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1.1.1 Introduction  
The Finite Element Method (FEM) is a numerical technique to find approximate solutions of partial 
differential equations. It was originated from the need of solving complex elasticity and structural 
analysis problems in Civil, Mechanical and Aerospace engineering. In a structural simulation, FEM 
helps in producing stiffness and strength visualizations. It also helps to minimize materialweight and 
its cost of the structures. FEM allows for detailed visualization and indicates the distribution of 
stresses and strains inside the body of a structure. Many of FE software are powerful yet complex 
tool meant for professional engineers with the training and education necessary to properly interpret 
the results. 

Several modern FEM packages include specific components such as fluid, thermal, 
electromagnetic and structural working environments. FEM allows entire designs to be constructed, 
refined and optimized before the design is manufactured. This powerful design tool has significantly 
improved both the standard of engineering designs and the methodology of the design process in 
many industrial applications. The use of FEM has significantly decreased the time to take products 
from concept to the production line. One must take the advantage of the advent of faster generation 
of personal computers for the analysis and design of engineering product with precision level of 
accuracy.  
 
1.1.2 Background of Finite Element Analysis 
The finite element analysis can be traced back to the work by Alexander Hrennikoff (1941)and 
Richard Courant(1942). Hrenikoff introduced the framework method, in which a plane elastic 
medium was represented as collections of bars and beams.These pioneers share one essential 
characteristic: mesh discretization of a continuous domain into a set of discrete sub-domains, usually 
called elements.  

• In 1950s, solution of large number of simultaneous equations became possible because of the 
digitalcomputer.  

• In 1960, Ray W. Clough first published a paper using term “Finite Element Method”. 
• In 1965, First conference on “finite elements” was held. 
• In 1967, the first book on the “Finite Element Method” was published by Zienkiewicz and 

Chung. 
• In the late 1960s and early 1970s, the FEM was applied to a wide variety of engineering 

problems. 
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• In the 1970s, most commercial FEM software packages (ABAQUS, NASTRAN, ANSYS, 
etc.) originated.Interactive FE programs on supercomputer lead to rapid growth of CAD 
systems. 

• In the 1980s, algorithm on electromagnetic applications, fluid flow and thermal analysis were 
developed with the use of FE program.  

• Engineers can evaluate ways to control the vibrations and extend the use of flexible, 
deployablestructures in space using FE and other methods in the 1990s. Trends to solve fully 
coupled solution of fluid flows with structural interactions, bio-mechanics related problems 
with a higher level of accuracy were observed in this decade. 

 
With the development of finite element method, together with tremendous increases in computing 
power and convenience, today it is possible to understand structural behavior with levels of 
accuracy. This was in fact the beyond of imagination before the computer age.  
 
1.1.3 Numerical Methods 
The formulation for structural analysis is generally based on the three fundamental relations: 
equilibrium, constitutive and compatibility. There are two major approaches to the analysis: 
Analytical and Numerical. Analytical approach which leads to closed-form solutions is effective in 
case of simple geometry, boundary conditions, loadings and material properties. However, in reality, 
such simple cases may not arise. As a result, various numerical methods are evolved for solving such 
problems which are complex in nature. For numerical approach, the solutions will be approximate 
when any of these relations are only approximately satisfied. The numerical method depends heavily 
on the processing power of computers and is more applicable to structures of arbitrary size and 
complexity. It is common practice to use approximate solutions of differential equations as the basis 
for structural analysis. This is usually done using numerical approximation techniques. Few 
numerical methods which are commonly used to solve solid and fluid mechanics problems are given 
below. 
 

• Finite Difference Method 
• Finite Volume Method 
• Finite Element Method 
• Boundary Element Method 
• Meshless Method 

 
The application of finite difference method for engineering problems involves replacing the 
governing differential equations and the boundary condition by suitable algebraic equations. For 



 

example in the analysis of beam bending problem the differential equation is reduced to be solution 
of algebraic equations written at every nodal point within the beam member. For example, the beam 
equation can be expressed as: 
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To explain the concept of finite difference method let us consider a displacement function variable 
namely ( )w f x=  

 
Fig. 1.1.1 Displacement Function 
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Thus, eq. (1.1.1) can be expressed with the help of eq. (1.1.5) and can be written in finite difference 
form as: 
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Fig. 1.1.2 Finite difference equation at node i 

 
Thus, the displacement at node i of the beam member corresponds to uniformly distributed load can 
be obtained from eq. (1.1.6) with the help of boundary conditions. It may be interesting to note that, 
the concept of node is used in the finite difference method. Basically, this method has an array of 
grid points and is a point wise approximation, whereas, finite element method has an array of small 
interconnecting sub-regions and is a piece wise approximation. 

Each method has noteworthy advantages as well as limitations. However it is possible to 
solve various problems by finite element method, even with highly complex geometry and loading 
conditions, with the restriction that there is always some numerical errors. Therefore, effective and 
reliable use of this method requires a solid understanding of its limitations.  

 
1.1.4 Concepts of Elements and Nodes 
Any continuum/domain can be divided into a number of pieces with very small dimensions. These 
small pieces of finite dimension are called ‘Finite Elements’ (Fig. 1.1.3). A field quantity in each 
element is allowed to have a simple spatial variation which can be described by polynomial terms. 
Thus the original domain is considered as an assemblage of number of such small elements. These 
elements are connected through number of joints which are called ‘Nodes’. While discretizing the 
structural system, it is assumed that the elements are attached to the adjacent elements only at the 
nodal points. Each element contains the material and geometrical properties. The material properties 
inside an element are assumed to be constant. The elements may be 1D elements, 2D elements or 3D 
elements. The physical object can be modeled by choosing appropriate element such as frame 



 

element, plate element, shell element, solid element, etc. All elements are then assembled to obtain 
the solution of the entire domain/structure under certain loading conditions. Nodes are assigned at a 
certain density throughout the continuum depending on the anticipated stress levels of a particular 
domain. Regions which will receive large amounts of stress variation usually have a higher node 
density than those which experience little or no stress. 

 
Fig. 1.1.3 Finite element discretization of a domain 

 
1.1.5 Degrees of Freedom 
A structure can have infinite number of displacements. Approximation with a reasonable level of 
accuracy can be achieved by assuming a limited number of displacements. This finite number of 
displacements is the number of degrees of freedom of the structure. For example, the truss member 
will undergo only axial deformation. Therefore, the degrees of freedom of a truss member with 
respect to its own coordinate system will be one at each node. If a two dimension structure is 
modeled by truss elements, then the deformation with respect to structural coordinate system will be 
two and therefore degrees of freedom will also become two. The degrees of freedom for various 

types of element are shown in Fig. 1.1.4 for easy understanding. Here ( ), ,u v w  and ( ), ,x y zθ θ θ  

represent displacement and rotation respectively. 



 

 
 

Fig. 1.1.4 Degrees of Freedom for Various Elements 
  



 

 

 
 

1.2.1 Idealization of a Continuum 
A continuum may be discretized in different ways depending upon the geometrical configuration of 
the domain. Fig. 1.2.1 shows the various ways of idealizing a continuum based on the geometry. 
 
 

 
 

Fig. 1.2.1 Various ways of Idealization of a Continuum 
 
1.2.2 Discretization of Technique 
 
The need of finite element analysis arises when the structural system in terms of its either geometry, 
material properties, boundary conditions or loadings is complex in nature. For such case, the whole 

 Basic Concepts of Finite Element Analysis



 

structure needs to be subdivided into smaller elements. The whole structure is then analyzed by the 
assemblage of all elements representing the complete structure including its all properties.  
                 The subdivision process is an important task in finite element analysis and requires some 
skill and knowledge. In this procedure, first, the number, shape, size and configuration of elements 
have to be decided in such a manner that the real structure is simulated as closely as possible. The 
discretization is to be in such that the results converge to the true solution. However, too fine mesh 
will lead to extra computational effort. Fig. 1.2.2 shows a finite element mesh of a continuum using 
triangular and quadrilateral elements. The assemblage of triangular elements in this case shows 
better representation of the continuum. The discretization process also shows that the more accurate 
representation is possible if the body is further subdivided into some finer mesh. 

 
Fig. 1.2.2 Discretization of a continuum 

 
1.2.3 Concepts of Finite Element Analysis 
FEA consists of a computer model of a continuum that is stressed and analyzed for specific results. 
A continuum has infinite particles with continuous variation of material properties. Therefore, it 
needs to simplify to a finite size and is made up of an assemblage of substructures, components and 
members. Discretization process is necessary to convert whole structure to an assemblage of 
members/elements for determining its responses. Fig. 1.2.3 shows the process of idealization of 
actual structure to a finite element form to obtain the response results. The assumptions are required 
to be made by the experienced engineer with finite element background for getting appropriate 
response results. On the basis of assumptions, the appropriate constitutive model can be constructed. 



 

For the linear-elastic-static analysis of structures, the final form of equation will be made in the form 
of F=Kdwhere F, K and d are the nodal loads, global stiffness and nodal displacements respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.2.3Fromclassical to FE solution 
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Varieties of engineering problem like solid and fluid mechanics, heat transfer can easily be solved by 
the concept of finite element technique. The basic form of the equation will become as follows 
where action, property and response parameter will vary for case to case as outlined in Table 1.2.1.  
 

{ } [ ]{ } { } [ ] { }1F K d OR d K F−= =  
 
 
 
 

Table 1.2.1 Response parameters for different cases 
 Property Action Response 

Solid Stiffness Load Displacement 
Fluid Viscosity Body force Pressure/Velocity 

Thermal Conductivity Heat Temperature 
 

1. The physical properties, which are intractable and complex for any closed bound solution, 
can be analyzed by this method. 

2. It can take care of any geometry (may be regular or irregular). 
3. It can take care of any boundary conditions. 
4. Material anisotropy and non-homogeneity can be catered without much difficulty. 
5. It can take care of any type of loading conditions. 
6. This method is superior to other approximate methods like Galerkine and Rayleigh-Ritz 

methods. 
7. In this method approximations are confined to small sub domains. 
8. In this method, the admissible functions are valid over the simple domain and have nothing 

to do with boundary, however simple or complex it may be. 
9. Enable to computer programming.  
 

1. Computational time involved in the solution of the problem is high. 
2. For fluid dynamics problems some other methods of analysis may prove efficient than the 

FEM. 
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1.3.1 Advantages of FEA

1.3.2 Disadvantages of FEA

1.3.3 Limitations of FEA



 

1. Proper engineering judgment is to be exercised to interpret results. 
2. It requires large computer memory and computational time to obtainintend results. 
3. There are certain categories of problems where other methods are more effective, e.g., fluid 

problems having boundaries at infinity are better treated by the boundary element method. 
4. For some problems, there may be a considerable amount of input data. Errors may creep up 

in their preparation and the results thus obtained may also appear to be acceptable which 
indicates deceptive state of affairs. It is always desirable to make a visual check of the input 
data. 

5. In the FEM,many problems lead to round-off errors. Computer works with a limited number 
of digits and solving the problem with restricted number of digits may not yield the desired 
degree of accuracy or it may give total erroneous results in some cases. For many problems 
the increase in the number of digits for the purpose of calculation improves the accuracy. 

 

Every physical problem is formulated by simplifying certain assumptions. Solution to the problem, 
classical or numerical, is to be viewed within the constraints imposed by these simplifications. The 
material may be assumed to be homogeneous and isotropic; its behavior may be considered as 
linearly elastic; the prediction of the exact load in any type of structure is next to impossible. As 
such the true behavior of the structure is to be viewed with in these constraints and obvious errors 
creep in engineering calculations. 

1. The results will be erroneous if any mistake occurs in the input data. As such, preparation of 
the input data should be made with great care. 

2. When a continuum is discretised, an infinite degrees of freedom system is converted into a 
model having finite number of degrees of freedom. In a continuum, functions which are 
continuous are now replaced by ones which are piece-wise continuous within individual 
elements. Thus the actual continuum is represented by a set of approximations. 

3. The accuracy depends to a great extent on the mesh grading of the continuum. In regions of 
high strain gradient, higher mesh grading is needed whereas in the regions of lower strain, 
the mesh chosen may be coarser. As the element size decreases, the discretisation error 
reduces. 

4. Improper selection of shape of the element will lead to a considerable error in the solution. 
Triangle elements in the shape of an equilateral or rectangular element in the shape of a 
square will always perform better than those having unequal lengths of the sides. For very 
long shapes, the attainment of convergence is extremely slow. 

5. In the finite element analysis, the boundary conditions are imposed at the nodes of the 
element whereas in an actual continuum, they are defined at the boundaries. Between the 

1.3.4 Errors and Accuracy in FEA



 

nodes, the actual boundary conditions will depend on the shape functions of the element 
forming the boundary. 

6. Simplification of the boundary is another source of error. The domain may be reduced to the 
shape of polygon. If the mesh is refined, then the error involved in the discretized boundary 
may be reduced. 

7. During arithmetic operations, the numbers would be constantly round-off to some fixed 
working length. These round–off errors may go on accumulating and then resulting accuracy 
of the solution may be greatly impaired.  
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1.4.1 Loading Conditions 
There are multiple loading conditions which may be applied to a system. The load may be internal 
and/or external in nature. Internal stresses/forces and strains/deformations are developed due to the 
action of loads.Most loads are basically “Volume Loads” generated due to mass contained in a 
volume.  Loads may arise from fluid-structure interaction effects such as hydrodynamic pressure of 
reservoir on dam, waves on offshore structures, wind load on buildings, pressure distribution on 
aircraft etc. Again, loads may be static, dynamic or quasi-static in nature. All types of static loads 
can be represented as: 

• Point loads  
• Line loads 
• Area loads 
• Volume loads 

The loads which are not acting on the nodal points need to be transferred to the nodes properly using 
finite element techniques.  
 
1.4.2 Support Conditions 
In finite element analysis, support conditions need to be taken care in the stiffness matrix of the 
structure. For fixed support, the displacement and rotation in all the directionswill be restrained and 
accordingly, the global stiffness matrix has to modify. If the support prevents translation only in one 
direction, it can be modeled as ‘roller’ or ‘link supports’. Such link supports are commonly used in 
finite element software to represent the actual structural state. Sometimes, the support itself 
undergoes translation under loadings. Such supports are called as ‘elastic support’ and are modeled 
with ‘spring’. Such situation arises if the structures are resting on soil. The supports may be 
represented in finite element modeling as: 

• Point support 
• Line support 
• Area support 
• Volume support 

 
 
 
 

    Steps in Finite Element Analysis
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1.4.3 Type of Engineering Analysis 
Finite element analysis consists of linear and non-linear models. On the basis of the structural system 
and its loadings, the appropriate type of analysis is chosen. The type of analysis to be carried out 
depends on the following criteria:  

• Type of excitation (loads) 
• Type of structure (material and geometry) 
• Type of response 

 
Considering above aspects, types of engineering analysis are decided. FEA is capable of using 
multiple materials within the structure such as:  

• Isotropic (i.e., identical throughout) 
• Orthotropic (i.e., identical at 900) 
• General anisotropic (i.e., different throughout)  

The Equilibrium Equations for different cases are as follows: 
1. Linear-Static:    
  Ku F=         (1.4.1) 
2. Linear-Dynamic  
  ( ) ( ) ( ) ( )Mu t Cu t Ku t F t+ + =       (1.4.2) 

3. Nonlinear - Static         
  NLKu F F+ =         (1.4.3) 

1. Nonlinear-Dynamic  
  ( ) ( ) ( ) ( ) ( )NLMu t Cu t Ku t F t F t+ + + =     (1.4.4) 

Here, M, C, K, F and U are mass, damping, stiffness, force and displacement of the structure 
respectively. Table 1.4.1 shows various types of analysis which can be performed according to 
engineering judgment.  

 
 
 
 
 
 
 
 
 
 



 

Table 1.4.1 Types ofanalysis 
 

Excitation 
 

Structure 
 

Response 
 

Basic analysis type 
 

Static Elastic Linear Linear-Elastic-Static Analysis 
Static Elastic Nonlinear Nonlinear-Elastic-Static Analysis 
Static Inelastic Linear Linear-Inelastic-Static Analysis 
Static Inelastic Nonlinear Nonlinear-Inelastic-Static Analysis  
Dynamic Elastic Linear Linear-Elastic-Dynamic Analysis 
Dynamic Elastic Nonlinear Nonlinear-Elastic-Dynamic Analysis 
Dynamic Inelastic Linear Linear-Inelastic-Dynamic Analysis 
Dynamic Inelastic Nonlinear Nonlinear-Inelastic-Dynamic Analysis 

 
1.4.4 Basic Steps in Finite Element Analysis 
The following steps are performed for finite element analysis. 

1. Discretisation of the continuum: The continuum is divided into a number of elements by 
imaginary lines or surfaces. The interconnected elements may have different sizes and 
shapes. 

2. Identification of variables: The elements are assumed to be connected at their intersecting 
points referred to as nodal points. At each node, unknown displacements are to be prescribed. 

3. Choice of approximating functions: Displacement function is the starting point of the 
mathematical analysis. This represents the variation of the displacement within the element. 
The displacement function may be approximated in the form a linear function or a higher-
order function. A convenient way to express it is by polynomial expressions. The shape or 
geometry of the element may also be approximated. 

4. Formation of the element stiffness matrix: After continuum is discretised with desired 
element shapes, the individual element stiffness matrix is formulated. Basically it is a 
minimization procedure whatever may be the approach adopted. For certain elements, the 
form involves a great deal of sophistication. The geometry of the element is defined in 
reference to the global frame. Coordinate transformation must be done for elements where it 
is necessary. 

5. Formation of overall stiffness matrix: After the element stiffness matrices in global 
coordinates are formed, they are assembled to form the overall stiffness matrix. The 
assembly is done through the nodes which are common to adjacent elements. The overall 
stiffness matrix is symmetric and banded. 



 

6. Formation of the element loading matrix: The loading forms an essential parameter in any 
structural engineering problem. The loading inside an element is transferred at the nodal 
points and consistent element matrix is formed. 

7. Formation of the overall loading matrix: Like the overall stiffness matrix, the element 
loading matrices are assembled to form the overall loading matrix. This matrix has one 
column per loading case and it is either a column vector or a rectangular matrix depending on 
the number of loading cases. 

8. Incorporation of boundary conditions: The boundary restraint conditions are to be 
imposed in the stiffness matrix. There are various techniques available to satisfy the 
boundary conditions. One is the size of the stiffness matrix may be reduced or condensed in 
its final form. To ease computer programming aspect and to elegantly incorporate the 
boundary conditions, the size of overall matrix is kept the same. 

9. Solution of simultaneous equations:The unknown nodal displacements are calculated by 
the multiplication of force vector with the inverse of stiffness matrix. 

10. Calculation of stresses or stress-resultants: Nodal displacements are utilized for the 
calculation of stresses or stress-resultants. This may be done for all elements of the 
continuum or it may be limited to some predetermined elements. Results may also be 
obtained by graphical means. It may desirable to plot the contours of the deformed shape of 
the continuum.    

 
The basic steps for finite element analysis are shown in the form of flow chart below: 



 

 
Fig. 1.4.1 Flowchart for steps in FEA 

 
1.4.5 Element Library in FEA Software 
A real structure can be modeled with various ways with appropriate assumptions. The structure may 
be divided into following categories: 

• Cable or tension structures 
• Skeletal or framed structures 
• Surface or spatial structures 
• Solid structures 
• Mixed structures 

 



 

The configuration of structural elements depends upon the geometry of the structural system and the 
number of independent space coordinates (i.e., x, y and z) required to describe the problem. Thus, the 
element can be categorized as one, two or three dimensional element. One dimensional element can 
be represented by a straight line whose ends will be nodal points. The skeletal structures are 
generally modeled by this type of elements. The pin jointed bar or truss element is the simplest 
structural element. This element undergoes only axial deformation. The beam element is another 
type of element which undergoes in-plane transverse displacements and rotations. The frame 
element is the combination of truss and beam element. Thus, the frame element has axial and in-
plane transverse displacements and rotations. This element is generally used to model 1D, 2D and 
3D skeletal structural systems. Two-dimensional elements are generally used to model 2D and 3D 
continuum. These elements are of constant thickness and material properties. The shapes of these 
elements are triangular or rectangular and it consists of 3 to 9 or even more nodes. These elements 
are used to solve many problems in solid mechanics such as plane stress, plane strain, plate bending. 
Three-dimensional element is the most cumbersome which is generally used to model the 3-D 
continuum. The elements have 6 to 27 numbers of nodes or more. Because of large degrees of 
freedom, the analysis is time consuming using 3-D elementsand difficult to interpret its results. 
However, for accurate analysis of the irregular continuum, 3-D elements are useful. To analyze any 
real structure, appropriate elements are to be assigned for the finite element analysis. In standard 
FEA software, following types of element library are used to discretize the domain. 

• Truss element 
• Beam element 
• Frame element 
• Membrane/ Plate/Shell element 
• Solid element 
• Composite element 
• Shear panel  
• Spring element 
• Rigid/Link element 
• Viscous damping element 

The different types of elements available in standard finite element software are shown in Fig. 1.4.2. 
 



 

 
1D Elements (Truss,beam, grid and frame) 

 

 
2D Elements(Plane stress, Plane strain, Axisymmetric, Plate and Shell) 

 

 
3D Elements 
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Fig. 1.4.2Varioustypes of elements for computer modeling 
 



 

 

Finite element formulation can be constructed from governing differential equations over a domain. 
This can be formulated by various ways like Virtual Work Method, VariationalMethod, Weighted 
Residual Method etc.   
 

The principle of virtual work is a very useful approach for solving varieties of structural mechanics 
problem. When the force and displacement are unrelated to the cause and effect relation, the work is 
called virtual work. Therefore, the virtual work may be caused by true force moving through 
imaginary displacements or vice versa. Thus, the principle of virtual work can be divided into two 
categories: (a) principle of virtual forces and (b) principle of virtual displacements. The principle of 
virtual forces establishes the compatibility conditions. The principle of virtual displacements 
establishes the conditions of equilibrium and is used in the displacement model of the finite element 
technique. 

The external virtual work is the work done by real load moving through imaginary 
displacements in a structure. These loads include both the load distributed over the entire surface and 
volume. Thus, the virtual work done by the external force is: 
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Where, δu, δv and δw are the components of the virtual displacements in x, y and z direction 
respectively. FΓx, FΓy and FΓz are the surface forces and FΩx, FΩyand FΩz are the body forces in x, y 
and z direction respectively. In the above equation, the integration is carried out over the entire 
surface in the first term and over the entire volume in the second term. The above expression can be 
rewritten as: 

{ } { } { } { }T T
EW d F d d F dΓ Ω

Γ Ω

δ = δ Γ+ δ Ω∫ ∫
 

Here,{ } { }Td u v w= .For the three dimensional stress-strain condition, there are six 

components of stresses ( x y z xy yz zx, , , , ,σ σ σ τ τ τ ) and six components of strains in virtual 

displacement fields ( x y z xy yz zx, , , , ,δε δε δε δγ δγ δγ ).Therefore, the virtual internal work can be 

expressed as follows:
 

1.5.1 Introduction

1.5.2 Principle of Virtual Work

(1.5.1)

(1.5.2)

 Finite Element Formulation Techniques
 Virtual Work and Variational Principle
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Or 

{ } { }TU d
Ω

δ = δ ε σ Ω∫
 

According to principle of virtual work, the work done by external forces due to the virtual 
displacement of a structure in equilibrium is equal to the work done by the internal forces for the 
virtual internal displacement. Therefore, EW Uδ = δ
equal and can be related as follows: 

{ } { } { } { } { } { }T T Td F d d F d dΓ Ω
Γ Ω Ω

δ Γ+ δ Ω= δ ε σ Ω∫ ∫ ∫
 

 

 

Variational formulation is the generalized method of formulating the element stiffness matrix and 
load vector using the variational principle of solid mechanics. The strain energy in a structural body 
is given by the relation 

 { } { }1
2

TU dε σ
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For a 3D structural problem, stress has six components: { } { }T
x y z xy yz zx, , , , ,σ = σ σ σ τ τ τ . 

Similarly, there are six components of strains: { } { }T
x y z xy yz zx, , , , ,ε = ε ε ε γ γ γ . Now the strain-

displacement relationship can be expressed as { } [ ]{ }B dε = , where {d} is the displacement vector in 

x, y and z directions and [B] is called as the strain displacement relationship matrix. Again, the stress 

can be represented in terms of its constitutive relationship matrix:  { } [ ]{ }Dσ ε= . Here [ ]D  is 

called as the constituent relationship matrix.Using the above relationship in the strain energy 
equation one can arrive 

[ ]{ } [ ]{ }{ }1
2

T
U B d D B d d

Ω

⎡ ⎤= Ω⎣ ⎦∫∫∫
 

 

Applying the variational principle one can express 
 

(1.5.3)

(1.5.4)

  Thus  eqs.  (1.5.2)  and  (1.5.4)  can  be  made

(1.5.5)

1.5.3 Variational Principle

(1.5.6)

(1.5.7)



 

{ } { } [ ] [ ][ ] { }TUF B D B d d
d Ω

∂
= = Ω
∂ ∫∫∫

 
 

Now, from the relationship of { } [ ]{ }F K d= , one can arrive at the element stiffness matrix as: 

[ ] [ ] [ ][ ]TK B D B d
Ω

= Ω∫∫∫
 

 

 
Thus, by the use of variational principle, the stiffness matrix of a structural element can be obtained 
as expressed in the above equation. 
 

Virtual work and Variational method are applicable and adequate for most of the problems. 
However, in some cases functional analogous to potential energy cannot be written because of not 
having clear physical meaning. For some applications, such as in fluid mechanics problem, 
functional needed for a variational approach cannot be expressed. For some types of fluid flow 
problems, only differential equations and boundary conditions are available. For Such problems 
weighted residual method can be used for obtaining the solutions. Approximate solutions of 
differential equation satisfy only part of conditions of the problem. For example a differential 
equation may be satisfied only at few points, rather than at each. The strategy used in weighted 
residual method is to first take an approximate solution and then its validity is assessed. The 
different methods in weighted Residual Method are 

• Collocation method 
• Least square method 
• Method of moment 
• Galerkin method 

The mathematical statement of a physical problem can be defined as: 
In domainΩ,    

Du f 0− =  
Where,  

D is the differential operator 
u = u(x) = dependent variables such as displacement, pressure, velocity,  

potential function 
  x = independent variables such as coordinates of a point 
  f = a function of x which may be constant or zero 

 
If u  is an approximate solution then residual in domainΩ,  

R Du f= −  
According to the weighted residual method, the weak form of above equation will become 

(1.5.8)

(1.5.9)

1.5.4Weighted ResidualMethod

(1.5.10)

(1.5.11)



 

( )

i

i

w  R d 0 for i 1,2,3,...,n

or

w Du f d 0

Ω

Ω

Ω= =

− Ω=

∫

∫
 

Where weighting function wi= wi(x) is chosen from the approximate basis function used for 
constructing approximated solution u .    
 
  

(1.5.12)
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Galerkin method is the most widely used among the various weighted residual methods. Galerkin 
method incorporates differential equations in their weak form,  i.e., before starting integration by 
parts it is in strong form and after by parts it will be in weak form, so that they are satisfied over a 
domain in an integral. Thus, in case of Galerkin method, the equations are satisfied over a domain in 
an integral or average sense, rather than at every point. The solution of the equations must satisfy the 
boundary conditions. There are two types of boundary conditions:  

• Essential or kinematic boundary condition 
• Non essential or natural boundary condition 

For example, in case of a beam problem (
4

4

yEI q 0
x

∂ − =
∂

) differential equation is of fourth order. 

As a result, displacement and slope will be essential boundary condition where as moment and shear 
will be non-essential boundary condition. 
 

For a two dimensional elasticity problem, equation of equilibrium can be expressed as 

xyx
xF 0

x y Ω

∂τ∂σ + + =
∂ ∂

 

 

xy y
yF 0

x y Ω

∂τ ∂σ
+ + =

∂ ∂
 

Where, x yF and FΩ Ω are the body forces in X and Y direction respectively. Let assume,  

x yandΓ ΓΓ Γ are surface forces in X and Y direction and α as angle made by normal to surface with 

X– axis (Fig. 2.2.1). Therefore, force equilibrium of element can be written as: 

( ) ( ) ( )

( )

x x xy

x x xy x xy x xy

     F PQ t OP t OQ t

OP OQF cos sin cos Cos 90
PQ PQ

Γ

Γ

=σ +τ

=σ +τ =σ α+τ α=σ α+τ −α
  

x x xyThus, F mΓ =σ +τ  

Where, ℓ and m are direction cosines of normal to the surface. Similarly,  

y xy yF mΓ = τ +σ  

1.6.1 Introduction

1.6.2 Galerkin Method for2D Elasticity Problem

(1.6.1)

(1.6.2)

(1.6.3)

(1.6.4)

         Galerkin Method
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xy xy yx
x yF u F v dxdy 0

x y x yΓ Γ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂τ ∂τ ∂σ∂σ ⎟ ⎟⎜ ⎜⎢ ⎥+ + δ + + + δ =⎟ ⎟⎜ ⎜⎟ ⎟⎢ ⎥⎜ ⎜⎟ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫∫ ∫∫   

 
Where u and vδ δ are weighting functions i.e elemental displacements in X and Y directions 
respectively. Now one can expand above equation by using Green’s Theorem.  

Green Theorem states that if ( ) ( )x,y and x,yφ ψ are continuous functions then their first and 

second partial derivatives are also continuous. Therefore,  
2 2

2 2dxdy dxdy m ds
x x y y x y x y

⎡ ⎤⎡ ⎤ ⎡ ⎤∂φ ∂ψ ∂φ ∂ψ ∂ ψ ∂ ψ ∂ψ ∂ψ⎢ ⎥⎢ ⎥ ⎢ ⎥+ =− φ + + φ +⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦
∫∫ ∫∫ ∫

 

Assuming, x ; u; 0
x y

∂ψ ∂ψφ= σ = δ =
∂ ∂

one can rewrite with the use of above relationas 

( )x
x x

u
u dx dy dx dy  u ds

x x
∂ δ∂σ δ =− σ + σ δ

∂ ∂∫∫ ∫∫ ∫  

 

Similarly, assuming y; 0 and v
x y

∂ψ ∂ψφ=σ = = δ
∂ ∂

  

( )y
y y

v
v dx dy dx dy m v ds

y y
∂σ ∂ δ

δ =− σ + σ δ
∂ ∂∫∫ ∫∫ ∫  

Fig. 1.6.1 Elemental stresses in 2D

AdoptingGalerkin’sapproach using eq. (1.6.2 and 1.6.3)

(1.6.5)

(1.6.6)

(1.6.7)

(1.6.8)
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Again, assuming x y; v; 0
x y

∂ψ ∂ψφ= τ = δ =
∂ ∂

 

 

( )x y
x y x y

v
v dx dy dx dy  v ds

y x
∂τ ∂ δ

δ =− τ + τ δ
∂ ∂∫∫ ∫∫ ∫

And assuming, x y; 0; u
x y

∂ψ ∂ψφ= τ = = δ
∂ ∂

 

( )x y
x y x y

u
u dx dy dx dy m u ds

y y
∂τ ∂ δ

δ =− τ + τ δ
∂ ∂∫∫ ∫∫ ∫  

 
Putting values of eqs.(2.2.7), (2.2.8) and (2.2.9), in eq. (2.2.5), one can get the following relation: 
 

( ) ( ) ( ) ( )x y xy xy

x y xy xy x y

u v v u dx dy
x y x y

u m v v m u ds F u dx dy F v dx dy 0Ω Ω

⎡ ⎤∂ ∂ ∂ ∂⎢ ⎥− σ δ +σ δ +τ δ +τ δ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
⎡ ⎤+ σ δ +σ δ +τ δ +τ δ + δ + δ =⎣ ⎦

∫∫

∫ ∫∫ ∫∫
 

Rearranging the terms of above expression, the following relations are obtained. 

( ) ( ) ( ) ( ) ( )x y xy xy x yu v v u dx dy F u F v dx dy
x y x y Ω Ω

⎡ ⎤∂ ∂ ∂ ∂⎢ ⎥− σ δ +σ δ +τ δ +τ δ + δ + δ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
∫∫ ∫∫  

( ) ( )x xy xy ym uds m vds 0+ σ +τ δ + τ +σ δ =∫ ∫  

 
Here, x yF and FΩ Ω are the body forces and u & vδ δ  are virtual displacements in X and Ydirections 

respectively. 
 
Considering firstterm of eq. (2.2.11), virtual displacement uδ  is given to the element of unit 
thickness. Dotted position in Fig. 2.2.2 shows the virtual displacement. Thus, work done by xσ : 

( ) ( )x x xdy u u dx dy u u dxdy
x x

⎡ ⎤∂ ∂⎢ ⎥σ δ + δ −σ δ =σ δ
⎢ ⎥∂ ∂⎣ ⎦

 

 

(1.6.9)

(1.6.10)

(1.6.11)

(1.6.12)

Similarly, considering secondterm of eq. (1.6.11), virtual work done by body forces is
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( )x yF u F v dx dyΩ Ωδ + δ∫∫          

forces as: 

x yF uds F vdsΓ Γδ + δ∫ ∫          

 

 
Fig. 2.2.2 Element subjected to stresses 
 

Due to virtual displacement uδ , change in strain xδ∈  is given by: 

( )
( )x

u u dx u
x u

dx x

⎡ ⎤∂δ + δ −δ⎢ ⎥
∂⎢ ⎥∂⎣ ⎦δ ∈ = = δ
∂

 

The virtual work doneby x x xis . .dxdyσ σ δ∈ . Similarly all the individual term in the first term of 

 

( )x x xu dxdy dxdy
x
∂σ δ = σ δ∈
∂∫∫ ∫∫  

( )y y yv dxdy dxdy
y
∂σ δ = σ δ ∈
∂∫∫ ∫∫  

( ) ( )xy xy xyv u dxdy
x y

⎧ ⎫⎪ ⎪∂ ∂⎪ ⎪τ δ + δ = τ δγ⎨ ⎬⎪ ⎪∂ ∂⎪ ⎪⎩ ⎭
∫∫ ∫∫  

 

Putting eqs.(1.6.3) &(1.6.4) in third term of eq. (1.6.11) we get the virtual work done by surface

(1.6.13)

eq. (1.6.11) can be derived from eq. (1.6.13) which will be as follows:

(1.6.14)
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Now, the work done by internal forces will be 

( )x x y y xy xyU dxdyδ = σ δ∈ +σ δ∈ +τ δγ∫∫  

 
If external work done is represented by WE and U is the internal work done then, 

E EU w 0 or U w−δ +δ = δ = δ   

Thus in elasticity problems, Galerkin’s method turns out to be the principle of virtual work, which 
can be stated that “A Deformable body is said to be in equilibrium,if the total work done by external 
forces is equal to the total work done by internal forces.” The work done above is virtual as either 
forces or deformations are also virtual. Thus, Galerkin’sapproach can be followed in all problems 
involving solution of a set of equations subjected to specified boundary values. 
 

Let consider the two dimensional incompressible fluid equation which can be expressed by pressure 
variable only as follows. 

2p 0∇ =  

Where p is the pressure inside the fluid domain. The above equation can be expressed in 2D form as: 
2 2

2 2

ii

p p 0
x y

or
p, 0

∂ ∂+ =
∂ ∂

=
 

Applying weighted residual method, the weak form of the above equation will become 

i iiw  p,  d 0
Ω

Ω=∫  

Integrating by parts of the above expression, the following relation can be obtained. 

i i i,i iw  p,  d w   p,  d 0
Γ Ω

Γ− Ω=∫ ∫        

i,i i i ior w   p,  d w  p,  d
Ω Γ

Ω= Γ∫ ∫  

If the nodal pressure and interpolation functions are denoted by pand N respectively, then the 

pressure at any point inside the fluid domain can be expressed as  

[ ]{ }p N p=  

Similarly, the weighted function can also be written with the help of interpolation function as  

[ ]{ }w N w=  

(1.6.15)

(1.6.16)

1.6.3 Galerkin Method for 2D Fluid Flow Problem

(1.6.17)

(1.6.18)

(1.6.19)

(1.6.20)
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Thus, [ ]{ } [ ][ ]{ } [ ]{ }i,ip L p L N p B p= = = , where, [ ]L
x y

⎡ ⎤∂ ∂⎢ ⎥= ⎢ ⎥∂ ∂⎣ ⎦
= differential operator. 

Similarly, [ ]{ } [ ][ ]{ } [ ]{ }i,iw L W L N w B w= = =  

[ ] [ ] [ ][ ]T T
i,i iThus, w  p,  d w B B p d

Ω

Ω= Ω∫ ∫  

{ } [ ]T T
i i

pw  p,  d = w N d
nΓ Γ

∂Γ Γ
∂∫ ∫  

Here, Γdenotes the surface of the fluid domain and n represents the direction normal to the surface. 

{ } [ ] [ ]{ } { } [ ]T T T T pThus, w B B p d w N d
nΩ Γ

∂Ω= Γ
∂∫ ∫  

[ ]{ } { }Or, G p S=  

 
Where, 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

{ } [ ]

T T T

T

G B B d N N N N d
x x y y

pand S N d
n

Ω Ω

Γ

⎛ ⎞∂ ∂ ∂ ∂ ⎟⎜= Ω= + Ω⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∂= Γ
∂

∫ ∫

∫
  

Here, n is the direction normal to the surface. Thus, solving the above equationwith the prescribed 
boundary conditions, one can find out the pressure distribution inside the fluid domain by the use of 
finite element technique. 
  

(1.6.21)

(1.6.22)

Thus, from eq. (1.6.20), one can write the expression as:

(1.6.23)

(1.6.24)



 

 

The stiffness matrix of a structural system can be derived by various methods like 
variationalprinciple, Galerkin method etc. The derivation of an element stiffness matrix has already 
been discussed in earlier lecture. The stiffness matrix is an inherent property of the structure. 
Element stiffness is obtained with respect to its axes and then transformed this stiffness to structure 
axes.The properties of stiffness matrix are as follows: 

 Stiffness matrix issymmetric and square. 

 In stiffness matrix, all diagonal elements are positive.  

 Stiffness matrix is positive definite 

For	example,	ifK	is	a	symmetric	n	×	n	real	matrix	and	x	is	non‐zero	column	vector,	thenK	will	
bepositive	definitewhilexTKxis	positive. 
 

A structural system is an assemblage of number of elements. These elements are interconnected 
together to form the whole structure. Therefore, the element stiffness of all the elementsarefirst need 
to be calculated and then assembled together in systematic manner. It may be noted that the stiffness 
at a joint is obtained by adding the stiffness of all elements meeting at that joint.  
 To start with, the degrees of freedom of the structure are numberedfirst. This numbering will 
start from 1 to n where n is the total degrees of freedom. These numberings are referred to as degrees 
of freedom corresponding to global degrees of freedom. The element stiffness matrix of each 
element should be placed in their proper position in the overall stiffness matrix. The following steps 
may be performed to calculate the global stiffness matrix of the whole structure.  

a. Initialize global stiffness matrix  K  as zero. The size of global stiffness matrix will be equal 

to the total degrees of freedom of the structure. 

b. Compute individual element properties and calculate local stiffness matrix  k  of that 

element. 

c. Add local stiffness matrix k to global stiffness matrix  K  using proper locations 

d. Repeat the Step b. and c. till all local stiffness matrices are placed globally. 
 

for assembling the local stiffness matrix to global stiffness matrix.  
 
 

1.7.1Element Stiffness Matrix

1.7.2Global Stiffness Matrix

The steps to be followed in the computer program are shown in the form of flow chart in Fig. 1.7.1

          Stiffness Matrix and Boundary Conditions



 

 

 
Fig. 1.7.1Assembly of stiffness matrix from local to global



 

Under this section, procedure to include the effect of boundarycondition in the stiffness matrix for 
the finite element analysis will be discussed. The solution cannot be obtained unless support 
conditions are included in the stiffness matrix. This is because, if all the nodes of the structure are 
included in displacement vector, the stiffness matrix becomes singular and cannot be solved if the 
structure is not supported amply, and it cannot resist the applied loads.A solution cannot be achieved 
until the boundary conditions i.e., the known displacements are introduced. 

In finite element analysis, the partitioning of the global matrix is carried out in a systematic 
way for the hand calculation as well as for the development of computer codes. In partitioning, 
normally the equilibrium equations can be partitioned by rearranging corresponding rows and 
columns, so that prescribed displacements are grouped together. For example, let considerthe 
equation of equilibrium is expressed in compact form as: 

     F K d  

Where,  
[K] is the global stiffness matrix, 
 {d} is the displacement vector consisting of global degrees of freedom, and 
{F} is the load vector corresponding to degrees of freedom. 
By the method of partitioning the above equation can be partitioned in the following manner. 

 
 
 

   
 

K KF d

F dK K

   

  

              
              

 

Where,subscripts  refers to the displacements free to move and refers to the prescribed support 

expanded form as: 

       F = K d + K d        

 Thus it is possible to obtain the free displacement of the structure{d} as 

         -1
d  = K F  - K d         

If the displacements at supports {d}are zero, then the above equation can be simplified to the 

following expression. 

      -1
d  = K F    

Thus, by rearranging assembled matrix, the portion corresponding to the unknown displacements in 
eq.(2.4.4) can be taken out for the solution purpose. This is possible as the known displacements 

{d}are restrained, i.e., displacementsare zero. If the support has some known displacements, then 

eq. (2.4.4) can be used to find the solution.  If the few supports of the structures yield, then the above 
method may be modified by partitioning the stiffness matrix into three parts as shown below: 
 

1.7.3Boundary Conditions

(1.7.1)

(1.7.2)

displacements.As  the  prescribed  displacements  {d }  are  known,eq.  (1.7.2)  may  be  written  in

(1.7.3)

(1.7.4)

(1.7.5)



 

{ }
{ }
{ }

[ ] { }
{ }
{ }

K K KF d

F K K K d

F dK K K

aa ab aga a

b ba bb bg b

g gga gb gg

é ùì ü ì üé ùé ùï ï ï ïï ï ï ïê úë û ë ûï ï ï ïê úï ï ï ïï ï ï ïé ùé ù é ùê ú=í  í ë û ë û ë ûê úï ï ï ïï ï ï ïê úï ï ï ïé ù é ù é ùï ï ï ïê úë û ë û ë ûï ï ï ïî  î ë û  

 

 

Here,  refers to unknown displacement;  refers to known displacement (0) and  refers to zero 

displacement. Thus, the above equation can be separated and solved independently to find required 
unknown results as shown below. 

{ } [ ]{ } { } { }
[ ]{ } { } { } { } { }

{ } [ ] { } { }{ }1

F K d K d K d

or, K d F K d as d 0

Thus, d K F K d

a aa a ab b ag g

aa a a ab b g

-
a aa a ab b

é ùé ù= + +ë û ë û
é ù= - =ë û

é ù= - ë û  

 

For computer programming, several techniques are available for handling boundary conditions. One 
of the approachesis to make the diagonal element of stiffness matrix corresponding to zero 
displacement as unity and corresponding all off-diagonal elements as zero. For example,let consider 

a 33 stiffness matrix with following force-displacement relationship.  

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

F k k k d

F k k k d

F k k k d

     
        
           

 

Now, if the third node has zero displacement (i.e., d3= 0) then the matrix will be modified as follows 
to incorporate the boundary condition. 

1 11 12 1

2 21 22 2

3

0

0

0 0 0 1

F k k d

F k k d

d

     
        
           

Thus, while inverting whole matrix, d3 will become zero automatically. 
 

 
To incorporate known support displacement in computer programming following procedure may be 
adopted. Considering the displacement d2has known value of δ, 1st row of eq. (2.4.8) can be written 
as:  

1 11 1 12 2 13 3F k d k d k d     
 

 

Or 

1 12 11 1 13 3F k k d k d       

 
Now the 2nd row of eq. (2.4.8) has to become: 

(1.7.6)

(1.7.7)

(1.7.8)

(1.7.9)

(1.7.10)

(1.7.11)



 

   2d   

Similarly 3rd row will be: 

3 32 31 1 33 3F k k d k d       

Thus above three equations can be written in a combined form as 

1 12 11 13 1

2

3 32 31 33 3

0

0 1 0

0

F k k k d

d

F k k k d






     
        
           

Another approach may also be followed to take care the known restrained displacementsby assigning 
a higher value δ(say δ =1020) in the diagonal element corresponding to that displacement. 

1 11 12 13 1
20 20

22 21 22 23 2

3 31 32 33 3

10 10

F k k k d

k k k k d

F k k k d


     
           
           

20 20
22 21 1 22 2 23 310 k k d k 10 d k d\d´ ´ = + ´ ´ + ´  

As d3 is corresponding to zero displacement, the above equation can be simplified to the following. 
20 20

22 21 1 22 2

20 20
22 22 2

2

10 k k d k 10 d

or 10 k k 10 d

d known displacement is ensured

\d´ ´ = + ´ ´
d´ ´ = ´ ´

 =d  
 
If the overall stiffness matrix is to be formed in half band form then the numbering of nodes should 
be such that the bandwidth is minimum. For this the labels are put in a systematic manner 
irrespective of whether the joint displacements are unknowns or restraints. However, if the unknown 
displacements are labeled first then the matrix operations can be restricted up to unknown 
displacement labels and beyond that the overall stiffness matrix may be ignored.	

(1.7.12)

(1.7.13)

(1.7.14)

(1.7.15)
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UNIT – II –FINITE ELEMENT METHOD FOR 

AIRCRAFT STRUCTURES – SAEA1504 



UNIT – II 

BEAM BENDING 

1. Introduction  

 
 

                          Types of Beams  

                                   The following are the important types of beams. 

(a) Cantilever Beam 

(b) Simply Supported Beam 

(c) Overhanging Beam 

(d) Fixed Beam 

(e) Continuous Beam 

 
 

1.1 Derivation of Shape Function: 
 

                        
   

                                ……. (2.1) 

                                                       ……. (2.2)      



                                                       
                                                                Fig. 2.1 Beam element 

 

 

       

\          

                                     ……..(2.3) 

 



                                 …….(2.4) 

 

                              
                                                                                                                                                        ...…(2.5) 

         
                                                                                                                                                    ………(2.6) 

 

            N is called shape function which interpolates the beam displacement in terms of its nodal displacements. 

 

1.2 Derivation of Element Stiffness Matrix 
 

                  Now, the strain displacement relationship matrix [B] can be expressed from the following 

                  expressions with the help of eq (2.1) 

                                            ……..(2.2.1) 

                                 
                                                                                                                                               …….(2.2.2) 



                                
                                                                                                                                               ……(2.2.3) 

 

                                   
                                                                                                                                               ……..(2.2.4) 

                         .……(2.2.5) 

                         

        
                                                                                                                                                   ……….(2.2.6) 

 



              
         

                                                    …...(2.2.7) 

             

 

 

 

 

 

 

 



 

 

1.3 Equivalent Loading on Beam Member 
In finite element analysis, the external loads are necessary to be acting at the joints, which does not happen 

always; as some forces may act on the member. The forces acting on the member should be replaced by 

equivalent forces acting at the joints. These joint forces obtained from the forces on the members are called 

equivalent joint loads. These joint loads are combined with the actual joint loads to provide the combined 

joint loads, which are then utilized in the analysis. 

 

1.4 Varying Load 
Let a beam is loaded with a linearly varying load as shown in the figure below. The equivalent forces at 

nodes can be expressed using finite element technique. If w(x) is the function of load, then the nodal load 

can be expressed as follows. 
 

                                                                                    ………(2.4.1) 

                            .…….(2.4.2)  

                      

                        
                                                                 Fig. 2.4.1 Varying load on beam 

 

                  From eqs. (2.4.1) and (2.4.2), the equvalent nodal load will become 

                …………..(2.4.3) 



                            ……...(2.4.4) 

                                With the above approach, the equivalent nodal load can be found for 

                                 various loading function acting on beam members. 

         

1.5 Worked Out Example 
Analyze the beam shown below by the finite element method. Assume the moment  

of inertia of member 2 as twice that of member 1. Find the bending moment and  

reactions at supports of the beam assuming the length of span, L as 4 m,  

concentrated load (P) as 15 kN and udl, w as 4 kN/m. 

 
 

                                      Fig 2.5.1    Example of a continuous beam 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Solution  

 

Step 1: Numbering of Nodes and Members The analysis of beam starts with  

the numbering of members and joints as shown below: 
 

                      
                                                Fig 2.5.2 Numbering of nodes and members 

              
                  The member AB and BC are designated as (1) and (2). The points A,B,C are designated by 

                      nodes 1, 2 and 4. The member information for beam is shown in tabulated form as shown  

                      in Table 4.4.1. The coordinate of node 1 is assumed as (0, 0). The coordinate and restraint joint 

                      information are shown in Table 4.4.2. The integer 1 in the restraint list indicates the restraint  

                      exists and 0 indicates the restraint at that particular direction does not exist. Thus, in  

                      node no. 2, the integer 0 in rotation indicates that the joint is free rotation. 

 

Table 2.5.1 Member Information for Beam 

                
Table 2.5.2 Nodal Information for Beam 

                 

                                       
 

 



                          



                  

                             
                                                                              Fig. 2.5.3 Equivalent Load 
               

                  



                                 

                                   
                       Step 7: Determination of member end actions: The member end actions can be obtained from  

                       The corresponding member stiffness and the nodal displacements. The member end actions for  

                        each member are derived as shown below. 
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UNIT – III –FINITE ELEMENT METHOD FOR 

AIRCRAFT STRUCTURES – SAEA1504 



 

 
 We started this series of lectures looking at truss problems.  We limited the 
discussion to statically determinate structures and solved for the forces in elements and 
reactions at supports using basic concepts from statics. 
 In this section, we will apply basic finite element techniques to solve general two 
dimensional truss problems.  The technique is a little more complex than that originally 
used to solve truss problems, but it allows us to solve problems involving statically 
indeterminate structures. 
 
3.1 Local and Global Coordinates 
 
 We start by looking at the beam or element shown in the diagram below.  This  
element attaches to two nodes, 1 and 2.  In the Figure we are showing two coordinate 
systems.  One is a one dimensional coordinate system that aligns with the length of the 
element.  We will call this the local coordinate system.  The other is a two dimensional 
coordinate system that does not align with the element.  We will call this the global 
coordinate system.  The 〉′′〈 yx , coordinates are the local coordinates for the element and 

〉〈 yx, are the global coordinates. 

 
We can convert the displacements shown in the local coordinate system by 

looking at the following diagram.  We will let 1q′  and 2q′  represent displacements in the 
local coordinate system and q1, q2, q3, and q4 represent displacements in the x-y (global) 
coordinate system.  Note that the odd subscripted displacements are in the x direction and 
the even ones are in the y direction as shown in the following diagram. 

 

1

2

x’ 

y’ 
Local coordinate 
system 

x 

y 

Global coordinate 
System 

Figure 1 - Local and global coordinate systems

Trusses Using FEA

                            UNIT – III
ANALYSIS OF TRUSSES AND FRAMES
 
 



 
We know that for small deformations in tension or compression a beam, acts like 

a spring.  The amount of deformation is linearly proportional to the force applied to the 
beam.  As the beam is stretched or compressed, we are added potential energy to the 
beam.  This energy is called strain energy and it can be modeled with Hook’s law.  The 
law states that the force is directly proportional to the deformation.  

 
xkF Δ=        (3.1) 

 
We can compute the energy by integrating over the deformation 
 

2

0 2
1 kQxdxku

Q

== ∫       (3.2) 

 

where 
L

AEk =  the element stiffness, A = the cross sectional area of the element, 

E = Young’s modulus for the material, and L = the length of the element.  Q is the total 
change in length of the element.  Note that we are assuming the deformation is linear 
over the element.  All equal length segments of the element will deform the same 
amount.  We call this a constant strain deformation of the element. 

We can rewrite this change in length as 
 

)( '
1

'
2 qqQ −=        (3.3) 

 
Substituting this into equation (3.2) gives us 
 

2
12 )(

2
1 qqku ′−′=       (3.4) 

q1’ 

q2’ 

Ө 

Deformed element 

θsin2q

q1 

q2 

q4 

q3

θcos1q

Un-deformed element 

Figure 2 - The deformation of an element in both local and global coordinate systems. 



 
or expanding 

)2(
2
1 2

112
2

2 qqqqku ′+′′−′=      (3.5) 

 
Rewriting this in vector form we let 
 

⎭
⎬
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q
q
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and 

⎥
⎦

⎤
⎢
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−
=′

11
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L
AEk       (3.7) 

 
With this we can rewrite equation (3.5) as: 

 

qkqu T ′′′=
2
1        (3.8) 

 
We can do the indicated operations in (3.8) to see how the vector notation works.  

We do this by first expanding the terms then doing the multiplication. 
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2 122211 qqqqqq
L

AEu ′−′′+′−′′=     (3.11) 
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12
qqqqqq

L
AEu ′′−′+′′−′=     (3.12) 

 

)2(
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2
221

2
1 qqqq

L
AEu ′+′′−′=      (3.13) 

 
Which is the same as equation (3.5). 
 
Equation (3.7) is the stiffness matrix for a one dimensional problem. 

 
 



6.2 Two Dimensional Stiffness Matrix 
 

We know for local coordinates that 
 

⎭
⎬
⎫

⎩
⎨
⎧
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1

q
q

q        (3.6) 

 
and for global coordinates (See Figure 2) 
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We can transform the global coordinates to local coordinates with the equations 
 

θθ sincos 211 qqq +=′       (3.15) 
and 
 

θθ sincos 432 qqq +=′      (3.16) 
 

This can be rewritten in vector notation as: 
 

Mqq =′        (3.17) 
 

where 
 

⎥
⎦

⎤
⎢
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⎡
=

sc
sc

M
00

00
,      (3.18) 

 
θcos=c , and θsin=s . 

 
Using 

qkqu T ′′′=
2
1        (3.8) 

 
we can substitute in equation (3.17) 
 

[ ]qMkMqu TT ′=
2
1       (3.19) 

 
Now we will let 



 
MkMk T ′=        (3.20) 

 
and doing the multiplication, k our stiffness matrix for global two dimensional 
coordinates becomes 
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where: 
 

E = Young’s modulus for the element material 
A = the cross sectional area of the element 
L = the length of the element 

θcos=c  
θsin=s  

 
3.3 Stress Computations 
 

The stress can be written as 
 

εσ E=       (3.22) 
 

where ε is the strain, the change in length per unit of length.  We can rewrite this as: 
 
 

 

L
qqE 12 ′−′

=σ        (3.23) 

 
 
 
In vector form we can write the equation as 
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From our previous discussion, we know that in local coordinates 
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total deformation 

length of element 



 
and in global coordinates 
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From equation (3.17) we know that 
 

Mqq =′       (3.17) 
 

where 
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     (3.18) 

 
Substituting this in to the equation (3.24) yields 
 

{ }Mq
L
E 11−=σ      (3.25) 

 
Now we multiply M by the vector 
 

{ }qscsc
L
E

−−=σ     (3.26) 



 
3.4 Truss Example 
 

We can now use the techniques we have developed to compute the stresses in a 
truss.  Consider 

 

 
 
Computing Displacements 

 
There are 4 nodes and 4 elements making up the truss.  We are going to do a two 

dimensional analysis so each node is constrained to move in only the X or Y direction.  
We call these directions of motion degrees of freedom or dof for short.  There are 4 nodes 
and 8 degrees of freedom (two degrees of freedom for each node).  We can number the 
degrees of freedom with the formulas: 

 
Vertical degree of freedom  nodedof *2=    (3.27) 
Horizontal degree of freedom  1*2 −= nodedof    (3.28) 
 

where node is the node number. 
We can locate each node by its coordinates.  The table below shows the 

coordinates of the nodes in the problem we are solving.  We can use these coordinates to 
determine the lengths and angles of the elements. 

 
Node X Y 

1 0 0 
2 40 0 
3 40 30
4 0 30

Table 1 - Coordinates of the nodes in the truss. 

q1 

q2 

q3 

q4 

q5 

q6 

q7 

q8 

1 

2 

3 

4 

1 

2 3 

4 

25,000 lbs 

20,000 lbs 

E = 29.5x106 
Area = 1.0 in2 

30” 

40” 



Each element can be described as extending from one node to another.  This also 
can be defined in a table below. 

 
Element From Node To Node

1 1 2 
2 3 2 
3 1 3 
4 4 3 

Table 2 - The elements and the nodes they connect in the truss. 
 

From these two tables we can derive the lengths of each element and the cosine 
and sine of their orientation.  This is shown in the table below. 

 
Element Length Cosine Sine

1 40 1 0 
2 30 0 -1 
3 50 0.8 0.6 
4 40 1 0 

Table 3 - Elements with sines and cosines to be used in the stiffness matrix. 
 

In the previous sections we developed the stiffness matrix for an element.  This is 
shown in equation (3.21) below. 
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This stiffness matrix is for an element.  The element attaches to two nodes and 

each of these nodes has two degrees of freedom.  The rows and columns of the stiffness 
matrix correlate to those degrees of freedom. 

Using the equation shown in (3.21) we can construct that stiffness matrix for 
element 1 defined in the table above.  The stiffness matrix is: 
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Global dof 



 
 
 
Element 2 
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Element 3 
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Element 4 
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The next step is to add the stiffness matrices for the elements to create a matrix 

for the entire structure.  We can facilitate this by creating a common factor for Young’s 
modulus and the length of the elements. 

For element 1, we divide the outside by 15 and multiply each element of the 
matrix by 15.  Multiplying and dividing by the same number is the same as multiplying 
and dividing by 1. 
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We multiply and divide element 2 by 20. 
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Multiply and divide element 3 by 12. 
 
                  1           2             5            6 
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We do the same for element 4 by multiplying and dividing it by 15. 
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The coefficient for each stiffness matrix is the same so we can easily add the 

matrices.  We add the degree of freedom for each element stiffness matrix into the same 
degree of freedom in the structural matrix.  The resulting structural stiffness matrix is 
shown below. 

 
         1           2            3           4            5           6          7      8 
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Remembering our basic equation 
 

FKQ =        (3.38) 
 

where K is the structural or global stiffness matrix, Q is the displacement of each node, 
and F is the external force matrix.  This results in 
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We have boundary conditions at the fixed supports.  Our assumption is that these 

joints will not move in the constrained direction.  We remove these from our matrix.  The 
constrained displacements are dof 1, 2, 4, 7, and 8.  The lines in equation (3.40) show the 
rows and columns that are removed. 
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The resulting matrix is: 
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We can use Gaussian elimination or any number of other solution techniques to 
solve the system of equations shown above.  Doing so yields 

 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

×−
×
×

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−

−

−

3

3

3

6

5

3

1025.22
1065.5
1012.27

q
q
q

 inches     (3.42) 

 
Computing Stresses 
 

Previously we showed that  
 

{ }qscsc
L
E
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We use this equation to compute the stress in each element. 
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or 
 

psi000,201 =σ        (3.44) 
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psi875,212 −=σ        (3.46) 

 
Using a similar technique we get 
 

psi208,53 −=σ        (3.47) 
and 
 

psi167,44 =σ         (3.48) 
 

dof



Computing the Reactions 
 

The last step is to compute the support reactions.  We need to determine the 
reaction forces along dof 1, 2, 3, 7, and 8 which correspond to the fixed supports.  These 
are obtained by substituting Q into the original finite element equation. 

 
FKQR −=         (3.48) 

 
We only need to use those rows of the structural stiffness matrix that correspond 

to the fixed supports.  At these supports, we are not supplying an external force so F=0.  
Our equation becomes 

 
KQR =          (3.50) 

 
or 

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

×−
×

×

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−−
−−−

×
=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−

−

−

0
0

1025.22
1065.5

0
1012.27

0
0

00000000
00.1500.150000
0020020000
0032.476.50032.476.5
0076.568.700.1576.568.22

600
105.29

3

3

3

6

8

7

4

2

1

R
R
R
R
R

 (3.51) 

 
We multiply the stiffness matrix K and the deformation vector Q to get the reactions.  
They are shown in the following equation. 
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     (3.52) 

 
 
 

  



Problems 
 

1. Element area = 1.5 in2  E=30,000,000 
  
 Element length = 5 feet 
 
 Write the stiffness matrix for the structure.  The 
bar is vertical.  Show all work. 
 
 
 
 
2. Using a different load, the element shown in 
Problem 1 deforms by 0.02 inches in length.  What is the stress in the material?  Use a 
finite element approach to solve the problem.  Show all work. 
 
 
3. Use a finite element approach, solve for the stress, joint displacement, and 
reaction force on the element shown in Problem 1.  Use the 8,000 lbs force as shown in 
the diagram.  Show all work. 
 
 
4. The structure shown in the diagram results in the stiffness matrix shown in the 
table.  Manually solve for the displacement of node 4.  Show all work. 
 
  
 
 
 
 
1.0e+006 * 
 
 
 
 
  
 
     
 
      
 
 
 
 

   0.6293  0.4720    0 0 0 0 -0.6293  -0.4720
0.4720     0.3540    0 0 0 0 -0.4720  -0.3540
0 0 0.6146    0 0 0 -0.6146  0 
0 0 0 0 0 0 0 0 
0 0 0 0 0.6293   -0.4720  -0.6293  0.4720 
0 0 0 0 -0.4720  0.3540    0.4720    -0.3540
-0.6293    -0.4720  -0.6146  0 -0.6293 0.4720 1.8733 0 
-0.4720 -0.3540 0 0 0.4720 -0.3540 0 0.7080 

Element Area E 
1 2 in2 29.5e6
2 1 in2 29.5e6
3 2 in2 29.5e6
Node X feet Y feet 
1 0 0 
2 0 3 
3 0 6 
4 4 3 

1 

2 

8,000 lbs 

3 

1 

2 

1 

2 

3 

4 

10,000 lbs 



5. Element area = 1 in2  Material = steel 
 
 

Node X Y 
1 0 40 
2 30 0 
3 60 40 

 
A. Find the joint displacements 
B. Find the stress in the elements 
C. Find the reactions 

 
 
6. Element area = 1 in2  Material = steel 

 
 

D. Find the joint displacements 
E. Find the stress in the elements 
F. Find the reactions 

 
 
 
Write a Matlab program that uses the finite element technique discussed in class to solve 
for the displacements, stresses, and reactions in a finite element truss.  You may want to 
modify the static stress program you wrote earlier to create this new program.  The two 
programs should be able to use the same input file.   
 
Solve the problem shown above to turn in.  Use both this new program and the static truss 
program to run the data file.  Compare the results.   
 
 
 

Node X Y 
1 0 0 
2 4 3 
3 8 0 
4 12 3 

Element From 
Node 

To 
Node 

1 1 2 
2 2 3 
3 2 4 
4 3 4 

1 3 

2 

10,000 lbs 

1 

2 

3 

4 

5,000 lbs 



The plane frame is a combination of plane truss and two dimensional beam.  All the members 
lie in the same plane and are interconnected by rigid joints in case of plane frame. The 
internal stress resultants at a cross-section of a plane frame member consist of axial force, 
bending moment and shear force. 

In case of plane frame, the degrees of freedom at each node will be (i) axial deformation, (ii) 
vertical deformation and (iii) rotation. Thus the frame members have three degrees of 
freedom at each node as shown in Fig. 4.5.1 below.  

Fig. 4.5.1 Plane frame element 

Therefore, the stiffness matrix of the frame in its local coordinate system will be the 
combination of 2-d truss and 2-d beam matrices: 

ሾ݇ሿതതതത=
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ې

In plane frame the members are oriented in different directions and hence it is necessary to 
transform stiffness matrix of individual members from local to global co-ordinate system 

u1 v1  θ1            u2 v2 θ2

3.5.1 Plane Frame Analysis

3.5.2 Member Stiffness Matrix

(3.5.1)

3.5.3 Generalized Stiffness Matrix



 

before formulating the global stiffness matrix by assembly. The generalized stiffness matrix 
of a frame member can be obtained by transferring the matrix of local coordinate system into 
its global coordinate system. The transformation matrix can be expressed as: 
 

 

[T]=

ۏ
ێ
ێ
ێ
ێ
ۍ
cos ߠ sin ߠ 0 0 0 0
െ sin ߠ cos ߠ 0 0 0 0
0 0 1 0 0 0
0 0 0 cos ߠ sin ߠ 0
0 0 0 െ sin ߠ cos ߠ 0
0 0 0 0 0 ے1

ۑ
ۑ
ۑ
ۑ
ې

    

 
Now, the generalized stiffness matrix of the member can be obtained from the relation of 
ሾܭሿ ൌ ሾܶሿ்ሾܭഥሿሾܶሿ . Thus considering ߣ ൌ cos ߤ	 and ߠ ൌ sin  the stiffness matrix in global ߠ

coordinate system can be written as follows: 

ሾKሿ ൌ EI	

ۏ
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	ൈ
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ێ
ێ
ۍ
λ μ 0 0 0 0
െμ λ 0 0 0 0
0 0 1 0 0 0
0 0 0 λ μ 0
0 0 0 െμ λ 0
0 0 0 0 0 ے1
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ۑ
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ې
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(3.5.2)



 

 
 

Analyse the plane frame shown below. Assume the modulus of elasticity of the horizontal 
member is 1.5 times that of the vertical member and length of the vertical member is 1.5 
times that of horizontal member. Find the bending moment and reactions at support 
assuming the length, cross section area and modulus of elasticity of vertical member as 
3.0 m, 0.4 x 0.4 m2 and 2 x 1011 N/mm2, respectively. 
 

 
 

 
Solution 
 
Step 1: Numbering of Nodes and Members 
The numbering of members and joints of the plane frame are as shown below: 
 

                          
 

 
 
The members AB and BC are designated as (1) and (2). The points A, B and C are designated      
by nodes 1, 2 and 3. The member information for the frame is shown in tabulated form as 
shown in Table 1(a). The coordinate of node 1 is assumed as (0,0). The coordinate and 
restraint joint information are shown in Table 1(b). The integer 1 in the restraint list indicates 

(3.5.3)

3.5.4 Worked Out Example

Fig. 3.5.2 Plane frame

Fig. 3.5.3 Numbering of Nodes and Members



 

the restraint exists and 0 indicates the restraint at that particular direction does not exist. 
Thus, in node no. 2, the integer 0 all the restraint type indicates that the joint is in free all the 
three directions. 

 

Member number Starting node Ending node Rigidity modulus 

1 1 2 EI 

2 2 3 1.5EI 

 
 

Node no. Coordinates Restraint list  

X Y Axial Vertical Rotation 

1 0 0 1 1 1 

2 0 1.5L 0 0 0 

3 L 1.5L 1 1 1 

 

 
Step 2: Formation of member stiffness matrix: 
The individual member stiffness matrices can be found out directly from eqn. shown above. 
Thus the stiffness matrices of each member in global coordinate system are given below 
based on their individual member properties and orientations. Thus the stiffness matrix of 
member (1) is: 
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Similarly, the stiffness matrix of member (2) is : 
 
  

 1                  2         3     4         5      6 

1 

2 

3 

4 

5 

6

 4                     5         6  7          8    9 

Table 3.5.1 Member Information for Beam

Table 3.5.2 Nodal Information for Beam
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Step 3 : Formulation of global stiffness matrix: 
The global stiffness matrix is obtained by assembling by assembling the local stiffness matrix 
of member (1) and (2) as follows:  
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Step 4: Boundary conditions: 
The boundary conditions according to the support of the frame can be expressed in terms of 
the displacement vector. The displacement vector will be as follows: 

ሼ݀ሽ ൌ

ۏ
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ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
0
0
஻ݔߜ
஻ݕߜ
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ۑ
ې

 

Here,	ݔߜ஻	,	ݕߜ஻ and	ߠ஻ indicate the displacement in X-direction, displacement in Y-direction 
and rotation at point B. 

 
Step 5: Load vector: 

4 

5 

6 

7 

8 

9 

 1          2   3         4                   5    6               7            8         9 
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2 

3 

4 

5 

6 

7 

8 
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The distributed load on member (2) can be replaced by its equivalent joint load as shown in 
the figure below. 

 

 

 
 
Thus, the equivalent joint load vector can be written as 
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Step 6: Determination of unknown displacements: 
The unknown displacements can be obtained from the relationship of {F} = [K]{d} or        
{d} =[k]-1 {F}. Now eliminating the rows and columns in the stiffness matrix and force 
matrix, corresponding to zero elements in displacement matrix, the reduced matrix will be as 
follows. 
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Thus, the unknown displacements will be: 

൥
஻ݔߜ
஻ݕߜ
஻ߠ

൩ ൌ
1

10ଵ଴
൥
ݓ0.04327
െ1.7127ݓ
െ5.4978ݓ

൩ 

Step 7: Determination of member end actions: 
The member end actions can be obtained from the corresponding member stiffness and the 
nodal displacements. The member end actions for each member are derived as shown below. 

Fig. 3.5.4 Equivalent Joint Loads
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In case of member (1), the member forces will be:ሼܨ௠ሽଵ ൌ ሾܭሿሺଵሻሼ݀ሽሺଵሻ 
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It is to be noted that {Fm} are the end actions due to joint loads. Hence it must be added to the 
corresponding end actions in the restrained structure in order to obtain the end actions due to  
the loads. Therefore, {Fm}actual are the true member end actions due to actual loading system 
can be expressed as 

                                   ሼܨ௠ሽ௔௖௧௨௔௟ = {Fm} + {Ffm} 

 
Where, {Ffm} are the end actions in the restrained structure. Since there is no load acting on 
member (1), the actual end actions will be: 
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Member (2) 
In similar way, the member forces in member (2) will be {Fm}(2) = [K](2){d}(2) 
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The actual member forces in the member (2) will be: 
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UNIT – IV –FINITE ELEMENT METHOD FOR 

AIRCRAFT STRUCTURES – SAEA1504 



The triangular elements with different numbers of nodes are used for solving two dimensional solid 
members. The linear triangular element was the first type of element developed for the finite element 
analysis of 2D solids. However, it is observed that the linear triangular element is less accurate 
compared to linear quadrilateral elements. But the triangular element is still a very useful element for 
its adaptivity to complex geometry. These are used if the geometry of the 2D model is complex in 
nature. Constant strain triangle (CST) is the simplest element to develop mathematically. In CST, 
strain inside the element has no variation (Ref. module 3, lecture 2) and hence element size should 
be small enough to obtain accurate results. As indicated earlier, the displacement is expressed in two 
orthogonal directions in case of 2D solid elements. Thus the displacement field can be written as 

{ } u
d

v

ì üï ïï ï=í ï ïï ïî            

Here, u and v are the displacements parallel to x and y directions respectively.  

 
A typical triangular element assumed to represent a subdomain of a plane body under plane 

represented in terms of nodal displacements  

1 1 2 2 3 3

1 1 2 2 3 3

u N u N u N u

v N v N v N v

  

  

Where, N1, N2, N3 are the shape functions as described in module 3, lecture 2.  

(4.1.1)

4.1.1 Element Stiffness Matrix for CST

stress/strain  condition  is  represented  in  Fig.  4.1.1.  The  displacement  (u,  v)  of  any  point  P  is

(4.1.2)

Fig. 4.1.1 Linear triangular element for plane stress/strain

TWO DIMENSIONAL ELASTICITY AND AXISYMMETRIC ELASTICITY
UNIT-IV

4.0 CONSTANT STRAIN TRIANGULAR ELEMENT



 

The strain-displacement relationship for two dimensional plane stress/strain problem can be 
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In case of small amplitude of displacement, one can ignore the nonlinear term of the above equation 
and will reach the following expression.  
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Hence the element strain components can be represented as,  
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Or,  
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Or,    B d   

simplified in the following form from three dimensional cases .

(4.1.3)

(4.1.4)
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(4.1.6)



 

In the above equation [B] is called as strain displacement relationship matrix. The shape functions 
for the 3 node triangular element in Cartesian coordinate is represented as,  
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Or,  
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Where,  

( )1 2 3 3 2x y x y ,a = -
 ( )2 3 1 1 3x y x y ,a = -  ( )3 1 2 2 1x y x y ,a = -  

( )1 2 3y y ,b = -   ( )2 3 1y y ,b = -   ( )3 1 2y y ,b = -  

( )1 3 2x x ,g = -   ( )2 2 1x x ,g = -   ( )3 2 1x x ,g = -  

Hence the required partial derivatives of shape functions are, 
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Hence the value of [B] becomes:  
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(4.1.7)
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According to Variational principle described in module 2, lecture 1, the stiffness matrix is 
represented as, 
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Since, [B] and [D] are constant matrices; the above expression can be expressed as 
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For a constant thickness (t), the volume of the element will become A.t . Hence the above equation 
becomes, 
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For plane stress condition, [D] matrix will become:  
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Therefore, for a plane stress problem, the element stiffness matrix becomes, 
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Similarly for plane strain condition, [D] matrix is equal to,  
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Hence the element stiffness matrix will become: 
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From the principle of virtual work, 

{ } { } { } { } { } { }T T T
d u F d u F dG W

W G W

d e s W= d G+ d Wò ò ò   

Where, F, and F are the surface and body forces respectively.  Using the relationship between 

stress-stain and strain displacement, one can derive the following expressions: 
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Hence eq. (5.1.18) can be rewritten as, 
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equivalent to[ ]{ } { }k d F= , and thus, the nodal load vector becomes 
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For a constant thickness of the triangular element eq.(5.1.22) can be rewritten as  

{ } [ ] { } [ ] { }T TS

S A

F t N F ds t N F dA
G W
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For the a three node triangular two dimensional element, one can represent FW and FG  as,   
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4.1.2 Nodal Load Vector for CST
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Here,  [N ]  is  the  shape  function  along  the  boundary  where  forces  are  prescribed.  Eq.(4.1.21)  is

(4.1.22)

(4.1.23)
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For example, in case of gravity load on CST element, { } x
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For this case, the shape functions in terms of area coordinates are:  
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As a result, the force vector on the element considering only gravity load, will become,  
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The integration in terms of area coordinate is given by, 
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Thus, the nodal load vector will finally become 
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Many three-dimensional problems show symmetry about an axis of rotation. If the problem 
geometry is symmetric about an axis and the loading and boundary conditions are symmetric about 
the same axis, the problem is said to be axisymmetric. Such three-dimensional problems can be 
solved using two-dimensional finite elements. The axisymmetric  problem are most conveniently 

axisymmetric analysis, following conditions are to be satisfied. 
1. The domain should have an axis of symmetry and is considered as z axis.
2. The loadings on the domain has to be symmetric about the axis of revolution, thus they are

independent of circumferential coordinate θ.
3. The boundary condition and material properties are symmetric about the same axis and will

be independent of circumferential coordinate.

Axisymmetric solids are of total symmetry about the axis of revolution (i.e., z-axis), the field 
variables, such as the stress and deformation is independent of rotational angle θ. Therefore, the field 
variables can be defined as a function of (r,z) and hence the problem becomes a two dimensional 
problem similar to those of plane stress/strain problems. Axisymmetric problems includes, circular 
cylinder loaded with uniform external or internal pressure, circular water tank, pressure vessels, 
chimney, boiler, circular footing resting on soil mass, etc. 

An axisymmetric problem is readily described in cylindrical polar coordinate system:  r, z and θ. 
Here, θ measures the angle between the plane containing the point and the axis of the coordinate 

4.2.1    Axisymmetric Element

defined  by  polar  coordinate  system  with  coordinates  (r,  θ,  z)  as  shown  in  Fig.  4.2.1.  Thus,  for

Fig. 4.2.1 Cylindrical coordinates

4.2.2 Relation between Strain and Displacement



 

system. At θ = 0, the radial and axial coordinates coincide with the global Cartesian X and Y 

vectors. Let ˆˆ ˆr, z and q be unit vectors in the radial, axial, and circumferential directions at a point in 

the cylindrical coordinate system. 
 

 
 

 
If the loading consists of radial and axial components that are independent of  θ and the material is 

either isotropic or orthotropic and the material properties are independent of θ, the displacement at 

any point will only have radial (ݑ௥) and axial (ݑ௭) components. The only stress components that will 

be nonzero are ߪ௥௥, ,௭௭ߪ  . ߬௥௭	ܽ݊݀	ఏఏߪ

 
 

(a) Element in r-z plane (b) Element in r-θ plane 

coordinates.    Fig.  4.2.2  shows  a  cylindrical  coordinate  system  and  the  definition  of  the  position

Fig. 4.2.2 Cylindrical Coordinate System
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deformation in the radial direction. Therefore, it initiates   increase in circumference and associated 
circumferential strain. Let denote the radial displacement as u, the circumferential displacement as v, 
and the axial displacement as w. Dashed line represents the deformed positions of the body in Fig. 

r

1 u u
ε = u+ ×dr - u  =

dr r r

æ ö¶ ¶÷ç ÷ç ÷çè ø¶ ¶
 

become 

z

1 w w
ε = w+ ×dz - w  =

dz z z

æ ö¶ ¶÷ç ÷ç ÷çè ø¶ ¶
 

 
Considering the original arc length versus the deformed arc length, the differential element 
undergoes an expansion in the circumferential direction. Before deformation, let the arc length is 
assumed as ds = rdθ. After deformation, the arc length will become ds = (r+u) dθ. Thus, the 
tangential strain will be 

( )r +u d - rd u
ε =

rd rq

q q
=

q
 

Similarly, the shear strain will be 
 

rz

r z0 and 0

u w

z r

q q

¶ ¶g = +
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g = g =
 

 
Thus, there are four strain components present in this case and is given by 
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Fig. 4.2.3 Deformation of the axisymmetric element
A differential element of the body in the r-z plane is shown in Fig. 4.2.3(a). The element undergoes

4.2.3(b). The radial strain can be calculated from the above diagram as

(4.2.1)

Since the rz plane is effectively the same as a rectangular coordinate system, the axial strain will

(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)

4.2.3   Relation between Stress and Strain



 

The stress strain relation for axisymmetric case can be derived from the three dimensional 
constitutive relations. We know the stress-strain relation for a three-dimensional solid is 
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The stresses acting on a differential volume of an axisymmetric solid under axisymmetric loading is 

 

 
 

 
Now, comparing the stress-strain components present in the axisymmetric case, the stress-strain 
relation can be expressed from the above expression as follows 
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(4.2.6)

shown in Fig. 4.2.4.

Fig. 4.2.4 Stresses acting on a differential volume

(4.2.7)



 

 
Thus, the constitutive matrix [D] for the axisymmetric elastic solid will be 
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axisymmetric shell element for the finite element analysis. It may be noted that the liquid in the 
container may be idealized with two dimensional axisymmetric elements. Let us consider the radius, 
height and, thickness of the circular tank are R, H and h respectively.  

 

 

stretching and bending are expressed as 

 
0

H

y y θ θ y y

1
U = N ε + N ε + M χ 2πRdy

2   

(4.2.8)

4.2.4    Axisymmetric Shell Element
A  cylindrical  liquid  storage  container  like  structures  (Fig.  4.2.5)  may  be  idealized  using

Fig. 4.2.5 Thin wall cylindrical container

The  strain  energy  of  the  axisymmetric  shell  element  (Fig.  4.2.6)  including  the  effect  of  both

(4.2.9)



 

Here, Ny  and N are the membrane force resultants and My is the bending moment resultant. The 

shell is assumed to be linearly elastic, homogeneous and isotropic. Thus the force and moment 
resultants can be expressed in terms of the mid-surface change in curvature χy as follows. 
 

 
 

 
Here, the strain-displacement relation is given by 
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The generalized strain vector can be expressed in terms of the displacement vectors as follows. 

     B d   

Where, 

Fig 4.2.6 Axisymmetric plate element

(4.2.10)

(4.2.11)

(4.2.12)
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Here, u and v are the displacement components in two perpendicular directions. With the use of 
stress and strain vectors, the potential energy expression are written in terms of displacement vectors 
as 

        
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T
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T
d B D B d

1
U = 2πR dy

2
   

Thus, the element stiffness are derived as 

      
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T
k R B D B dy   

Similarly, neglecting the rotary inertia, the kinetic energy can be expressed as  
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Where, m denotes the mass of the shell element per unit area and  d represents the velocity vector. 

Thus, the element mass matrix is given by  

     
0

2π  
eL

T
M Rm N N dy    

 
Finite element formulation for the axisymmetric problem will be similar to that of the two 
dimensional solid elements. As the field variables, such as the stress and strain is independent of 
rotational angle θ, circumferential displacement will not appear. Thus, the displacement field 
variables are expressed as 

( ) ( )

( ) ( )

n

i i
i=1

n

i i
i=1

u r,z = N r,z u

w r,z = N r,z w

å

å
 

Here, ui and wi represent radial and axial displacements respectively at nodes.  Ni (r, z) are the shape 
functions. As the geometry and field variables are independent of rotational angle θ, the interpolation 
function Ni (r, z) can be expressed similar to 2-dimensional problems by replacing the x and y terms 
with r and z terms respectively.   

(4.2.13)

(4.2.14)

(4.2.15)

(4.2.16)

(4.2.17)

        Finite Element Formulation of Axisymmetric Element

(4.3.1)
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the axisymmetric element can be approached in a similar way as the CST element. Thus the field 
variables of such an element can be expressed as 
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Using end conditions,  
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Or,  
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Here  d are the nodal displacement vectors.
 

4.3.1   Stiffness Matrix of a Triangular Element
Fig. 4.3.1 shows the cylindrical coordinates of a three node triangular element. Hence the analysis of
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Using a similar approach as in case of CST elements, the three shape functions  1 2 3, ,N N N  can be 

assumed as, 
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Fig. 4.3.1 Axisymmetric three node triangle in cylindrical coordinates

Putting above values in eq.(4.3.3), the following relations will be obtained.
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(4.3.7)
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Where,  
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Thus, the strain displacement matrix can be expressed as, 
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(4.3.8)

(4.3.9)

Putting the value of {u,w} in eq. (4.3.7) from eq. (4.3.5),
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Since, the term [B] is dependent of ‘r’ terms; the term     T
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integration. Yet, a reasonably accurate solution can be obtained by evaluating the [B] (denoted as 
[B]) matrix at the centroid. 
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Applying chain rule of differentiation equation we get, 
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Hence, the strain components are calculated as 

(4.3.13)

4.3.2   Stiffness Matrix of a Quadrilateral Element
The  strain-displacement  relation  for  axisymmetric  problem  derived  earlier  (eq.(4.3.5))  can  be

(4.3.14)

(4.3.15)
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Or, 
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With the use of interpolation function and nodal displacements, , , ,
u u w w
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can be expressed 

for a four node quadrilateral element as 
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(4.3.16)

(4.3.17)

Putting eq. (4.3.17) in eq. (4.3.16) we get,
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Thus, the strain displacement relationship matrix [B] becomes       
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For a four node quadrilateral element, 
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Thus, the [B] matrix will become 
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(4.3.20)
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The stiffness matrix for the axisymmetric element finally can be found from the following 
expression after numerical integration. 
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(4.3.21)

(4.3.22)
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TWO DIMENSIONAL STEADY STATE HEAT FLOW: 

 

 



 

 

 

 

 



TWO DIMENSIONAL STEADY STATE HEAT FLOW: 

 

We have, to this point, considered only One Dimensional, Steady State problems. The reason 

for this is that such problems lead to ordinary differential equations and can be solved with 

relatively ordinary mathematical techniques. In general the properties of any physical system 

may depend on both location (x, y, z) and time (). The inclusion of two or more independent 

variables results in a partial differential equation. The multidimensional heat diffusion 

equation in a Cartesian coordinate system can be written as: 

 

 

The above equation governs the Cartesian, temperature distribution for a three-dimensional 

unsteady, heat transfer problem involving heat generation. To solve for the full equation, it 

requires a total of six boundary conditions: two for each direction. Only one initial condition 

is needed to account for the transient behavior. For 2D, steady state (/ t = 0) and without 

heat generation, the above equation reduces to: 

          

 

Equation (2) needs 2 boundary conditions in each direction. There are three approaches to 

solve this equation: 

 • Analytical Method: The mathematical equation can be solved using techniques like the 

method of separation of variables.  

• Graphical Method: Limited use. However, the conduction shape factor concept derived 

under this concept can be useful for specific configurations. (see Table 4.1 for selected 

configurations) 

 • Numerical Method: Finite difference or finite volume schemes, usually will be solved 

using computers.  

 

Analytical solutions are possible only for a limited number of cases (such as linear problems 

with simple geometry). Standard analytical techniques such as separation of variables can be 



found in basic textbooks on engineering mathematics, and will not be reproduced here. The 

student is encouraged to refer to textbooks on basic mathematics for an overview of the 

analytical solutions to heat diffusion problems. In the present lecture material, we will cover 

the graphical and numerical techniques, which are used quite conveniently by engineers for 

solving multi-dimensional heat conduction problems. 

 

Graphical Method: Conduction Shape Factor 

This approach applied to 2-D conduction involving two isothermal surfaces, with all other 

surfaces being adiabatic. The heat transfer from one surface (at a temperature T1) to the other 

surface (at T2) can be expressed as: q=Sk(T1-T2) where k is the thermal conductivity of the 

solid and S is the conduction shape factor. 

The shape factor can be related to the thermal resistance: 

 

where Rt = 1/(kS) is the thermal resistance in 2D. Note that 1-D heat transfer can also use the 

concept of shape factor. For example, heat transfer inside a plane wall of thickness L is 

q=kA(T/L), where the shape factor S=A/L. Common shape factors for selected 

configurations can be found in Table 4.1 



 

 

 

 



 

 



 

 

 

Due to the increasing complexities encountered in the development of modern technology, 

analytical solutions usually are not available. For these problems, numerical solutions 

obtained using high-speed computer are very useful, especially when the geometry of the 

object of interest is irregular, or the boundary conditions are nonlinear. In numerical analysis, 

three different approaches are commonly used: the finite difference, the finite volume and the 

finite element methods. Brief descriptions of the three methods are as follows 

 

The Finite Difference Method (FDM) This is the oldest method for numerical solution of 

PDEs, introduced by Euler in the 18th century. It's also the easiest method to use for simple 

geometries. The starting point is the conservation equation in differential form. The solution 



domain is covered by grid. At each grid point, the differential equation is approximated by 

replacing the partial derivatives by approximations in terms of the nodal values of the 

functions. The result is one algebraic equation per grid node, in which the variable value at 

that and a certain number of neighbor nodes appear as unknowns. In principle, the FD 

method can be applied to any grid type. However, in all applications of the FD method 

known, it has been applied to structured grids. Taylor series expansion or polynomial fitting 

is used to obtain approximations to the first and second derivatives of the variables with 

respect to the coordinates. When necessary, these methods are also used to obtain variable 

values at locations other than grid nodes (interpolation). On structured grids, the FD method 

is very simple and effective. It is especially easy to obtain higher-order schemes on regular 

grids. The disadvantage of FD methods is that the conservation is not enforced unless special 

care is taken. Also, the restriction to simple geometries is a significant disadvantage. 

 

Finite Volume Method (FVM)  

In this dissertation finite volume method is used. The FV method uses the integral form of the 

conservation equations as its starting point. The solution domain is subdivided into a finite 

number of contiguous control volumes (CVs), and the conservation equations are applied to 

each CV. At the centroid of each CV lies a computational node at which the variable values 

are to be calculated. Interpolation is used to express variable values at the CV surface in 

terms of the nodal (CV-center) values. As a result, one obtains an algebraic equation for each 

CV, in which a number of neighbor nodal values appear. The FVM method can accommodate 

any type of grid when compared to FDM, which is applied to only structured grids. The FVM 

approach is perhaps the simplest to understand and to program. All terms that need be 

approximated have physical meaning, which is why it is popular. The disadvantage of FV 

methods compared to FD schemes is that methods of order higher than second are more 

difficult to develop in 3D. This is due to the fact that the FV approach requires two levels of 

approximation: interpolation and integration. 

 

Finite Element Method (FEM)  

The FE method is similar to the FV method in many ways. The domain is broken into a set of 

discrete volumes or finite elements that are generally unstructured; in 2D, they are usually 

triangles or quadrilaterals, while in 3D tetrahedra or hexahedra are most often used. The 

distinguishing feature of FE methods is that the equations are multiplied by a weight function 



before they are integrated over the entire domain. In the simplest FE methods, the solution is 

approximated by a linear shape function within each element in a way that guarantees 

continuity of the solution across element boundaries. Such a function can be constructed from 

its values at the corners of the elements. The weight function is usually of the same form. 

 

                This approximation is then substituted into the weighted integral of the 

conservation law and the equations to be solved are derived by requiring the derivative of the 

integral with respect to each nodal value to be zero; this corresponds to selecting the best 

solution within the set of allowed functions (the one with minimum residual). The result is a 

set of non-linear algebraic equations. 

    

                  An important advantage of finite element methods is the ability to deal with 

arbitrary geometries. Finite element methods are relatively easy to analyze mathematically 

and can be shown to have optimality properties for certain types of equations. The principal 

drawback, which is shared by any method that uses unstructured grids, is that the matrices of 

the linearized equations are not as well structured as those for regular grids making it more 

difficult to find efficient solution methods. 

 

The Finite Difference Method Applied to Heat Transfer Problems: 

In heat transfer problems, the finite difference method is used more often and will be discussed here 

in more detail. The finite difference method involves: 

 * Establish nodal networks  

* Derive finite difference approximations for the governing equation at both interior and exterior 

nodal points  

*Develop a system of simultaneous algebraic nodal equations 

 *Solve the system of equations using numerical schemes 

 

The Nodal Networks: 

The basic idea is to subdivide the area of interest into sub-volumes with the distance between adjacent 

nodes by x and y as shown. If the distance between points is small enough, the differential equation 

can be approximated locally by a set of finite difference equations. Each node now represents a small 

region where the nodal temperature is a measure of the average temperature of the region. 

Example: 

 

 



 

 



 

 



 

 

 



 

 

 


