different directions and hence it is necessary to
transform stiffness matrix of individual members from local to global co-ordinate system



before formulating the global stiffness matrix by assembly. The generalized stiffness matrix

of a frame member can be obtained by transferring the matrix of local coordinate system into

its global coordinate system. The transformation matrix can be expressed as:

cosd sin8 O 0 0 0
—sinf@ cosf@ O 0 0 0

|1 o0 0 1 0 0 0
M= 0 0 cosf sinf 0
0 0 0 —sinf@ cosf O

0 0 0 0 0 1

(3.5.2)

Now, the generalized stiffness matrix of the member can be obtained from the relation of
[K] = [T]T[K][T] . Thus considering A = cos and u = sin @ the stiffness matrix in global

coordinate system can be written as follows:

- AE 0 0 AE 0 0
L L
12EI 6EI 12EI 6EI
A —p 00 0 O 13 1z B 12
© A 00 0 0 6l 4 6Bl 2m
. 0o 0 1 0 0 o 12 L 12 L
KI=ELly o 0 2 —u o|*] aE . , AE . .
0 0 0 p A oJ L T
[0 O 0 0 o0 1 12EI 6EI 12EI 6EI
O - 1 ERT
6EI 2El 6EI 4EI
12 L 12 L
[A u 0 0 0 0]
|—u A0 0 0 0|
% O 01 0 o0
0 00 A pu o0
0 00 —u A 0
0O 0 0 0 o0 1
[ (EA, . , 12EI , EaA, ~_ 12E _G6El ¢ EA , 12El ,y ¢ EA ~ 12EI _ 6EIL 1
(Lx L3“> (LM L3Ml) LZ“( L L3”> ( Lt L3Ml) s
EA  12EI EA . 12EI 6EI EA  12EI EA . 12EI 6EI
— _ 2 i— A P — R 2 2 i
(LM E 7‘“) <L”+L3x) 12 ( LMt s 7‘”) ( LM L3k) 12
6EI 6EI 4EI 6EI 6EI 2EI
_ 1k 1z L 7 H 12 L
T|(_EA,, 1281 , EA  12EL \  6El EA ,  12EI , EA - 12EL 6EI
<_T BE “) (_T Wt “) z* (T M “) (T ST “) 7"
_Ea | 12EI _EA , _12EL ;) _ 6k EA, _ 12H EA ,  12EL 5y _6El
( LMt 7‘”) < LM L3k) 12 (LM E 7‘“) <L”+L3x) 12
6EI 6EI 2EI 6EI 6EI 4EI
T H 1z L 7H Tz T




(3.5.3)

3.5.4 Worked Out Example

Analyse the plane frame shown below. Assume the modulus of elasticity of the horizontal
member is 1.5 times that of the vertical member and length of the vertical member is 1.5
times that of horizontal member. Find the bending moment and reactions at support
assuming the length, cross section area and modulus of elasticity of vertical member as
3.0m, 0.4 x 0.4 m*and 2 x 10" N/mm?, respectively.

w

B
L,A15E,r EC

1.5L, A, E, 1

EFS

Fig. 3.5.2 Plane frame
Solution

Step 1: Numbering of Nodes and Members
The numbering of members and joints of the plane frame are as shown below:

Fig. 3.5.3 Numbering of Nodes and Members

The members AB and BC are designated as (1) and (2). The points A, B and C are designated
by nodes 1, 2 and 3. The member information for the frame is shown in tabulated form as
shown in Table 1(a). The coordinate of node 1 is assumed as (0,0). The coordinate and
restraint joint information are shown in Table 1(b). The integer 1 in the restraint list indicates



the restraint exists and 0 indicates the restraint at that particular direction does not exist.
Thus, in node no. 2, the integer 0 all the restraint type indicates that the joint is in free all the
three directions.

Table 3.5.1 Member Information for Beam

Member number Starting node Ending node Rigidity modulus
1 1 2 EI
2 2 3 1.5E1
Table 3.5.2 Nodal Information for Beam
Node no. Coordinates Restraint list
X Y Axial Vertical Rotation
1 0 0 1 1 1
2 0 1.5L 0 0 0
3 L 1.5L 1 1 1

Step 2: Formation of member stiffness matrix:

The individual member stiffness matrices can be found out directly from eqn. shown above.
Thus the stiffness matrices of each member in global coordinate system are given below
based on their individual member properties and orientations. Thus the stiffness matrix of

member (1) is:

1 2 3 4 5 6
- 12EI __6EI __12EI 0 __6El 7
(1.5L)3 (1.5L)2 (1.5L)3 (1.5L)2
AE AE
— 2
0 (1.5L) 0 0 (1.5L) 0
6EI 4EI 6EI 2EI
=  (1.5L)2 0 (1.5L) (1.5L)2 0 1.5L 3
[kl1= 12Kl 0 6EI 12EI 0 6EI 4
(1.5L)3 (1.5L)2 (1.5L)3 (1.5L)2
AE AE
0 ©(15L) 0 (1.5L) 0 >
6EI 2EI 6EI 4EI
| (1.5L)2 0 (1.5L) (1.5L)2 0 (1.5L) 6
Similarly, the stiffness matrix of member (2) is :
4 5 6 7 8 9



(k]2 =

- A(15E)

L
0

0

__A(LSE)

L
0

0

0 0
12(1.5 E)I 6(1.5 E)I
L3 1.2
6(1.5 E)I 4(15 E)I
1.2 L
0 0

12(1.5 E)I 6(1.5 E)I
IR L2
6(1.5 E)I 2(1.5 E)I
1.2 L

_ A(L5E)
— 0 0
12A5E)  6(15E)
0 IR L2
6(1L5E)  2(15E)
0 T2 L
A(LSE)
—Y 0 0
12(1.5 E)I 6(1.5 E)I
0 22d-20
L3 12
6(1L5E)  4(15E)
0 —_
1.2 L

Step 3 : Formulation of global stiffness matrix:

The global stiffness matrix is obtained by assembling by assembling the local stiffness matrix

of member (1) and (2) as follows:

1

r 32EI
9L3

8EI
3L2

3L2
0

0
0

32EI
9L3

8EI

2

2AE

3L
0

0
2AE

3L
0

0
0
0

3 4 5 6
8EI 32EI 0 8EI
3L2 9L3 3L2

2AE
0 0 - 0
3L

8EI 8EI 0 4EI
3L 3L2 3L

8EI 32EI 1.5EA 8EI

= ( ) 0 =
3L2 9L3 L 3L2
2AE 18EI 9EI

0 0 — —

( 3L + L3 ) L2
4EI 8EI 9EI 8EI + 6EI)
3L 3L2 L2 3L2 L

1.5AE
0 - 0 0
L

18EI 9EI

0 0 % 1z
9EI 3EI

0 0 — —
L2 L

8

0 0

0 0

0 0

1.5LEA 0
0 _133]:31

1.5:E 0
0 1351

O 0 9 O »n B

©
=

w
o r‘|mr,\,|
—

o o o ©o

Step 4: Boundary conditions:
The boundary conditions according to the support of the frame can be expressed in terms of
the displacement vector. The displacement vector will be as follows:

{d} =

Here, x5, 6y and 85 indicate the displacement in X-direction, displacement in Y-direction
and rotation at point B.

Step 5: Load vector:

—

O 0 N O N K~ W



The distributed load on member (2) can be replaced by its equivalent joint load as shown in
the figure below.

gl e
v ¥ .
W::M'L:HZ/ @ W,=wL /12
@

Fig. 3.5.4 Equivalent Joint L oads

Thus, the equivalent joint load vector can be written as

{Fy=|_wl?

wl?
Step 6: Determination of unknown displacements:
The unknown displacements can be obtained from the relationship of {F} = [K]{d} or
{d} =[k]"1 {F}. Now eliminating the rows and columns in the stiffness matrix and force
matrix, corresponding to zero elements in displacement matrix, the reduced matrix will be as
follows.

-(3251 N 1.5EA) 0 8El 1t 0
o7 L 312 [ L]
6xg w
2AE 18EI 9E] -
5ys| = 0 (— + ) = 2
0 3L L L W2
B 8EI 9EI (8EI N 6EI> SETR
312 12 3L L

Thus, the unknown displacements will be:
6xg 1 [0.04327w
53/3] = Tom0 [—1.7127w]
05 —5.4978w
Step 7: Determination of member end actions:

The member end actions can be obtained from the corresponding member stiffness and the
nodal displacements. The member end actions for each member are derived as shown below.



Member — (1)
In case of member (1), the member forces will be:{F,}1 = [K]1){d})

F, 56.17 0 1264 —56.17 0 -1264
B, [ 0 7110 0 0 —7110 0 }
Mil_ o6 |—1264 0 3792  126.4 0 189.6
Fe,| =7 |-56.17 0 3792  56.17 0 126.4 |
Fy. 0 ~7110 0 0 7110 0 J
M, ~126.4 0 189.6  126.4 0 379.2

0

0

0

4327 X 1072w

—1.7127 X 1070w

—5.4978 X 10~ 0w

0.0697w

[ 1.2177w ]
_|—0.10479w
—0.06925w
—1.21661w
—0.20793w

It is to be noted that {F,} are the end actions due to joint loads. Hence it must be added to the
corresponding end actions in the restrained structure in order to obtain the end actions due to
the loads. Therefore, {Fu}acua are the true member end actions due to actual loading system
can be expressed as

{En}actuat = {Fm} + {Fim}
Where, {Fg,} are the end actions in the restrained structure. Since there is no load acting on
member (1), the actual end actions will be:

0.0697w 0 0.0697w
1.2177w 0 1.2177w
(Fon b actual —0. 10479w 0l _ [—0.10479w
mpactia —0. 06925w 0 —0.06925w
—1 21661w 0 —1.21661WJ
—0 20793W 0 —0.20793w
Member (2)

In similar way, the member forces in member (2) will be {F}«2) =

[Kl{d} )



E, 16 0 0 —-16 0
E, 0 0284 0426 0 —0.284
Myi_ 10| 0 0426 0853 0 0426
Feg| -16 0 0 16 0
Fy, 0 —0284 —0426 0 0.284
M, 0 0426 0426 0 —0.426

0.069232w

[—0.28325\4

_|-0.54215w

—0.06923w

0.283245w

—0.3076w

The actual member forces in the member (2) will be:

[0.069232W'| [ 0 ] [0.0692W

|-0.28325w| | 15w | | 1.2167w |
(Pl | ~0-54215w /| | 0.75w | _ | 0.2078w
mieenal | _0.06923w 0 —0.0692w

0.283245w 1.5w 1.7832w
l—0.3076wJ |-—0.75WJ |-—1.0576WJ

0
0.426
0.426

0

—0.426
0.853

X

|

4327 X 10712y
|-1.7127 x 10710
|-5.4978 x 10710

0
0
0

]
I
I
|

|
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UNIT-IV
TWO DIMENSIONAL ELASTICITY AND AXISYMMETRIC ELASTICITY

4.0 CONSTANT STRAIN TRIANGULAR ELEMENT

The triangular elements with different numbers of nodes are used for solving two dimensional solid
members. The linear triangular element was the first type of element developed for the finite element
analysis of 2D solids. However, it is observed that the linear triangular element is less accurate
compared to linear quadrilateral elements. But the triangular element is still a very useful element for
its adaptivity to complex geometry. These are used if the geometry of the 2D model is complex in
nature. Constant strain triangle (CST) is the simplest element to develop mathematically. In CST,
strain inside the element has no variation (Ref. module 3, lecture 2) and hence element size should
be small enough to obtain accurate results. As indicated earlier, the displacement is expressed in two
orthogonal directions in case of 2D solid elements. Thus the displacement field can be written as

{d}:m (4.11)

Here, u and v are the displacements parallel to x and y directions respectively.

4.1.1 Element Stiffness Matrix for CST
A typical triangular element assumed to represent a subdomain of a plane body under plane
stress/strain condition is represented in Fig. 4.1.1. The displacement (u, v) of any point P is
represented in terms of nodal displacements
u=N,u, +N,u, + N,u, 4.1.2)
v=N\V, +N,v, +N.v,

Where, N1, N2, N3 are the shape functions as described in module 3, lecture 2.

Y
A

I{(xnyi) i

Fig. 4.1.1 Linear triangular element for plane stress/strain



The strain-displacement relationship for two dimensional plane stress/strain problem can be
simplified in the following form from three dimensional cases .

o
T ox 2|l ox OX

2 2
ov 1l|[ou ov
_V L A Y 413
2= 535 (5] @13
v ou [ouou ovou
™ oy |Ox 0y Oxoy

In case of small amplitude of displacement, one can ignore the nonlinear term of the above equation
and will reach the following expression.

ou
& =—
OX
g = Z—; (4.1.4)
v,
T = ox oy
Hence the element strain components can be represented as,
ou  ON, ON, oN,
& =—= u, + u, + U,
oX  OX OX OX
oV ON, ON, ON,
E=1& =—= v, + V, + v,
o oy oy oy
ou ov ON, ON, ON, ON, ON, ON,
Yy =t —= u, + u, + U, + v, + V, + v,
oy ox oy oy oy OX OX OX
Or,
N, oN, N, o o !
oX  oOx  0OX U,
§ u
e=lel=l 0 o o M N, Nyl (4.1.5)

2
2
2

oN, oN, N, ON, oN, oN,

<
)

or, &=[B]{d} (4.1.6)



In the above equation [B] is called as strain displacement relationship matrix. The shape functions
for the 3 node triangular element in Cartesian coordinate is represented as,

1
ﬁ[(xzys o X3y2) + (yz T y3>X + (Xs o X2>y]
N, ]
N, = oA (Xa¥s = X,Y3) + (Y5 — Vo)X + (X, — Xa))’] !
N, 1
ﬁ[(xlyz - X2y1) + (yl - y2>X + (Xz - X1>y}
Or,
| i[ul +0B,X+ 'Yly] |
N, 1
N, = ﬁ[ocz +B,X + Y]t (4.1.7)
N3
i[ua +Bx + 'Ysy]
| 2A
Where,
oy = (Xzys - Xayz)’ Q, = <X3y1 - X1y3>7 Qg = (lez - X2y1)’
61:<y2 _ya)’ 3, :<y3_y1)’ 63:(y1_y2)’ (4.1.8)
“(1:<X3_X2)’ “{2:(X2_X1>’ “(3:()(2_)(1)’
Hence the required partial derivatives of shape functions are,
N, _ A N, _ 5 N; _ By
ox  2A’ ox  2A’ ox  2A’
N, _n N, _ 7 Ny _ 75
oy 2A’ ox  2A’ ox  2A’
Hence the value of [B] becomes:
ON, ON, ON, 0 0 0
oXx Ox  oX
[B]=| o 0 0 ON, ON, ON,
o oy oy
ON, ON, ON; ON, ON, ON,
oy oy oy ox  x o ox |
. s B B 0 0 0
Or, [B]:ﬂ 0 0 0 »n 7 7 (4.1.9

nove Vs BB B



According to Variational principle described in module 2, lecture 1, the stiffness matrix is
represented as,

[k]=I£I[B]T [D][B]de

Since, [B] and [D] are constant matrices; the above expression can be expressed as

(4.1.10)

(4.1.11)

[k]=[B] [D][B]IJIdV =[B]'[D][B]V

For a constant thickness (t), the volume of the element will become A.t . Hence the above equation
becomes,

[k]=[B] [D][B]At (4.1.12)
For plane stress condition, [D] matrix will become:
. 1 u O
[D]:l_ﬂ2 g1 0 (4.1.13)
0 0 1-p
L 2
Therefore, for a plane stress problem, the element stiffness matrix becomes,
A0 n] _
B 0 7
Et ,Bz 0 }/2 1 u 0 A B B 0 0 O
[kK]=——|"" e 10 |0 0 0 % 7 7 (4.1.14)
4AL-47)| 0 1 A
1-ulln 7 7 B B B
O 72 ﬂz 0 0 2
_O V3 ﬂs_
Or,
PR (L+4) |
B +Cri BB+Cry, BB+Crys 2 Br.  wpytChy ufys+Chy,
1
ﬂ22+C}/22 BoBs+Croys 1Py +Ch7, (zﬂ)ﬂzyz 1B,y +Chs7, (4115)
[K]=—— (+40)
4A(1- 1) Bi+Crs  whyi+Chys  ubsy, +Chyrs 2” Bors
712 + Cﬁf 772 +CBp, 77 +Ch S
Sym. 722 +Cﬂ22 7273 +CB P
i yi+Cp;
1-
Where, C:( Zﬂ)

Similarly for plane strain condition, [D] matrix is equal to,



c (1-u) u 0
D= U 1-u) 0 (4.1.16)
[ ] (l+,u)(1—2,u) ( 192
0 o —<A
L 2
Hence the element stiffness matrix will become:
_Mﬂlz"')/lz MBS, +ry, MBB+rys w+DBn  wBr,+Pnn  HBys+Bn |
M,B22+722 MB,Ls+v.rs B+ BYs (ﬂ"'l)ﬂz}/z Hpyys+ By, (4 1 17)
[k]: Et M,B?,2+732 oyt Bys 1Py, +Chyys (ﬂ"'l)ﬂs)@ o
2A(1+ﬂ) M712+ﬂ12 Myy,+ 5L, Myys+ B0
Sym. M722+ﬂ22 My,rs+ Bl
My + 5 |

Where M =(1— )

4.1.2 Nodal Load Vector for CST
From the principle of virtual work,

[84e} {oldo= [s{u}" {R a0+ [o{u}" {F,}a0 (4.1.18)

Where, Fr, and Fq, are the surface and body forces respectively. Using the relationship between
stress-stain and strain displacement, one can derive the following expressions:

(o) =[D][B]{d}, &{s}=[B]5{d} and &{ul=[N]s{d]} (4.1.19)
Hence eq. (5.1.18) can be rewritten as,
fﬂﬂwmwmwwmm=j%wfmﬂ%awr+fﬂﬂwm%awﬂ (4.1.20)

or, fw [D][B wwﬂ—fmﬂ%ﬂwr+fmfwgm (4.1.21)

Here, [N] is the shape function along the boundary where forces are prescribed. Eq.(4.1.21) is
equivalent to[k|{d} = {F}, and thus, the nodal load vector becomes

{F} = f {F Jar + f
For a constant thickness of the triangular element eq.(5.1.22) can be rewritten as

{F}= tf {F Jds + tf {F, JdA (4.1.23)

For the a three node triangular two dimensional element, one can represent F,and F. as,

(4.1.22)



- -

. . FQx O
For example, in case of gravity load on CST element, {F, } = £ =
Qy _pg

For this case, the shape functions in terms of area coordinates are:
L, L, L, 0 0 O
0O 0 O L L, L

As a result, the force vector on the element considering only gravity load, will become,

[N]= (4.1.24)

L 0 0 0
L, 0 0 0
L, o|fo 0 0
{F} = t[ 0 L {_pg}dA - t[< L L4 — —pgt[< . A (4.1.25)
0 L, —L,pg L,
0 L | —L,og] (L. ]

The integration in terms of area coordinate is given by,

Iglr!
P A= — PO 2A 4.1.26
J;Ll oL (p+q+r+2)! ( )
Thus, the nodal load vector will finally become
0 | [ o
0 0 0
0 0
0
uoot . pgAt At |0 (4.1.27)
(Fr=-pgt{@r0+0+20" f={""3 =—% .
011101 pgAt
(0+1+0+2)!2A 3 i
oo | |_poAt :
(0+0+1+2)! 3




FOUR - NODED RECTANGULAR ELEMENT

A typical element is shown in Figure 5.5. It is rectangular and has four nodes, one at each
vertex. The nodes have coordinates (X, ), (X5, ¥5). (X5, V3) and (Xy, Y;) in the global
Cartesian coordinate frame (OXY) as shown in the figure. For ease of derivation, we define

4
¥ h
]

1 X 2
L

Y '

3
-

Fig. 5.5 A four-noded rectangular element.

a local coordinate frame (oxy). Each node has temperature d.o.f. T or two d.o.f, viz., u and
v, the translations along the global X" and ¥ axes, respectively. In what follows, we will derive

the shape (interpolation) functions for the temperature field and use the same for the
displacement field.

We assume that the temperature field over the element is given by
Tx,v) = ¢y + o1x + cay + c3xy
........ 4.4.1

We observe that as we have four nodes now. we are able to take a fourth term in our

polynomial field. Considering that this expression should reduce to the nodal temperatures at
the nodal points we have. for a rectangular element of size (£ x h) as shown in Figure 5.5,

Tl = Cp T: = Oy + f]f..

4.4.2
T; =y + of + cxh + exfh, Ty =cy+ ch
Solving for ¢y, ¢, ¢2 and 3. we get
T, -1, I, - T, I+ T, - T, - T,
EZ'D:T;& c = 1{[" CZ: h & = th

..4.4.3



...4.44
In our standard finite element notation, we write this as
I
T(x,y) = [N| N, N; N4]‘ [
L
73|
........... 4.4.5
Thus we obtain the shape functions N;:
N=1-Z_-2,2 N,=2-2Z
{ h th ¢ th
N, = 2 N =2 X
Ch h th
......... 4.4.6

If this element is used to model structural mechanics problems, each node will have two
d.o.f., viz., u and v, and we can write the displacements at any interior point in terms of the
nodal displacements using the same shape functions as follows:

i N[ 0 NE 0 N3 0 N.|, 0 ¥s
= 1 = [NI6Y
0 N 0 N, 0 N, 0 NJ|u

......... 4.4.7



4.1.3 Four-node Quadrilateral Element

Consider the parent four-node square element in {—n frame as well as the general quadrilateral
element in the physical x-y space as shown in Figure 5.25. The coordinates of any point P(x, y)
are interpolated from nodal coordinates as follows:

3

x= YN, 411
i=1
-

y= YNy 412
i=l

where N, are as given in Egs.

We observe that this element permits a linear variation of unknown field variable along
x = constant or y = constant lines, and thus it is known as the bilinear element. Strain and
heat flux are not necessarily constant within the element.

We will now discuss a typical higher order element.

4 (1. 1)

Wi

(X2, ¥2)

(—1. —1) (1. =1}

a X

F|g 413 A general four-noded guadrilateral element.

The displacements of the interior point /* are also interpolated from nodal deflections using
the same shape functions for this element, which is therefore called an “isoparametric element™.
The displacements can be written as

_ul_
15
L]
u N 0O N, 0 N, 0 N, 0 v,

= T 413
v 0O N 0 N, 0 N, 0 N, U
L

Ly

[ Va ]



Let us now show that the displacements in this element are compatible across inter-
element boundaries. Along edge 2-3 (£ = 1), for example, the shape functions N} = 0 = Nj.
Thus, irrespective of the shape of the element in the physical x-y space (i.e. even for a general
quadrilateral), the displacements of any point on edge 2-3 are given as

G Nzllz + N_;ll;

N 414

Therefore, we observe that even for a general quadrilateral shape. the isoparametric element
guarantees the continuity of displacements across inter-element boundary edges.

Recall our observation that the nodal d.o.f. are in X-} directions and not along &-n. Also
the ¢-n axes, as transformed into real physical x—y space, may not be orthogonal. Thus we
write the strain displacement relations in an orthogonal. Cartesian frame of reference. as

Ju
e, ox
dv
£ — E = < — L 4 15
fh=1o =1 2
ol ou, &
ay ox

We observe that u and v are given in terms of shape functions N; which are expressed
in the {-n coordinates rather than x—y. For a general function £, using the chain rule of
differentiation. we obtain the equations

¥ 9% Yo

dx 9 ox  dn ox
of _ o Fan
dy 9E dy an dy 4.1.6

it is easier to write down derivatives of (x—y) in
terms of (§-n) rather than the other way round. Thus we write

I
3
4
an
Thus, in general, we can write

i
s
J

an

o o
dx d¢
I x
ox an

ax
&
ax
an

oS Iy
dy 9¢

s 9y
dy an

+

4.1.7

4.1.8



Le.

= [J 419
V1i;

where

4.1.10

AN, anN.
T Za—é Fi

L T
L aﬂ}l

4111

Here, [.J] is known as the Jacobian matrix relating the derivatives in two coordinate
frames. This generic expression for [J] is true for all 2-d elements, but the actual coefficients
in the matrix will depend on the shape functions being employed in a given element and the
nodal coordinates.

For this particular element, for example. the Jacobian is

- 1+ 1- 1
g (T (oo (S« (S
Jl| =
n ., o e E 4112
[—‘f }_r, -x5) + [ 4§ ][.r; —-x,) [ ‘f ]L"f‘.i M)+ -.TT]UI! ~¥a)
From Eq. (5.155),
3 9 9
S a J1'.| _J" a‘
el o W Rl I CE 4113
4 d VI -1 9
dy an [an

We can now obtain the required strain displacement relations.

du
du ax
ax 1 00 0 g}_" 4114

dv '
{.E‘]- = 4 3 b= |0 0 0 1] 4 E -
al_l__a_}' 011 0 .

dy dx| 1#] v

[ 9y |



[ du = == 0 0 du
el J pdord
) BT T e
o TR T 0o ||2x
B sl Ml an
= , 4115
a—‘ 0 0 .{.2..2_ -;’.’A. 3_:
ax Jl lJl ag
dv du
e =Jy, Jiy ===
RO R - 11 A
[5:]
From Eq. (5.149),
du aﬂ 0 N, 0 oN; 0 IN, 0 il
| | % 22 a2
u-
du W o W9 M. o W L% 4116
an| an an an an v
1 = < >
av aN 1 aN el alv; aN 4 ll;
s 0 — 0 — 0 — 0 —
a P a2 a2 % | |
0. 0 aﬂ 0 a& 0 8& 0 EI.VA Uy
an i an an an an ||,
= [B;] {8}°

For this element. for example, the shape function derivatives in the -1 frame are as
follows:

W i@ 4 =

&~ & % 4

aN, _1-7 N, _ (1 +9)

—— T — a 4

¢ 4 ! 4117
v, 1+ o, _(+9

F I an 4

N, _-(l+mp N, _(A-9

PR 4 an 4

Thus, finally. combining Egs. 4.1.16 & 4.1.17, the strain-displacement relations can be written
as



{e} = i¢, t = B{o} 41.18

where [B] =[B,][B.](B;]-
The stress-strain relation matrix [D] remains as given earlier
we have the element stiffness matrix

kL, = [ (87 (D181 dv = [[(BY DI B1 e dx dy
S 4.1.19
= [, |, BT o1y p|dz dn

where the coordinate transformation has been taken into account and the integrals need now
be evaluated over the parent square element in natural coordinates. Since [B] in general varies
from point to point within the element. we look for ways of evaluating these integrals
numerically within a computer program rather than attempting to derive them explicitly. We will
discuss numerical integration schemes in Section

4.14 Eight-node Quadrilateral Element

Consider the parent eight-node rectangular element in Z-n frame as well as the general
quadrilateral element in the physical x-y space as shown in Figure 5.26. The coordinates of any
point P{x. y) are interpolated from nodal coordinates as follows:

x = EN.L-. y = EN.y,- 4.1.20
¥
Tt {3, 390 = 3 xs. vs)
T, 1)
1.h4 LY (xg. ¥4) 6 (Ts ¥s)
4
-1, 0 8 rﬁ{l. II:I']_._ ¢ (s v4) 8 a0
|
241, -1) ix. ¥y)
(-1, -1y 1 540, 1)
0 . ¥

Fig 4.1.4 A general eight-noded guadrilateral element.



where we may take coordinates of just the four vertices and follow a simple linear interpolation
for coordinate transformation (or) use the full eight nodes to permit curved edges. The
displacements of the interior point P are also interpolated from nodal deflections using the same
shape functions. Three possibilities arise as shown below:

Coordinate Interpolation Displacement Interpolation
Linear (i.e. four vertex nodes) Quadratic (i.e. all eight nodes)
Quadratic Quadratic

Quadratic Linear

The first element belongs to the category of sub-parametric elements and is useful when
the structural geometry is simple polygonal. but unknown field variation may involve sharp
variations. The second element is an isoparametric element and permits curved edge modelling
as well as quadratic variations in displacements. If the geometry has certain curved features
but is in a low stress region, we can use the third element belonging to the superparametric
category. The displacements can, in general. be written as

e N, O N, 0 .. { 4121
= uy
Vi 0 N 0 N .. 2x16 3

16x1

where the shape functions are appropriately taken from Eqs.  4.1.21 1 and sizes of the
matrices shown are valid for the sub- and isoparametric elements.
The corresponding strain-displacement relation. following Eq. 4.1.21 1. is written as

{e}= [BhulB:lalBiless {0%,.,

= [8],.,. {3} 4122
For the eight-noded isoparametric element, for example. the Jacobian can be obtained as

= oy, o AN,
IR

Jot =l 4.1.23
=" .
AP
—= —w
S Son

The necessary shape function derivatives in the &-n frame are summarised now from
.1.23.
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We can write the expression for the element stiffness maitrix as

(1 - nin + 2&)
4

(- n)2¢ - )
4

(1 + m)25 +n)
4

(1 + n)N2 - n)
4

=& = n).

1 -1
2

=1+ n)-

-1 - 1)
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il -
4

(1 +
4

{1+

-
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= [[ 187" DIBY dx dy

= | | sr tonsy plag an

EN2n -

EM2n +

)

)

)
4.1.24

4.1.25

which can be evaluated by using suitable numerical integration schemes.



4.2.1 Axisymmetric Element
Many three-dimensional problems show symmetry about an axis of rotation. If the problem
geometry is symmetric about an axis and the loading and boundary conditions are symmetric about
the same axis, the problem is said to be axisymmetric. Such three-dimensional problems can be
solved using two-dimensional finite elements. The axisymmetric problem are most conveniently
defined by polar coordinate system with coordinates (r, 8, z) as shown in Fig. 4.2.1. Thus, for
axisymmetric analysis, following conditions are to be satisfied.
1. The domain should have an axis of symmetry and is considered as z axis.
2. The loadings on the domain has to be symmetric about the axis of revolution, thus they are
independent of circumferential coordinate .
3. The boundary condition and material properties are symmetric about the same axis and will
be independent of circumferential coordinate.

Fig. 4.2.1 Cylindrical coordinates

Axisymmetric solids are of total symmetry about the axis of revolution (i.e., z-axis), the field
variables, such as the stress and deformation is independent of rotational angle 6. Therefore, the field
variables can be defined as a function of (7,z) and hence the problem becomes a two dimensional
problem similar to those of plane stress/strain problems. Axisymmetric problems includes, circular
cylinder loaded with uniform external or internal pressure, circular water tank, pressure vessels,
chimney, boiler, circular footing resting on soil mass, etc.

4.2.2 Relation between Strain and Displacement
An axisymmetric problem is readily described in cylindrical polar coordinate system: r, z and 6.
Here, 6 measures the angle between the plane containing the point and the axis of the coordinate



system. At 8 = 0, the radial and axial coordinates coincide with the global Cartesian X and Y
coordinates. Fig. 4.2.2 shows a cylindrical coordinate system and the definition of the position
vectors. Let £,% and 0 be unit vectors in the radial, axial, and circumferential directions at a point in

the cylindrical coordinate system.

Fig. 4.2.2 Cylindrical Coordinate System

If the loading consists of radial and axial components that are independent of 6 and the material is
either isotropic or orthotropic and the material properties are independent of 0, the displacement at
any point will only have radial (u,) and axial (u,) components. The only stress components that will
be nonzero are 0,.-, 0,,, Ogg and T, .

dr

dr

(a) Element in r-z plane (b) Element in r-0 plane
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Fig. 4.2.3 Deformation of the axisymmetric element
A differential element of the body in the r-z plane is shown in Fig. 4.2.3(a). The element undergoes
deformation in the radial direction. Therefore, it initiates increase in circumference and associated
circumferential strain. Let denote the radial displacement as u, the circumferential displacement as v,
and the axial displacement as w. Dashed line represents the deformed positions of the body in Fig.
4.2.3(b). The radial strain can be calculated from the above diagram as

dr

L ]:_ (42.1)

Since the rz plane is effectively the same as a rectangular coordinate system, the axial strain will
become

ow
0z

1
8 = —_—
z

z

(4.2.2)

4

w+8—w><dz—wJ=

Considering the original arc length versus the deformed arc length, the differential element
undergoes an expansion in the circumferential direction. Before deformation, let the arc length is
assumed as ds = rdf. After deformation, the arc length will become ds = (r+u) dO. Thus, the
tangential strain will be

(r+u)d9-rd6 _u

e = — 423
! rd6 r ( )
Similarly, the shear strain will be
_Ou_ ow
0 o (424)

Ny =0and ~,=0

Thus, there are four strain components present in this case and is given by

a ) [o
or or
g}"
z Z Z
= = = 425
{g} &, u 1 {w} ( )
— - 0
7. r r
ou owl 10 0
Oz Or | 0z Or ]

4.2.3 Relation between Stress and Strain



The stress strain relation for axisymmetric case can be derived from the three dimensional

constitutive relations. We know the stress-strain relation for a three-dimensional solid is

Gx

5 |

Oy E

Txy } T @+w(-2p
TyZ)

TZJC

0 0 1

0 0 €

0 0 (Z ]

0 0 ||Vay
cu g |

O ﬂ

(4.2.6)

The stresses acting on a differential volume of an axisymmetric solid under axisymmetric loading is

shown in Fig. 4.2.4.

Fig. 4.2.4 Stresses acting on a differential volume

Now, comparing the stress-strain components present in the axisymmetric case, the stress-strain

relation can be expressed from the above expression as follows
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(4.2.7)
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Thus, the constitutive matrix [D] for the axisymmetric elastic solid will be
1l—-pn u [t 0 7
c po l—p u 0

Dl=Goam| u u 1-x o0 (428

4.2.4 Axisymmetric Shell Element

A cylindrical liquid storage container like structures (Fig. 4.2.5) may be idealized using
axisymmetric shell element for the finite element analysis. It may be noted that the liquid in the
container may be idealized with two dimensional axisymmetric elements. Let us consider the radius,
height and, thickness of the circular tank are R, H and /4 respectively.

L=TB Ring Elements

Fig. 4.2.5 Thin wall cylindrical container

The strain energy of the axisymmetric shell element (Fig. 4.2.6) including the effect of both

stretching and bending are expressed as
H

I
U= [(N,e, + Nye, + M, x, ) 2nRdy (4.2.9)

0



Here, N, and Ny are the membrane force resultants and M, is the bending moment resultant. The
shell is assumed to be linearly elastic, homogeneous and isotropic. Thus the force and moment
resultants can be expressed in terms of the mid-surface change in curvature y,, as follows.

""“““‘“'* --------- - JFHB
: W,
L |
£ I
- Tvl
RS, SN————— *)u,
R W,

Fig 4.2.6 Axisymmetric plate element

Here, the strain-displacement relation is given by

{o} =[D]{e} (4.2.10)
In which,
N, &, 1 x4 O
{o} =N, {, {e}=1¢, { and [D]= Eh Slu 10 (4.2.11)
1—u 5
M, 2 0o o
L 12
The generalized strain vector can be expressed in terms of the displacement vectors as follows.
{e}=[B]{d} (4.2.12)

Where,



o 2
oy
u 1
{d}:{ }and[B]: = 0 (4.2.13)
14
62
-—— 0
L o

Here, u and v are the displacement components in two perpendicular directions. With the use of
stress and strain vectors, the potential energy expression are written in terms of displacement vectors
as

1 f T o7
U= 2nR { ({a}" [BY [P][B]{d} |av (4.2.14)
Thus, the element stiffness are derived as
H
[]=2xR [[B] [D][B]dv (4.2.15)
0
Similarly, neglecting the rotary inertia, the kinetic energy can be expressed as

T= éxanI({d}T [N] m[N]{d})dy (4.2.16)

Where, m denotes the mass of the shell element per unit area and {d } represents the velocity vector.

Thus, the element mass matrix is given by
Lt'
[M]=2nRm [[N] [N]dy (4.2.17)
0

Finite Element Formulation of Axisymmetric Element

Finite element formulation for the axisymmetric problem will be similar to that of the two
dimensional solid elements. As the field variables, such as the stress and strain is independent of
rotational angle 0, circumferential displacement will not appear. Thus, the displacement field
variables are expressed as

u(r,z)Z ZM<F’Z)MI'
w(r,z) =lZf;Nl.(r,z)wi

Here, u; and w; represent radial and axial displacements respectively at nodes. N; (7, z) are the shape

4.3.1)

functions. As the geometry and field variables are independent of rotational angle 0, the interpolation
function N, (7, z) can be expressed similar to 2-dimensional problems by replacing the x and y terms
with 7 and z terms respectively.
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4.3.1 Stiffness Matrix of a Triangular Element

Fig. 4.3.1 shows the cylindrical coordinates of a three node triangular element. Hence the analysis of
the axisymmetric element can be approached in a similar way as the CST element. Thus the field
variables of such an element can be expressed as

u=a,+or+a,z

w=a,+a,r+az (432)
Or,

{d}=[¢){a} 4323)
Where,

1 0 0O

{d}:{i},w]:[o (’; (Z) L Z} and {a} ={a, & & @ a o
Using end conditions,

w] [1 r z 0 0 0]fa

u, Il oz, 00 0]

u, | |1 oz, 00 0}

w, B 0 1 rn z||la (434)

w, 0 0 1 r z|la

wy] |0 0 1 rn z|las
Or,

(@) =L4}la) s

= {a}=[4]"{d] -

Here {67 } are the nodal displacement vectors.



Fig. 4.3.1 Axisymmetric three node triangle in cylindrical coordinates

Putting above values in eq.(4.3.3), the following relations will be obtained.

{d}=[g][4] '{d}=[N]{d] (4.3.6)
Or,
7
rz
W) [N N, N0 0 0]|n
{d}={w}={0 0 0 N N N |- (4.3.7)

Using a similar approach as in case of CST elements, the three shape functions [N,,N,,N,] can be

assumed as,

Nl(r,z):i[(rzz3 —1”322)+(22 —Z3)r+(r3 —rz)z]
Nz(r,z):i[(gzl —rz)+ (2 -2 )r+(r-n) 2]

N3(r,z):i[(rlzz )+ (52 (-1 2]



Or,

Nl,(r,z)=i(ai +rp, +z;/i)
1
N, (r,z)zﬂ(aj +rp; +27/j)

1
N, (r,z):ﬁ(ak +rf, +zy,)

Where,
a[=rjzk—rkzj aj=rkzi—r;zk O(k=riZj—eri
ﬂi:Zj_Zk :Bj:Zk_Zi ﬂk:Zi_Zj
Vi=h —I Vi=h—h Vi=1—F

1
24 —E(’?Zj 1zt nz, —nz—rz —rij)

1

Putting the value of {u,w} in eq. (4.3.7) from eq. (4.3.5),

6N ON.
ON, ; ON, 0 0 0 )
or or or 1
N, N j T
r 7 r =

aNf aNj oN Bk
0z 0z 0z ||z,
ON, ON, ON, ON, ON, ON, ||z

oz 0Oz oz oOr or or |
Thus, the strain displacement matrix can be expressed as,

N 0 0 0
r
0

0 0

B B B 0 0 0]
N,
N LA/ AP
[B]:ﬂ ror r
0 0 0 7% 7 n
L Vi Vi Yk B b IBk_
rAT T , o
Where, r = L . Thus the stiffness matrix will become

0

(4.3.8)

(4.3.9)

(4.3.10)

(4.3.11)

(4.3.12)



Since, the term [B] is dependent of ‘#° terms; the term [B]T [D][B]cannot be taken out of
integration. Yet, a reasonably accurate solution can be obtained by evaluating the [B] (denoted as
[B]) matrix at the centroid.
Hence, [k] 27rr [D] J.I drdz
Or,

[k]=[B] [DP][B]27r4 (4.3.13)

4.3.2 Stiffness Matrix of a Quadrilateral Element
The strain-displacement relation for axisymmetric problem derived earlier (eq.(4.3.5)) can be
rewritten as

ou

ou o

or 10 0 0 0)|éu

6‘r aw -

. = 0 0 0 1 0]|oz
gl=<q " t= = ow 4.3.14
{ } &, u 0 0 0 0 ! o ( )

— r

Ve r 0

ou ow o110 0]ow

—+— Oz

0z Or "

Applying chain rule of differentiation equation we get,

ou ou
g M % * 7 a&‘
@ 11 n O 0 0 @
oz | 13, T, 0 0 o0f|lén
owe=l0 0 J, J, 0w (4.3.15)
or 0 0 I, I, 0||%
M o 0o 0 o0 1][ow
oz o
u u

Hence, the strain components are calculated as



Or,

With the use of interpolation function and nodal displacements, [

SR |l= O O
=)
S

S H|l— © O
D
=

for a four node quadrilateral element as

¢
ou
on

¢
dw
L On

Ou |

ow

ON, ON, ON, ON,

23

o o0& 0§
ON, ON, ON, ON,
dn on  On
0 0 0
0 0 0

Putting eq. (4.3.17) in eq. (4.3.16) we get,

= 2|2 8T 22 R

ou Ou Oow Ow

ag’ on’ ag” an

0 0 0 0
0 0 0 0
ON, ON, ON, ON,
o o0&  0¢ 0
ON, ON, ON, ON,
on On On On

(4.3.16)

]can be expressed

(4.3.17)



ON, ON, ON, ON,
o 9t 9 o¢

2] [T Te 000 00N ON, ON, N,y ||y,
0 0 I, I, ofdn 9on on On

el ON, 8N, ON, ON,||

€ 1o 0 0 o0 1o 0 0 0 L 2 2 Hw,

r oe o o ||

Tel oy X, T, T, 0 ON, ON, ON, ON,|[™

(4.3.18)
Thus, the strain displacement relationship matrix [B] becomes
ON, ON, ON, ON, 0 0 0 0
o 08¢ 0t 0%
J, J, 0 0 O0||ON, ON, ON, ON, 0 0 0 0
0 0 I, I, ofdn On 9In On
— (4.3.19)
[B] o o o o Mo 0 0 o ONi ON, ON; ON,
r 9 9g 9L 0%
L, 5, J, J, 0 0 0 0 o ONi ON, ON; ON,
on On On On
N, N, N, N, N, N, N, N,
For a four node quadrilateral element,
1-€)(1- _ _
N =90 N ) N (128
4 o0& 4 on 4
1 1- _
N2=( ) N, (o) N (148) (4.3.20)
4 0¢ 4 on 4
1 1
aen) N, () g N (148
4 o 4 on 4
N, 2 N, () Ny (1Y)
4 ot 4 an 4

Thus, the [B] matrix will become




I, I, 0 0 0
0 0 I, J, 0
e %X
JZI J;Z J1] J]Z 0
_(1=m) (I=m) (1+m) (1+m) 0 0 . .
4 4 4 4
=9 (+y (1+€) (1-¢) . . . .
4 4 4 4
0 0 0 0 ~(1=m) (1-m) (1+m) (14n)
4 4 4 4
0 0 0 0 _@ _(t&) (1:@ @
(1=¢)(1=m) (+&)(1-m) [(+&)(1+n) (1=€)(1+n) (1=£)(1-m) [(+£)(1-mn) [(+£)(1+n) (1-€)(1+n)
4 4 4 4 4 4 4 4
(4.3.21)

The stiffness matrix for the axisymmetric element finally can be found from the following
expression after numerical integration.

[]=[[B] [D][B]d2= +IIT[B]T [D][B].2nr|J].d&dn (4.3.22)
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UNIT -V
APPLICATION FINITE ELEMENT METHODS ELEMENT

|l. Basic Concepts

The finite element method (FEM). or finite element analysis
(FEA). 1s based on the idea of building a complicated object with
simple blocks. or. dividing a complicated object into small and
manageable pieces. Application of this simple idea can be found
everywhere in everyday life, as well as in engineering.

Examples:

. 1 :
Area of one triangle: S; = ERE sin &;

27

N
1 . )
Area of the circle: Sy =25 = ;sz*’ﬁm( WI — TR asN -
ful = :
where N = total number of triangles (elements).

Observation: Complicated or smooth objects can be
represented by geometrically simple pieces (elements).



Why Finite Element Method?

Design analysis: hand calculations. experiments. and
computer simulations

FEM/FEA is the most widely applied computer simulation
method in engineering

e Closely integrated with CAD/CAM applications

Applications of FEM in Engineering

e Mechanical/Aerospace/Civil/Automobile Engineering

Structure analysis (static/dynamic. linear/nonlinear)

e Thermal/fluid flows

Electromagnetics

Geomechanics

e Biomechanics

e
Modeling of gear coupling

Examples:



A Brief History of the FEM

e 19043 ----- Courant (Variational methods)

® 1956 ----- Turner. Clough. Martin and Topp (Stiffness)
e 1960 ----- Clough (“Finite Element”. plane problems)
e 1970s ----- Applications on mainframe computers

e 1980s ----- Microcomputers. pre- and postprocessors

e 19905 ----- Analysis of large structural systems

Can Drop Test (Click for more information and an amimation)




FEM in Structural Analysis (The Procedure)

¢ Divide structure into pieces (elements with nodes)

e Describe the behavior of the physical quantities on each
element

e Connect (assemble) the elements at the nodes to form an
approximate system of equations for the whole structure

e Solve the system of equations involving unknown
quantities at the nodes (e.g.. displacements)

e (Calculate desired quantities (e.g.. strains and stresses) at
selected elements

Example:

FEM model for a gear tooth (From Cook’s book. p.2).



Computer Implementations

¢ Preprocessing (build FE model. loads and constraints)
e FEA solver (assemble and solve the system of equations)

¢ Postprocessing (sort and display the results)

Available Commercial FEM Software Packages

¢ ANSYS (General purpose, PC and workstations)

e SDRC/I-DEAS (Complete CAD/CAM/CAE package)
o NASTRAN (General purpose FEA on mainframes)

¢ ABAQUS (Nonlinear and dynamic analyses)

¢ COSMOS (General purpose FEA)

¢ ALGOR (PC and workstations)

e PATRAN (Pre/Post Processor)

* HyperMesh (Pre/Post Processor)

Dyna-3D (Crash/impact analysis)

A Link to CAE Software and Companhnies




Il. Substructures (Superelements)

Substructuring is a process of analyzing a large structure as
a collection of (natural) components. The FE models for these
components are called substructures or superelements (SE).

Physical Meaning:
A finite element model of a portion of structure.

Mathematical Meaning:

Boundary matrices which are load and stiffness matrices
reduced (condensed) from the inferior points to the exterior or
boundary points.

l \\ BT

!./

Lal =

Fig. 4.11-1. i) Possibic substruciures la. 1&, . 5 of & hypothedes) slrcrai. (b) Castellawed
heam. with typical repeting substrucoure ABCT. Elemenis of the substnsctures are not ko,



Advantages of Using Substructures/Superelements:

Large problems (which will otherwise exceed your
computer capabilities)

Less CPU time per run once the superelements have
been processed (1.e.. matrices have been saved)

Components may be modeled by different groups

Partial redesign requires only partial reanalysis (reduced
cost)

Efficient for problems with local nonlinearities (such as
confined plastic deformations) which can be placed in
one superelement (residual structure)

Exact for static stress analysis

Disadvantages:

e Increased overhead for file management

¢ Matrix condensation for dynamic problems introduce

New approximations



IV. Nature of Finite Element Solutions

¢ FE Model — A mathematical model of the real structure.
based on many approximations.

¢ Real Structure -- Infinite number of nodes (physical
points or particles). thus infinite number of DOF’s.

¢ FE Model — finite number of nodes. thus finite number
of DOF’s.

= Displacement field is controlled (or constrained) by the
values at a limited number of nodes.

A\

\ Recall that on an element :

4
u=> N_u,

a=l

Stiffening Effect:

e FE Model 1s stiffer than the real structure.

¢ In general, displacement results are smaller in
magnitudes than the exact values.



Hence. FEM solution of displacement provides a lower
bound of the exact solution.

i A (Duplacemant)

* Exact Solution

+ FEM Solutions

No. gf DOF =

The FEM solution approaches the exact solution from
below.

This is true for displacement based FEA!



V. Numerical Error

Error #Mistakes in FEM (modeling or solution).

TIype of Errors:
¢ Modeling Error (beam. plate ... theories)
¢ Discretization Error (finite, piecewise ...)

¢ Numerical Error ( in solving FE equations)

Example (numerical error):

FE Equations:

k, —ky |fu, | |P
—k, Kk +ky | U, o
and Det K = kk,.

The system will be singular if k> 1s small compared with kj.



oy =<k (two lines close):
= System ill-conditioned.

- k
<y =——i—u
R T
k; == ky (two line apart):
= System well conditioned.

o Large difference in stiffness of different parts in FE
model may cause ill-conditioning in FE equations.
Hence giving results with large errors.

¢ Ill-conditioned system of equations can lead to large
changes in solution with small changes in input
(right hand side vector).



VI. Convergence of FE Solutions

As the mesh in an FE model is “refined” repeatedly, the FE
solution will converge to the exact solution of the mathematical
model of the problem (the model based on bar. beam. plane
stress/strain. plate. shell. or 3-D elasticity theories or
assumptions).

Type of Refinements:

h-refinement:  reduce the size of the element (**h " refers to the
typical size of the elements);

p-refinement:  Increase the order of the polynomials on an
element (linear to quadratic, etc.; *“*h” refers to
the highest order in a polynomial):

r-refinement.  re-arrange the nodes in the mesh:

hp-refinement: Combination of the h- and p-refinements
(better results!).

Examples:



VIl. Adaptivity (h-, p-, and hp-Methods)

¢ Future of FE applications

¢ Automatic refinement of FE meshes until converged
results are obtained

e User’s responsibility reduced: only need to generate a
good initial mesh

Error Indicators:
Define.

o --- element by element stress field (discontinuous).
= "
o --- averaged or smooth stress (continuous).

*
o= -o --- the error stress field.

Compute strain energy.

M

U=>U,. U, = J%GIE_lﬁdrl
i=1 r, s
¥ M £ ¥ ]. £ ¥
U =>U,. U'=[-¢"E7cdV:
ful ’ ¥, 2
M 1
Uy =3 Uy, Ug; = [-06zE76,dV:

iml ;.:; s

where M is the total number of elements. ¥, is the volume of the
element 7.



One error indicator --- the relative energy error:

2

1
UE
=| —= . 0=p=1
n [U+UE} (0=p=1)

The indicator n is computed after each FE solution. Refinement
of the FE model continues until. say

n < 0.05.

== converged FE solution.

Interpolation Functions for General
Element Formulation

In finite element analysis, solution accuracy is judged in terms of
convergence as the element “mesh” is refined.
There are two major methods of mesh refinement.

In the first, known as h-refinement, mesh refinement refers to the process
of increasing the number of elements used to model a given domain,
consequently, reducing individual element size.

In the second method, p-refinement, element size is unchanged but the
order of the polynomials used as interpolation functions is increased.

The objective of mesh refinement in either method is to obtain sequential
solutions that exhibit asymptotic convergence to values representing the
exact solution.



TWO DIMENSIONAL STEADY STATE HEAT FLOW:
Introduction

In finite element technique, the nodal equations for the field variables are obtained
through an integral formulation, which may be set up through a variational principle (if one
exists), or through the Galekin's weighted residual approach. Here we shall consider the
Galerkin's approach, which has a general applicability. Let us consider a general
representation of a differential equation on a region 7

LT=Q (18.1)

For the one dimensional heat conduction equation, the governing differential equation is

i(md—T] =0 (18.2)
dx dx

The symbol [ is an operator

A a4
dc dx

that is operating on 7. The exact solution requires to satisfy Eqn. 18.1 at every x points.

Let us seek for an approximate solution 7 that introduces an error g{x), called the

residual
g{x)=LT-0 (18.3)

The approximate methods are centered around the concept of setting the residual relative
to a weighting function W: to zero

[w(iT-Q)av=0 i-1ton (18.4)

The W; can be chosen based on the gquiding philosophies of different variants of the
weighted residual methods. In the Galerkin method, the }¥. are chosen from the basis

functions used for constructing 7 . We shall deal with aspect, in detail, in the subsequent
sections.



Formulation

Consider a steady 2-D heat conduction problem in an arbitrary-shaped two dimensional
domain which is subject to various types of boundary conditions as shown in Fig. 18.1.
Considering a uniform heat generation rate per unit volume (Q) in the entire solution, the
governing equation for heat transfer is

Radiative
1 heat loss

Convective
heat loss to
T=T,

Figure 18.1 Arbitrary 2D domain.

kVT+0=0 (18.5)
where T(x,y) is the exact distribution of temperature.

The boundary conditions are:

(T‘— :f}f‘) on S, (18.6)



TWO DIMENSIONAL STEADY STATE HEAT FLOW:

We have, to this point, considered only One Dimensional, Steady State problems. The reason
for this is that such problems lead to ordinary differential equations and can be solved with
relatively ordinary mathematical techniques. In general the properties of any physical system
may depend on both location (X, y, z) and time (t). The inclusion of two or more independent
variables results in a partial differential equation. The multidimensional heat diffusion

equation in a Cartesian coordinate system can be written as:

n))
n)]

r o'r &’T o'T
= 'I+ '!l+__\'l

x~ dy- Oz

(D

n))
n))

1
a or
The above equation governs the Cartesian, temperature distribution for a three-dimensional
unsteady, heat transfer problem involving heat generation. To solve for the full equation, it
requires a total of six boundary conditions: two for each direction. Only one initial condition
is needed to account for the transient behavior. For 2D, steady state (¢/ ot = 0) and without

heat generation, the above equation reduces to:

=2 =2
O+ 2 =0 @

ox~  ay-

o

Equation (2) needs 2 boundary conditions in each direction. There are three approaches to
solve this equation:

¢ Analytical Method: The mathematical equation can be solved using techniques like the
method of separation of variables.

e Graphical Method: Limited use. However, the conduction shape factor concept derived
under this concept can be useful for specific configurations. (see Table 4.1 for selected
configurations)

e Numerical Method: Finite difference or finite volume schemes, usually will be solved

using computers.

Analytical solutions are possible only for a limited number of cases (such as linear problems

with simple geometry). Standard analytical techniques such as separation of variables can be



found in basic textbooks on engineering mathematics, and will not be reproduced here. The
student is encouraged to refer to textbooks on basic mathematics for an overview of the

analytical solutions to heat diffusion problems. In the present lecture material, we will cover
the graphical and numerical techniques, which are used quite conveniently by engineers for

solving multi-dimensional heat conduction problems.

Graphical Method: Conduction Shape Factor

This approach applied to 2-D conduction involving two isothermal surfaces, with all other
surfaces being adiabatic. The heat transfer from one surface (at a temperature T1) to the other
surface (at T2) can be expressed as: qg=Sk(T1-T2) where k is the thermal conductivity of the
solid and S is the conduction shape factor.

The shape factor can be related to the thermal resistance:
q=S.k.(T,-To)=(T,-T2)/(1/kS)= (T,-T1)/R;

where Rt = 1/(kS) is the thermal resistance in 2D. Note that 1-D heat transfer can also use the
concept of shape factor. For example, heat transfer inside a plane wall of thickness L is
g=kA(AT/L), where the shape factor S=A/L. Common shape factors for selected

configurations can be found in Table 4.1



Example: A 10 em OD uninsulated pipe carries steam from the power plant across campus.
Find the heat loss if the pipe is buried 1 m in the ground is the ground surface temperature is
50 °C. Assume a thermal conductivity of the sandy soil as k= 0.52 w/m K.

Solution:
Tz

The shape factor for long cylinders is found in Table 4.1 as Case 2, with L >> D:

S = 2.-L/In(4-z/D)

Where z = depth at which pipe is buried.

S =2.1.1-m/In(40) = 1.7 m

Then
q' = (1.7m)(0.52 W/m-K)(100°C - 50°C)

q=442W



Table 4.1
Conduction shape factors for selected two-dimensional systems [q = Sk(T,-T,)]

System Schematic Restrictions Shape Factor
T,
lz 2D
Isathermal sphere buried in - - =D 1—Dds
as finite medium
T:
Horizontal isothermal L==D 2a.
cylinder of length L buried z cash ™ (2= 1
in a semi finite medium Le=D
- #3072 —_
In(d=/ ¥
Vertical cylinder in a semi Le=Dr %
finite medium S
2.
L==D, [ {1tk _ okl
Conduction between two " TP cosh™!| 22 - Di-0 |
cylinders of length L in . — 20,0 J
infinite medium
. . . ; T
Horizontal cireular cylinder 4 —to
of length L midway 4 =2 e
between parallel planes of FE-— ——— L>=2 In(8= / )
equal length and infinite 4 T
width e —
T:
. . I,
Circular cylinder of length
L centered in a square solid W=D 2l
of equal length b\} Loow il 08w/ D)
Th
Eceentric circular cylinder Dd =
of length L in a cylinder of L.'=:.'-*D eagh :l i

equal length




Table 4.1 Continued

System Schematic Restrictions Shape Factor
D=L/5 5
Conduction through the edge 034D
of adjoining walls
Conduction through comers of I"':_"']'*'“l-'t_h and 0.15L
three walls with a emperature width of wall
difference of AT, across the
walls
D
L o T
Disk of diameter D and Tl on a | )
semi finite medium of thermal i None
conductivity k and T, L
) .
. . . T;
Crrcular cylinder of length
L centered in a square solid W=D 2l
of equal length \:‘/Q\j W L>>w In(1 08w / D)
Ty
.. . 2l
Eccentric circular cyhinder ) -
X . PR D=d 4| D* +d* -4
of length L in a cylinder of . cosh™|
L=>D 2Dd

equal length

Due to the increasing complexities encountered in the development of modern technology,
analytical solutions usually are not available. For these problems, numerical solutions
obtained using high-speed computer are very useful, especially when the geometry of the
object of interest is irregular, or the boundary conditions are nonlinear. In numerical analysis,
three different approaches are commonly used: the finite difference, the finite volume and the

finite element methods. Brief descriptions of the three methods are as follows

The Finite Difference Method (FDM) This is the oldest method for numerical solution of
PDEs, introduced by Euler in the 18th century. It's also the easiest method to use for simple

geometries. The starting point is the conservation equation in differential form. The solution



domain is covered by grid. At each grid point, the differential equation is approximated by
replacing the partial derivatives by approximations in terms of the nodal values of the
functions. The result is one algebraic equation per grid node, in which the variable value at
that and a certain number of neighbor nodes appear as unknowns. In principle, the FD
method can be applied to any grid type. However, in all applications of the FD method
known, it has been applied to structured grids. Taylor series expansion or polynomial fitting
is used to obtain approximations to the first and second derivatives of the variables with
respect to the coordinates. When necessary, these methods are also used to obtain variable
values at locations other than grid nodes (interpolation). On structured grids, the FD method
is very simple and effective. It is especially easy to obtain higher-order schemes on regular
grids. The disadvantage of FD methods is that the conservation is not enforced unless special

care is taken. Also, the restriction to simple geometries is a significant disadvantage.

Finite Volume Method (FVM)

In this dissertation finite volume method is used. The FVV method uses the integral form of the
conservation equations as its starting point. The solution domain is subdivided into a finite
number of contiguous control volumes (CVs), and the conservation equations are applied to
each CV. At the centroid of each CV lies a computational node at which the variable values
are to be calculated. Interpolation is used to express variable values at the CV surface in
terms of the nodal (CV-center) values. As a result, one obtains an algebraic equation for each
CV, in which a number of neighbor nodal values appear. The FVM method can accommodate
any type of grid when compared to FDM, which is applied to only structured grids. The FVM
approach is perhaps the simplest to understand and to program. All terms that need be
approximated have physical meaning, which is why it is popular. The disadvantage of FV
methods compared to FD schemes is that methods of order higher than second are more
difficult to develop in 3D. This is due to the fact that the FV approach requires two levels of

approximation: interpolation and integration.

Finite Element Method (FEM)

The FE method is similar to the FV method in many ways. The domain is broken into a set of
discrete volumes or finite elements that are generally unstructured; in 2D, they are usually
triangles or quadrilaterals, while in 3D tetrahedra or hexahedra are most often used. The

distinguishing feature of FE methods is that the equations are multiplied by a weight function



before they are integrated over the entire domain. In the simplest FE methods, the solution is
approximated by a linear shape function within each element in a way that guarantees
continuity of the solution across element boundaries. Such a function can be constructed from

its values at the corners of the elements. The weight function is usually of the same form.

This approximation is then substituted into the weighted integral of the
conservation law and the equations to be solved are derived by requiring the derivative of the
integral with respect to each nodal value to be zero; this corresponds to selecting the best
solution within the set of allowed functions (the one with minimum residual). The result is a

set of non-linear algebraic equations.

An important advantage of finite element methods is the ability to deal with
arbitrary geometries. Finite element methods are relatively easy to analyze mathematically
and can be shown to have optimality properties for certain types of equations. The principal
drawback, which is shared by any method that uses unstructured grids, is that the matrices of
the linearized equations are not as well structured as those for regular grids making it more

difficult to find efficient solution methods.

The Finite Difference Method Applied to Heat Transfer Problems:

In heat transfer problems, the finite difference method is used more often and will be discussed here
in more detail. The finite difference method involves:

* Establish nodal networks

* Derive finite difference approximations for the governing equation at both interior and exterior
nodal points

*Develop a system of simultaneous algebraic nodal equations

*Solve the system of equations using numerical schemes

The Nodal Networks:

The basic idea is to subdivide the area of interest into sub-volumes with the distance between adjacent

nodes by Ax and Ay as shown. If the distance between points is small enough, the differential equation
can be approximated locally by a set of finite difference equations. Each node now represents a small
region where the nodal temperature is a measure of the average temperature of the region.

Example:
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To model the steady state, e generation heat equation: ¥°T =0
This approximation can be sirvplified by specify Ax=Ay

and the nedal eguation can be obtamed as

T--u + l-|r|--|4-| + r..ul + T-.--l _#T-- =0

This sguation approximaies the nodal termperature distribution based on
the heat equateon. This approximation s improved when the distance
between the adjacent nedal points is decreased:

) . AT 87 . AT 8T
Since limiAx — 1) — = =—_ lim[ Ay — 0}j—— = —
mi ]m ™ A }a_;- 2

Table 4.2 provides a list of nodal finite difference equation for vanous configurations.

A Sysitem of Alzebraic Equations
*  The nodal equations denved previously are valid for all inmernior points satisfying the
steady state, no gencration heat equatbon. For each node, there is one such equasation.
For example; for nodal point m=3, n=4, the equation is
Tag+Taa+Taa+ Tas-4T4=0
Tas~ 14N Trs + Taa+ Taz+ Tash

«  Modal relation table for exterior nodes (boundary conditions) can be found
stamndard heat transfer texthooks.

«  Derive one eguation for each nodal point (including both intersor and exterior poinis)
in the systern of interest. The result is a system of M algebraic equations for a total of
M nodal poinis.

Mlatrix Form

The svstem of equations:

a1 +a.T; +L +a, T, =G
ay T, +a,T: +L +a,,T, =C;
bd % | MM Y |
'ﬂ.'-'lr; +ﬂ.'r:T: +L +idy, r.-.' = r-».

A iotal of W algebraic eguations for the N nosdal poinds and the system can be expressed as a
mairix formulation: [A][T]=C] -

@, a; L oay T L&
il g= &y dn L oay, = I, C= Cy
M M M M % |

gy dyy L ey Ty Cy



Table 4.2 Summary of nodal finite-difference methods

Configuration Finite-Difference equations for Ax=Ay
1
Ay — Tanet *Tsct + Tt + Tt — 4T =0
r
N m.n I m+1.n
m-1Ln 1 N
P N |
Ax =l Case 1. Interior node
Ax
mnt+1
AT rm-tn + Tt )+ Trnrin + Tt #2051, 3+ B b | o
r-—T -
m~1.1) I m nI S
Ay —_ - e
Case 2. Node at an internal
m,n-1 corner with convection
m.n |1
Ay I— -
T | Fedor 1
2Tt +Tmmet +Faunt )+ 2T = 2| ==+ 2 [Ty =0
I'ﬂ—l"l' i = I“+I1n ; ] I " * 'T
L { hee
mn-1
A Case 3. Node at a plane
surface with convection
Table 4.2 Summary of nodal finite-difference methods
m-1.n
h.oo .
hAx hAx
m. :(‘Tm—l,)r + Tyt 1)+ :Trx - 3[ E +1er.n =0
Ay -
m.n-1
Ax b
Case 4. Node at an external corner with convection
mn+l 2 2 2 2 (2 :]
Tt T+ ———T + ,-|<+2r,, =0
! a+l " T T ) BE1) 2 l\a BS™
Ay T, —
—_——
r bAy
T, 1 m.n| N
m-1.n| I | m+1.a
(I -
Case 5. Node near a curved surface maintained at a
ANy —— .
non uniform temperature
Ax m.n-1




N ical Soluii
Matrix fiorm: [A][T]=[C].

From linear algebra: [A]'[A]TIS[A]'[C], [TIEAT'[C]

where [A]-1 is the inverse of mairix [A]. [T] & the solution vector.

= BMatmx inversion requires cumbersome numierical computations and is ot efficient if
the order of the #hirix i high (=10)

= Gauss climination method and other mairix solvers gre uswally availabbe in mamy
numerical solution package. For example, “MNumernical Recipes™ by Cambridge
University Press or their wieb sowrce at waow . nr.coim.

=  For high order matrix, iterative methods are wsually more cfficient. The famous
Jacobd & Gauss-5Seidel iteration methods will be introduced in the following.

lteration A
Creneral algebraic equation for nodal podni:

i-1 W
EG*T +a, T+ E"-.-T.- =0, A Replace -[I{]-b!}fck—l_]-
e T | for the Jacobi iteration

(Example:a, T +a T, +a, T +L +a =L, 1 =13}
Rewrite the equation of the .

N

i F. i i =]
I:-;l =I_;ﬂ_\:]—:t _ Zi]—:l 1

¢ (k) - specify the level of the ieration, (k-1) means the present level and (k) represents
the new level,

«  Aninitial guess (k=0) is needed to start the iferation.

« « By substituting iterated values at (k-1) into the equation, the new values at iteration

(k) can be estimated The iteration will be stopped when max! T*-T*" e where e
specifies 4 predetermined value of acceptable error



