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Module 1 

Lecture 1 

         

 

Stress 

Stress is the internal resistance offered by the body to the external load applied to it 

per unit cross sectional area. Stresses are normal to the plane to which they act and 

are tensile or compressive in nature.  

 

 

 

As we know that in mechanics of deformable solids, externally applied forces acts on 

a body and body suffers a deformation. From equilibrium point of view, this action 

should be opposed or reacted by internal forces which are set up within the particles 

of material due to cohesion. These internal forces give rise to a concept of stress. 

Consider a rectangular rod subjected to axial pull P. Let us imagine that the same 

rectangular bar is assumed to be cut into two halves at section XX. The each portion 

of this rectangular bar is in equilibrium under the action of load P and the internal 

forces acting at the section XX has been shown. 

Now stress is defined as the force intensity or force per unit area. Here we use a 

symbol   to represent the stress. 

P

A
    

Where A is the area of the X –X section 
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Here we are using an assumption that the total force or total load carried by the 

rectangular bar is uniformly distributed over its cross – section. But the stress 

distributions may be for from uniform, with local regions of high stress known as 

stress concentrations. If the force carried by a component is not uniformly distributed 

over its cross – sectional area, A, we must consider a small area, ‘δA’ which carries 

a small load ‘δP’, of the total force ‘P', Then definition of stress is 

 

As a particular stress generally holds true only at a point, therefore it is defined 

mathematically as 

 

Units : 

The basic units of stress in S.I units i.e. (International system) are N / m2 (or Pa) 

MPa = 106 Pa 

GPa = 109 Pa 

KPa = 103 Pa 

Sometimes N / mm2 units are also used, because this is an equivalent to MPa. While 

US customary unit is pound per square inch psi. 

TYPES OF STRESSES : Only two basic stresses exists : (1) normal stress and (2) 
shear stress. Other stresses either are similar to these basic stresses or are a 
combination of this e.g. bending stress is a combination tensile, compressive and 
shear stresses. Torsional stress, as encountered in twisting of a shaft is a shearing 
stress. Let us define the normal stresses and shear stresses in the following 
sections. 

Normal stresses : We have defined stress as force per unit area. If the stresses are 
normal to the areas concerned, then these are termed as normal stresses. The 
normal stresses are generally denoted by a Greek letter (σ) 
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This is also known as uniaxial state of stress, because the stresses acts only in one 

direction however, such a state rarely exists, therefore we have biaxial and triaxial 

state of stresses where either the two mutually perpendicular normal stresses acts or 

three mutually perpendicular normal stresses acts as shown in the figures below : 

 

Tensile or compressive Stresses: 

The normal stresses can be either tensile or compressive whether the stresses acts 

out of the area or into the area 
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Bearing Stress: When one object presses against another, it is referred to a bearing 

stress ( They are in fact the compressive stresses ). 

 

 

 

Sign convections for Normal stress 

Direct stresses or normal stresses 

- tensile +ve 

- compressive –ve 

Shear Stresses: 

Let us consider now the situation, where the cross – sectional area of a block of 

material is subject to a distribution of forces which are parallel, rather than normal, to 

the area concerned. Such forces are associated with a shearing of the material, and 

are referred to as shear forces. The resulting stress is known as shear stress. 
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The resulting force intensities are known as shear stresses, the mean shear stress 

being equal to 

 

Where P is the total force and A the area over which it acts. As we know that the 

particular stress generally holds good only at a point therefore we can define shear 

stress at a point as 

 

The Greek symbol  (tau, suggesting tangential) is used to denote shear stress. 

 

Complementary shear stresses: 

The existence of shear stresses on any two sides of the element induces 

complementary shear stresses on the other two sides of the element to maintain 

equilibrium. As shown in the figure the shear stress  in sides AB and CD induces a 

complimentary shear stress '  in sides AD and BC. 

 

Sign convections for shear stresses: 

- tending to turn the element C.W +ve. 

- tending to turn the element C.C.W – ve. 

Deformation of a Body due to Self Weight 

Consider a bar AB hanging freely under its own weight as shown in the figure.  
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Let  

L= length of the bar 

A= cross-sectional area of the bar 

E= Young’s modulus of the bar material 

w= specific weight of the bar material 

Then deformation due to the self-weight of the bar is   

 

Members in Uni – axial state of stress 

Introduction: [For members subjected to uniaxial state of stress] 

For a prismatic bar loaded in tension by an axial force P, the elongation of the 

bar can be determined as 

 

Suppose the bar is loaded at one or more intermediate positions, then equation 

(1) can be readily adapted to handle this situation, i.e. we can determine the axial 

force in each part of the bar i.e. parts AB, BC, CD, and calculate the elongation or 

shortening of each part separately, finally, these changes in lengths can be added 

algebraically to obtain the total charge in length of the entire bar. 

2

WL
L

E
   
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When either the axial force or the cross – sectional area varies continuosly 

along the axis of the bar, then equation (1) is no longer suitable. Instead, the 

elongation can be found by considering a deferential element of a bar and then the 

equation (1) becomes 

 

i.e. the axial force Pxand area of the cross – section Ax must be expressed as 

functions of x. If the expressions for Pxand Ax are not too complicated, the integral 

can be evaluated analytically, otherwise Numerical methods or techniques can be 

used to evaluate these integrals. 

 

Principle of Superposition 

The principle of superposition states that when there are numbers of loads are acting 

together on an elastic material, the resultant strain will be the sum of individual 

strains caused by each load acting separately. 
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Module 1 

Lecture 2: Numerical Problems on stress, shear stress in axially loaded members. 

Example 1: Now let us for example take a case when the bar tapers uniformly 

from d at x = 0 to D at x = l 

 

 

In order to compute the value of diameter of a bar at a chosen location let us 

determine the value of dimension k, from similar triangles 

 

therefore, the diameter 'y' at the X-section is 

or = d + 2k 

 

Hence the cross –section area at section X- X will be 
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hence the total extension of the bar will be given by expression 

 

An interesting problem is to determine the shape of a bar which would have a 

uniform stress in it under the action of its own weight and a load P. 

Example 2: stresses in Non – Uniform bars 

Consider a bar of varying cross section subjected to a tensile force P as shown 

below. 

 

Let 

a = cross sectional area of the bar at a chosen section XX 

then 

Stress � = p / a 
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If E = Young's modulus of bar then the strain at the section XX can be 

calculated 

� = � / E 

Then the extension of the short element � x. =�� .original length = � / E. �x 

 

let us consider such a bar as shown in the figure below: 

 

 

  

The weight of the bar being supported under section XX is 



16 
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Example 1: Calculate the overall change in length of the tapered rod as shown in 

figure below. It carries a tensile load of 10kN at the free end and at the step change 

in section a compressive load of 2 MN/m evenly distributed around a circle of 30 mm 

diameter take the value of E = 208 GN / m2. 

This problem may be solved using the procedure as discussed earlier in this 

section 

 

Example 2: A round bar, of length L, tapers uniformly from radius r1 at one end to 

radius r2at the other. Show that the extension produced by a tensile axial load P 

is  

If r2 = 2r1 , compare this extension with that of a uniform cylindrical bar having a 

radius equal to the mean radius of the tapered bar. 

Solution: 
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consider the above figure let r1 be the radius at the smaller end. Then at a X 

crosssection XX located at a distance x from the smaller end, the value of radius is 

equal to 
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Comparing of extensions 

For the case when r2 = 2.r1, the value of computed extension as above 

becomes equal to  

The mean radius of taper bar 

= 1 / 2( r1 + r2 ) 

= 1 / 2( r1 +2 r2 ) 

= 3 / 2 .r1 

Therefore, the extension of uniform bar 

= Orginal length . strain 
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Module 1 

Lecture 3:  

Strain: 

When a single force or a system force acts on a body, it undergoes some 

deformation. This deformation per unit length is known as strain. Mathematically 

strain may be defined as deformation per unit length.  

So,  

Strain=Elongation/Original length 

Or, 
l

l

    

Elasticity; 

The property of material by virtue of which it returns to its original shape and size 

upon removal of load is known as elasticity. 

Hooks Law 

It states that within elastic limit stress is proportional to strain. Mathematically  

E=
Stress

Strain
  

Where E = Young’s Modulus 

Hooks law holds good equally for tension and compression. 

Poisson’s Ratio; 

The ratio lateral strain to longitudinal strain produced by a single stress is known as 

Poisson’s ratio. Symbol used for poisson’s ratio is   or 1/ m .  

Modulus of Elasticity (or Young’s Modulus) 

Young’s modulus is defined as the ratio of stress to strain within elastic limit. 

Deformation of a body due to load acting on it 

We know that young’s modulus E=
Stress

Strain
,  

Or, strain, 
P

E AE

     
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Now, strain, 
l

l

    

So, deformation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pl
l

AE
   
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Module 1 

Lecture 4:  Numerical problems on Stress-strain relationship, Hooke’s law, 

Poisson’s ratio, shear stress 
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Module 1  

Lecture 5: Shear strain, modulus of rigidity, bulk modulus. Relationship between 

material properties of isotropic materials. 

Shear Strain 

The distortion produced by shear stress on an element or rectangular block is shown 

in the figure. The shear strain or ‘slide’ is expressed by angle ϕ and it can be defined 

as the change in the right angle. It is measured in radians and is dimensionless in 

nature. 

 

Modulus of Rigidity 

For elastic materials it is found that shear stress is proportional to the shear strain 

within elastic limit. The ratio is called modulus rigidity. It is denoted by the symbol ‘G’ 

or ‘C’. 

G= 2shear stress
 N/mm

shear strain




   

Bulk modulus (K):  It is defined as the ratio of uniform stress intensity to the 

volumetric strain. It is denoted by the symbol K. 

stress intensity

volumetric strain v

K



    

Relation between elastic constants: 

Elastic constants: These are the relations which determine the deformations 

produced by a given stress system acting on a particular material. These factors are 

constant within elastic limit, and known as modulus of elasticity E, modulus of rigidity 

G, Bulk modulus K and Poisson’s ratio μ.  

 



24 

 

Relationship between modulus of elasticity (E) and bulk modulus (K): 

 

 

 

Relationship between modulus of elasticity (E) and modulus of rigidity (G):  

 

 

 

Relation among three elastic constants: 

 

 

 

 

 

 

 

 

 

 

 

 

3 (1 2 )E K    

2 (1 )E G    

9

3

KG
E

G K



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Module 1: 

Lecture 6: 

Numerical problems on, relation between elastic constants. 
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Module 1: 

Lecture 7: Stress-strain diagram for uniaxial loading of ductile and brittle materials. 

Stress – Strain Relationship 

Stress – strain diagram for mild steel 

Standard specimen are used for the tension test. 

There are two types of standard specimen's which are generally used for this 

purpose, which have been shown below: 

Specimen I: 

This specimen utilizes a circular X-section. 

 

Specimen II: 

This specimen utilizes a rectangular X-section. 

 

lg = gauge length i.e. length of the specimen on which we want to determine the 

mechanical properties.The uniaxial tension test is carried out on tensile testing 

machine and the following steps are performed to conduct this test. 
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(i)   The ends of the specimen are secured in the grips of the testing machine. 

(ii)  There is a unit for applying a load to the specimen with a hydraulic or mechanical 

drive. 

(iii) There must be  some recording device by which you should be able to measure 

the final output in the form of Load or stress. So the testing machines are often 

equipped with the pendulum type lever, pressure gauge and hydraulic capsule and 

the stress Vs strain diagram is plotted which has the following shape. 

A typical tensile test curve for the mild steel has been shown below 

 

SALIENT POINTS OF THE GRAPH: 

(A) So it is evident form the graph that the strain is proportional to strain or 

elongation is proportional to the load giving a st.line relationship. This law of 

proportionality is valid upto a point A. 

or we can say that point A is some ultimate point when the linear nature of the graph 

ceases or there is a deviation from the linear nature. This point is known as the limit 

of proportionality or the proportionality limit. 

(B) For a short period beyond the point A, the material may still be elastic in the 

sense that the deformations are completely recovered when the load is removed. 

The limiting point B is termed as Elastic Limit . 

(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not 

totally recoverable. There will be thus permanent deformation or permanent set 
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when load is removed. These two points are termed as upper and lower yield points 

respectively. The stress at the yield point is called the yield strength. 

A study a stress – strain diagrams shows that the yield point is so near the 

proportional limit that for most purpose the two may be taken as one. However, it is 

much easier to locate the former. For material which do not posses a well define 

yield points, In order to find the yield point or yield strength, an offset method is 

applied. 

In this method a line is drawn parallel to the straight line portion of initial stress 

diagram by off setting this by an amount equal to 0.2% of the strain as shown as 

below and this happens especially for the low carbon steel. 

 

(E) A further increase in the load will cause marked deformation in the whole volume 

of the metal. The maximum load which the specimen can with stand without failure is 

called the load at the ultimate strength. 

The highest point ‘E' of the diagram corresponds to the ultimate strength of a 

material. 

su = Stress which the specimen can with stand without failure & is known as Ultimate 

Strength or Tensile Strength. 

su is equal to load at E divided by the original cross-sectional area of the bar. 

(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum 

until fracture occurs at F.  Beyond point E, the cross-sectional area of the specimen 

begins to reduce rapidly over a relatively small length of bar and the bar is said to 

form a neck. This necking takes place whilst the load reduces, and fracture of the bar 

finally occurs at point F.  
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Nominal stress – Strain OR Conventional Stress – Strain diagrams: 

Stresses are usually computed on the basis of the original area of the specimen; 

such stresses are often referred to as conventional or nominal stresses. 

True stress – Strain Diagram: 

Since when a material is subjected to a uniaxial load, some contraction or expansion 

always takes place. Thus, dividing the applied force by the corresponding actual 

area of the specimen at the same instant gives the so called true stress. 

Percentage Elongation: 'd ': 

The ductility of a material in tension can be characterized by its elongation and by 

the reduction in area at the cross section where fracture occurs. 

It is the ratio of the extension in length of the specimen after fracture to its initial 

gauge length, expressed in percentage. 

 

lI = gauge length of specimen after fracture(or the distance between the gage marks 

at fracture) 

lg= gauge length before fracture(i.e. initial gauge length) 

For 50 mm gage length, steel may here a % elongation d of the order of 10% to 

40%. 

Ductile and Brittle Materials: 

Based on this behaviour, the materials may be classified as ductile or brittle 

materials 

Ductile Materials: 

It we just examine the earlier tension curve one can notice that the extension of the 

materials over the plastic range is considerably in excess of that associated with 

elastic loading. The Capacity of materials to allow these large deformations or large 

extensions without failure is termed as ductility. The materials with high ductility are 

termed as ductile materials. 

Brittle Materials: 
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A brittle material is one which exhibits a relatively small extensions or deformations 

to fracture, so that the partially plastic region of the tensile test graph is much 

reduced. 

This type of graph is shown by the cast iron or steels with high carbon contents or 

concrete. 
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Module 1: 

Lecture 8: Introduction to mechanical properties of metals-hardness, impact 

Mechanical Properties of material: 

Elasticity: Property of material by virtue of which it can regain its shape after removal 

of external load 

Plasticity:  Property of material by virtue of which, it will be in a state of permanent 

deformation even after removal of external load. 

Ductility: Property of material by virtue of which, the material can be drawn into 

wires. 

Hardness:  Property of material by virtue of which the material will offer resistance to 

penetration or indentation. 

Ball indentation Tests: 

iThis method consists in pressing a hardened steel ball under a constant load P 

into a specially prepared flat surface on the test specimen as indicated in the figures 

below : 

 

After removing the load an indentation remains on the surface of the test 

specimen. If area of the spherical surface in the indentation is denoted as F sq. mm. 

Brinell Hardness number is defined as : 

BHN = P / F 

F is expressed in terms of D and d 

D = ball diameter 

d = diametric of indentation and Brinell Hardness number is given by  

2 2

2

(D )

P
BHN

D D d


 
  



32 

 

Then is there is also Vicker's Hardness Number in which the ball is of conical 

shape. 

IMPACT STRENGTH 

Static tension tests of the unnotched specimen's do not always reveal the 

susceptibility of metal to brittle fracture. This important factor is determined in impact 

tests. In impact tests we use the notched specimen's 

 

this specimen is placed on its supports on anvil so that blow of the striker is 

opposite to the notch the impact strength is defined as the energy A, required to 

rupture the specimen, 

Impact Strength = A / f      

Where f = It is the cross – section area of the specimen in cm2 at fracture & 

obviously at notch. 

The impact strength is a complex characteristic which takes into account both 

toughness and strength of a material. The main purpose of notched – bar tests is to 

study the simultaneous effect of stress concentration and high velocity load 

application 

Impact test are of the severest type and facilitate brittle friction. Impact strength 

values can not be as yet be used for design calculations but these tests as rule 

provided for in specifications for carbon & alloy steels.Futher, it may be noted that in 

impact tests fracture may be either brittle or ductile. In the case of brittle fracture, 

fracture occurs by separation and is not accompanied by noticeable plastic 

deformation as occurs in the case of ductile fracture. 

 

Impact loads: 

Considering a weight falling from a height h, on to a collar attached at the end as 

shown in the figure.  

Let P= equivalent static or gradually applied load which will produce the same 

extension x as that of the impact load W 

Neglecting loss of energy due to impact, we can have: 

Loss of potential energy= gain of strain energy of the bar 
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1
( )

2
W h x Px    

Now we have extension x = 
Pl

AE
  

Substituting the value of x in the above equation we have: 

21
(h ) ( )

2

Pl P lW AEAE
    

Solving the above equation we can have the following relation: 

[1 1 2 ]P W hAE Wl      

Important Case: for a particular case i.e. for h=0, for a suddenly applied load P=2W, 

i.e. the stress produced by a suddenly applied load is twice that of the static stress.  

Numerical examples: 

 

1. Referring to the following figure let a mass of 100 kg fall 4cm on to a collar 

attached to a bar of steel 2cm diameter, 3m long. Find the maximum stress set up. 

Take E= 205,000 N/mm2. 

Applying the relation: 

 

[1 1 2 ] / A

P

A

W hAE Wl

 

  
  

981 2 40 100 205,000
1 1

100 981 3 1000



    

     
  

134  M/mm2 
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Module 1: 

Lecture 9: Composite Bars In Tension & Compression:-Temperature stresses in 

composite rods statically indeterminate problem.   

Thermal stresses, Bars subjected to tension and Compression 

Compound bar: In certain application it is necessary to use a combination of 
elements or bars made from different materials, each material performing a different 
function. In over head electric cables or Transmission Lines for example it is often 
convenient to carry the current in a set of copper wires surrounding steel wires. The 
later being designed to support the weight of the cable over large spans. Such a 
combination of materials is generally termed compound bars. 

Consider therefore, a compound bar consisting of n members, each having a 
different length and cross sectional area and each being of a different material. Let 
all member have a common extension ‘x' i.e. the load is positioned to produce the 
same extension in each member. 

 

 

Where Fn is the force in the nth member and An and Ln are its cross - sectional 
area and length. 

Let W be the total load, the total load carried will be the sum of all loads for all 
the members. 
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Therefore, each member carries a portion of the total load W proportional of EA 
/ L value. 

The above expression may be writen as  

if the length of each individual member in same then, we may write  

Thus, the stress in member '1' may be determined as �1 = F1 / A1 

Determination of common extension of compound bars: In order to 
determine the common extension of a compound bar it is convenient to consider it as 
a single bar of an imaginary material with an equivalent or combined modulus Ec. 

Assumption: Here it is necessary to assume that both the extension and 
original lengths of the individual members of the compound bar are the same, the 
strains in all members will than be equal. 

Total load on compound bar = F1 + F2+ F3 +………+ Fn 

where F1 , F 2 ,….,etc are the loads in members 1,2 etc 

But force = stress . area,therefore 

  (A 1 + A 2 + ……+ A n ) = 1 A1 + 2 A2 + ........+ n An 

Where   is the stress in the equivalent single bar 
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Dividing throughout by the common strain�� . 

 

Compound bars subjected to Temp. Change : Ordinary materials expand 
when heated and contract when cooled, hence , an increase in temperature produce 
a positive thermal strain. Thermal strains usually are reversible in a sense that the 
member returns to its original shape when the temperature return to its original 
value. However, there here are some materials which do not behave in this manner. 
These metals differs from ordinary materials in a sence that the strains are related 
non linearly to temperature and some times are irreversible .when a material is 
subjected to a change in temp. is a length will change by an amount. 

t  =   .L.t 

Or t  = E. .t 

 

  = coefficient of linear expansion for the material 

L = original Length 

t = temp. change 

Thus an increase in temperature produces an increase in length and a 
decrease in temperature results in a decrease in length except in very special cases 
of materials with zero or negative coefficients of expansion which need not to be 
considered here. 

If however, the free expansion of the material is prevented by some external 
force, then a stress is set up in the material. They stress is equal in magnitude to that 
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which would be produced in the bar by initially allowing the bar to its free length and 
then applying sufficient force to return the bar to its original length. 

Change in Length =   L t 

Therefore, strain =   L t / L 

   =  t 

Therefore, the stress generated in the material by the application of sufficient 
force to remove this strain 

     = strain x E 

or Stress = E   t 

Consider now a compound bar constructed from two different materials rigidly 
joined together, for simplicity. 

Let us consider that the materials in this case are steel and brass. 

 

If we have both applied stresses and a temp. change, thermal strains may be 
added to those given by generalized hook's law equation –e.g. 

 

While the normal strains a body are affected by changes in temperatures, shear 
strains are not. Because if the temp. of any block or element changes, then its size 
changes not its shape therefore shear strains do not change. 

In general, the coefficients of expansion of the two materials forming the 
compound bar will be different so that as the temp. rises each material will attempt to 
expand by different amounts. Figure below shows the positions to which the 
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individual materials will expand if they are completely free to expand (i.e not joined 
rigidly together as a compound bar). The extension of any Length L is given by  L t 

 

In general, changes in lengths due to thermal strains may be calculated form 
equation t  =  Lt, provided that the members are able to expand or contract freely, 

a situation that exists in statically determinates structures. As a consequence no 
stresses are generated in a statically determinate structure when one or more 
members undergo a uniform temperature change. If in a structure (or a compound 
bar), the free expansion or contraction is not allowed then the member becomes s 
statically indeterminate, which is just being discussed as an example of the 
compound bar and thermal stresses would be generated. 

If the two materials are now rigidly joined as a compound bar and subjected to 
the same temp. rise, each materials will attempt to expand to its free length position 
but each will be affected by the movement of the other. The higher coefficient of 
expansion material (brass) will therefore, seek to pull the steel up to its free length 
position and conversely, the lower coefficient of expansion martial (steel) will try to 
hold the brass back. In practice a compromised is reached, the compound bar 
extending to the position shown in fig (c), resulting in an effective compression of the 
brass from its free length position and an effective extension of steel from its free 
length position. 
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Module 2: 

Lecture 1-5: 

Two Dimensional State of Stress and Strain:  Principal stresses. Numerical 

examples 

Stresses on oblique plane: Till now we have dealt with either pure normal direct 

stress or pure shear stress. In many instances, however both direct and shear 

stresses acts and the resultant stress across any section will be neither normal nor 

tangential to the plane. A plane stse of stress is a 2 dimensional stae of stress in a 

sense that the stress components in one direction are all zero i.e 

 z =  yz =  zx = 0 

 Examples of plane state of stress include plates and shells. Consider the 

general case of a bar under direct load F giving rise to a stress  y vertically 

 

The stress acting at a point is represented by the stresses acting on the faces of the 

element enclosing the point. The stresses change with the inclination of the planes 

passing through that point i.e. the stress on the faces of the element vary as the 

angular position of the element changes. Let the block be of unit depth now 

considering the equilibrium of forces on the triangle portion ABC. Resolving forces 

perpendicular to BC, gives 

 .BC.1 =  y sin . AB.1 

but AB/BC = sin  or AB = BC sin  

Substituting this value in the above equation, we get 
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 .BC.1 =  y sin  . BC sin  . 1 or 2sin 2y                  (1) 

Now resolving the forces parallel to BC 

  .BC.1 =  y cos  . AB sin. 1 

again AB = BC cos   

 .BC.1 =  y cos  . BC sin  .1 or  = y sin  cos  

1
. sin 2

2 y                     (2) 

If   = 900 the BC will be parallel to AB and  = 0, i.e. there will be only direct stress 

or normal stress. 

By examining the equations (1) and (2), the following conclusions may be drawn 

(i)  The value of direct stress   is maximum and is equal to  y when v= 900. 

(ii)  The shear stress   has a maximum value of 0.5  y when  = 450 

Material subjected to pure shear: 

Consider the element shown to which shear stresses have been applied to the 

sides AB and DC 

 

Complementary shear stresses of equal value but of opposite effect are then 

set up on the sides AD and BC in order to prevent the rotation of the element. Since 

the applied and complementary shear stresses are of equal value on the x and y 

planes. Therefore, they are both represented by the symbol  xy. 

Now consider the equilibrium of portion of PBC 
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Assuming unit depth and resolving normal to PC or in the direction of   

 .PC.1 = xy .PB.cos .1+ xy .BC.sin .1 

 = xy .PB.cos  + xy .BC.sin  

Now writing PB and BC in terms of PC so that it cancels out from the two sides 

PB/PC = sin  BC/PC = cos  

 .PC.1 = xy .cos sin PC+ xy .cos .sin .PC 

  = 2 xy sin cos  

 Or,  2 sin 2xy               (1) 

Now resolving forces parallel to PC or in the direction of   .then xy PC.1    

= xy . PB sin - xy BC cos  

-ve sign has been put because this component is in the same direction as that of   . 

again converting the various quantities in terms of PC we have 

xy PC. 1 = xy . PB.sin2  xy - xy PCcos2  

   = - xy [cos2 - sin2 ] 

   = - xy cos2         (2) 

the negative sign means that the sense of  is opposite to that of assumed one. Let 

us examine the equations (1) and (2) respectively 

From equation (1) i.e, 

  = xy sin2  

The equation (1) represents that the maximum value of  is xy when  = 450.Let us 

take into consideration the equation (2) which states that 
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 = - xy cos2  

It indicates that the maximum value of  is xy when  = 00 or 900. it has a value 

zero when   = 450. 

From equation (1) it may be noticed that the normal component �� has maximum 

and minimum values of +�xy (tension) and ��xy(compression) on plane at ± 450 to 

the applied shear and on these planes the tangential component �� is zero. 

Hence the system of pure shear stresses produces and equivalent direct stress 

system, one set compressive and one tensile each located at 450 to the original 

shear directions as depicted in the figure below: 

 

Material subjected to two mutually perpendicular direct stresses: 

Now consider a rectangular element of unit depth, subjected to a system of two 

direct stresses both tensile, �x and �yacting right angles to each other. 
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for equilibrium of the portion ABC, resolving perpendicular to AC 

  . AC.1 = y  sin  . AB.1 + x  cos  . BC.1 

converting AB and BC in terms of AC so that AC cancels out from the sides 

  = y sin2  + x cos2  

Futher, recalling that cos2 - sin2  = cos2  or (1 - cos2 )/2 = sin2  

Similarly (1 + cos2 )/2 = cos2q 

Hence by these transformations the expression for �� reduces to 

= 1/2�y (1 � cos2�) + 1/2�x (1 + cos2�) 

On rearranging the various terms we get 

         (3) 

Now resolving parallal to AC 

sq.AC.1= ��xy..cos�.AB.1+��xy.BC.sin�.1 

The – ve sign appears because this component is in the same direction as that 

of AC. 

Again converting the various quantities in terms of AC so that the AC cancels 

out from the two sides. 

           (4) 

Conclusions : 

The following conclusions may be drawn from equation (3) and (4) 

(i)   The maximum direct stress would be equal to �x or �y which ever is the 

greater, when � = 00 or 900 

(ii)  The maximum shear stress in the plane of the applied stresses occurs 

when ��= 450 

 

 

 



44 

 

 

Material subjected to combined direct and shear stresses: 

Now consider a complex stress system shown below, acting on an element of 

material. 

The stresses �x and �y may be compressive or tensile and may be the result of 

direct forces or as a result of bending.The shear stresses may be as shown or 

completely reversed and occur as a result of either shear force or torsion as shown 

in the figure below: 

 

As per the double subscript notation the shear stress on the face BC should be 

notified as �yx , however, we have already seen that for a pair of shear stresses 

there is a set of complementary shear stresses generated such that �yx = �xy 

By looking at this state of stress, it may be observed that this state of stress is 

combination of two different cases: 

(i) Material subjected to pure stae of stress shear. In this case the various 

formulas deserved are as follows 

�� = �yx sin2�� 

�� = ���yx cos 2�� 

(ii) Material subjected to two mutually perpendicular direct stresses. In this case 

the various formula's derived are as follows. 

 

To get the required equations for the case under consideration,let us add the 

respective equations for the above two cases such that 
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These are the equilibrium equations for stresses at a point. They do not depend 

on material proportions and are equally valid for elastic and inelastic behaviour 

This eqn gives two values of 2� that differ by 1800 .Hence the planes on which 

maximum and minimum normal stresses occurate 900apart. 

 

From the triangle it may be determined 

                                                            

Substituting the values of cos2�� and sin2�� in equation (5) we get 
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This shows that the values oshear stress is zero on the principal planes. 

Hence the maximum and minimum values of normal stresses occur on planes 

of zero shearing stress. The maximum and minimum normal stresses are called the 

principal stresses, and the planes on which they act are called principal plane the 

solution of equation 
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will yield two values of 2� separated by 1800 i.e. two values of � separated by 

900 .Thus the two principal stresses occur on mutually perpendicular planes termed 

principal planes. 

Therefore the two – dimensional complex stress system can now be reduced to 

the equivalent system of principal stresses. 

 

Let us recall that for the case of a material subjected to direct stresses the 

value of maximum shear stresses 
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Therefore,it can be concluded that the equation (2) is a negative reciprocal of 

equation (1) hence the roots for the double angle of equation (2) are 900 away from 

the corresponding angle of equation (1). 

This means that the angles that angles that locate the plane of maximum or 

minimum shearing stresses form angles of 450 with the planes of principal stresses. 

Futher, by making the triangle we get 

                                

Because of root the difference in sign convention arises from the point of view 

of locating the planes on which shear stress act. From physical point of view these 

sign have no meaning. 

The largest stress regard less of sign is always know as maximum shear 

stress. 

Principal plane inclination in terms of associated principal stress: 

We know that the equation  

yields two values of q i.e. the inclination of the two principal planes on which the 

principal stresses s1 and s2 act. It is uncertain,however, which stress acts on which 

plane unless equation. 
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 is used and observing which one of the 

two principal stresses is obtained. 

Alternatively we can also find the answer to this problem in the following 

manner 

 

Consider once again the equilibrium of a triangular block of material of unit 

depth, Assuming AC to be a principal plane on which principal stresses �p acts, and 

the shear stress is zero. 

Resolving the forces horizontally we get: 

�x .BC . 1 + �xy .AB . 1 = �p . cos� . AC   dividing the above equation through 

by BC we get 
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GRAPHICAL SOLUTION – MOHR'S STRESS CIRCLE 

The transformation equations for plane stress can be represented in a graphical 

form known as Mohr's circle. This grapical representation is very useful in depending 

the relationships between normal and shear stresses acting on any inclined plane at 

a point in a stresses body. 

To draw a Mohr's stress circle consider a complex stress system as shown in 

the figure 

 

The above system represents a complete stress system for any condition of 

applied load in two dimensions 

The Mohr's stress circle is used to find out graphically the direct stress � and 

sheer stress�� on any plane inclined at � to the plane on which �x acts.The 

direction of � here is taken in anticlockwise direction from the BC. 

STEPS: 

In order to do achieve the desired objective we proceed in the following manner 

(i)    Label the Block ABCD. 

(ii)   Set up axes for the direct stress (as abscissa) and shear stress (as 

ordinate) 

(iii)  Plot the stresses on two adjacent faces e.g. AB and BC, using the following 

sign convention. 

Direct stresses�� tensile positive; compressive, negative 

Shear stresses – tending to turn block clockwise, positive 

 – tending to turn block counter clockwise, negative 

[ i.e shearing stresses are +ve when its movement about the centre of the 

element is clockwise ] 
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This gives two points on the graph which may than be labeled as 

 respectively to denote stresses on these planes. 

(iv)  Join . 

(v)  The point P where this line cuts the s axis is than the centre of Mohr's 

stress circle and the line joining  is diameter. Therefore the circle can now 

be drawn. 

Now every point on the circle then represents a state of stress on some plane 

through C. 

 

Proof: 
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Consider any point Q on the circumference of the circle, such that PQ makes 

an angle 2��with BC, and drop a perpendicular from Q to meet the s axis at N.Then 

OQ represents the resultant stress on the plane an angle � to BC. Here we have 

assumed that �x ���y 

Now let us find out the coordinates of point Q. These are ON and QN. 

From the figure drawn earlier 

             ON = OP + PN 

             OP = OK + KP 

      OP = �y + 1/2 ( �x���y) 

                                   = �y / 2 + �y / 2 + �x / 2 + �y / 2 

       = ( �x + �y ) / 2 

PN = Rcos( 2����� ) 

hence ON = OP + PN 

                   = ( �x + �y ) / 2 + Rcos( 2������) 

     = (��x + �y ) / 2 + Rcos2� cos� + Rsin2�sin�       

now make the substitutions for Rcos� and Rsin�. 

 

Thus, 

ON = 1/2 (��x + �y ) + 1/2 (��x � �y )cos2� + �xysin2��                 (1) 

Similarly   QM = Rsin( 2����� ) 

            = Rsin2�cos� - Rcos2�sin� 

Thus, substituting the values of R cos� and Rsin�, we get 

QM = 1/2 ( �x � �y)sin2� ���xycos2�                                             (2) 

If we examine the equation (1) and (2), we see that this is the same equation 

which we have already derived analytically 

Thus the co-ordinates of Q are the normal and shear stresses on the plane 

inclined at � to BC in the original stress system. 

N.B: Since angle  PQ is 2� on Mohr's circle and not � it becomes obvious 

that angles are doubled on Mohr's circle. This is the only difference, however, as 

They are measured in the same direction and from the same plane in both figures. 

Further points to be noted are : 
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(1) The direct stress is maximum when Q is at M and at this point obviously the 

sheer stress is zero, hence by definition OM is the length representing the maximum 

principal stresses �1 and 2�1 gives the angle of the plane �1 from BC. Similar OL is 

the other principal stress and is represented by �2 

(2) The maximum shear stress is given by the highest point on the circle and is 

represented by the radius of the circle. 

This follows that since shear stresses and complimentary sheer stresses have 

the same value; therefore the centre of the circle will always lie on the s axis midway 

between �x and �y . [ since +�xy & ��xy are shear stress & complimentary shear 

stress so they are same in magnitude but different in sign. ] 

(3) From the above point the maximum sheer stress i.e. the Radius of the 

Mohr's stress circle would be 

 

While the direct stress on the plane of maximum shear must be mid – may 

between �x and �y i.e 

 

 

(4) As already defined the principal planes are the planes on which the shear 

components are zero. 

Therefore are conclude that on principal plane the sheer stress is zero. 

(5) Since the resultant of two stress at 900 can be found from the parallogram of 

vectors as shown in the diagram.Thus, the resultant stress on the plane at q to BC is 

given by OQ on Mohr's Circle. 
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(6) The graphical method of solution for a complex stress problems using 

Mohr's circle is a very powerful technique, since all the information relating to any 

plane within the stressed element is contained in the single construction. It thus, 

provides a convenient and rapid means of solution. Which is less prone to 

arithmetical errors and is highly recommended. 

 

 

Numericals: 

Let us discuss few representative problems dealing with complex state of stress to 

be solved either analytically or graphically. 

Q 1: A circular bar 40 mm diameter carries an axial tensile load of 105 kN. What is 

the Value of shear stress on the planes on which the normal stress has a value of 50 

MN/m2 tensile. 

Solution: 

Tensile stress �y= F / A = 105 x 103 / � x (0.02)2 

   = 83.55 MN/m2 

Now the normal stress on an obliqe plane is given by the relation 

����= �ysin2� 

50 x 106 = 83.55 MN/m2 x 106sin2� 

� = 50068' 

The shear stress on the oblique plane is then given by 

���= 1/2 �ysin2� 

    = 1/2 x 83.55 x 106 x sin 101.36 

    = 40.96 MN/m2 

Therefore the required shear stress is 40.96 MN/m2 

Q2: 

For a given loading conditions the state of stress in the wall of a cylinder is 

expressed as follows: 
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(a)  85 MN/m2 tensile 

(b)  25 MN/m2 tensile at right angles to (a) 

(c)  Shear stresses of 60 MN/m2 on the planes on which the stresses (a) and 

(b) act; the sheer couple acting on planes carrying the 25 MN/m2 stress is clockwise 

in effect. 

Calculate the principal stresses and the planes on which they act. What would 

be the effect on these results if owing to a change of loading (a) becomes 

compressive while stresses (b) and (c) remain unchanged 

Solution: 

The problem may be attempted both analytically as well as graphically. Let us 

first obtain the analytical solution 

 

The principle stresses are given by the formula 

 

For finding out the planes on which the principle stresses act us the 

equation  

The solution of this equation will yeild two values � i.e 

they �1 and �2 giving �1= 31071' & �2= 121071' 



56 

 

(b) In this case only the loading (a) is changed i.e. its direction had been 

changed. While the other stresses remains unchanged hence now the block diagram 

becomes. 

 

Again the principal stresses would be given by the equation. 

 

Thus, the two principle stresses acting on the two mutually perpendicular 

planes i.e principle planes may be depicted on the element as shown below: 
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So this is the direction of one principle plane & the principle stresses acting on 

this would be �1 when is acting normal to this plane, now the direction of other 

principal plane would be 900 + � because the principal planes are the two mutually 

perpendicular plane, hence rotate the another plane � + 900 in the same direction to 

get the another plane, now complete the material element if � is negative that means 

we are measuring the angles in the opposite direction to the reference plane BC . 

 

Therefore the direction of other principal planes would be {�� + 90} since the 

angle �� is always less in magnitude then 90 hence the quantity (��� + 90 ) would 

be positive therefore the Inclination of other plane with reference plane would be 

positive therefore if just complete the Block. It would appear as 
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If we just want to measure the angles from the reference plane, than rotate this 

block through 1800 so as to have the following appearance. 

 

So whenever one of the angles comes negative to get the positive value, 

first Add 900 to the value and again add 900 as in this case � = �23074' 

so �1 = �23074' + 900 = 66026'  .Again adding 900 also gives the direction of 

other principle planes 

i.e �2 = 66026' + 900 = 156026' 

This is how we can show the angular position of these planes clearly. 

GRAPHICAL SOLUTION: 

Mohr's Circle solution: The same solution can be obtained using the 

graphical solution i.e the Mohr's stress circle,for the first part, the block diagram 

becomes 

 

Construct the graphical construction as per the steps given earlier. 



59 

 

 

Taking the measurements from the Mohr's stress circle, the various quantities 

computed are 

�1 = 120 MN/m2 tensile 

�2 = 10 MN/m2 compressive 

�1 = 340 counter clockwise from BC 

�2 = 340 + 90 = 1240 counter clockwise from BC 

Part Second : The required configuration i.e the block diagram for this case is 

shown along with the stress circle. 

 

By taking the measurements, the various quantites computed are given as 

�1 = 56.5 MN/m2 tensile 
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�2 = 106 MN/m2 compressive 

�1 = 66015' counter clockwise from BC 

�2 = 156015' counter clockwise from BC 

Salient points of Mohr's stress circle: 

1.  complementary shear stresses (on planes 900 apart on the circle) are equal in   

magnitude 

2.  The principal planes are orthogonal: points L and M are 1800 apart on the circle 

(900 apart in material) 

3.  There are no shear stresses on principal planes: point L and M lie on normal 

stress axis. 

4.  The planes of maximum shear are 450 from the principal points D and E are 900 , 

measured round the circle from points L and M. 

5.  The maximum shear stresses are equal in magnitude and given by points D and 

E 

6.  The normal stresses on the planes of maximum shear stress are equal i.e. points 

D and E both have normal stress co-ordinate which       is equal to the two 

principal stresses. 

 

As we know that the circle represents all possible states of normal and shear 

stress on any plane through a stresses point in a material. Further we have seen that 

the co-ordinates of the point ‘Q' are seen to be the same as those derived from 
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equilibrium of the element. i.e. the normal and shear stress components on any 

plane passing through the point can be found using Mohr's circle. Worthy of note: 

1. The sides AB and BC of the element ABCD, which are 900 apart, are represented 

on the circle by  and they are 1800 apart. 

2. It has been shown that Mohr's circle represents all possible states at a point. 

Thus, it can be seen at a point. Thus, it, can be seen that two planes LP and PM, 

1800 apart on the diagram and therefore 900 apart in the material, on which shear 

stress �� is zero. These planes are termed as principal planes and normal stresses 

acting on them are known as principal stresses. 

Thus ,   �1 = OL 

�2 = OM 

3. The maximum shear stress in an element is given by the top and bottom points of 

the circle i.e by points J1 and J2 ,Thus the maximum shear stress would be equal to 

the radius of i.e. �max= 1/2(��1���2 ),the corresponding normal stress is obviously 

the distance OP = 1/2 (��x+ �y ) , Further it can also be seen that the planes on 

which the shear stress is maximum are situated 900 from the principal planes ( on 

circle ), and 450 in the material. 

4.The minimum normal stress is just as important as the maximum. The 

algebraic minimum stress could have a magnitude greater than that of the maximum 

principal stress if the state of stress were such that the centre of the circle is to the 

left of orgin. 

i.e. if      �1 = 20 MN/m2 (say) 

�2 = �80 MN/m2 (say) 

Then �max
m = ( �1 ���2 / 2 ) = 50 MN/m2 

If should be noted that the principal stresses are considered a maximum or 

minimum mathematically e.g. a compressive or negative stress is less than a 

positive stress, irrespective or numerical value. 

5. Since the stresses on perpendular faces of any element are given by the co-

ordinates of two diametrically opposite points on the circle, thus, the sum of the two 

normal stresses for any and all orientations of the element is constant, i.e. Thus sum 

is an invariant for any particular state of stress. 
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Sum of the two normal stress components acting on mutually perpendicular 

planes at a point in a state of plane stress is not affected by the orientation of these 

planes. 

 

This can be also understand from the circle Since AB and BC are diametrically 

opposite thus, what ever may be their orientation, they will always lie on the diametre 

or we can say that their sum won't change, it can also be seen from analytical 

relations 

We know  

on plane BC; � = 0 

�n1 = �x 

on plane AB; � = 2700 

�n2 = �y  

Thus �n1 + �n2= �x+ �y  

6. If �1 = �2, the Mohr's stress circle degenerates into a point and no shearing 

stresses are developed on xy plane. 

7. If �x+ �y= 0, then the center of Mohr's circle coincides with the origin 

of ����� co-ordinates. 
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Module 3 

Lecture 1- 4: Shear Force and Bending Moment  

Concept of Shear Force and Bending moment in beams: 

When the beam is loaded in some arbitrarily manner, the internal forces and 

moments are developed and the terms shear force and bending moments come into 

pictures which are helpful to analyze the beams further. Let us define these terms 

 

Fig 1 

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, 

P2, P3 and is simply supported at two points creating the reactions R1 and 

R2 respectively. Now let us assume that the beam is to divided into or imagined to be 

cut into two portions at a section AA. Now let us assume that the resultant of loads 

and reactions to the left of AA is ‘F' vertically upwards, and since the entire beam is 

to remain in equilibrium, thus the resultant of forces to the right of AA must also be F, 

acting downwards. This forces ‘F' is as a shear force. The shearing force at any x-

section of a beam represents the tendency for the portion of the beam to one side of 

the section to slide or shear laterally relative to the other portion. 

Therefore, now we are in a position to define the shear force ‘F' to as follows: 

At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral 

components of the forces acting on either side of the x-section. 

Sign Convention for Shear Force: 

1
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The usual sign conventions to be followed for the shear forces have been illustrated 

in figures 2 and 3. 

 

Fig 2: Positive Shear Force 

 

Fig 3: Negative Shear Force 

Bending Moment: 

2
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Fig 4 

Let us again consider the beam which is simply supported at the two prints, carrying 

loads P1, P2 and P3 and having the reactions R1 and R2 at the supports Fig 4. Now, 

let us imagine that the beam is cut into two potions at the x-section AA. In a similar 

manner, as done for the case of shear force, if we say that the resultant moment 

about the section AA of all the loads and reactions to the left of the x-section at AA is 

M in C.W direction, then moment of forces to the right of x-section AA must be ‘M' in 

C.C.W. Then ‘M' is called as the Bending moment and is abbreviated as B.M. Now 

one can define the bending moment to be simply as the algebraic sum of the 

moments about an x-section of all the forces acting on either side of the section 

Sign Conventions for the Bending Moment: 

For the bending moment, following sign conventions may be adopted as indicated in 

Fig 5 and Fig 6. 

3
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Fig 5: Positive Bending Moment 

 

Fig 6: Negative Bending Moment 

Some times, the terms ‘Sagging' and Hogging are generally used for the positive and 

negative bending moments respectively. 

Bending Moment and Shear Force Diagrams: 

The diagrams which illustrate the variations in B.M and S.F values along the length 

of the beam for any fixed loading conditions would be helpful to analyze the beam 

further. 

4
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Thus, a shear force diagram is a graphical plot, which depicts how the internal shear 

force ‘F' varies along the length of beam. If x dentotes the length of the beam, then F 

is function x i.e. F(x). 

Similarly a bending moment diagram is a graphical plot which depicts how the 

internal bending moment ‘M' varies along the length of the beam. Again M is a 

function x i.e. M(x). 

Basic Relationship Between The Rate of Loading, Shear Force and Bending 

Moment: 

The construction of the shear force diagram and bending moment diagrams is 

greatly simplified if the relationship among load, shear force and bending moment is 

established. 

Let us consider a simply supported beam AB carrying a uniformly distributed load 

w/length. Let us imagine to cut a short slice of length dx cut out from this loaded 

beam at distance ‘x' from the origin ‘0'. 

 

Let us detach this portion of the beam and draw its free body diagram. 

 

The forces acting on the free body diagram of the detached portion of this loaded 

beam are the following 

•  The shearing force F and F+ δF at the section x and x + δx respectively. 

•  The bending moment at the sections x and x + δx be M and M + dM respectively. 

5
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•  Force due to external loading, if ‘w' is the mean rate of loading per unit length then 

the total loading on this slice of length δx is w. δx, which is approximately acting 

through the centre ‘c'. If the loading is assumed to be uniformly distributed then it 

would pass exactly through the centre ‘c'. 

This small element must be in equilibrium under the action of these forces and 

couples. 

Now let us take the moments at the point ‘c'. Such that 

 

Conclusions: From the above relations,the following important conclusions may be 

drawn 

•  From Equation (1), the area of the shear force diagram between any two points, 

from the basic calculus is the bending moment diagram 

 

•  The slope of bending moment diagram is the shear force, thus 

 

Thus, if F=0; the slope of the bending moment diagram is zero and the bending 

moment is therefore constant.' 

6
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•  The maximum or minimum Bending moment occurs where  

The slope of the shear force diagram is equal to the magnitude of the intensity of the 

distributed loading at any position along the beam. The –ve sign is as a 

consequence of our particular choice of sign conventions 

 

 

 

Procedure for drawing shear force and bending moment diagram: 

Preamble: 

The advantage of plotting a variation of shear force F and bending moment M in a 

beam as a function of ‘x' measured from one end of the beam is that it becomes 

easier to determine the maximum absolute value of shear force and bending 

moment. 

Further, the determination of value of M as a function of ‘x' becomes of paramount 

importance so as to determine the value of deflection of beam subjected to a given 

loading. 

Construction of shear force and bending moment diagrams: 

A shear force diagram can be constructed from the loading diagram of the beam. In 

order to draw this, first the reactions must be determined always. Then the vertical 

components of forces and reactions are successively summed from the left end of 

the beam to preserve the mathematical sign conventions adopted. The shear at a 

section is simply equal to the sum of all the vertical forces to the left of the section. 

When the successive summation process is used, the shear force diagram should 

end up with the previously calculated shear (reaction at right end of the beam. No 

shear force acts through the beam just beyond the last vertical force or reaction. If 

the shear force diagram closes in this fashion, then it gives an important check on 

mathematical calculations. 

The bending moment diagram is obtained by proceeding continuously along the 

length of beam from the left hand end and summing up the areas of shear force 

diagrams giving due regard to sign. The process of obtaining the moment diagram 

from the shear force diagram by summation is exactly the same as that for drawing 

shear force diagram from load diagram. 

7
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It may also be observed that a constant shear force produces a uniform change in 

the bending moment, resulting in straight line in the moment diagram. If no shear 

force exists along a certain portion of a beam, then it indicates that there is no 

change in moment takes place. It may also further observe that dm/dx= F therefore, 

from the fundamental theorem of calculus the maximum or minimum moment occurs 

where the shear is zero. In order to check the validity of the bending moment 

diagram, the terminal conditions for the moment must be satisfied. If the end is free 

or pinned, the computed sum must be equal to zero. If the end is built in, the moment 

computed by the summation must be equal to the one calculated initially for the 

reaction. These conditions must always be satisfied. 

Illustrative problems: 

In the following sections some illustrative problems have been discussed so as to 

illustrate the procedure for drawing the shear force and bending moment diagrams 

1. A cantilever of length carries a concentrated load ‘W' at its free end. 

Draw shear force and bending moment. 

Solution: 

At a section a distance x from free end consider the forces to the left, then F = -W 

(for all values of x) -ve sign means the shear force to the left of the x-section are in 

downward direction and therefore negative 

Taking moments about the section gives (obviously to the left of the section) 

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in 

the anticlockwise direction and is therefore taken as –ve according to the sign 

convention) 

so that the maximum bending moment occurs at the fixed end i.e. M = -W l 

From equilibrium consideration, the fixing moment applied at the fixed end is Wl and 

the reaction is W. the shear force and bending moment are shown as, 

8
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2. Simply supported beam subjected to a central load (i.e. load acting at the mid-

way) 

 

By symmetry the reactions at the two supports would be W/2 and W/2. now consider 

any section X-X from the left end then, the beam is under the action of following 

forces. 

 

.So the shear force at any X-section would be = W/2 [Which is constant upto x < l/2] 

If we consider another section Y-Y which is beyond l/2 then 

 for all values greater = l/2 

Hence S.F diagram can be plotted as, 

9
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.For B.M diagram: 

If we just take the moments to the left of the cross-section, 

 

Which when plotted will give a straight relation i.e. 

 

10
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It may be observed that at the point of application of load there is an abrupt change 

in the shear force, at this point the B.M is maximum. 

3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram. 

 

Here the cantilever beam is subjected to a uniformly distributed load whose intensity 

is given w / length. 

Consider any cross-section XX which is at a distance of x from the free end. If we 

just take the resultant of all the forces on the left of the X-section, then 

S.Fxx = -Wx for all values of ‘x'. ---------- (1) 

S.Fxx = 0 

S.Fxx at x=1 = -Wl 

So if we just plot the equation No. (1), then it will give a straight line relation. Bending 

Moment at X-X is obtained by treating the load to the left of X-X as a concentrated 

load of the same value acting through the centre of gravity. 

Therefore, the bending moment at any cross-section X-X is 

 

The above equation is a quadratic in x, when B.M is plotted against x this will 

produces a parabolic variation. 

The extreme values of this would be at x = 0 and x = l 

 

Hence S.F and B.M diagram can be plotted as follows: 

11
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4. Simply supported beam subjected to a uniformly distributed load [U.D.L]. 

 

The total load carried by the span would be 

= intensity of loading x length 

= w x l 

By symmetry the reactions at the end supports are each wl/2 

If x is the distance of the section considered from the left hand end of the beam. 

S.F at any X-section X-X is 

 

Giving a straight relation, having a slope equal to the rate of loading or intensity of 

the loading. 

12
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The bending moment at the section x is found by treating the distributed load as 

acting at its centre of gravity, which at a distance of x/2 from the section 

 

 

So the equation (2) when plotted against x gives rise to a parabolic curve and the 

shear force and bending moment can be drawn in the following way will appear as 

follows: 

 

13
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Module 3 

Lecture 5-8: Pure Bending 

 

Loading restrictions: 

As we are aware of the fact internal reactions developed on any cross-section of a 

beam may consists of a resultant normal force, a resultant shear force and a 

resultant couple. In order to ensure that the bending effects alone are investigated, 

we shall put a constraint on the loading such that the resultant normal and the 

resultant shear forces are zero on any cross-section perpendicular to the longitudinal 

axis of the member, 

That means F = 0 

since  or M = constant. 

Thus, the zero shear force means that the bending moment is constant or the 

bending is same at every cross-section of the beam. Such a situation may be 

visualized or envisaged when the beam or some portion of the beam, as been 

loaded only by pure couples at its ends. It must be recalled that the couples are 

assumed to be loaded in the plane of symmetry. 

 

  

 

14
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When a member is loaded in such a fashion it is said to be in pure bending. The 

examples of pure bending have been indicated in EX 1and EX 2 as shown below : 

 

 

When a beam is subjected to pure bending are loaded by the couples at the ends, 

certain cross-section gets deformed and we shall have to make out the conclusion 

that, 

1. Plane sections originally perpendicular to longitudinal axis of the beam remain 

plane and perpendicular to the longitudinal axis even after bending , i.e. the cross-

section A'E', B'F' ( refer Fig 1(a) ) do not get warped or curved. 

2. In the deformed section, the planes of this cross-section have a common 

intersection i.e. any time originally parallel to the longitudinal axis of the beam 

becomes an arc of circle. 

15
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We know that when a beam is under bending the fibres at the top will be lengthened 

while at the bottom will be shortened provided the bending moment M acts at the 

ends. In between these there are some fibres which remain unchanged in length that 

is they are not strained, that is they do not carry any stress. The plane containing 

such fibres is called neutral surface. 

The line of intersection between the neutral surface and the transverse exploratory 

section is called the neutral axisNeutral axis (N A) . 

Bending Stresses in Beams or Derivation of Elastic Flexural formula : 

In order to compute the value of bending stresses developed in a loaded beam, let 

us consider the two cross-sections of a beamHE and GF , originally parallel as 

shown in fig 1(a).when the beam is to bend it is assumed that these sections remain 

parallel i.e.H'E' and G'F' , the final position of the sections, are still straight lines, 

they then subtend some angle �. 

Consider now fiber AB in the material, at adistance y from the N.A, when the beam 

bends this will stretch to A'B' 

 

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the 

neutral axis zero. Therefore, there won't be any strain on the neutral axis 

16
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Consider any arbitrary a cross-section of beam, as shown above now the strain on a 

fibre at a distance ‘y' from the N.A, is given by the expression 

 

Now the term is the property of the material and is called as a second moment 

of area of the cross-section and is denoted by a symbol I. 

Therefore 

 

This equation is known as the Bending Theory Equation.The above proof has 

involved the assumption of pure bending without any shear force being present. 

17



89 

 

Therefore this termed as the pure bending equation. This equation gives distribution 

of stresses which are normal to cross-section i.e. in x-direction. 

Section Modulus: 

From simple bending theory equation, the maximum stress obtained in any cross-

section is given as 

 

For any given allowable stress the maximum moment which can be accepted by a 

particular shape of cross-section is therefore 

 

For ready comparison of the strength of various beam cross-section this relationship 

is some times written in the form 

 Is termed as section modulus 

The higher value of Z for a particular cross-section, the higher the bending moment 

which it can withstand for a given maximum stress. 

Theorems to determine second moment of area: There are two theorems which 

are helpful to determine the value of second moment of area, which is required to be 

used while solving the simple bending theory equation. 

Second Moment of Area : 

Taking an analogy from the mass moment of inertia, the second moment of area is 

defined as the summation of areas times the distance squared from a fixed axis. 

(This property arised while we were driving bending theory equation). This is also 

known as the moment of inertia. An alternative name given to this is second moment 

of area, because the first moment being the sum of areas times their distance from a 

given axis and the second moment being the square of the distance or  . 

18
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Consider any cross-section having small element of area d A then by the definition 

Ix(Mass Moment of Inertia about x-axis) =  and Iy(Mass Moment of Inertia 

about y-axis) =  

Now the moment of inertia about an axis through ‘O' and perpendicular to the plane 

of figure is called the polar moment of inertia. (The polar moment of inertia is also the 

area moment of inertia). 

i.e, 

      J = polar moment of inertia 

 

The relation (1) is known as the perpendicular axis theorem and may be stated as 

follows: 

The sum of the Moment of Inertia about any two axes in the plane is equal to the 

moment of inertia about an axis perpendicular to the plane, the three axes being 

concurrent, i.e, the three axes exist together. 

CIRCULAR SECTION : 

For a circular x-section, the polar moment of inertia may be computed in the 

following manner 

19
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Consider any circular strip of thickness �r located at a radius 'r'. 

Than the area of the circular strip would be dA = 2�r. �r 

Thus  

20
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Parallel Axis Theorem: 

The moment of inertia about any axis is equal to the moment of inertia about a 

parallel axis through the centroid plus the area times the square of the distance 

between the axes. 

  

If ‘ZZ' is any axis in the plane of cross-section and ‘XX' is a parallel axis through the 

centroid G, of the cross-section, then 

 

Rectangular Section: 

For a rectangular x-section of the beam, the second moment of area may be 

computed as below : 

21
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Consider the rectangular beam cross-section as shown above and an element of 

area dA , thickness dy , breadth B located at a distance y from the neutral axis, 

which by symmetry passes through the centre of section. The second moment of 

area I as defined earlier would be 

 

Thus, for the rectangular section the second moment of area about the neutral axis 

i.e., an axis through the centre is given by 

 

22
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Similarly, the second moment of area of the rectangular section about an axis 

through the lower edge of the section would be found using the same procedure but 

with integral limits of 0 to D . 

Therefore  

These standards formulas prove very convenient in the determination of INA for build 

up sections which can be conveniently divided into rectangles. For instance if we just 

want to find out the Moment of Inertia of an I - section, then we can use the above 

relation. 

 

 

Use of Flexure Formula: 

Illustrative Problems: 

An I - section girder, 200mm wide by 300 mm depth flange and web of thickness is 

20 mm is used as simply supported beam for a span of 7 m. The girder carries a 

distributed load of 5 KN /m and a concentrated load of 20 KN at mid-span. 

Determine the 

 (i). The second moment of area of the cross-section of the girder 

23
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(ii). The maximum stress set up. 

Solution: 

The second moment of area of the cross-section can be determained as follows : 

For sections with symmetry about the neutral axis, use can be made of standard I 

value for a rectangle about an axis through centroid i.e. (bd 3 )/12. The section can 

thus be divided into convenient rectangles for each of which the neutral axis passes 

through the centroid. Example in the case enclosing the girder by a rectangle 

 

Computation of Bending Moment: 

In this case the loading of the beam is of two types 

(a) Uniformly distributed load 

(b) Concentrated Load 

In order to obtain the maximum bending moment the technique will be to consider 

each loading on the beam separately and get the bending moment due to it as if no 

other forces acting on the structure and then superimpose the two results. 

24
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Hence 

 

Shearing Stresses in Beams 

All the theory which has been discussed earlier, while we discussed the bending 

stresses in beams was for the case of pure bending i.e. constant bending moment 

acts along the entire length of the beam. 
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Module 3 

Lecture 9- 12: Deflection of Beams 

Deflection of Beams 

Introduction: 

In all practical engineering applications, when we use the different components, 

normally we have to operate them within the certain limits i.e. the constraints are 

placed on the performance and behavior of the components. For instance we say 

that the particular component is supposed to operate within this value of stress and 

the deflection of the component should not exceed beyond a particular value. 

In some problems the maximum stress however, may not be a strict or severe 

condition but there may be the deflection which is the more rigid condition under 

operation. It is obvious therefore to study the methods by which we can predict the 

deflection of members under lateral loads or transverse loads, since it is this form of 

loading which will generally produce the greatest deflection of beams. 

Assumption: The following assumptions are undertaken in order to derive a 

differential equation of elastic curve for the loaded beam 

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid 

only for beams that are not stressed beyond the elastic limit. 

2. The curvature is always small. 

3. Any deflection resulting from the shear deformation of the material or shear 

stresses is neglected. 

It can be shown that the deflections due to shear deformations are usually small and 

hence can be ignored. 
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Consider a beam AB which is initially straight and horizontal when unloaded. If under 

the action of loads the beam deflect to a position A'B' under load or infact we say 

that the axis of the beam bends to a shape A'B'. It is customary to call A'B' the 

curved axis of the beam as the elastic line or deflection curve. 

In the case of a beam bent by transverse loads acting in a plane of symmetry, the 

bending moment M varies along the length of the beam and we represent the 

variation of bending moment in B.M diagram. Futher, it is assumed that the simple 

bending theory equation holds good. 

 

If we look at the elastic line or the deflection curve, this is obvious that the curvature 

at every point is different; hence the slope is different at different points. 

To express the deflected shape of the beam in rectangular co-ordinates let us take 

two axes x and y, x-axis coincide with the original straight axis of the beam and the y 

– axis shows the deflection. 

Futher,let us consider an element ds of the deflected beam. At the ends of this 

element let us construct the normal which intersect at point O denoting the angle 

between these two normal be di 

But for the deflected shape of the beam the slope i at any point C is defined, 
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This is the differential equation of the elastic line for a beam subjected to bending in 

the plane of symmetry. Its solution y = f(x) defines the shape of the elastic line or the 

deflection curve as it is frequently called. 

Relationship between shear force, bending moment and deflection: The 

relationship among shear force,bending moment and deflection of the beam may be 

obtained as 

Differentiating the equation as derived 

 

Therefore, the above expression represents the shear force whereas rate of intensity 

of loading can also be found out by differentiating the expression for shear force 

 

Methods for finding the deflection: The deflection of the loaded beam can be 

obtained various methods.The one of the method for finding the deflection of the 

beam is the direct integration method, i.e. the method using the differential equation 

which we have derived. 

Direct integration method: The governing differential equation is defined as 
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Where A and B are constants of integration to be evaluated from the known 

conditions of slope and deflections for the particular value of x. 

Illustrative examples : let us consider few illustrative examples to have a familiarty 

with the direct integration method 

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is 

subjected to a concentrated load W at the free end, it is required to determine the 

deflection of the beam 

 

In order to solve this problem, consider any X-section X-X located at a distance x 

from the left end or the reference, and write down the expressions for the shear force 

abd the bending moment 



101 

 

 

The constants A and B are required to be found out by utilizing the boundary 

conditions as defined below 

i.e at x= L ; y= 0          -------------------- (1) 

at x = L ; dy/dx = 0      -------------------- (2) 

Utilizing the second condition, the value of constant A is obtained as 
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Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever 

beam is subjected to U.d.l with rate of intensity varying w / length.The same 

procedure can also be adopted in this case 
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Boundary conditions relevant to the problem are as follows: 

1. At x = L; y = 0 

2. At x= L; dy/dx = 0 

The second boundary conditions yields 

 

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a 

simply supported beam is subjected to a uniformly distributed load whose rate of 

intensity varies as w / length. 



104 

 

 

In order to write down the expression for bending moment consider any cross-

section at distance of x metre from left end support. 

 

 

Boundary conditions which are relevant in this case are that the deflection at each 

support must be zero. 

i.e. at x = 0; y = 0 : at x = l; y = 0 

let us apply these two boundary conditions on equation (1) because the boundary 

conditions are on y, This yields B = 0. 
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Futher  

In this case the maximum deflection will occur at the centre of the beam where x = 

L/2 [ i.e. at the position where the load is being applied ].So if we substitute the value 

of x = L/2 

 

Conclusions 

(i) The value of the slope at the position where the deflection is maximum would be 

zero. 

(ii) Thevalue of maximum deflection would be at the centre i.e. at x = L/2. 

The final equation which is governs the deflection of the loaded beam in this case is 

 

By successive differentiation one can find the relations for slope, bending moment, 

shear force and rate of loading. 

Deflection (y) 

 

 

Slope (dy/dx) 

 
 

Bending Moment So the bending moment diagram would 
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be 

 

Shear Force 

Shear force is obtained by 

taking 

third derivative. 

 

 

Rate of intensity of 

loading 

 

 

Case 4: The direct integration method may become more involved if the expression 

for entire beam is not valid for the entire beam.Let us consider a deflection of a 

simply supported beam which is subjected to a concentrated load W acting at a 

distance 'a' from the left end. 

 

Let R1 & R2 be the reactions then, 
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These two equations can be integrated in the usual way to find ‘y' but this will result 

in four constants of integration two for each equation. To evaluate the four constants 

of integration, four independent boundary conditions will be needed since the 

deflection of each support must be zero, hence the boundary conditions (a) and (b) 

can be realized. 

Further, since the deflection curve is smooth, the deflection equations for the same 

slope and deflection at the point of application of load i.e. at x = a. Therefore four 

conditions required to evaluate these constants may be defined as follows: 

(a) at x = 0; y = 0 in the portion AB i.e. 0 ≤ x ≤ a 

(b) at x = l; y = 0 in the portion BC i.e. a ≤ x ≤ l 

(c) at x = a; dy/dx, the slope is same for both portion 

(d) at x = a; y, the deflection is same for both portion 

By symmetry, the reaction R1 is obtained as 

 

Using condition (c) in equation (3) and (4) shows that these constants should be 

equal, hence letting 

K1 = K2 = K 
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Hence 

 

Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the 

condition (d) is that, 

At x = a; y; the deflection is the same for both portion 
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ALTERNATE METHOD: There is also an alternative way to attempt this problem in 

a more simpler way. Let us considering the origin at the point of application of the 

load, 
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Boundary conditions relevant for this case are as follows 

(i) at x = 0; dy/dx= 0 

hence, A = 0 

(ii) at x = l/2; y = 0 (because now l / 2 is on the left end or right end support since we 

have taken the origin at the centre) 

 

Hence the integration method may be bit cumbersome in some of the case. Another 

limitation of the method would be that if the beam is of non uniform cross section, 

 

i.e. it is having different cross-section then this method also fails. 

So there are other methods by which we find the deflection like 

1. Macaulay's method in which we can write the different equation for bending 

moment for different sections. 
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2. Area moment methods 

 

MOMENT-AREA METHODS: 

The area moment method is a semi graphical method of dealing with problems of 

deflection of beams subjected to bending. The method is based on a geometrical 

interpretation of definite integrals. This is applied to cases where the equation for 

bending moment to be written is cumbersome and the loading is relatively simple. 

Let us recall the figure, which we referred while deriving the differential equation 

governing the beams. 

 

It may be noted that d� is an angle subtended by an arc element ds and M is the 

bending moment to which this element is subjected. 

We can assume, 

ds = dx [since the curvature is small] 

hence, R d� = ds 

 



112 

 

The relationship as described in equation (1) can be given a very simple graphical 

interpretation with reference to the elastic plane of the beam and its bending moment 

diagram 

 

Refer to the figure shown above consider AB to be any portion of the elastic line of 

the loaded beam and A1B1is its corresponding bending moment diagram. 

Let AO = Tangent drawn at A 

      BO = Tangent drawn at B 

Tangents at A and B intersects at the point O. 

Futher, AA ' is the deflection of A away from the tangent at B while the vertical 

distance B'B is the deflection of point B away from the tangent at A. All these 

quantities are futher understood to be very small. 

                Let ds ≈ dx be any element of the elastic line at a distance x from B and an 

angle between at its tangents be d�. Then, as derived earlier 

 

This relationship may be interpreted as that this angle is nothing but the area M.dx of 

the shaded bending moment diagram divided by EI. 

From the above relationship the total angle � between the tangents A and B may be 

determined as 
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Since this integral represents the total area of the bending moment diagram, hence 

we may conclude this result in the following theorem 

Theorem I: 

 

               Now let us consider the deflection of point B relative to tangent at A, this is 

nothing but the vertical distance BB'. It may be note from the bending diagram that 

bending of the element ds contributes to this deflection by an amount equal to x 

d��[each of this intercept may be considered as the arc of a circle of radius x 

subtended by the angle �] 

Hence the total distance B'B becomes  

The limits from A to B have been taken because A and B are the two points on the 

elastic curve, under consideration]. Let us substitute the value of d� = M dx / EI as 

derived earlier 

[ This is infact the moment of area of the bending moment 

diagram] 

               Since M dx is the area of the shaded strip of the bending moment diagram 

and x is its distance from B, we therefore conclude that right hand side of the above 

equation represents first moment area with respect to B of the total bending moment 

area between A and B divided by EI. 

Therefore,we are in a position to state the above conclusion in the form of theorem 

as follows: 

Theorem II: 

Deflection of point ‘B' relative to point A  

Futher, the first moment of area, according to the definition of centroid may be 

written as , where  is equal to distance of centroid and a is the total area of 

bending moment 

Thus,  
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Therefore,the first moment of area may be obtained simply as a product of the total 

area of the B.M diagram betweenthe points A and B multiplied by the distance  to 

its centroid C. 

If there exists an inflection point or point of contreflexure for the elastic line of the 

loaded beam between the points A and B, as shown below, 

 

Then, adequate precaution must be exercised in using the above theorem. In such a 

case B. M diagram gets divide into two portions +ve and –ve portions with centroids 

C1and C2. Then to find an angle � between the tangentsat the points A and B 

 

Illustrative Examples: Let us study few illustrative examples, pertaining to the use 

of these theorems 

Example 1: 

1. A cantilever is subjected to a concentrated load at the free end.It is required to find 

out the deflection at the free end. 

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below 
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Let us workout this problem from the zero slope condition and apply the first area - 

moment theorem 

 

The deflection at A (relative to B) may be obtained by applying the second area - 

moment theorem 

NOTE: In this case the point B is at zero slope. 

 

Example 2: Simply supported beam is subjected to a concentrated load at the mid 

span determine the value of deflection. 

A simply supported beam is subjected to a concentrated load W at point C. The 

bending moment diagram is drawn below the loaded beam. 
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Again working relative to the zero slope at the centre C. 

 

Example 3: A simply supported beam is subjected to a uniformly distributed load, 

with a intensity of loading W / length. It is required to determine the deflection. 

The bending moment diagram is drawn, below the loaded beam, the value of 

maximum B.M is equal to Wl2 / 8 
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So by area moment method, 

 

 

Macaulay's Methods 

             If the loading conditions change along the span of beam, there is 

corresponding change in moment equation. This requires that a separate moment 

equation be written between each change of load point and that two integration be 

made for each such moment equation. Evaluation of the constants introduced by 

each integration can become very involved. Fortunately, these complications can be 

avoided by writing single moment equation in such a way that it becomes continuous 

for entire length of the beam in spite of the discontinuity of loading. 
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Note : In Macaulay's method some author's take the help of unit function 

approximation (i.e. Laplace transform) in order to illustrate this method, however 

both are essentially the same. 

For example consider the beam shown in fig below: 

Let us write the general moment equation using the definition M = ( ∑ M )L, Which 

means that we consider the effects of loads lying on the left of an exploratory 

section. The moment equations for the portions AB,BC and CD are written as follows 

 

It may be observed that the equation for MCD will also be valid for both MAB and 

MBC provided that the terms ( x - 2 ) and ( x - 3 )2are neglected for values of  x less 

than 2 m and 3 m, respectively. In other words, the terms ( x - 2 ) and ( x - 3 )2 are 

nonexistent for values of x for which the terms in parentheses are negative. 

 

 As an clear indication of these restrictions,one may use a nomenclature in which the 

usual form of parentheses is replaced by pointed brackets, namely, ‹ ›. With this 

change in nomenclature, we obtain a single moment equation 
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 Which is valid for the entire beam if we postulate that the terms between the pointed 

brackets do not exists for negative values; otherwise the term is to be treated like 

any ordinary expression. 

 As an another example, consider the beam as shown in the fig below. Here the 

distributed load extends only over the segment BC. We can create continuity, 

however, by assuming that the distributed load extends beyond C and adding an 

equal upward-distributed load to cancel its effect beyond C, as shown in the adjacent 

fig below. The general moment equation, written for the last segment DE in the 

new nomenclature may be written as: 

 

 

It may be noted that in this equation effect of load 600 N won't appear since it is just 

at the last end of the beam so if we assume the exploratary just at section at just the 

point of application of 600 N than x = 0 or else we will here take the X - section 

beyond 600 N which is invalid. 

Procedure to solve the problems 

(i). After writing down the moment equation which is valid for all values of ‘x' i.e. 

containing pointed brackets, integrate the moment equation like an ordinary 

equation. 

(ii). While applying the B.C's keep in mind the necessary changes to be made 

regarding the pointed brackets. 

llustrative Examples : 
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1. A concentrated load of 300 N is applied to the simply supported beam as shown in 

Fig.Determine the equations of the elastic curve between each change of load point 

and the maximum deflection in the beam. 

 

Solution : writing the general moment equation for the last portion BC of the loaded 

beam, 

 

              To evaluate the two constants of integration. Let us apply the following 

boundary conditions: 

              1. At point A where x = 0, the value of deflection y = 0. Substituting these 

values in Eq. (3) we find C2 = 0.keep in mind that< x -2 >3 is to be neglected for 

negative values. 

             2. At the other support where x  = 3m, the value of deflection y is also zero. 

substituting these values in the deflection Eq. (3), we obtain 

 

            Having determined the constants of integration, let us make use of Eqs. (2) 

and (3) to rewrite the slope and deflection equations in the conventional form for the 

two portions. 
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Continuing the solution, we assume that the maximum deflection will occur in the 

segment AB. Its location may be found by differentiating Eq. (5) with respect to x and 

setting the derivative to be equal to zero, or, what amounts to the same thing, setting 

the slope equation (4) equal to zero and solving for the point of zero slope. 

We obtain 

50 x2– 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the 

equation does not yield a value < 2 m then we have to try the other equations which 

are valid for segment BC) 

Since this value of x is valid for segment AB, our assumption that the maximum 

deflection occurs in this region is correct. Hence, to determine the maximum 

deflection, we substitute x = 1.63 m in Eq (5), which yields 

 

The negative value obtained indicates that the deflection y is downward from the x 

axis.quite usually only the magnitude of the deflection, without regard to sign, is 

desired; this is denoted by �, the use of y may be reserved to indicate a directed 

value of deflection. 

              if E = 30 Gpa and I = 1.9 x 106 mm4 = 1.9 x 10 -6 m4 , Eq. (h) becomes 

Then  

Example 2: 

It is required to determine the value of EIy at the position midway between the 

supports and at the overhanging end for the beam shown in figure below. 
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Solution: 

Writing down the moment equation which is valid for the entire span of the beam 

and applying the differential equation of the elastic curve, and integrating it twice, we 

obtain 

 

              To determine the value of C2, It may be noted that EIy = 0 at x = 0,which 

gives C2 = 0.Note that the negative terms in the pointed brackets are to be ignored 

Next,let us use the condition that EIy = 0 at the right support where x = 6m.This 

gives 

 

             Finally, to obtain the midspan deflection, let us substitute the value of x = 3m 

in the deflection equation for the segment BC obtained by ignoring negative values 

of the bracketed terms � x - 4 �4 and � x - 6 �3. We obtain 

 

Example 3: 

A simply supported beam carries the triangularly distributed load as shown in figure. 

Determine the deflection equation and the value of the maximum deflection. 
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Solution: 

Due to symmetry, the reactionsis one half the total load of 1/2w0L, or R1 = R2 = 

1/4w0L.Due to the advantage of symmetry to the deflection curve from A to B is the 

mirror image of that from C to B. The condition of zero deflection at A and of zero 

slope at B do not require the use of a general moment equation. Only the moment 

equation for segment AB is needed, and this may be easily written with the aid of 

figure(b). 

Taking into account the differential equation of the elastic curve for the segment AB 

and integrating twice, one can obtain 

 

In order to evaluate the constants of integration,let us apply the B.C'swe note that at 

the support A, y = 0 at x = 0.Hence from equation (3), we get C2 = 0. Also,because of 

symmetry, the slope dy/dx = 0 at midspan where x = L/2.Substituting these 

conditions in equation (2) we get 

 

Hence the deflection equation from A to B (and also from C to B because of 

symmetry) becomes 
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Example 4: couple acting 

Consider a simply supported beam which is subjected to a couple M at adistance 'a' 

from the left end. It is required to determine using the Macauley's method. 

 

             To deal with couples, only thing to remember is that within the pointed 

brackets we have to take some quantity and this should be raised to the power 

zero.i.e. M�� x - a �0 . We have taken the power 0 (zero) ' because ultimately the 

term M�� x - a �0Should have the moment units.Thus with integration the 

quantity�� x - a � becomes either � x - a �1or�� x - a �2 

Or 

 

Therefore, writing the general moment equation we get 
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Example 5: 

A simply supported beam is subjected to U.d.l in combination with couple M. It is 

required to determine the deflection. 

 

This problem may be attemped in the some way. The general moment equation my 

be written as 

 

Integrate twice to get the deflection of the loaded beam. 
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3.1 Introduction   

Torsion : twisting of a structural member, 

when it is loaded by couples that produce 

rotation about its longitudinal axis 
 

  T1  =  P1 d1  T2  =  P2 d2 

the couples  T1,  T2  are called 

torques, twisting couples or twisting 

moments 

 unit of  T  :  N-m,  lb-ft 

in this chapter, we will develop formulas 

for the stresses and deformations produced 

in circular bars subjected to torsion, such as 

drive shafts, thin-walled members 

analysis of more complicated shapes required more advanced method 

then those presented here 

this chapter cover several additional topics related to torsion, such 

statically indeterminate members, strain energy, thin-walled tube of 

noncircular section, stress concentration, and nonlinear behavior 

 

3.2 Torsional Deformation of a Circular Bar 

consider a bar or shaft of circular cross section twisted by a couple  T, 

assume the left-hand end is fixed and the right-hand end will rotate a small 

angle  &,  called angle of twist 

      Torsion
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if every cross section has the same radius and subjected to the same 

torque, the angle  &(x)  will vary linearly between ends 

 under twisting deformation, it is assumed 

1. plane section remains plane 

2. radii remaining straight and the cross sections remaining plane and 

circular 

3. if  &  is small, neither the length  L  nor its radius will change 

consider an element of the bar  dx,  on its outer surface we choose an 

small element  abcd,   

 

 

 

 

 

 

 

 

during twisting the element rotate a small angle  d&,  the element is in 

a state of pure shear, and deformed into  ab'c'd,  its shear strain  �max  is 
 

         b b'     r d& 
   �max  =  CC  =  CC 
          a b      dx 
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d& / dx  represents the rate of change of the angle of twist  &, denote  

� = d& / dx  as the angle of twist per unit length or the rate of twist, then 

   �max  =  r � 

in general,  &  and  �  are function of  x,  in the special case of 

pure torsion,  �  is constant along the length (every cross section is 

subjected to the same torque) 
 

          &            r & 
   �  =  C  then  �max  =  CC 
          L              L  

 and the shear strain inside the bar can be obtained 

        ! 
   �  =  ! �  =  C �max   
         r 

 for a circular tube, it can be obtained 

      r1    �min  =  C �max   
        r2 

the above relationships are based only upon geometric concepts, they are 

valid for a circular bar of any material, elastic or inelastic, linear or nonlinear 

 

3.3 Circular Bars of Linearly Elastic Materials 

shear stress  $  in the bar of a 

linear elastic material is 

   $  =  G � 

 G : shear modulus of elasticity 
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with the geometric relation of  the shear strain, it is obtained 
 

   $max  =  G r � 
            ! 
   $  =  G ! �  =  C $max 
            r 

$  and  �  in circular bar vary linear with the radial distance  !  from 

the center, the maximum values $max and �max occur at the outer surface 

the shear stress acting on the plane of the 

cross section are accompanied by shear 

stresses of the same magnitude acting on 

longitudinal plane of the bar 

if the material is weaker in shear on 

longitudinal plane than on cross-sectional 

planes, as in the case of a circular bar made of wood, the first crack due 

to twisting will appear on the surface in longitudinal direction 

a rectangular element with sides at 45 o to 

the axis of the shaft will be subjected to 

tensile and compressive stresses 

 

The Torsion Formula 

consider a bar subjected to pure torsion, 

the shear force acting on an element  dA  

is  $ dA,  the moment of this force about 

the axis of bar is  $ ! dA 
 

  dM  =  $ ! dA  
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 equation of moment equilibrium 

   T  = ∫ dM  = ∫ $ ! dA  =∫ G � !2 dA  = G �∫  !2 dA 
       A           A      A      A 

       =  G � Ip   [$  =  G � !]    

 in which   Ip  = ∫ !2 dA   is the polar moment of inertia 
             A 

     � r4       � d4  
   Ip  =  CC  =  CC   for circular cross section 
      2       32 

 the above relation can be written 

      T 
   �  =  CC 
            G Ip 

 G Ip : torsional rigidity 

 

 the angle of twist  &  can be expressed as 

        T L 
   &  =  � L  =  CC  &  is measured in radians 
        G Ip 

             L      
 torsional flexibility    f  =  CC   
           G Ip         
          G Ip 
 torsional stiffness   k  =  CC 
           L 

 and the shear stress is 

           T      T ! 
   $  =  G ! �  =  G ! CC  =  CC 
          G Ip          Ip 

 the maximum shear stress  $max  at  !  =  r  is 
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       T r     16 T 
   $max  =  CC  =  CC 
        Ip     � d3 

 for a circular tube 

   Ip  = � (r2
4 - r1

4) / 2 = � (d2
4 - d1

4) / 32 

 if the hollow tube is very thin 

   Ip  j  � (r2
2 + r1

2) (r2 + r1) (r2 - r1) / 2 

        =  � (2r2) (2r) (t)  =  2 � r3 t  =  � d3 t / 4 

 

limitations 

 1. bar have circular cross section (either solid or hollow) 

 2. material is linear elastic 

note that the above equations cannot be used for bars of noncircular 

shapes, because their cross sections do not remain plane and their maximum 

stresses are not located at the farthest distances from the midpoint 

 

Example 3-1 

 a solid bar of circular cross section  

 d = 40 mm,  L = 1.3 m,  G = 80 GPa 

 (a) T = 340 N-m,  $max,  & =  ? 

 (b) $all = 42 MPa,  &all = 2.5o,  T = ? 

 (a)      16 T     16 x 340 N-M 
   $max  =  CC  =  CCCCCCC  =  27.1 MPa 
          � d3      � (0.04 m)3 

   Ip  =  � d4 / 32  =  2.51 x 10-7 m4 
           T L         340 N-m x 1.3 m 
   & =  CC  =  CCCCCCCCCC  =  0.02198 rad = 1.26o 
           G Ip    80 GPa x 2.51 x 10-7 m4 
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 (b) due to  $all  =  42 MPa   

   T1 = � d3 $all / 16 = � (0.04 m)3 x 42 MPa / 16 = 528 N-m 

    due to  &all  =  2.5o  =  2.5 x � rad / 180o  =  0.04363 rad 

   T2  =  G Ip &all / L  =  80 GPa x 2.51 x 10-7 m4 x 0.04363 / 1.3 m  

         =  674 N-m 

     thus   Tall  =  min [T1, T2]  =  528 N-m 

 

Example 3-2 

 a steel shaft of either solid bar or circular tube 

 T  =  1200 N-m,  $all  =  40 MPa 

 �all  =  0.75o / m G  =  78 GPa 

  (a) determine  d0  of the solid bar 

 (b) for the hollow shaft, t = d2 / 10, determine d2 

 (c) determine  d2 / d0,  Whollow / Wsolid 

 (a) for the solid shaft, due to  $all  =  40 MPa 

    d0
3  = 16 T / � $all  = 16 x 1200 / � 40  = 152.8 x 10-6 m3 

    d0  =  0.0535 m  =  53.5 mm 

    due to  �all =  0.75o / m  = 0.75 x � rad / 180o / m = 0.01309 rad / m 

    Ip  = T / G �all = 1200 / 78 x 109 x 0.01309 = 117.5 x 10-8 m4 

    d0
4  = 32 Ip / �  = 32 x 117.5 x 10-8 / �  = 1197 x 10-8 m4 

    d0  =  0.0588 m  =  58.8 mm 

    thus, we choose  d0 = 58.8 mm  [in practical design, d0 = 60 mm] 

 (b) for the hollow shaft   

    d1  =  d2  -  2 t  =  d2  -  0.2 d2  =  0.8 d2 
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    Ip  = � (d2
4 - d1

4) / 32  = � [d2
4 - (0.8d2)4] / 32  = 0.05796 d2

4 

    due to  $all  =  40 MPa 

    Ip  =  0.05796 d2
4  =  T r /$all  =  1200 (d2/2) / 40 

    d2
3  =  258.8 x 10-6 m3   

d2  =  0.0637 m  =  63.7 mm 

    due to  �all  =  0.75o / m  =  0.01309 rad / m 

    �all  = 0.01309  = T / G Ip  = 1200 / 78 x 109 x 0.05796 d2
4  

   d2
4  =  2028 x 10-8 m4   

d2  = 0.0671 m  = 67.1 mm 

    thus, we choose  d0 = 67.1 mm   [in practical design, d0 = 70 mm] 

 (c) the ratios of hollow and solid bar are 

    d2 / d0  =  67.1 / 58.8  =  1.14   
     Whollow      Ahollow       � (d2

2 - d1
2)/4 

    CCC  =  CCC  =  CCCCCC  =  0.47 
       Wsolid     Asolid     � d0

2/4 

    the hollow shaft has 14% greater in diameter but 53% less in weight 

 

Example 3-3 

a hollow shaft and a solid shaft has same 

material, same length, same outer radius  R,  

and  ri  =  0.6 R for the hollow shaft 

 (a) for same T, compare their $, �, and W 

 (b) determine the strength-to-weight ratio 

 (a)  ∵ $  =  T R / Ip  �  =  T L / G Ip 

   ∴ the ratio of  $  or  �  is the ratio of  1 / Ip 

   (Ip)H  =  � R2 /2  -  � (0.6R)2 /2  =  0.4352 � R2 
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   (Ip)S  =  � R2 /2  =  0.5 � R2 

   (Ip)S / (Ip)H  =  0.5 / 0.4352  =  1.15 

thus   �1  =  $H / $S  =  (Ip)S / (Ip)H  =  1.15 

also  �2  =  &H / &S  =  (Ip)S / (Ip)H  =  1.15 

     �3  = WH / WS = AH / AS = � [R2 - (0.6R)2] / � R2  = 0.64 

the hollow shaft has  15%  greater in  $  and  &,  but  36%  

decrease in weight 
 

 (b) strength-to-weight ratio  S  =  Tall / W 

   TH  = $max Ip / R  = $max (0.4352 � R4) / R  = 0.4352 � R3 $max 

   TS  =  $max Ip / R  =  $max (0.5 � R4) / R  =  0.5 � R3 $max   

   WH  =  0.64 � R2 L �  WS  = � R2 L � 

     thus  SH  =  TH / WH  =  0.68 $max R / � L 

     SS  =  TS / WS  =  0.5 $max R / � L 

   SH  is  36%  greater than  SS 

 

3.4 Nonuniform Torsion 

 (1) constant torque through each segment 

   TCD  =  - T1  -  T2  +  T3 

   TBC  =  - T1  - T2    TAB  =  - T1 
            n     n  Ti Li 
   &  =  � &i  =  � CC 
            

i=1   i=1 Gi Ipi 

(2) constant torque with continuously 

varying cross section 
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          T dx 
    d&  =  CCC 
      G Ip(x) 
      L             L  T dx 
   &  =  ∫ d&  =  ∫ CCC 
      0        0  G Ip(x) 

 (3) continuously varying cross section and  

 continuously varying torque 
       L            L  T(x) dx 
   &  =  ∫ d&  =  ∫ CCC 
       0        0  G Ip(x) 

 

Example 3-4 

 a solid steel shaft ABCDE,  d  =  30 mm 

 T1  =  275 N-m T2  =  450 N-m 

 T3  =  175 N-m G  =  80 GPa 

 L1  =  500 mm L2  =  400 mm 

 determine  $max  in each part and  &BD 

   TCD  =  T2  -  T1  =  175 N-m 

   TBC  =  - T1  =  - 275 N-m 

      16 TBC      16 x 275 x 103 
   $BC  =  CCC  =  CCCCCC  =  51.9 MPa 
          � d3        � 303 

       16 TCD      16 x 175 x 103 
   $CD  =  CCC  =  CCCCCC  =  33 MPa 
         � d3          � 303 

   &BD  =  &BC  +  &CD   

             � d4         � 304 
    Ip  =  CC  =  CCC  =  79,520 mm2 
      32        32 
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         TBC L1      - 275 x 103 x 500 
   &BC  =  CCC  =  CCCCCCCC  =  - 0.0216 rad 
          G Ip    80 x 103 x 79,520 
       TCD L2    175 x 103 x 400 
   &CD  =  CCC  =  CCCCCCCC  =  0.011 rad 
           G Ip      80 x 103 x 79,520 

   &BD  =  &BC + &CD  = - 0.0216 + 0.011 = - 0.0106 rad = - 0.61o 

 

Example 3-5 

a tapered bar  AB  of solid circular 

cross section is twisted by torque  T 

 d = dA  at A,  d = dB  at B,  dB  ≧ dA 

 determine  $max  and  &  of the bar 

 (a)  T  =  constant over the length, 

     thus  $max  occurs at  dmin [end A] 

       16 T 
   $max  =  CCC 
           � dA

3 

 (b)  angle of twist 

            dB - dA  
   d(x)  =  dA  +  CCC x 
               L 

          � d4      �      dB - dA  4 
   Ip(x)  =  CC  =  C (dA  +  CCC x) 
            32     32           L 

 then     L  T dx     32 T   L      dx 
    &  = ∫ CCC  =  CC ∫ CCCCCCC 
       0   G Ip(x)    � G   0       dB - dA   4 
                (dA  +  CCC x) 
               L 

 to evaluate the integral, we note that it is of the form 
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           dx        1 
   ∫CCCC  =  - CCCCC 
        (a + bx)4       3 b (a + bx)3 

 if we choose  a  =  dA  and  b  =  (dB - dA) / L,  then the integral 

of  &  can be obtained 
 
          32 T L     1     1 
   &  =  CCCCCC ( CC  -  CC ) 
            3�G(dB - dA)    dA

3     dB
3 

 a convenient form can be written 

       T L  �2 + � + 1 
   &  =  CCC ( CCCCC ) 
     G IpA  3 � 3 

 where   �  =  dB / dA IpA  =  � dA
4 / 32 

 in the special case of a prismatic bar,  � = 1,  then  &  =  T L / G Ip 

 

3.5 Stresses and Strains in Pure Shear 

for a circular bar subjected to torsion, 

shear stresses act over the cross sections 

and on longitudinal planes  

an stress element  abcd  is cut 

between two cross sections and between 

two longitudinal planes, this element is in a 

state of pure shear 

we now cut from the plane stress 

element to a wedge-shaped element, denote  

A0  the area of the vertical side face, then 

the area of the bottom face is  A0 tan �,  
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and the area of the inclined face is  A0 

sec � 

 summing forces in the direction of  "� 

   "� A0 sec �  =  $ A0 sin �  +  $ A0 tan � cos � 

 or  "�  =  2 $ sin � cos �  =  $ sin 2� 

 summing forces in the direction of  $� 

    $� A0 sec �  =  $ A0 cos �  -  $ A0 tan � sin � 

 or  $�  =  $ (cos2�  -  sin2�)  =  $ cos 2� 

 "�  and  $�  vary with  �  is plotted in figure 

    ($�)max = $    at  � = 0o 

    ($�)min = - $   at  � = ! 90o 

    ("�)max = ! $  at  � = ! 45o 

the state of pure shear stress is 

equivalent to equal tensile and compressive 

stresses on an element rotation through an 

angle of 45o  

if a twisted bar is made of material that 

is weaker in tension than in shear, failure 

will occur in tension along a helix inclined 

at 45o, such as chalk 

 

Strains in pure shear 

 if the material is linearly elastic 

   �  =  $ / G 
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where  G  is the shear modulus of elasticity 

consider the strains that occur in an 

element oriented at  � = 45o,  "max  =  $ 

applied at 45o  and  "min = - $  applied at  � = - 45o 

 then at  � = 45o 

        "max     � "min      $        � $      $ 
   �max  =  CC  -  CC  =  C  +  CC  =  C (1 + �) 
          E        E        E    E      E 

 at  � = - 45o  �  =  - �max  =  - $ (1 + �) / E  

 it will be shown in next section the following relationship 

         � 
   �max  =  C 
           2 

 

Example 3-6 

a circular tube with  do = 80 mm,  di = 60 mm 

 T  =  4 kN-m G  =  27 GPa 

determine (a) maximum tensile, compressive 

and shear stresses  (b) maximum strains 
 

 (a)  the maximum shear stress is 

          T r       4000 x 0.04 
   $max  =  CC  =  CCCCCCCCC  =  58.2 MPa 
           Ip      � 
              C [(0.08)4 - (0.06)4] 
              32 

     the maximum tensile and compressive stresses are 

   "t  =  58.2 MPa   at  �  =  - 45o 

   "c  =  - 58.2 MPa   at  �  =  45o 
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 (b)  maximum strains 

   �max  =  $max / G  =  58.2 / 27 x 103  =  0.0022 

     the maximum normal strains is 

   �max  =  �max / 2  =  0.011 

   i.e. �t  =  0.011  �c  =  - 0.011 

 

3.6 Relationship Between Moduli of Elasticity  E,  G  and  � 

an important relationship between  

E,  G  and  �  can be obtained 

consider the square stress element  

abcd,  with the length of each side 

denoted as  h,  subjected to pure 

shear stress  $,       then 

   �  =  $ / G 

the length of diagonal  bd  is  √2 h,  

after deformation 
 

   Lbd  =  √2 h (1 + �max) 

 using the law of cosines for  < abd 

        2                    �              � 
   Lbd  =  h2 + h2 - 2 h2 cos ( C + � )  =  2 h2 [ 1 - cos ( C + � )] 
                   2             2 
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                   �           
 then  (1 + �max)2  =  1 - cos ( C + � )  =  1  +  sin � 
                 2   
             2  thus  1  +  2 �max  +  �max  =  1  +  sin �       
 

 ∵  �max  is very small, then  �2
max  →  0,  and  sin �  →  �    

    the resulting expression can be obtained 

    �max  =  � / 2 

 with  �max  =  $ (1 + �) / E  and     �  =  $ / G 

 the following relationship can be written 

           E 
   G  =  CCCC 
     2 (1 + �) 

thus  E,  G  and  �  are not independent properties of a linear elastic 

material 

 

3.7 Transmission of Power by Circular Shafts 

the most important use of circular shafts is to transmit mechanical power, 

such as drive shaft of an automobile, propeller shaft of a ship, axle of bicycle, 

torsional bar, etc. 

a common design problem is the determination of the required size of a 

shaft so that it will transmit a specified amount of power at a specified speed 

of revolution without exceeding the allowable stress 

consider a motor drive shaft, rotating at angular speed  *,  it is 

transmitting a torque  T,  the work done is 
 

  W  =  T &  [T is constant for steady state] 
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 where  &  is angular rotation in radians, ant the power is  dW / dt 

    dW        d & 
  P  =  CC  =  T CC  =  T *   *  :  rad / s 
     dt         dt   

 ∵ *  =  2 � f  f  is frequency of revolution   f : Hz  =  s-1 

 ∴ P  =  2 � f T 

 denote  n  the number of revolution per minute (rpm), then  n = 60 f 

       2 n � T 
 thus  P  =  CCCC  (n = rpm, T = N-m, P = W) 
           60 

in U.S. engineering practice, power is often expressed in horsepower (hp),   

1 hp  =  550 ft-lb / s,  thus the horsepower  H  being transmitted by a 

rotating shaft is 
 
       2 n � T        2 n � T 
   H  =  CCCC  =  CCCC (n = rpm, T = lb-ft, H = hp) 
     60 x 550     33,000 

   1 hp  = 550 lb-ft/s = 550 x 4.448 N x 0.305 m/s = 746 N-m / s 

           = 746 W (W : watt) 

 

Example 3-7 

 P  =  30 kW,   $all  =  42 MPa 

 (a)  n = 500 rpm,  determine  d 

 (b)  n = 4000 rpm, determine  d 

 (a)        60 P    60 x 30 kW 
   T  =  CCC  =  CCCCC  =  573 N-m 
        2 � n       2 � x 500  

         16 T     16 T    16 x 573 N-m 
   $max  =  CC  d 3 = CCC = CCCCCC = 69.5 x 10-6 m3 
          � d 3      � $all     � x 42 MPa 
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   d  =  41.1 mm 

 (b)       60 P      60 x 30 kW 
   T  =  CCC  =  CCCCC  =  71.6 N-m 
          2 � n   2 � x 4000  

     16 T     16 x 71.6 N-m 
   d 3  =  CC  =  CCCCCCC  =  8.68 x 10-6 m3 
     � $all      � x 42 MPa 

   d  =  20.55 mm 

 the higher the speed of rotation, the smaller the required size of the shaft 

 

Example 3-8 

 a solid steel shaft  ABC,  d  =  50 mm 

 motor  A  transmit  50 kW  at  10 Hz 

 PB  =  35 kW, PC  =  15 kW 

 determine  $max  and  &AC,  G  =  80 GPa 

       PA   50 x 103 
   TA  = CC = CCCC =  796 N-m 
           2 � f   2 � 10 

 similarly PB = 35 kN TB = 557 N-m 

   PC  =  15 kN  TC  =  239 N-m 

 then  TAB  =  796 N-m TBC  =  239 N-m 

 shear stress and angle of twist in segment  AB   

       16 TAB      16 x 796 
   $AB  =  CCC  =  CCCC  =  32.4 MPa 
         � d 3     � 503 

       TAB LAB      796 x 1.0 
   &AB  =  CCC  =  CCCCCCC  =  0.0162 rad 
          G Ip                     � 
          80 x 109 C 0.054 
               32 
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 shear stress and angle of twist in segment  BC   

       16 TBC      16 x 239 
   $BC  =  CCC  =  CCCC  =  9.7 MPa 
         � d 3     � 503 
       TBC LBC      239 x 1.2 
   &AB  =  CCC  =  CCCCCCC  =  0.0058 rad 
          G Ip                     � 
          80 x 109 C 0.054 
               32 

 ∴ $max  =  $AB  =  32.4 MPa 

   &AC  =  &AB + &BC  = 0.0162 + 0.0058 = 0.022 rad = 1.26o 

  

3.8 Statically Indeterminate Torsional Members 

torsional member may be statically indeterminate if they are constrained 

by more supports than are required to hold them in static equilibrium, or the 

torsional member is made by two or more kinds of materials 

 flexibility and stiffness methods may be used 

only flexibility method is used in the later 

discussion 

 consider a composite bar  AB  fixed at  A 

 the end plate rotates through an angle  & 

 T1  and  T2  are developed in the 

solid bar and tube, respectively 

 equation of equilibrium 

   T1  +  T2  =  T  

 equation of compatibility 

   &1  =  &2 

 torque-displacement relations 
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       T1 L       T2 L 
   &1  =  CCC  &2  =  CCC 
     G1 Ip1      G2 Ip2 

 then the equation of compatibility becomes 

     T1 L    T2 L 
   CCC  =  CCC 
     G1 Ip1      G2 Ip2 

 now we can solve for  T1  and  T2 

         G1 Ip1        G2 Ip2 
   T1  =  T ( CCCCCC ) T2  =  T ( CCCCCC ) 
           G1 Ip1 + G2 Ip2       G1 Ip1 + G2 Ip2  
 and 
             T L 
    &  =  CCCCCC 
     G1 Ip1 + G2 Ip2 

 

Example 3-9 

 a bar  ACB  is fixed at both ends 

 T0  is applied at point  C 

 AC  :  dA,  LA,  IpA 

 CB  :  dB,  LB,  IpB 

 determine  (a)  TA,  TB  (b)  $AC,  $CB  (c)  &C 

 equation of equilibrium 

   TA  +  TB  =  T0 

 equation of compatibility 

   &1  +  &2  =  0 

 torque-displacement equations 

   &1  =  T0 LA / G IpA  
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          TB LA          TB LB 
   &2  =  - CCC  -  CCC 
          G IpA       G IpB 

 then the equation of compatibility becomes 

    T0 LA      TB LA      TB LB 
   CCC  -  CCC  -  CCC  =  0 
     G IpA      G IpA      G IpB 

 TA  and  TB  can be solved 

          LB IpA          LA IpB 
   TA  =  T0 ( CCCCCC )  TB  =  T0 ( CCCCCC ) 
             LB IpA + LA IpB        LB IpA + LA IpB 

 if the bar is prismatic,  IpA  =  IpB  =  Ip 

 then    T0 LB    T0 LA 
    TA  =  CC  TB  =  CC 
          L         L 

 maximum shear stress in  AC  and  BC  are 

        TA dA       T0 LB dA 
   $AC  =  CCC  =  CCCCCCC 
          2 IpA      2 (LB IpA + LA IpB) 
         TB dB       T0 LA dB 
   $CB  =  CCC  =  CCCCCCC 
          2 IpB      2 (LB IpA + LA IpB) 

 angle of rotation at section  C  is 

      TA LA      TB LB       T0 LA LB 
   &C  =  CCC  =  CCC  =  CCCCCCC 
       G IpA     G IpA      G (LB IpA + LA IpB) 

 if the bar is prismatic,  IpA  =  IpB  =  Ip 

 then      T0 LA LB 
    &C  =  CCCC 
           G L Ip 
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3.9 Strain Energy in Torsion and Pure Shear 

consider a prismatic bar  AB  

subjected to a torque  T,  the bar 

twists an angle  & 

if the bar material is linear elastic, 

then the strain energy U of the bar is 
 

  U  =  W  =  T & / 2 

 ∵  &  =  T L / G Ip 

 then      T2 L     G Ip &2 
    U  =  CCC  =  CCC 
       2 G Ip     2 L 

 if the bar is subjected to nonuniform torsion, then 

     n      n  Ti
2 Li 

   U  =  � Ui  =  � CCC 
            i=1      i=1 2 Gi Ipi 

 if either the cross section or the torque varies along the axis, then 

       [T(x)]2 dx              L  [T(x)]2 dx 
   dU  =  CCCC  U  =  ∫dU  =  ∫ CCCC 
         2 G Ip(x)             

0  2 G Ip(x) 

strain energy density in pure shear 

consider a stressed element with each 

side having length  h  and thickness  t,  

under shear stress  $  with shear strain  

� 

 the shear force  V  is 

   V  =  $ h t 
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 and the displacement  �  is 

   �  =  h � 

 for linear elastic material, strain energy stored in this element is 

        V �        $ � h2 t 
   U  =  W  =  CC  =  CCC 
           2         2 

 and the strain energy density  u  =  U / per unit volume, then 

  u  =  $ � / 2  =  $2 / 2 G  =  G �2 / 2 

 

Example 3-10 

 a solid circular bar  AB  of length  L  

 (a) torque  Ta  acting at the free end 

 (b) torque  Tb  acting at the midpoint 

(c) both  Ta  and  Tb  acting 

simultaneously 

 
 Ta = 100 N-m Tb = 150 N-m   

 L = 1.6 m  G = 80 GPa  

Ip = 79.52 x 103 mm4 

 determine the strain energy in each case 

 (a) 
       Ta

2 L  1002 x 106 x 1.6 x 103 
   Ua =  CCC =  CCCCCCCCCCC  =  1.26 J  (N-m) 
        2 G Ip     2 x 80 x 103 x 79.52 x 103 

 (b) 
        Tb

2 (L/2)     Tb
2 L 

   Ub  =  CCCC  =  CCC  =  2.83 J 
          2 G Ip       4 G Ip 
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 (c) 
      n  Ti

2 Li   Ta
2 (L/2)   (Ta + Tb)2 (L/2) 

   Uc  =  � CCC  =  CCCC  +  CCCCCC 
     i=1 2 Gi Ipi     2 G Ip     2 G Ip 
         Ta

2 L   Ta Tb L    Tb
2 L 

        =  CCC  +  CCCC  +  CCC   
        2 G Ip    2 G Ip    4 G Ip 

        =  1.26 J  +  1.89 J  +  2.83 J  =  5.98 J 

 Note that  (c)  is not equal to  (a)  +  (b),  because  U  i  T 2 

 

Example 3-11 

a prismatic bar  AB  is loaded by a 

distributed torque of constant intensity  t  

per unit distance 

 t  =  480 lb-in/in L  =  12 ft  

 G  =  11.5 x 106 psi Ip  =  18.17 in4 

 determine the strain energy 

  T(x)  =  t x 

        L  [(tx)]2 dx   1   L       t2 L3 
   U  =  ∫ CCCC  =  CCC ∫ (tx)2 dx  =  CCC 
       0   2 G Ip       2 G Ip 

0      6 G Ip 
          4802 x (12 x 12)3 
        =  CCCCCCCCC  =  580 in-lb 
      6 x 11.5 x 106 x 17.18 

 

Example 3-12 

a tapered bar  AB  of solid circular 

cross section is supported a torque  T 

 d  =  dA  i  dB  from left to right 

 determine  &A  by energy method 
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     T &A 
   W  =  CC 
        2 
           �       �      dB - dA   4 
   Ip(x)  =  C [d(x)]4  =  C ( dA  +  CCC x ) 
          32      32         L 

       L  [T(x)]2 dx   16 T2   L  dx 
   U  =  ∫ CCCC  =  CC ∫ CCCCCCC 
       0  2 G Ip(x)    � G   0     dB - dA   4 
            ( dA + CCC x ) 
                   L 
 
           16 T2 L     1      1 
       =  CCCCCC  ( CC  -  CC ) 
     3 � G (dB - dA)    dA

3    dB
3 

 with   U  =  W,  then  &A  can be obtained 

          32 T L       1      1 
   &A  =  CCCCCC  ( CC  -  CC ) 
      3 � G (dB - dA)    dA

3     dB
3 

 same result as in example 3-5 

 

3-10 Thin-Walled Tubes 

     

3-11 Stress Concentrations in Torsion 

 

3-12 Nonlinear Torsion of Circular Bars 



UNIT 3 SPRINGS 

Introduction  
A spring is defined as an elastic body, whose function is to distort when loaded and to recover 

its original shape when the load is removed. The various important applications of springs are as 

follows:  
1. To cushion, absorb or control energy due to either shock or vibration as in car springs, 

railway buffers, air-craft landing gears, shock absorbers and vibration dampers.   
2. To apply forces, as in brakes, clutches and spring-loaded valves.   
3. To control motion by maintaining contact between two elements as in cams and followers.   
4. To measure forces, as in spring balances and engine indicators.   
5. To store energy, as in watches, toys, etc.  

 
Types of Springs  
 

Though there are many types of the springs, yet the following, according to their shape, are 

important from the subject point of view. 
1. Helical springs. The helical springs are made up of a wire coiled in the form of a helix and 

are primarily intended for compressive or tensile loads. The cross-section of the wire from which 

the spring is made may be circular, square or rectangular. The two forms of helical springs are 

compression helical spring as shown in Fig (a) and tension helical spring as shown in Fig (b). 

 
 
 
 
 
 
 
 
 
 
 
 

         Helical springs. 
 

The helical springs are said to be closely coiled when the spring wire is coiled so close that 

the plane containing each turn is nearly at right angles to the axis of the helix and the wire is 

subjected to torsion. In other words, in a closely coiled helical spring, the helix angle is very small, it 

is usually less than 10°. The major stresses produced in helical springs are shear stresses due to 

twisting. The load applied is parallel to or along the axis of the spring.  
In open coiled helical springs, the spring wire is coiled in such a way that there is a gap 

between the two consecutive turns, as a result of which the helix angle is large. Since the 

application of open coiled helical springs are limited, therefore our discussion shall confine to 

closely coiled helical springs only. 
 

The helical springs have the following advantages: 

(a) These are easy to manufacture. 
 

(b) These are available in wide range. 

(c) These are reliable. 
 

(d) These have constant spring rate. 
 

(e) Their performance can be predicted more accurately. 
 

(f) Their characteristics can be varied by changing dimensions. 
 

2. Conical and volute springs. The conical and volute springs, as shown in Fig. 23.2, are 

used in special applications where a telescoping spring or a spring with a spring rate that increases 

with the load is desired. The conical spring, as shown in Fig (a), is wound with a uniform pitch 

whereas the volute springs, as shown in Fig. (b), are wound in the form of paraboloid with constant 

pitch 



and lead angles. The springs may be made either partially or completely telescoping. In either case, 
the number of active coils gradually decreases. The decreasing number of coils results in an 
increasing spring rate. This characteristic is sometimes utilised in vibration problems where springs 
are used to support a body that has a varying mass. 
 

The major stresses produced in conical and volute springs are also shear stresses due to 
twisting. 

 
3. Torsion springs. These springs may be of helical or spiral type as shown in Fig. The 

helical type may be used only in applications where the load tends to wind up the spring and are 

used in various electrical mechanisms. The spiral type is also used where the load tends to 

increase the number of coils and when made of flat strip are used in watches and clocks.  
The major stresses produced in torsion springs are tensile and compressive due to bending. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) Helical torsion spring. 

(b) Spiral torsion 
spring.  

  
 

         Torsion springs. 
 

4. Laminated or leaf springs. The laminated or leaf spring (also known as flat spring or 

carriage spring) consists of a number of flat plates (known as leaves) of varying lengths held 

together by means of clamps and bolts, as shown in Fig. These are mostly used in automobiles. 
 

The major stresses produced in leaf springs are tensile and compressive stresses. 
 
 
 
 
 
 
 
 
 

 

           Laminated or leaf springs.        Disc or bellevile springs. 
 

5. Disc or bellevile springs. These springs consist of a number of conical discs held 

together against slipping by a central bolt or tube as shown in Fig. These springs are used in 

applications where high spring rates and compact spring units are required. 
 

The major stresses produced in disc or bellevile springs are tensile and compressive 
stresses. 

 
6. Special purpose springs. These springs are air or liquid springs, rubber springs, ring 

springs etc. The fluids (air or liquid) can behave as a compression spring. These springs are used 

for special types of application only. 

Uses of springs: 

(a) To apply forces and to control motions as in brakes and clutches. 

(b) To measure forces as in spring balance. 

(c) To store energy as in clock springs. 



(d) To reduce the effect of shock or impact loading as in carriage springs. 

(e) To change the vibrating characteristics of a member as inflexible mounting of motors. 

 

 

Derivation of the Formula : 

In order to derive a necessary formula which governs the behaviour of springs, consider a closed 
coiled spring subjected to an axial load W. 

 

Let 

W = axial load 

D = mean coil diameter 

d = diameter of spring wire 

n = number of active coils 

C = spring index = D / d for circular wires 

l = length of spring wire 

G = modulus of rigidity 

x = deflection of spring 

q = Angle of twist 

When the spring is being subjected to an axial load to the wire of the spring gets be twisted like a 
shaft. 

If q is the total angle of twist along the wire and x is the deflection of spring under the action of load 
W along the axis of the coil, so that 

x = D / 2. q 

Again l = p D n [consider, one half turn of a close coiled helical spring] 



 

Assumptions: (1) The Bending & shear effects may be neglected 

             (2) For the purpose of derivation of formula, the helix angle is considered to be so small 
that it may be neglected. 

Any one coil of  a spring will be assumed to lie in a plane which is nearly ^
r 
to the axis of the spring. 

This requires that adjoining coils be close together. With this limitation, a section taken 
perpendicular to the axis the spring rod becomes nearly vertical. Hence to maintain equilibrium of a 
segment of the spring, only a shearing force V = F and Torque T = F. r are required at any X – 
section. In the analysis of springs it is customary to assume that the shearing stresses caused by 
the direct shear force is uniformly distributed and is negligible 

So applying the torsion formula. 

Using the torsion formula i.e 

 

SPRING DEFLECTION 

 

Spring stiffness: The stiffness is defined as the load per unit deflection therefore 

 

Shear stress 



 

WAHL'S FACTOR: 

In order to take into account the effect of direct shear and change in coil curvature a stress factor is 
defined, which is known as Wahl's factor 

K = Wahl‟s factor and is defined as  

Where C = spring index = D/d 

If we take into account the Wahl's factor than the formula for the shear stress 

becomes  

Strain Energy: The strain energy is defined as the energy which is stored within a material when 
the work has been done on the material. 

In the case of a spring the strain energy would be due to bending and the strain energy due to 
bending is given by the expansion 

 

Example: A close coiled helical spring is to carry a load of 5000N with a deflection of 50 mm and a 

maximum shearing stress of 400 N/mm
2
 .if the number of active turns or active coils is 8.Estimate 

the following: 

(i) Wire diameter 

(ii) Mean coil diameter 

(iii) Weight of the spring. 

Assume G = 83,000 N/mm
2
 ; r = 7700 kg/m

3
 

Solution: 

(i) For wire diameter if W is the axial load, then 



 

Further, deflection is given as 

 

Therefore, 

D = .0314 x (13.317)
3
mm 

    =74.15mm 

D = 74.15 mm 

Weight 

 

Close – coiled helical spring subjected to axial torque T or axial couple. 

 

In this case the material of the spring is subjected to pure bending which tends to reduce Radius R 
of the coils. In this case the bending moment is constant through out the spring and is equal to the 
applied axial Torque T. The stresses i.e. maximum bending stress may thus be determined from 
the bending theory.  



 

Deflection or wind – up angle: 

Under the action of an axial torque the deflection of the spring becomes the “wind – up” angle of the 
spring which is the angle through which one end turns relative to the other. This will be equal to the 
total change of slope along the wire, according to area – moment theorem 

 

 

 

Springs in Series: If two springs of different stiffness are joined endon and carry a common load 

W, they are said to be connected in series and the combined stiffness and deflection are given by 
the following equation. 

 

Springs in parallel: If the two springs are joined in such a way that they have a common deflection 

„x‟; then they are said to be connected in parallel. In this case the load carried is shared between 
the two springs and total load W = W1 + W2 



 

 
 

Terms used in Compression Springs  
The following terms used in connection with compression springs are important from the 

subject point of view.  
1. Solid length. When the compression spring is compressed until the coils come in contact 

with each other, then the spring is said to be solid. The solid length of a spring is the product of 

total number of coils and the diameter of the wire. Mathematically,  
Solid length of the spring,  

LS  = n'.d  
where n' = Total number of coils, and  

d = of the wire.  
 

2. Free length. The free length of a compression spring, as shown in Fig. is the length of the 

spring in the free or unloaded condition. It is equal to the solid length plus the maximum 

deflection or compression of the spring and the clearance between the adjacent coils (when fully 

compressed). Mathematically,  

 

Free length of the spring,  
LF = Solid length + Maximum compression + *Clearance between 

adjacent coils (or clash allowance)  
= n'.d + δmax + 0.15 δmax  

The following relation may also be used to find the free length of the spring, i.e.  
LF  = n'.d + δmax + (n' – 1) × 1 mm  

In this expression, the clearance between the two adjacent coils is taken as 1 mm.  
3. Spring index. The spring index is defined as the ratio of the mean diameter of the coil to 

the diameter of the wire. Mathematically,  
Spring index, C = D / d 

where D = Mean diameter of the coil, and  
d = Diameter of the wire.  

 
 

4. Spring rate. The spring rate (or stiffness or spring constant) is defined as the load required 

per unit deflection of the spring. Mathematically,    

 
δ = Deflection of the spring. 

 
5. Pitch. The pitch of the coil is defined as the axial distance between adjacent coils in 

uncompressed state. Mathematically,  

Pitch of the coil, p = Free length 
  n′ – 1 
The pitch of the coil may also be obtained by using the following relation, i.e. 

Spring rate, k = W / δ 
where W = Load, and 



Pitch of the coil, p = LF  – LS  d  

  

   n ′ 
 

where LF = Free length of the spring, 
 

 
L

S = Solid length of the spring, 
 

 n' = Total number of coils, and 
  

d = Diameter of the wire.  
In choosing the pitch of the coils, the following points should be noted :  
(a) The pitch of the coils should be such that if the spring is accidently or carelessly 

compressed, the stress does not increase the yield point stress in torsion.  
(b) The spring should not close up before the maximum service load is reached.  

Note : In designing a tension spring (See Example 23.8), the minimum gap between two coils when the 

spring is in the free state is taken as 1 mm. Thus the free length of the spring, 
LF  = n.d + (n – 1) 

and pitch of the coil, p = 
LF  

 

n – 1 
 

 

Example 1. Design a helical compression spring for a maximum load of 1000 N for a 
 

deflection of 25 mm using the value of spring index as 5.       
 

The maximum permissible shear stress for spring wire is 420 MPa and modulus of rigidity is 
 

84 kN/mm
2
.                   

 

Take Wahl’s factor, K = 4C – 1   0.615 , where C = Spring index. 
 

  4C – 4    C          
 

Solution. Given: W = 1000 N; δ = 25 mm; C = D/d = 5; τ = 420 MPa = 420 N/mm
2
 ; G 

= 84 kN/mm
2
 = 84 × 10

3
 N/mm

2
   

1. Mean diameter of the spring coil   
Let D = Mean diameter of the spring coil, and   

 

 d = Diameter of the spring wire.      
 

We know that Wahl’s stress factor,           
 

 K =  4C – 1  0.615  4  5 – 1  0.615  1.31  

       

and maximum shear stress (τ), 
  4C – 4  C 4  5 – 4 5    

 

               
 

 
420 =  

K  8 W .C   1.31  8  1000  5  16 677  
 

  

π d 
2
 

     

∴ 

       π d 
2
   d 

2
   

 

d 2 = 16 677 / 420 = 39.7  or  d = 6.3 mm   
 

we shall take a standard wire of size SWG 3 having diameter (d ) = 6.401 mm. 
 

∴ Mean diameter of the spring coil,           
 

 D = C.d = 5 d = 5 × 6.401 = 32.005 mm Ans.  ... (∵ C = D/d = 5) 
 

and outer diameter of the spring coil,           
 

 
D

o = D + d = 32.005 + 6.401 = 38.406 mm Ans. 
 

2. Number of turns of the coils               
 

Let n = Number of active turns of the coils.   
 

 
Springs n  837 

we know that compression of the spring (δ),    
 

 
25 = 

 8W .C 
3
 .n 
 

8  1000 (5)
3
 n  

 1.86 n  

  

G .d 84  10
3
  6.401 

 

     
 

∴ n = 25 / 1.86 = 13.44 say 14 Ans.  
  

For squared and ground ends, the total number of turns, n' 

= n + 2 = 14 + 2 = 16 Ans. 

3. Free length of the spring  
We know that free length of the spring  



= n'.d + δ + 0.15 δ = 16 × 6.401 + 25 + 0.15 × 25   
= 131.2 mm Ans.   

4. Pitch of the coil  
We know that pitch of the coil  

= 

Free length 

 

131.2 

 8.75 mm Ans. 
 

n′ – 1 16 – 1 
 

 

Example 2. Design a close coiled helical compression spring for a service load ranging 

from 2250 N to 2750 N. The axial deflection of the spring for the load range is 6 mm. Assume a 

spring index of 5. The permissible shear stress intensity is 420 MPa and modulus of rigidity, G = 

84 kN/mm
2
.  

Neglect the effect of stress concentration. Draw a fully dimensioned sketch of the spring, 

show-ing details of the finish of the end coils.  
Solution. Given : W1 = 2250 N ; W2 = 2750 N ; δ = 6 mm ; C = D/d = 5 ; τ = 420 MPa = 

420 N/mm
2
 ; G = 84 kN/mm

2
 = 84 × 10

3
 N/mm

2
 

1. Mean diameter of the spring coil               
 

Let D = Mean diameter of the spring coil for a maximum load of     
 

 W2 = 2750 N, and          
 

 d = Diameter of the spring wire.      
 

We know that twisting moment on the spring,          
 

 
T = W2  

D 
 2750  

 5d 
 6875 d 

 
 

D 
 5 

 
 

    

... ∵C  

 

 

 

2 2 d  

              
 

We also know that twisting moment (T ),          
 

 6875 d = π   τ  d 
3
   π   420  d 

3
  82.48 d 

3
      

 

         

∴ 

16    16           
 

d
2
 = 6875 / 82.48 = 83.35  or d = 9.13 mm      

  
From Table 23.2, we shall take a standard wire of size SWG 3/0 having diameter (d ) = 9.49 

mm. ∴ Mean diameter of the spring coil,  
D = 5d = 5 × 9.49 = 47.45 mm Ans. 

We know that outer diameter of the spring coil,  
Do = D + d = 47.45 + 9.49 = 56.94 mm Ans. 

and inner diameter of the spring coil,  
Di  = D – d = 47.45 – 9.49 = 37.96 mm Ans.  

2. Number of turns of the spring coil  
Let n = Number of active turns.  
It is given that the axial deflection (δ) for the load range from 2250 N to 2750 N (i.e. for W = 

500 N) is 6 mm. 

We know that the deflection of the spring (δ),    
 

 
6 = 

8 W .C 
3
 .n 

 
8  500 (5)


 n 

 0.63 n  

 

G .d 
  

84  10
3
  9.49 

 

∴ 

        

       

n = 6 / 0.63 = 9.5 say 10 Ans.    
 



 
For squared and ground ends, the total number of turns, n' = 10 + 2 = 12 Ans.  

3. Free length of the spring  
Since the compression produced under 500 N is 6 mm, therefore maximum compression produced 

under the maximum load of 2750 N is 
 

δmax =6/500*2750=33 mm 

We know that free length of the spring,  
LF  = n'.d + δmax + 0.15 δmax  

= 12 × 9.49 + 33 + 0.15 × 33  
 

= 151.83 say 152 mm Ans.   
4. Pitch of the coil 

We know that pitch of the coil  

= 

Free length 

 

152  

 13.73 say 13.8 mm Ans. 
 

n′ – 1 
    

12 – 1 
 

     
 



 



 

                                                    



                                               
UNIT 4 - TORSION OF SHAFTS 

 

Torsion occurs when any shaft is subjected to a torque. This is true whether the 

shaft is rotating (such as drive shafts on engines, motors and turbines) or 

stationary (such as with a bolt or screw). The torque makes the shaft twist and one 

end rotates relative to the other inducing shear stress on any cross section. Failure 

might occur due to shear alone or because the shear is accompanied by stretching 

or bending. 
 
1.1. TORSION EQUATION  

 

The diagram shows a shaft fixed at one end and twisted at the other end due to the 

action of a torque T. 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 

 

The radius of the shaft is R and the length is L. 

 

Imagine a horizontal radial line drawn on the end face. When the end is twisted, 

the line rotates through an angle θ. The length of the arc produced is Rθ. 

 
Now consider a line drawn along the length of the shaft. When twisted, the line 

moves through an angle γ. The length of the arc produced is Lγ. 

 
If we assume that the two arcs are the same it follows that Rθ = Lγ  

Hence by equating Lγ = Rθ we get γ = 
Rθ 

 .........................(1A)  

L 
 

    
 

 
If you refer to basic stress and strain theory, you will appreciate that γ is the shear 



strain on the outer surface of the shaft. The relationship between shear strain and 

shear stress is 

G = 
τ 

.....................(1B)  

γ 
 

  
  

τ is the shear stress and G the modulus of rigidity. 

 

G is one of the elastic constants of a material. The equation is only true so long as 

the material remains  
elastic.  

Gθ/L
 
=T/R 

....................(1C) 
 
Since the derivation could be applied to any radius, it follows that shear stress is 

directly proportional to radius 'r' and is a maximum on the surface. Equation (1C) 

could be written as  
Gθ 

= 
τ 

.....................(1D)  

L r 
 

  
 

Now let's consider how the applied torque 'T' is balanced by the internal stresses 

of the material.             
Consider an elementary ring of material with a shear stress τ acting on it at  

 

radius r. 

dA = 2π r dr 

  
 

The area of the ring is   
 

The shear force acting on it tangential is dF = τ dA = τ 2πr dr   
 

This force acts at radius r so the torque produced is dT = τ 2πr2 dr   
 

Since τ = Gθ r from equation (1D) then dT = Gθ 2π r
3
dr   

 

     

 L  L  
Figure 2 

 

       
 

      

Gθ 
R 

 

The torque on the whole cross section resulting from the shear stress is T = 2π∫r
3dr 

 

      L 0 
 

The expression 2π
R

∫r
3
dr is called the polar second moment of area and denoted as 'J'. 

The Torque equation 

         
 

reduces to T = Gθ J and this is usually written as T =  Gθ 
...........................  (1E)  

 

J L 
   

 L      
 

Combining (1D) and (1E) we get the torsion equation 
T 

= 
 Gθ 

= 
τ 

................(1F)  

J 
 

L r 
 

       
 

1.2 POLAR SECOND MOMENTS OF AREA  
 
This tutorial only covers circular sections. The formula for J is found by carrying 

out the integration or may be found in standard tables.  



For a shaft of diameter D the formula is J =
𝜋𝐷4

32
 

This is not to be confused with the second moment of area about a diameter, used 

in bending of beams (I) but it should be noted that J = 2 I. 
 
1.3 HOLLOW SHAFTS  

 

Since the shear stress is small near the middle, then if there is no other stress 

considerations other than torsion, a hollow shaft may be used to reduce the 

weight. 
 
The formula for the polar second moment of area is J = 

𝜋

32
 𝐷𝑂

4 − 𝐷𝐼
4  

 
DO is the outside diameter and DI the inside diameter. 
 
1.4 MECHANICAL POWER TRANSMISSION BY A SHAFT  

 

In this section you will derive the formula for the power transmitted by a shaft and 

combine it with torsion theory. 
 
Mechanical power is defined as work done per second. Work done is defined as 

force times distance moved. Hence  
 

P = Fx/t where P is the Power  
F is the force  
x is distance moved.  
t is the time taken. 

 
Since distance moved/time taken is the velocity of the force we may write 

 
P = F v   ........(2A)  where v is the velocity. 

 

When a force rotates at radius R it travels distance moved in one revolution is 

one circumference in the time of one revolution. Hence the x = 2πR 
 
If the speed is N rev/second then the time of one revolution is 1/N seconds. The 

mechanical power is hence P = F 2πR/(1/N) = 2πNFR 
 
Since FR is the torque produced by the force this reduces to  

P = 2πNT ....................(2B) 
 
Since 2πN is the angular velocity ω radians/s it further reduces to  

P = ωT................. (2C) 
 
Note that equations (2C) is the angular equivalent of equation (2A) and all three 

equations should be remembered. 



 

 

 
 
 
 



 
 
 
 



 

Columns and Struts 

 
Introduction  

A machine part subjected to an axial compressive force is called a strut. A strut may be 

horizontal, inclined or even vertical. But a vertical strut is known as a column, pillar or stanchion. The 

machine members that must be investigated for column action are piston rods, valve push rods, 

connecting rods, screw jack, side links of toggle jacketc. In this chapter, we shall discuss the design of 

piston rods, valve push rods and connecting rods. 

Failure of a Column or Strut 
 

It has been observed that when a column or a strut is subjected to a compressive load and the load 

is gradually increased, a stage will reach when the column will be subjected to ultimate load. Beyond 

this, the column will fail by crushing and the load will be known as crushing load. 

  

Types of End Conditions of Columns 
 

In actual practice, there are a number of end conditions for columns. But we shall study the 

Euler’s column theory on the following four types of end conditions which are important from the 

subject point of view:  
1.3 Both the ends hinged or pin jointed as shown in Fig (a),   
1.4 Both the ends fixed as shown in Fig.(b),  

 
1.5 One end is fixed and the other hinged as shown in Fig.(c), and  

 
1.6 One end is fixed and the other free as shown in Fig. (d ).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Euler‟s Column Theory  

The first rational attempt, to study the stability of long columns, was made by Mr. Euler. He 

derived an equation, for the buckling load of long columns based on the bending stress. 

While deriving this equation, the effect of direct stress is neglected. This may be justified 

with the statement, that the direct stress induced in a long column is negligible as compared 

to the bending stress. It may be noted that Euler’s formula cannot be used in the case of short 

columns, because the direct stress is considerable, and hence cannot be neglected. 
 
16.5 Assumptions in Euler‟s Column Theory  

The following simplifying assumptions are made in Euler’s column theory :  
1. Initially the column is perfectly straight, and the load applied is truly axial.  

 
2. The cross-section of the column is uniform throughout its length.  

 



3. The column material is perfectly elastic, homogeneous and isotropic, and thus obeys 

Hooke’s law.  
 

4. The length of column is very large as compared to its cross-sectional dimensions.  
 

5. The shortening of column, due to direct compression (being very small) is neglected.  
 

6. The failure of column occurs due to buckling alone.  
 

7. The weight of the column itself is neglected.  
 

16.6 Euler‟s Formula   
According to Euler’s theory, the crippling or buckling load (Wcr) under various end 

conditions is represented by a general equation,  

W  = C π 
2
 E I 

 C π
2
 E A k 

2
 ... (Q I = A.k

2
)  

l 2 l2 
 

cr   
 

C π
2
 E A  

= ( l / k)
2
 
 

where E = Modulus of elasticity or Young’s modulus for the material of the column, 
 A = Area of cross-section, 
 k = Least radius of gyration of the cross-section, 
 l = Length of the column, and  

C = Constant, representing the end conditions of the column or end fixity 

coefficient.  
The following table shows the values of end fixity coefficient (C ) for various end conditions. 

 
Table 1. Values of end fixity coefficient (C ). 

 

S. No. End conditions End fixity coefficient (C) 
   

1. Both ends hinged 1 

2. Both ends fixed 4 

3. One end fixed and other hinged 2 

4. One end fixed and other end free 0.25 
 
Slenderness Ratio 
 

In Euler’s formula, the ratio l / k is known as slenderness ratio. It may be defined as the ratio 

of the effective length of the column to the least radius of gyration of the section.    
Limitations of Euler‟s Formula        

A little consideration will show that the crippling stress will be high, when the slenderness 

ratio is small. We know that the crippling stress for a column cannot be more than the crushing 

stress of the column material. It is thus obvious that the Euler’s fromula will give the value of 

crippling stress of the column (equal to the crushing stress of the column material) corresponding 

to the slenderness ratio. Now consider a mild steel column. We know that the crushing stress for 

mild steel is 330 N/mm
2
 and Young’s modulus for mild steel is 0.21 × 10

6
 N/mm

2
. 

Now equating the crippling stress to the crushing stress, we have  
C π

2
 E 

 330  
 

(l / k)
2
 

 
 

  
 

1  9.87  0.21  10
6
 

 330 
... (Taking C = 1) 

 

( l / k)
2
 

 

 
 

 



r (l / k)
2
 = 6281 

∴ l / k = 79.25 say 80  
Hence if the slenderness ratio is less than 80, Euler’s formula for a mild steel column is not  

valid.  
Sometimes, the columns whose slenderness ratio is more than 80, are known as long 

columns, and those whose slenderness ratio is less than 80 are known as short columns. It is thus 

obvious that the Euler’s formula holds good only for long columns. 
 
16.9 Equivalent Length of a Column  

Sometimes, the crippling load according to Euler’s formula may be written as 

π
2
 E I 

W
cr  

=
 L2  

where L is the equivalent length or effective length of the column. The equivalent length of a 

given column with given end conditions is the length of an equivalent column of the same material 

and cross-section with hinged ends to that of the given column. The relation between the 

equivalent length and actual length for the given end conditions is shown in the following table. 
 

Table 2. Relation between equivalent length (L) and actual length (l ). 
 

         

S.No. End Conditions Relation between equivalent length (L) and  
 

  actual length (l)  
 

   
 

        
 

1. Both ends hinged L = l     
 

2. Both ends fixed L = 

 l  
 

      

 2    
 

3. One end fixed and other end hinged L = 
l  

 

     

2   
 

      
 

4. One end fixed and other end free L = 2l  
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State of Stress 

 

 
This is a 2D state of stress – only the independent stress components are 

named.  A single stress component z can exist on the z-axis and the state of 

stress is still called 2D and the following equations apply.  To relate failure 

to this state of stress, three important stress indicators are derived: Principal 

stress, maximum shear stress, and VonMises stress. 

 
Principal stresses: 

 
knownorGiven

xy

yxyx










 





3

2

2

21
22

,







 

If y=0 (common case) then 

knownorGiven

xy
xx













3

2

2

21
22

,







 

If x =y=0 then 1 =2 xy.  If  y= xy = 0, then 1 = x and 2=0. 

 

x 

xy 

y 

z 
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Maximum shear stress – Only the absolute values are important. 

 
222

),,(

32
23max,

31
3,1max,

21
12max,

23max,13max,12max,





















Max

 

If 3=0, the  

222

2
23max,

1
3,1max,

21
12max,








 




 

 

The Vom Mises stress: 

 2

)()()( 2

31

2

32

2

21 



v  

When 3=0, the von Mises stress is: 

 21

2

2

2

1  v  

When only x, and xy are present (as in combined torsion and bending/axial 

stress or pure torsion), there is no need to calculate the principal stresses, the 

Von Mises stress is: 

 

22 3 xyxv  
 

Note that in pure shear or pure torsion x =0.  If x =0, then  

xyxyv  33 2   

 

According to distortion energy theory, yielding occurs when v reached the 

yield strength Sy.  Therefore in pure shear, yielding occurs when xy reaches 

58% of Sy. 
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Common loading applications and stresses (when oriented properly) 

 
Direct Tension/Compression (only x) 

 

 

 

Beam bending (only x on top/bottom)  

 

 
Pure torsion (only xy )  

 

 
Rotating shafts (bending + torsion) – (x and xy) 

 

 

 

Problem #S1 
A member under load has a point with the following state of stress: 

 
04000

,5500,10500

3 







psi

eCompressivpsiTensilepsi

xy

yx  

Determine 1, 2, max (Ans: 11444 tensile, 6444 Compressive, 8944 psi) 

x=10500 

xy=4000 

y=5500 
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Strain (one dimensional) 

 
A bar changes length under the influence of axial forces and temperature 

changes. 

 
Total strain definition: 

 L

L
ttotal


   

Total strain is a combination of mechanical and thermal strains: 

 
T

EA

F
TMt  

 

Both the mechanical and the thermal strains are algebraic values.  T is 

positive for an increase in temperature.  F is positive when it is a tensile 

force. 

 

Problem #S2 
The end of the steel bar has a gap of 0.05” with a rigid wall.  The length of 

the bar is 100” and its cross-sectional area is 1 in
2
.  The temperature is raised 

by 100 degrees F.  Find the stress in the bar.  ANS: 4500 Psi Comp. 

 

100  

Final Length 

Original Length 

L L 
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Bending of “straight” beams 

 
Bending formulas in this section apply when the beam depth (in the plane of 

bending) is small (by at least a factor or 20) compared to the beam radius of 

curvature. 

 
 

Bending stress for bending about the Z-axis: 

 

 LFM
I

yM
yz

z

z
x   

Iz is area moments of inertias about the z and represents resistance to 

rotation about z axis.  Bending stress for bending about the Y-axis: 

 

 LFM
I

zM
zy

y

y

x   

 
Iy is area moments of inertias about the y and represents resistance to 

rotation about y axis. Use tables to look up moments of inertia for various 

cross-sections.  The parallel axis theorem can be used to find moment of 

inertia w/r a parallel axis. 

x 

y 

Fy 

z 

y 

Fz 
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Problem #S3 

 
The solid circular steel bar with R=2” (diameter 4”) is under two loads as 

shown.  Determine the normal stress x at point Q.  Point Q is on the surface 

closest to the observer and the 2000 lb goes into the paper. 

 
[The most common stress analysis problems in exams involve simple 

bending, simple torsion, or a combination of the two.  This is an example of 

the combination – the torsion analysis would be treated later.] 

 

Answer: 15600 psi 

 

Problem #S4 

 
A beam with the cross-section shown is under a bending moment of 

FL=Mz=10000 lb-in acting on this cross-section. The thicknesses of all webs 

are 0.25 inches. 

 

Determine: 

a)  The location of the neutral axis (0.667 from bottom) 

b)  The moment of inertia about the z-axis (0.158 in
4
) 

c)  Bending stress at D (52700 psi) 

d)  Solve part b) if the cross-section was H-shaped 

 
[Finding area moments of inertias are popular exam questions.  This 

problem is a little longer than typical ones but it is a good preparation 

exercise] 

6 ft 

4.5 ft 4.5 ft 

20000 lb 

2000 lb 

Q 
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Bending Stresses in Curved Beams  

 

 

 

 

 

 

 

 

 

 

 

 
Maximum bending stresses occur at ri and ro -  The magnitude is largest at ri 

 

i

in
i

eAr

rrM )( 


 

The stress at the outer surface is similar but with ro replacing  ri.  In this 

expression, M is the bending moment at the section, A is the section area and 

e is the distance between the centroidal axis and neutral axis.  These two 

axes were the same in straight beams.  

7/8 

3/8 

1.5 

D 

rn ri 

r0 

M 



 8 

nrre   
The radius of the neutral axis for a rectangular section can be obtained as: 

)/ln( io

io
n

rr

rr
r


  

 

Refer to Shigley or other design handbooks for other cross-sections: 

 Circular 

 Trapezoidal 

 T-shaped 

 Hollow Square 

 I-Shaped 

 

Note:  When finding bending moment of forces, the exact moment arm is rn 

but the centroidal radius is also close enough to be a good approximation.  

 

For a circular shape with a radius of R, rn is: 

 

)(2 22

2

Rrr

R
r

cc

n


  

 

Where rc = R + ri 

 

Check Shigley for other cross-section forms such as T-shaped beams.



 9 

Problem #S5 

 
Given: ri = 2 in ro = 4 in 

  b = 1 in 

  F = 10000 lb 

 

Find:  maximum bending stress 

  Maximum total stress  

 

Answer:  57900 psi (bending only) 

  62900 psi (total) 

 

 

Torque, Power, and Torsion of Circular Bars 

 
Relation between torque, power and speed of a rotating shaft: 

 

 63000

Tn
H 

 

H is power in Hp, T is torque in lb-in, and n is shaft speed in rpm.  In SI 

units: 

 TH   

H is power in Watts, T is torque in N-m, and  is shaft speed in rad/s. 

 

The shear stress in a solid or tubular round shaft under a torque: 

 

 
 

 

T 

x 

y 

F 

b 



 10 

The shear stress is a maximum on the surface of the bar.  The state of stress 

can be represented as a case of pure shear: 

 
The shear stress is: 

 J

Tr


 

J is the area polar moment of inertia and for a solid (di=0) or hollow section,  

 
)(

32

44

io ddJ 


 

 

The Von Mises stress in pure shear is: 

 xyxyV  33 2 
 

When the behavior is ductile, yielding occurs when v reaches the yield 

strength of the material.  This is based on the distortion energy theory which 

is the best predictor of yielding.  According to this, yielding occurs when: 

yxyyxy

yxyyV

SOrS

SS

58.0
3

1

3









 

This predicts that yielding in pure shear occurs when the shear stress reaches 

58% of the yield strength of the material.  

 

 

 

xy 
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The angle of rotation of a circular shaft under torque 
 

 GJ

TL


 

The angle of rotation is in radians, L is the length of the bar, and G is a 

constant called the shear modulus.  The shear modulus can be obtained from 

the modulus of elasticity E, and the poisson’s ration : 

 )1(2 


E
G

 

For steels, this value is 11.5*10
6
 psi. 

 

Problem #S6 
 

Consider the loading situation shown in Problem #S3.  Determine: 

a) the torsional shear stress for an element on the shaft surface. 

b) The maximum shear stress at point Q.  Use the given (as answer in 

Problem #S3) maximum normal stress at point Q to estimate the 

maximum shear stress.   

Answers: a) 11460,  b)13860 

 

6 ft 

4.5 ft 4.5 ft 

20000 lb 

2000 lb 

Q 
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Beam and Frame Deflection - Castigliano’s Theorem 
 

“When a body is elastically deflected by any combination of loads, the 

deflection at any point and in any direction is equal to the rate of change of 

strain energy with respect to the load located at that point and acting in that 

direction” – even a fictitious load. 

 

When torsion or bending is present, they dominate the strain energy.  The 

deflection due to torsional and bending loads is: 

 

dx
EI

F

M
M

dx
GJ

F

T
T

LL











00


 

 

Example: Solid steel tube with ID=1.75 and OD= 2.75 inches.  

Determine the deflection of the end of the tube. 

 

in
EI

PL
dx

EI

xPx

PxMwheredx
EI

F

M
M

L

L

6.0
)347.2)(10*30(3

)12*9(100

3

)(
6

33

0

0
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













 

 

9 ft 

P=100 lb 
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Example: Solid steel tube with ID=1.75 and OD= 2.75 inches.  

Determine the deflection of the end of the tube. 

 
Deflection from bending in the 9-ft span 
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Deflection from bending in the 4-ft span 
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Deflection from torsion in the 9-ft span 

353.0
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6

22

1

0

11

1
0













L
EI

PL
dx

EI

LPL

PLTwheredx
EI

F

T
T

L

L





 

 

Total Deflection = 0.596 + 0.157 + 0.353 = 1.1 in 

9 ft = L 

P=100 lb 

4 ft = L1 

x
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Deflections, Spring Constants, Load Sharing 
 

Axial deflection of a bar due to axial loading 

 

 
The spring constant is: 

 L

EA
K 

 

 

Lateral deflection of a beam under bending load 

 

A common cases is shown.  The rest can be looked up in deflection tables. 

 

 

3

48

L

EI
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For cantilevered beams of length L: 

3

3

L

EI
K 

 

 

Torsional stiffness of a solid or tubular bar is: 
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L

GJ
K t   

The units are in-lbs per radian.  

 

Load Distribution between parallel members 

 

If a load (a force or force couple) is applied to two members in parallel, each 

member takes a load that is proportional to its stiffness.   

 
 

The force F is divided between the two members as: 

 F
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The torque T is divided between the two bars as: 

T
KK

K
TT

KK

K
T

tt

t

tt

t

21

2
2

21

1
1





  

 

Problem #S7 
 

A one-piece rectangular aluminum bar with 1 by ½ inch cross-section is 

supporting a total load of 800 lbs.    Determine the maximum normal stress 

in the bar.   

 

 

K2 K1 

F 

T Kt1 

Kt2 
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Answer: 960 psi 

 

Problem #S8 
A solid steel bar with 1” diameter is subjected to 1000 in-lb load as shown.  

Determine the reaction torques at the two end supports. 

 

 
 

Answer: 600 on the left, 400 on the right. 

 

 

 

30” 

20” 

6 ft 4 ft 
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Direct shear stress in pins 
 

Pins in double shear (as in tongue and clevis) is one of the most common 

method of axial connection of parts. 

 

The shear stress in the pin and bearing stresses are approximately uniformly 

distributed and are obtained from: 

 td

F

A

F
b

pin 22
 

   

 
The clevis is also under tear-out shear stress as shown in the following figure 

(top view):  

 
Tear-out shear stress is: 

 

 
clevisA

F

4


 

In this formula Aclevis=t(Ro-Ri) is approximately and conservatively the area 

of the dotted cross-section.  Ro and Ri are the outer and inner radii of the 

clevis hole.  Note that there are 4 such areas. 

F F 

t 
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Shear stresses in beams under bending forces 
 

When a beam is under a bending force, its “layers” like to slide on one-

another as a deck of cards would do if bent.  Since the beam “layers” can not 

slide relative to each other, a shear stress develops within the beam just as 

shear stresses develop between card faces if they were glued together.  This 

is shown below.  The shear stress in beams is relatively small and can be 

ignored for one-piece beams.  But for composite beams that are glued, 

welded, riveted, bolted, or somehow attached together, this shear stress can 

be significant enough to tear off the welding or bolts.   

 
 

The value of the shear stress depends on the following: 

 The shear force V acting on the cross-section of interest.  In the above 

figure, the shear force is F in all cross-sections.  The larger the force, 

the larger the stress. 

 The width of the beam b at the cross-section.  The wider the beam, the 

lower the stress. 

 The area moment of inertia of the entire cross-section w/r to neutral 

axis.  The more moment of inertia, the less the stress. 

 The last parameter is Q which is the “bending stress balance factor”. 

The more Q, the more bending stress has to be balanced by shear. 

F 


  

V 
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bI

VQ

Z


  11 yAQ 

 

 

 
 

A1 is the area of the cross-section left hanging and y1 is the distance between 

the centroid of A1 and the neutral axis (which is the same as the centroidal 

axis of the entire cross-section). 

 

The following is another example.   

 
 

Y 

y1 
b 

A1 

y1 

A1 

y1 

b 
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Problem # S9 : 2 by 4 Pine wood boards have been glued together to create 

a composite beam as shown.  Assume the dimensions are 2” by 4” (in reality 

they are less than the nominal value).  If the shear strength of the glue is 11 

psi, determine the largest load P that the beam can carry w/o glue failure.  

Assume beam is long enough for the classical beam theory to apply.  Do not 

consider failure due to bending stresses. Answer:90.4 lbs 

 

 

 
 

Problem #S10:  A composite beam is glued as shown.  Horizontal members 

are 1 by 6 inch and the vertical members are ¼ by 10 inch.  Transverse load 

at this cross-section is F=250 lbs.  Determine the required minimum glue 

strength in shear.  Answer: 11.8 psi 

 

P 

Cross-section 

Z 

Y 

250 
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Shear Center of a C-Channel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Transverse loads on non-symmetric sections can create twisting torques and 

warp beam flanges.  If such transverse loads are applied at an offset location, 

the shear forces balance and do not twist the beam.  This location is called 

the Shear Center.  For the C-channel shown 
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For a semi-circular cross-section, the shear center is at: 
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Torsion of Thin-walled Tubes 

 

 

 

 

 

 

 

 

 

 

 

 
Shear stress in thin-walled tubes (left for closed tubes – right for open tubes) 

 2

3

2 St

T

At

T
   

Where T is the torque, t is the wall thickness, S is the perimeter of the 

midline, and A is the cross-sectional area defined by the midline of the tube 

wall.  Using area or perimeter of the inner or outer boundary is also 

acceptable since the wall thickness is small. 

 
For a member of constant cross-section, the angle of twist in radians is 

 
GtA

TSL
24

  

Where S is the perimeter of the midline, L is the length of the beam, and G is 

shear modulus.  There is a similar formula for open tubes. [Shigley] 

 

Problem #S11:  A square tube of length 50 cm is fixed at one end and 

subjected to a torque of 200 Nm.  The tube is 40 mm square (outside 

dimension) and 2 mm thick.  Determine the shear stress in the tube and the 

angle of its rotation. 

 

Answer: Stress 34.6 Mpa  

Rotation (twist of the beam end): 0.011 radians or 0.66 degrees 

T 
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Stress in Thin-Walled Cylinders 
 

If the thickness t is less than 1/20
th

 of the mid radius of the pressure vessel, 

the stresses can be closely approximated using the following simple 

formulas.  The critical stress point in pressure vessels is always on the inner 

surface. 

 
 

The tangential or hoop stress is: 

   t

Pd i
t

2


 

 

P is the internal pressure, t is the wall thickness, and di is the inner diameter.  

The axial stress is: 

t

Pd i
a

4


 

 

The radial stress on the inner surface is P which is ignored as it is much 

smaller than the hoop stress. 

 

Stresses in Thick-walled Cylinders 
 

In thick-walled cylinders the tangential and radial stresses vary 

exponentially with respect to the radial location within the cylinder and if 

the cylinder is closed the axial stress would be a constant.  All the three 

stresses are principal stresses when stress element is cut as a pie piece – they 

t 

a 
P 



 24 

occur on surfaces on which shear stresses are zero.  The critical stress point 

is on the inner surface. 

 

 
The tangential stress: 
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The radial stress is: 
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When the external pressure is zero, the stresses on the inner surface are: 
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When the ends are closed, the external pressure is often zero and the axial 

stress is 

 22
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Problem #S12:  A steel cylinder with a yield strength of 57 ksi is under 

external pressure only.  The dimensions are: ID=1.25” and OD=1.75”.  If the 

external pressure is 11200 psi, what is the factor of safety guarding against 

yielding.  Use the distortion energy theory. Answer: 1.25. 

 

Stresses in rotating disks 

 

 
 

A rotating disk develops substantial inertia-caused stresses at high speeds.  

The tangential and radial stresses in a disk rotating at  rad/sec is as follows: 
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where  is the mass density and  is the Poisson’s ratio.  The disk thickness 

is to be less than 1/10 of the outer radius.  
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Problem #S13: A disk is rotating at 2069 rpm.  The disk’s OD=150 mm and 

its ID is 25 mm.  The Poisson’s ratio is 0.24 and the disk’s mass density is 

3320 kg/m
3
.  Determine the maximum tensile stress in the disk as a result of 

rotation.  Answer: 0.715 Mpa. 

 

Interface pressure as a result of shrink or press fits 
 

When the internal pressure is high, shrink-fit cylinders lower the induced 

stresses.  When two cylinders with a radial interference of r are press or 

shrink fitted, an interface pressure develops as follows: 

  

 
The interface pressure for same material cylinders with interface nominal 

radius of R and inner and outer radii of ri and ro:  
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Problem #S14:  A collar is press-fitted on a solid shaft.  Both parts are made 

of steel.  The shaft diameter is 40.026 mm and the collar diameter is 40 mm.  

The outer diameter of the collar is 80 mm.  Find the interface pressure.  

Answer: 50 Mpa. 

 

When both shrink fit and internal pressure is combined, the method of 

superposition must be used. 

 

ri 
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Impact Forces 
 

The equivalent static load created by an object falling and impacting another 

object can be very large.  Equations of energy in dynamics can be used to 

determine such loads.  Two common cases involve an object falling from a 

height and a speeding object impacting a structure.  In both cases the 

damping is assumed to be small. 

 

 
 

For a falling weight (ignoring the energy loss during impact): 
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If h=0, the equivalent load is 2W.  For a moving body with a velocity of V 

before impact, the equivalent force (ignoring energy losses) is: 

 mkVFe   

 

These are conservative values as ignoring the energy loss leads to larger 

equivalent forces. 

h 

w 

k w 

v 
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Problem #S15: A 1000 lb weight drops a distance of 1-in on a platform 

supported by a 1 in
2
 steel bar of length 12 inches.  What is the theoretical 

tensile stress that would develop in the bar.  Answer: 70.7 ksi. 

 

 
 

Problem #S16:  This is the same problem as #S15 but the bar is made up of 

two segments.  The upper segment has an area of 2 in
2
.  Determine the 

maximum theoretical stress developing in the bar as the result of the weight 

dropping on the platform.  Answer: 81.6 ksi. 

 

 

Exercise Question:  You have made grocery shopping and the cashier 

placed all your items in a paper bag.   The bag’s dead weight is now 15 lbs.  

What force would the bag handles experience if you: 

a) Lift the bag gently and lower it? 

b) Slide the bag off the countertop and suddenly resist the weight of the 

bag at a rate of 30 lbs/in of drop? 

c) Let the bag slide off and drop 5” before you suddenly resist it at a rate 

of 30 lbs per/in of drop.  

d) Same as c) but rate of resistance is 60 lbs/in.  

 

1000 

12” 

# S15 

1000 

6” 

# S16 

6” 
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Failure of columns under compressive load (Buckling) 
 

A beam under axial compressive load can become unstable and collapse.  

This occurs when the beam is long and its internal resistance to bending 

moment is insufficient to keep it stable.  The internal resistance is a function 

of area moment of inertia, I, and the stiffness of the material.    

 

Note that the longer the beam, the more 

bending moment is created at the center and 

for the beam to remain stable, it needs to be 

stiffer or have more bending resistance area.  

 

For every long beams there is a critical load 

beyond which even a tiny nudge would result 

is a collapse.  This critical load can be found 

using Euler formula.   

 

In shorter columns the critical load may cause 

stresses well above the yield strength of the 

material before the Euler load is reached.  For 

such cases, Johnson formula is used which 

relates the failure to yielding rather than 

instability. 

 

 

The critical Euler load for a beam that is long enough is: 

 2

2

L

EI
CPcr




 

 

C is the end-condition number.  The following end-condition numbers 

should be used for given cases: 

 

 When both ends are free to pivot use C=1.  Free to pivot means the 

end can rotate but not move in lateral direction. Note that even if the 

ends are free to rotate a little, such as in any bearing, this condition is 

applicable. 

 When one end is fixed (prevented from rotation) and the other is free, 

the beam buckles easier. Use C= 1/4 . 

P 
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 When one end is fixed and the other end can pivot, use C=2 when the 

fixed end is truly fixed in concrete.  If the fixed end is attached to 

structures that might flex under load, use C=1.2 (recommended). 

 When both ends are fixed (prevented from rotation and lateral 

movement), use C=4.  Again, a value of C=1.2 is recommended when 

there is any chance for pivoting. 

 

These conditions are depicted below: 

 

 
An alternate but common form of the Euler formula uses the “slenderness 

ratio” which is defined as follows: 
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k is the area radius of gyration of the cross-section. 

Pivot - Pivot 

Fixed - Free 

Fixed - Pivot 

Fixed - Fixed 
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Range of validity of the Euler formula 
 

Experimentation has shown that the Euler formula is a good predictor of 

column failure when: 
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If the slenderness ratio is less than the value in the formula, then the better 

predictor of failure is the Johnson formula: 
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Alternatively, we can calculate the critical load from both the Euler and the 

Johnson formulas and pick the one that is lower.   

 

Problem #S17:  The axial load on a round solid steel bar in compression is 

5655 lbs.  The material is AISI 1030 HR.  Assume the end conditions are 

pin-pin or pivot-pivot.  Determine the factor of safety against failure for the 

following two conditions: 

a) L=60” and D=diameter=1.5” 

b) L=18” and D= 7/8 ”  

Answers: a) 3.6 and b) 4.4 

 

 
Note: When a beam is under compression, it would buckle about the axis 

with smaller area moment of inertia.
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Eccentrically loaded columns 

 
The more general case of column loading is when the load is applied 

eccentrically.  This eccentric load exacerbates the situation as it induces 

more bending moment due to its eccentricity.  The prediction formula is 

known as the Secant Formula which is essentially a classical bending stress 

formula although it may not look like it.  The secant formula is: 
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where e is the eccentricity, c is the distance from the outer layer to the 

neutral axis, and the rest of the symbols have already been defined.   

 

A slight technical difficulty with this formula is that Pcr appears on both 

sides of the equation resulting in the need to use trial-and-error or use a non-

linear equation solver.  However, usually the load is given and you would 

calculate the stress (in place of Sy in the formula). 

 

 

 

c 
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Example: A column has a fixed end and the other end is free and 

unsupported.  The column length is 8 feet long.  The beam cross-section is a 

square tube with outer dimensions of 4 by 4 inches.  The area of the cross-

section is calculated to be 3.54 in
2
 and its smallest area moment of inertia is 

8 in
4
.  Determine the maximum compressive stress when the beam is 

supporting 31.1 kips at an eccentricity of 0.75 inches off the beam axis. 

 

 

 

 

Solution 

 

We find the stress  from the secant formula. The area radius of gyration is: 

in
A

I
k 5.1

54.3

8
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The formula is  
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For this problem,  P=31100 lbs is known and Sy becomes the unknown max. 

Substituting the numbers: 
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Calculating for max we get: 

max = 22000 psi 

Notes: 

1. The end condition is C=0.25 (some books do not apply C but instead 

they use an equivalent length Leq which is L divided by square root of 

C.   

2. The argument of the secant function is in radians.  Convert to degrees 

first before taking cosines. 

3. The angle in degrees in secant function must be between 0 and 90 

degrees (0 and /4 in radians).  Add or subtract multiples of 90 

degrees until the angle is between 0 and 90 degrees.  In this problem 

the angle is 126 degrees. 
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Failure Theories 
 

Failure under load can occur due to excessive elastic deflections or due to 

excessive stresses.  Failure prediction theories due to excessive stresses fall 

into two classes: Failure when the loading is static or the number of load 

cycles is one or quite small, and failure due to cyclic loading when the 

number of cycles is large often in thousands of cycles.   

 

Failure under static load 

 

Parts under static loading may fail due to:  

 

a) Ductile behavior: Failure is due to bulk yielding causing permanent 

deformations that are objectionable.  These failures may cause noise, 

loss of accuracy, excessive vibrations, and eventual fracture.  In 

machinery, bulk yielding is the criteria for failure.  Tiny areas of 

yielding are OK in ductile behavior in static loading. 

b) Brittle behavior:  Failure is due to fracture.  This occurs when the 

materials (or conditions) do not allow much yielding such as 

ceramics, grey cast iron, or heavily cold-worked parts.   

 

Theories of ductile failure (yielding) 

 

Yielding is a shear stress phenomenon.  That means materials yield because 

the shear stresses on some planes causes the lattice crystals to slide like a 

deck of cards.  In pure tension or compression, maximum shear stresses 

occur on 45-degree planes – these stresses are responsible for yielding and 

not the larger normal stresses.   

 

The best predictor of yielding is the maximum distortion energy theory 

(DET).  This theory states that yielding occurs when the Von Mises stress 

reaches the yield strength.  The more conservative predictor is the maximum 

shear stress theory (MST), which predicts yielding to occur when the shear 

stresses reach Sy/2. For example in a pure torsion situation, the DET predicts 

the yielding to start when  reaches 58% of Sy.  But the MST predicts 

yielding to start when  reaches 50% of Sy. Use of DET is more common in 

design work. 

Note that in static loading and ductile behavior, stress concentrations are 

harmless as they only create small localized yielding which do not lead to 
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any objectionable dimensional changes.  The material “yielding” per se is 

not harmful to materials as long as it is not repeated too many times.   

 

Problem # S18:  A 2” diameter steel bar with Sy=50 ksi is under pure 

torsion of a 20,000 in-lb.  Find the factor of safety guarding against yielding 

based on: a) Distortion energy theory, and b) Max shear stress theory.  

Rounded answers: 2.3 and 2. 

 

Theories of brittle failure 

 

There are two types of theories for brittle failure.  The classical theories 

assume that the material structure is uniform.  If the material structure is 

non-uniform, such as in many thick-section castings, and that the probability 

of large flaws exist, then the theory of fracture mechanics predicts the failure 

much more accurately.  Many old ship hulls have split into two while the 

existing classical theories predicted that they should not.  We will only look 

at the classical brittle failure theories.    

 

An important point to remember is that brittle materials often show much 

higher ultimate strength in compression than in tension.  One reason is that, 

unlike yielding, fracture of brittle materials when loaded in tension is a 

normal stress phenomenon.  The material fails because eventually normal 

tensile stresses fracture or separate the part in the direction normal to the 

plane of maximum normal stress (or principal stress – see Page 1).     

 

In compression the story is quite different.  When a brittle material is loaded 

in compression, the normal stress cannot separate the part along the direction 

normal to the plane of maximum normal stress.  In the absence of separating 

normal stresses, shear stresses would have to do the job and separate or 

fracture the material along the direction where the shear stresses are 

maximum.  In pure compression, this direction is at 45 degrees to the plane 

of loading.  Brittle materials, however, are very strong in shear. The bottom 

line is that it takes a lot more compressive normal stress to create a fracture.   

 

We only discuss these theories for a 2D state of stress – 3D is similar but is 

more formula-based.  Theories of failure in brittle fracture divide the 1-2 

region into 4 quadrants.  In the first quadrant, both principal stresses are 

positive. 
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When both 1 and 2 are positive (tensile), the fracture is predicted to occur 

when one of the two principal stresses reaches Sut.  When both 1 and 2 are 

negative (compressive), the fracture occurs when the magnitude of one of 

the two principal stresses reaches Suc.  The magnitude of Suc is often more 

than Sut as the prior discussion indicated.      

 

In the other two quadrants, where one principal stress is positive and the 

other is negative, the Columb-Mohr theory is a conservative theory for 

failure prediction.  It is also easy to use.  The Columb-Mohr theory failure 

line simply connects the failure points as shown in the figure as double lines.  

Using only the magnitudes of the stresses, in Quadrant II or IV: 

In this formula (1,2) is the load point (two principal stresses), and n is the 

factor of safety associated with that load point.  The positive principal stress 

is associated with Sut and the negative principal stress is associated with Suc. 

 

Problem #S19:  A flywheel made of Grade 30 cast iron has the following 

dimensions: ID=6”, OD=10” and thickness=0.25”.  What is the speed that 

would lead to the flywheel’s fracture?  Answer: 13600 rpm 

1 

2 

Sut 

Sut Suc 

Suc 

I II 

III 

IV 

nSS ucut

121 

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Summary of Failure Theories 
 

Ductile Failure Definition 

 Macroscopic and measurable bulk deformation 

 Slight change in geometry 

 

Conditions for ductile failure 

 Metals (Except cast irons and P/M parts) 

 At least 2% strain before fracture 

 

Cause of failure (deformation) 

 Excessive SHEAR stresses 

 

Prediction Theories 
 Maximum DET 

o Yielding occurs when yV S
 

 

 Maximum Shear Stress Theory 

o Yielding occurs when 
2

max

yS
  

 

What to do with stress concentration? 
 IGNORE them – They cause small areas of yielding and do 

not cause macroscopic and measurable bulk deformation. 
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Brittle Failure Definition 

 Fracture 

 

Conditions for Brittle failure 
 Gray cast irons and P/M parts [I], ceramics [II] 

 Other metals in special conditions: 

o Extreme cold or extreme impact 

o Extreme cold-working or extreme heat treatment 

 

Cause of failure (fracture) 

 Excessive normal stresses in tension, shear in compression 

 

Prediction Theories 
 Columb-Mohr theory 

 

nSS ucut

121 
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What to do with stress concentration? 
 Ignore for [I] –their strength is already reduced, Apply for [II] 

1 

2 
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Sut Suc 

Suc 
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IV 
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Fatigue Failure 
 

Repeated loading can lead to fatigue failure at loads much less than those 

leading to static failure.  Fatigue failure is sensitive to the magnitude of the 

stress regardless of how localized and small the stress area is.  Therefore, 

stress concentrations play an important role in fatigue failure.  Note:  If the 

material bulk itself is full of unseen stress raisers (such as in grey cast iron), 

the geometric stress raisers must be ignored.   

 

Design for infinite life starts with test results of the material in rotating 

bending test (known as Moore test).  The Moore test stress limit is called the 

rotating bending endurance limit, S’n.  This is the stress for which no failure 

occurs regardless of the number of cycles.  In the absence of direct 

experimental data, Moore test endurance limit is 50% of the ultimate stress 

for steels. 

 

 
 

The rotating bending or Moore test endurance limit has to be corrected for 

the actual part loading and conditions. This includes corrections for surface 

roughness, gradient effect, and size of the part (in Moore test the specimens 

are polished, under rotating bending, and are 0.3” in diameter). The result of 

these corrections is the endurance limit Sn.   Another notation for endurance 

limit is Se 

 

 

 

 

Number of cycles - N 

103 106 
105 

S’n 

Sf 

S10
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Purely Alternating Load 

 
 

 

Combined Alternating Loading 

 

When the state of stress is known, the Von Mises stresses can be analyzed.     

In the case of this figure all stresses are purely alternating. 

 

 
Most common loadings in shafts involves x, xy, or both. 

a 

x,a 

xy,a 

y,a 

V,a 
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The index a in the above formula emphasizes that the loading is purely 

alternating. 

 

Problem #S21 

 

The steel shaft shown below is under purely alternating torque of 56 N-m.  

The torque fluctuates between 56 Nm CW and 56 Nm CCW.  Assume 

Sut=518 MPa, and the correction factors of 0.9 and 0.78 apply for gradient 

and surface finish.  Also assume a fatigue stress concentration factor of 1.48 

for the shoulder fillets.  Answer: About 2 

 

 

 
 

V,a 

Sn Endurance Limit 

Von Mises 

Stress 

20 mm 
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Fluctuating and Steady Loads (optional) 

 

 

 
 

When both mean and fluctuating loads are present, the Goodman criterion is 

used to determine how much the mean loading affects (reduces) the 

endurance limit.  To begin the analysis, determine the mean and alternating 

Von Mises stresses.  These are actual maximum stresses and they do include 

the fatigue stress concentration factors.  As a result we should be able to 

calculate the following: 

The mean Von Mises is only due to mean loads and the alternating Von 

Mises is only due to alternating loads.  In power transmission shafts the 

loading includes a steady shear (power torque) and an alternating bending 

stress (due to shaft flexure and rotating just like Moore test set up).  

  

The load points plot in the Goodman diagram as shown below: 

 

 

 

Mean Stress 

Alternating Stress 
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,
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To determine the factor of safety guarding against fatigue failure, we must 

consider the overload mechanism.  If both the steady and alternating 

components of stress are subject to increase as shown, the margin of safety 

is determined by the Goodman line.  

 

Fatigue Failure Definition 

 Fracture 

 

Conditions for Fatigue failure 

 Repeated loading 

 All metals 

 

Cause of failure (fracture) 

 Excessive LOCALIZED SHEAR stresses causing repeated 

yielding  Local brittle fracture  Crack growth 

Sn 

Su v,m 

v,a 

Load Point 
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Prediction Theories 
 

 Failure occurs when the local VonMises stress reaches the 

Endurance Limit. 

 

What to do with stress concentration? 

 Apply to all (mean and alternating stresses) except gray cast 

iron or other materials with type-I internal structure 

 

Endurance Limit 

 
 

Cumulative Fatigue Damage (Miner’s or Palmgren Rule) 
 

If a part is stressed to a load for which the fatigue life is 10
3
 cycles, then 

each cycle takes 0.001 of the life of the part.  If stressed to a load for which 

the fatigue life is 10
4
 cycles, then each cycle takes 0.0001 of the life of the 

part and so on.  This inference leads to the following cumulative fatigue 

damage formula: 

1...
2

2

1

1 
k

k

N

n

N

n

N

n

 

Number of cycles - N 

S10
3 

103 106 
105 

Sn 

Sf 



 45 

In this relation, n1 is the number of cycles in a loading that would have a 

fatigue life of N1 cycles, etc. 

 

Example:  A critical point of a landing gear is analyzed for fatigue failure.  

Experiments show that in each landing a “compound load cycle” is applied 

to the member consisting of 5 cycles of 80 ksi stress, 2 cycles of 90 ksi, and 

1 cycle at 100 ksi stress.  All stress cycles are fully reversed (no mean 

component).  An experimental S-N curve is also available for this part (this 

curve can also be constructed using Moore test but for critical parts it is 

always best to spend the money and create a true S-N curve).  The S-N curve 

shows the fatigue lives of the component at the loading stresses to be as 

follows: 

  

Stress Level Number of 

cycles 

Fatigue life 

80 Ksi 5 10
5
 cycles 

90 Ksi 2 38000 cyc 

100 Ksi 1 16000 cyc 

 

Determine the life of this part in the number of compound cycles. 

 

Solution: Each compound cycle takes the following fraction of life out of the 

part: 

0001651.0
16000

1

38000

2

10

5
5

  

The number of cycles is reciprocal of this value which is 6059 cycles. 

 

 

Unit Conversions 

 

Problem #S11: Length: 1.640 feet    

Torque: 147.4 ft-lb OD: 1.575 in  

Thickness: 0.07874 in  Answer (Stress): 5 Ksi 

 

Problem #S14: Shaft Diameter: 1.5758” Collar diameter: 1.5748” 

OD of collar:  3.1496” Answer (Pressure): 7.25 Ksi 

 

 

 


