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I.INTRODUCTION 

Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest (fluid 

statics) and the subsequent effects of the fluid upon the boundaries, which may be either solid 

surfaces or interfaces with other fluids. Both gases and liquids are classified as fluids, and the 

number of fluids engineering applications is enormous: breathing, blood flow, swimming, 

pumps, fans, turbines, airplanes, ships, rivers, windmills, pipes, missiles, icebergs, engines, 

filters, jets, and sprinklers, to name a few. When you think about it, almost everything on this 

planet either is a fluid or moves within or near a fluid. 

The study of fluids at rest is called fluid statics. The study of fluids in motion, where 

pressure forces are not considered, is called fluid kinematics and if the pressure forces are also 

considered for the fluids in motion that branch of science is carted fluid dynamics. 

II. THE CONTINUUM CONCEPT OF A FLUID 

Although the properties of a fluid arise from its molecular structure, engineering problems 

are usually concerned with the bulk behaviour of fluids. The number of molecules involved is 

immense, and the separation between them is normally negligible by comparison with the 

distances involved in the practical situation being studied. Under these conditions, it is usual 

to consider a fluid as a continuum – a hypothetical continuous substance – and the conditions 

at a point as the average of a very large number of molecules surrounding that point within a 

distance which is large compared with the mean intermolecular distance (although very small 

in absolute terms).  

Quantities such as velocity and pressure can then be considered to be constant at any point, 

and changes due to molecular motion may be ignored. Variations in such quantities can also 

be assumed to take place smoothly, from point to point. This assumption breaks down in the 

case of rarefied gases, for which the ratio of the mean free path of the molecules to the 

physical dimensions of the problem is very much larger.  

In this study, fluids will be assumed to be continuous substances and, when the behaviour 

of a small element or particle of fluid is studied, it will be assumed that it contains so many 

molecules that it can be treated as part of this continuum. 

III. PROPERTIES OF FLUIDS 

Density or Mass Density.   

Density or mass density of a fluid is defined as the ratio of the mass of a fluid to its volume. 

Thus mass per unit volume of a fluid is called density. It is denoted by the symbol 𝜌 (rho). 

The unit of mass density in SI unit is kg per cubic metre, i.e. kg/m
3
. The density of liquids 

may be considered as constant while that of gases changes with the variation of pressure and 

temperature. 
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Mathematically, mass density is written as 

𝜌 = Mass of fluid Volume of fluid 

The value of density of water is 1 gm/cm
3
 or 1000 kg/m

3
. 

Density is highly variable in gases and increases nearly proportionally to the pressure level. 

Density in liquids is nearly constant; the density of water (about 1000 kg/m") increases 

only 1 percent if the pressure is increased by a factor of 220. Thus most liquid flows are 

treated analytically as nearly “incompressible.” 

In general, liquids are about three orders of magnitude more dense than gases at 

atmospheric pressure. The heaviest common liquid is mercury, and the lightest gas is 

hydrogen. Compare their densities at 20°C and 1 atm: 

               Mercury: 𝜌 =13,580 kg/m
3
 Hydrogen:  𝜌= 0.0838 kg/m

3
 

They differ by a factor of 162,000! Thus the physical parameters in various liquid and gas 

flows might vary considerably. The differences are often resolved by the use of 

dimensional analysis. 

 

Specific Weight or Weight Density,    

Specific weight or weight density of a fluid is the ratio between the weight of a fluid to its 

volume. Thus weight per unit volume of a fluid is called weight density and it is denoted by 

the symbol  𝛾 (lowercase Greek gamma). 

 

Thus mathematically, 𝛾 = Weight of fluidVolume of fluid = (Mass of fluid) x Acceleration due to gravityVolume of fluid   
 = (Mass of fluid) x gVolume of fluid  

 𝛾 = 𝜌 𝑥 𝑔                      {𝜌 = Mass of fluid Volume of fluid} 

 

 

 

 

Specific Volume  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐  𝑣𝑜𝑙𝑢𝑚𝑒  of a fluid  is defined  as the  volume  of  a f1uid  occupied by a unit mass 

or volume per unit mass of a fluid is called specific volume. Mathematically, it is expressed 

as specific  volume = Volume of fiuid Mass of fluid = 1Mass of fluidVolume of fiuid = 1𝜌 

 
Thus specific volume is the reciprocal of mass density. It is expressed as m

3
/kg. It is 

commonly applied to gases. 
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Specific Gravity.   

Specific gravity is defined as the ratio of the weight density (or density) of a fluid to the 

weight density (or density) of a standard fluid. For liquids, the standard fluid is taken water and 

for gases, the standard fluid is taken air. Specific gravity is also called relative density. It is 

dimensionless quantity and is denoted by the symbol S. Mathematically ,   S(for  liquids) = 𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝐷𝑒𝑛𝑠𝑖𝑡𝑦)𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝐷𝑒𝑛𝑠𝑖𝑡𝑦)𝑜𝑓 𝑊𝑎𝑡𝑒𝑟 

                              S(for  Gases) = 𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝐷𝑒𝑛𝑠𝑖𝑡𝑦)𝑜𝑓 𝐺𝑎𝑠𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝐷𝑒𝑛𝑠𝑖𝑡𝑦)𝑜𝑓 𝐴𝑖𝑟  

 
Thus weight density of a liquid = S x Weight density of water 

= S x 1000 x 9.8I N/m
3 

The density of a liquid = .S x Density of water 

If the specific gravity of a fluid is known, then the density of the Fluid will be equal to 

specific gravity of fluid multiplied by rho density of water. For example, the specific gravity 

of mercury is 13.6, hence density of mercury = 1.3.6 x 1000 = 13000 kg/m
3
. 

 

VISCOSITY 

Viscosity is defined as the property of a fluid which offers resistance to the movement of one 

layer of fluid over another adjacent layer of the fluid. When two layers of a fluid, a distance 

‘dy’ apart, move one over the other at different velocities, say u and u + du as shown in Fig. 

1, the viscosity together with relative velocity causes a shear stress acting between the fluid 

layers. 

The top layer causes a shear stress on the adjacent lower layer while the lower layer causes a 

shear stress on the adjacent top layer. This shear stress is proportional to the rate of change of 

velocity with respect to y. It is denoted by symbol τ (Tau). 

 

 
Figure 1: Velocity Variation near a solid boundary 

 

Mathematically,   

 𝜏𝛼 𝑑𝑢𝑑𝑦 
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 𝜏 = 𝜇 𝑑𝑢𝑑𝑦 

 

Where 𝜇 (called mu) is the constant of proportional and is known as the co-efficient of 

dynamic viscosity or only viscosity. 
𝑑𝑢𝑑𝑦  represents the rate of shear strain or rate of hear 

deformation or velocity gradient. 𝜇 = 𝜏(𝑑𝑢𝑑𝑦) 

Thus viscosity is also defined as the shear stress required to produce unit rate of shear strain. 

 

 
Units o f    Viscosity 

The units of viscosity is obtained by putting the dimensions of the quantities in equation 

 𝜇 = 𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝐹𝑜𝑟𝑐𝑒/𝐴𝑟𝑒𝑎(𝐿𝑒𝑛𝑔𝑡ℎ𝑇𝑖𝑚𝑒 ) 𝑋 1𝐿𝑒𝑛𝑔𝑡ℎ 

 = 𝐹𝑜𝑟𝑐𝑒/(𝐿𝑒𝑛𝑔𝑡ℎ)21𝑇𝑖𝑚𝑒 =  𝐹𝑜𝑟𝑐𝑒  𝑋 𝑇𝑖𝑚𝑒(𝐿𝑒𝑛𝑔𝑡ℎ)2 = 𝑁𝑠/𝑚2 

 

Kinematic Viscosity. It is defined as the ratio between the dynamic viscosity and density of 

fluid. It is denoted by the Greek symbol (𝜗) called ’nu’. Thus. Mathematically, 𝜗 = 𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝜇𝜌 

 

The units of kinematic viscosity is obtained as 

 

𝜗 = 𝑈𝑛𝑖𝑡𝑠 𝑜𝑓 𝜇𝑈𝑛𝑖𝑡𝑠 𝑜𝑓 𝜌 = 𝐹𝑜𝑟𝑐𝑒 𝑋 𝑇𝑖𝑚𝑒(𝐿𝑒𝑛𝑔𝑡ℎ)2𝑋 𝑀𝑎𝑠𝑠(𝐿𝑒𝑛𝑔𝑡ℎ)3 = 𝑀𝑎𝑠𝑠 𝑋 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇𝑖𝑚𝑒)2  𝑋 𝑇𝑖𝑚𝑒(𝐿𝑒𝑛𝑔𝑡ℎ)2𝑋 𝑀𝑎𝑠𝑠(𝐿𝑒𝑛𝑔𝑡ℎ)3  

 

= 𝑀𝑎𝑠𝑠 𝑋 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇𝑖𝑚𝑒)2  𝑋 𝑇𝑖𝑚𝑒(𝐿𝑒𝑛𝑔𝑡ℎ)2𝑋 𝑀𝑎𝑠𝑠(𝐿𝑒𝑛𝑔𝑡ℎ)32 

 =  (𝐿𝑒𝑛𝑔𝑡ℎ)2𝑇𝑖𝑚𝑒  

In MKS and SI, the unit of kinematic viscosity is metre
2
/sec or m

2
/sec 

while in CGS units it is written as cm
2
/ s. In CGS units, kinematic viscosity 

is also known as stoke. 

 

Thus, one stoke =cm
2
/s = (1/100)

2 
m

2
/s =10

-4 
m

2
/s 
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Centistoke = (1/100) stoke 
 

Newton’s Law of Viscosity.  

It states that the shear stress (𝜏) on a fluid element layer is directly proportional to the rate of 

shear strain. The constant of proportionality is called the co- efficient of viscosity. 

Mathematically. it is expressed as given by equation  𝜏 = 𝜇 𝑑𝑢𝑑𝑦 

Fluids which obey the above relation are known as Newtonian fluids and the fluids which do 

not they the above relation are called Non-Newtonian fluids. 

 

 

 

Variation of Viscosity with Temperature.   

Temperature affects the viscosity.  The viscosity of liquids decreases with the increase of 

temperature while the viscosity of gases increases with the increase of temperature. This is 

due to reason that the viscous forces in a fluid are due to cohesive forces and molecular 

momentum transfer.  In liquids, the cohesive forces predominates the molecular momentum 

transfer due to closely packed molecules and with the increase in temperature. The cohesive 

force decreases with the result of decreasing viscosity. But in case of gases the cohesive 

forces are small and molecular momentum transfer predominates. With the increase in 

temperature, molecular momentum transfer increases and hence viscosity increases. The 

relation between viscosity and temperature for liquids and gases are: 

 

For Liquids,  𝜇 = 𝜇𝑜 ( 11 + 𝛼𝑡 + 𝛽𝑡2) − − − −(1) 

 

Where    𝜇 = Viscosity of liquid at t
o
C, in poise 

    𝜇𝑜= Viscosity of liquid at 0
o
C, in poise 

   ∝, 𝛽 = Constants for the liquid. 

For water,   𝜇𝑜= 1.79 X 10
-3

 poise, ∝ = 0.03368 and     𝛽 = 0.000221. 

Equation (1) shows that with the increase of temperature, the viscosity decreases  

 

For a gas, 

 

     𝜇 = 𝜇𝑜 + 𝛼𝑡 − 𝛽𝑡2 − − − − − −(2) 

For air,   𝜇𝑜= 0.000017 poise, ∝ = 0.000000056 and     𝛽 = 0.1189X10
-9. 

Equation (2) shows that with the increase of temperature, the viscosity increases.  

 

Types of Fluids  

The fluids may be classified intn the following five types: 

1. Ideal fluid, 

2. Real fluid, 

3. Newtonian fluid, 

4. Non-Newtonian fluid, and 
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5. Ideal plastic fluid. 

 

1. Ideal Fluid. A fluid, which is incompressible and is having no viscosity, is known as an 

ideal fluid. Ideal fluid is only an imaginary fluid as all the fluids.  Which exist, have some 

viscosity. 

2. Real Fluid.  A  Fluid, which possesses viscosity, is known as real fluid. All the fluids, in 

actual practice, are real fluids. 

3. Newtonian Fluid. A real fluid, in which the shear stress is directly proportional to the 

rate of shear strain (or velocity gradient), is known as a Newtonian fluid. 

4. Non-Newtonian Fluid. A real fluid. in which the shear stress is not proportional to the 

rate of shear strain (or velocity gradient), Known as a Non- Newtonian fluid. 

5. Ideal Plastic Fluid. A fluid, in which shear stress is more than the yield value and shear 

stress is proportional to the rate of shear strain (or velocity gradient), is known as ideal 

plastic fluid. 

 

 
Fig.2 Types of Fluid 

 

EQUATION OF STATE OF A PERFECT GAS 

The mass density of a gas varies with its absolute pressure p and absolute temperature T.  

 

p = ρRT -----(3) 

For a perfect gas, where R is the gas constant for the gas concerned. Most gases at pressures 

and temperatures well removed from liquefaction follow this characteristic equation closely, 

but it does not apply to vapours. Units: the gas constant is measured in joules per kilogram 

per kelvin (J kg−1 K−1 ). Dimensions: L2T−2
 Θ−1 

. Typical values: air, 287 J kg
−1

 K
−1

 ; 

hydrogen, 4110 J kg
−1

 K
−1

. 

 

 

 

SURFACE TENSION 

Although all molecules are in constant motion, a molecule within the body of the 

liquid is, on average, attracted equally in all directions by the other molecules surrounding it, 

but, at the surface between liquid and air, or the interface between one substance and another, 

the upward and downward attractions are unbalanced, the surface molecules being pulled 

inward towards the bulk of the liquid. This effect causes the liquid surface to behave as if it 
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were an elastic membrane under tension.  

The surface tension σ is measured as the force acting across the unit length of a line 
drawn in the surface. It acts in the plane of the surface, normal to any line in the surface, and 

is the same at all points. Surface tension is constant at any given temperature for the surface 

of separation of two particular substances, but it decreases with increasing temperature.  

The effect of surface tension is to reduce the surface of a free body of liquid to a 

minimum, since to expand the surface area molecules have to be brought to the surface from 

the bulk of the liquid against the unbalanced attraction pulling the surface molecules inwards. 

For this reason, drops of liquid tend to take a spherical shape in order to minimize surface 

area. For such a small droplet, surface tension will cause an increase of internal pressure p in 

order to balance the surface force.  

Considering the forces acting on a diametral plane through a spherical drop of radius 

r, the force due to internal pressure = p × πr 2
, and the force due to surface tension around the 

perimeter = 2πr × σ.  
For equilibrium, pπr 2

 = 2πrσ or p = 2σ/r. Surface tension will also increase the 

internal pressure in a cylindrical jet of fluid, for which p = σ/r. In either case, if r is very 

small, the value of p becomes very large.  

For small bubbles in a liquid, if this pressure is greater than the pressure of vapour or 

gas in a bubble, the bubble will collapse. In many of the problems with which engineers are 

concerned, the magnitude of surface tension forces is very small compared with the other 

forces acting on the fluid and may, therefore, be neglected. However, these forces can cause 

serious errors in hydraulic scale models and through capillary effects. Surface tension forces 

can be reduced by the addition of detergents. 

Examble: Air is introduced through a nozzle into a tank of water to form a stream of 

bubbles. If the bubbles are intended to have a diameter of 2 mm, calculate by how much the 

pressure of the air at the nozzle must exceed that of the surrounding water. Assume that σ = 
72.7 × 10−3 N m−1

.  

Solution Excess pressure, 

p = 2σ/r 
 

Putting r = 1 mm = 10
−3

 m, σ = 72.7 × 10−3
 N m

−1
.  

Excess pressure, p = (2 × 72.7 × 10
−3

)/ (1 × 10
−3

) = 145.4 N m
−2

 

 

CAPILLARITY 

If a fine tube, open at both ends, is lowered vertically into a liquid which wets the 

tube, the level of the liquid will rise in the tube Fig.3 (a). If the liquid does not wet the tube, 

the level of liquid in the tube will be depressed below the level of the free surface outside 

Fig.3 (b). If θ is the angle of contact between liquid and solid and d is the tube diameter Fig.3 

(a), 
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Figure 3: Capillarity 

Upward pull due to surface tension = Component of surface tension acting upwards × 

Perimeter of tube 

= σ cosθ × πd.    ----------------- (4) 

 

The atmospheric pressure is the same inside and outside the tube, and, therefore, the 

only force opposing this upward pull is the weight of the vertical-sided column of liquid of 

height H, since, by definition, there are no shear stresses in a liquid at rest. Therefore, in Fig. 

there will be no shear stress on the vertical sides of the column of liquid under consideration. 

 

Weight of column raised = ρg (π/4)d2
 H, ---------- (5) 

 

Where ρ is the mass density of the liquid. Equating the upward pull to the weight of 
the column, from equations (4) and (5), 

 

σ cosθ × πd = ρg(π/4)d2 H, 
Capillary rise, H = 4σ cosθ/ρgd. 

 
Figure 4:  Capillary rise in glass tubes of circular cross section. 

Capillary action is a serious source of error in reading liquid levels in fine-gauge 

tubes, particularly as the degree of wetting and, therefore, the contact angle θ are affected by 
the cleanness of the surfaces in contact. For water in a tube of 5 mm diameter, the capillary 

rise will be approximately 4.5 mm, while for mercury the corresponding figure would be −1.4 
mm (Fig. 4). Gauge glasses for reading the level of liquids should have as large a diameter as 

is conveniently possible, to minimize errors due to capillarity. 

 

VAPOUR PRESSURE 

Since the molecules of a liquid are in constant agitation, some of the molecules in the 

surface layer will have sufficient energy to escape from the attraction of the surrounding 

molecules into the space above the free surface. Some of these molecules will return and 
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condense, but others will take their place.  

If the space above the liquid is confined, an equilibrium will be reached so that the 

number of molecules of liquid in the space above the free surface is constant. These 

molecules produce a partial pressure known as the vapour pressure in the space.  

The degree of molecular activity increases with increasing temperature, and, 

therefore, the vapour pressure will also increase. Boiling will occur when the vapour pressure 

is equal to the pressure above the liquid. By reducing the pressure, boiling can be made to 

occur at temperatures well below the boiling point at atmospheric pressure: for example, if 

the pressure is reduced to 0.2 bar (0.2 atm), water will boil at a temperature of 60 °C. 

 

CAVITATION 

Under certain conditions, areas of low pressure can occur locally in a flowing fluid. If 

the pressure in such areas falls below the vapour pressure, there will be local boiling and a 

cloud of vapour bubbles will form. This phenomenon is known as cavitation and can cause 

serious problems, since the flow of liquid can sweep this cloud of bubbles on into an area of 

higher pressure where the bubbles will collapse suddenly. If this should occur in contact with 

a solid surface, very serious damage can result due to the very large force with which the 

liquid hits the surface.  

Cavitation can affect the performance of hydraulic machinery such as pumps, turbines 

and propellers, and the impact of collapsing bubbles can cause local erosion of metal 

surfaces. Cavitation can also occur if a liquid contains dissolved air or other gases, since the 

solubility of gases in a liquid decreases as the pressure is reduced. Gas or air bubbles will be 

released in the same way as vapour bubbles, with the same damaging effects. Usually, this 

release occurs at higher pressures and, therefore, before vapour cavitation commences. 
 

COMPRESSIBILITY AND THE BULK MODULUS 

All materials, whether solids, liquids or gases, are compressible, i.e. the volume V of a given 

mass will be reduced to V – δV when a force is exerted uniformly all over its surface. If the 
force per unit area of surface increases from p to p + δp, the relationship between change of 
pressure and change of volume depends on the bulk modulus of the material: 

 

Bulk modulus = Change in pressure/Volumetric strain. 

 

Volumetric strain is the change in volume divided by the original volume; therefore, 

 Change in volumeOriginal volume =  Change in pressureBulk modulus  

                              −δV/V = δp/K   

the minus sign indicating that the volume decreases as pressure increases. In the limit, as δp 
→ 0, 
 𝐾 =  −𝑉 𝑑𝑝𝑑𝑉 --------(6) 

 

Considering unit mass of a substance, 

V = 1/ρ ----------(7) 

Differentiating,  

V dρ + ρ dV = 0  
dV = −(V/ρ) dρ.  
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Substituting for V from equation (1.10),  

dV = −(1/ρ2
 ) dρ. --------------------(8) 

Putting the values of V and dV obtained from equations (7) and (8) in equation (6), 

 

K =ρ  (dp /dρ) 
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MODELS OF THE FLUID: CONTROL VOLUMES AND FLUID ELEMENTS 

Aerodynamics is a fundamental science, steeped in physical observation. As you proceed 

through this presentation, make every effort to gradually develop a “physical feel” for the 

material.  

An important virtue of all successful aerodynamicists (indeed, of all successful engineers and 

scientists) is that they have good “physical intuition,” based on thought and experience, 

which allows them to make reasonable judgments on difficult problems.  

Although this presentation is full of equations and (seemingly) esoteric concepts, now is the 

time for you to start developing this physical feel. With this section, we begin to build the 

basic equations of aerodynamics. There is a certain philosophical procedure involved with the 

development of hese equations, as follows: 

1. Invoke three fundamental physical principles that are deeply entrenched in our macroscopic 

observations of nature, namely, 

a. Mass is conserved (i.e., mass can be neither created nor destroyed). 

b. Newton’s second law: force = mass × acceleration. 

c. Energy is conserved; it can only change from one form to another. 

2. Determine a suitable model of the fluid. Remember that a fluid is a squishy substance, and 

therefore it is usually more difficult to describe than a well-defined solid body. Hence, we 

have to adopt a reasonable model of the fluid to which we can apply the fundamental 

principles stated in item 1. 
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3. Apply the fundamental physical principles listed in item 1 to the model of the fluid 

determined in item 2 in order to obtain mathematical equations which properly describe the 

physics of the flow. In turn, use these fundamental equations to analyse any particular 

aerodynamic flow problem of interest. 

Finite Control Volume Approach  

Consider a general flow field as represented by the streamlines in Figure 2.13. Let us 

imagine a closed volume drawn within a finite region of the flow.  

 

 

This volume defines a control volume V, and a control surface S is defined as the closed 

surface which bounds the control volume.  

The control volume may be fixed in space with the fluid moving through it, as shown at 

the left of Figure 2.13. Alternatively, the control volume may be moving with the fluid 

such that the same fluid particles are always inside it, as shown at the right of Figure 2.13.  

In either case, the control volume is a reasonably large, finite region of the flow. The 

fundamental physical principles are applied to the fluid inside the control volume, and to 

the fluid crossing the control surface (if the control volume is fixed in space).  

Therefore, instead of looking at the whole flow field at once, with the control volume 

model we limit our attention to just the fluid in the finite region of the volume itself. 

Infinitesimal Fluid Element Approach 

Consider a general flow field as represented by the streamlines in Figure 2.14. Let us 

imagine an infinitesimally small fluid element in the flow, with a differential volume dV.  
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Figure. 7 Infinitesimal fluid element approach 

The fluid element is infinitesimal in the same sense as differential calculus; however, it is 

large enough to contain a huge number of molecules so that it can be viewed as a 

continuous medium.  

The fluid element may be fixed in space with the fluid moving through it, as shown at the 

left of Figure 7. Alternatively, it may be moving along a streamline with velocity V equal 

to the flow velocity at each point.  

Again, instead of looking at the whole flow field at once, the fundamental physical 

principles are applied to just the fluid element itself. 

Molecular Approach 

In actuality, of course, the motion of a fluid is a ramification of the mean motion of its 

atoms and molecules. Therefore, a third model of the flow can be a microscopic approach 

wherein the fundamental laws of nature are applied directly to the atoms and molecules, 

using suitable statistical averaging to define the resulting fluid properties.  

This approach is in the purview of kinetic theory, which is a very elegant method with 

many advantages in the long run. However, it is beyond the scope of the present book.  

In summary, although many variations on the theme can be found in different texts for the 

derivation of the general equations of fluid flow, the flow model can usually be 

categorized under one of the approaches described above. 

Physical Meaning of the Divergence of Velocity 

In the equations to follow, the divergence of velocity, ∇ ·  V, occurs frequently. Before 

leaving this section, let us prove the statement made earlier that ∇ ·  V is physically the 

time rate of change of the volume of a moving fluid element of fixed mass per unit 

volume of that element.  

Consider a control volume moving with the fluid (the case shown on the right of Figure 

7). This control volume is always made up of the same fluid particles as it moves with the 

flow; hence, its mass is fixed, invariant with time. However, its volume V and control 
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surface S are changing with time as it moves to different regions of the flow where 

different values of ρ exist.  

That is, this moving control volume of fixed mass is constantly increasing or decreasing 

its volume and is changing its shape, depending on the characteristics of the flow. This 

control volume is shown in Figure 2.15 at some instant in time. Consider an infinitesimal 

element of the surface d S moving at the local velocity V, as shown in Figure 2.15. 

The change in the volume of the control volume ∆V, due to just the movement of dS over 

a time increment ∆ t, is, from Figure 2.15, equal to the volume of the long, thin cylinder 

with base area d S and altitude (V ∆ t)· n; that is, ∆ V=[(V ∆ t)· n]d S = (V ∆ t)· dS (2.28) 

 

Figure 8. Moving control volume used for the physical interpretation of the divergence of velocity. 

Over the time increment ∆ t, the total change in volume of the whole control volume is 

equal to the summation of Equation (2.28) over the total control surface. In the limit as d S 

→ 0, the sum becomes the surface integral 

 

If this integral is divided by ∆ t, the result is physically the time rate of change of the 

control volume, denoted by DV/Dt; that i 

 

 

 

 

(The significance of the notation D/Dt is revealed) Applying the divergence theorem, Equation 

(2.26), to the right side of Equation (2.29), we have 
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Now let us imagine that the moving control volume in Figure 7 is shrunk to a very small 

volume δV, essentially becoming an infinitesimal moving fluid element as sketched on 
the right of Figure 2.14. Then Equation (2.30) can be written as 

 

Assume that δV is small enough such that ∇ · V is essentially the same value throughout δV. 
Then the integral in Equation (2.31) can be approximated as (∇ · V)δV. From Equation 
(2.31), we have 

 

 

Examine Equation (2.32). It states that ∇ ·  V is physically the time rate of change of the 

volume of a moving fluid element, per unit volume. Hence, the interpretation of ∇ ·  V, 

first given , Divergence of a Vector Field, is now proved. 

 

CONTINUITY EQUATION 

Consider a given area A arbitrarily oriented in a flow field as shown in Figure 8. 
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Figure 8. Sketch for discussion of mass flow through area A in a flow field. 

In Figure 8, we are looking at an edge view of area A. Let A be small enough such that the 

flow velocity V is uniform across A.  

Consider the fluid elements with velocity V that pass through A. In time dt after crossing A, 

they have moved a distance V dt and have swept out the shaded volume shown in Figure 8.  

This volume is equal to the base area A times the height of the cylinder Vndt, where Vn is the 

component of velocity normal to A; that is,  

Volume = (Vndt)A  

The mass inside the shaded volume is therefore  

Mass = ρ(Vndt)A                        (2.42)  

 This is the mass that has swept past A in time dt. By definition, the mass flow through A is 

the mass crossing A per second (e.g., kilograms per second, slugs per second). Let m˙ denote 
mass flow. From Equation (2.42). 

 Equation (2.43) demonstrates that mass flow through A is given by the product  

 Area × density × component of flow velocity normal to the area  

A related concept is that of mass flux, defined as the mass flow per unit area. 

 

 

Typical units of mass flux are kg/(s ·  m
2
) and slug/(s ·  ft

2
). 
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• The concepts of mass flow and mass flux are important. Note from Equation (2.44) 

that mass flux across a surface is equal to the product of density times the component 

of velocity perpendicular to the surface. 

•  Many of the equations of aerodynamics involve products of density and velocity.  

• For example, in cartesian coordinates, V = Vx i + Vyj + Vzk = ui + vj + wk, where u, 

v, and w denote the x, y, and z components of velocity, respectively. (The use of u, v, 

and w rather than Vx , Vy , and Vz to symbolize the x, y, and z components of 

velocity is quite common in aerodynamic literature; we henceforth adopt the u, v, and 

w notation.) 

• In many of the equations of aerodynamics, you will find the products ρu, ρv, and ρw; 
always remember that these products are the mass fluxes in the x, y, and z directions, 

respectively. 

• In a more general sense, if V is the magnitude of velocity in an arbitrary direction, the 

product ρV is physically the mass flux (mass flow per unit area) across an area 
oriented perpendicular to the direction of V.  

• We are now ready to apply our first physical principle to a finite control volume fixed 

in space. 

Physical principle Mass can be neither created nor destroyed. 

• Consider a flow field wherein all properties vary with spatial location and time, for 

example, ρ = ρ(x, y, z, t). In this flow field, consider the fixed finite control volume 

shown in Figure 9.  

• At a point on the control surface, the flow velocity is V and the vector elemental 

surface area is dS. Also dV is an elemental volume inside the control volume. Applied 

to this control volume, the above physical principle means 

• Net mass flow out of control volume through surface S = time rate of decrease of 

mass inside control volume V               

                                                            (2.45a)  

    or              B = C                                      (2.45b) 

• where B andC are just convenient symbols for the left and right sides, respectively, of 

Equation (2.45a). 

•  First, let us obtain an expression for B in terms of the quantities shown in Figure 

2.19.  

• From Equation (2.43), the elemental mass flow across the area d S is  

                                        ρVn d S = ρV · dS 
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Figure 9. Finite control volume fixed in space 

 

• Examining Figure 9, note that by convention, dS always points in a direction out of 

the control volume. Hence, when V also points out of the control volume (as shown in 

Figure 9), the product ρV · dS is positive.  

• Moreover, when V points out of the control volume, the mass flow is physically 

leaving the control volume (i.e., it is an outflow). Hence, a positive ρV · dS denotes 
an outflow.  

• In turn, when V points into the control volume, ρV · dS is negative. Moreover, when 
V points inward, the mass flow is physically entering the control volume (i.e., it is an 

inflow).  

• Hence, a negative ρV · dS denotes an inflow. The net mass flow out of the entire 
control surface S is the summation over S of the elemental mass flows. 
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 Equation (2.48) is the final result of applying the physical principle of the conservation 

of mass to a finite control volume fixed in space. Equation (2.48) is called the continuity 

equation. It is one of the most fundamental equations of fluid dynamics. 

Note that Equation (2.48) expresses the continuity equation in integral form. We will 

have numerous opportunities to use this form; it has the advantage of relating 

aerodynamic phenomena over a finite region of space without being concerned about the 

details of precisely what is happening at a given distinct point in the flow.  

On the other hand, there are many times when we are concerned with the details of a flow 

and we want to have equations that relate flow properties at a given point. In such a case, 

the integral form as expressed in Equation (2.48) is not particularly useful. However, 

Equation (2.48) can be reduced to another form that does relate flow properties at a given 

point, as follows.  
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To begin with, since the control volume used to obtain Equation (2.48) is fixed in space, 

the limits of integration are also fixed. Hence, the time derivative can be placed inside the 

volume integral and Equation (2.48) can be written as 

 Examine the integrand of Equation (2.51). If the integrand were a finite number, then 

Equation (2.51) would require that the integral over part of the control volume be equal 

and opposite in sign to the integral over the remainder of the control volume, such that the 

net integration would be zero.  

However, the finite control volume is arbitrarily drawn in space; there is no reason to 

expect cancellation of one region by the other. Hence, the only way for the integral in 

Equation (2.51) to be zero for an arbitrary control volume is for the integrand to be zero at 

all points within the control volume. Thus, from Equation (2.51), we have 

 

Equation (2.52) is the continuity equation in the form of a partial differential equation. 

This equation relates the flow field variables at a point in the flow, as opposed to 

Equation (2.48), which deals with a finite space.  

It is important to keep in mind that Equations (2.48) and (2.52) are equally valid 

statements of the physical principle of conservation of mass.  

They are mathematical representations, but always remember that they speak words—
they say that mass can be neither created nor destroyed. 

Note that in the derivation of the above equations, the only assumption about the nature of 

the fluid is that it is a continuum. Therefore, Equations (2.48) and (2.52) hold in general 

for the three-dimensional, unsteady flow of any type of fluid, inviscid or viscous, 

compressible or incompressible. 
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Note: It is important to keep track of all assumptions that are used in the derivation of any 

equation because they tell you the limitations on the final result, and therefore prevent 

you from using an equation for a situation in which it is not valid. In all our future 

derivations, develop the habit of noting all assumptions that go with the resulting 

equations. 

It is important to emphasize the difference between unsteady and steady flows. In an 

unsteady flow, the flow-field variables are a function of both spatial location and time, for 

example, 

ρ = ρ(x, y, z, t) 

This means that if you lock your eyes on one fixed point in space, the density at that point 

will change with time. Such unsteady fluctuations can be caused by time-varying 

boundaries (e.g., an airfoil pitching up and down with time or the supply valves of a wind 

tunnel being turned off and on). 

Equations (2.48) and (2.52) hold for such unsteady flows. On the other hand, the vast 

majority of practical aerodynamic problems involve steady flow. Here, the flow-field 

variables are a function of spatial location only, for example,  

ρ = ρ(x, y, z) 

This means that if you lock your eyes on a fixed point in space, the density at that point 

will be a fixed value, invariant with time. For steady flow, ∂/∂t = 0, and hence Equations 
(2.48) and (2.52) reduce to 

 MOMENTUM EQUATION 

Newton’s second law is frequently written as 

F = ma                             (2.55)  

where F is the force exerted on a body of mass m and a is the acceleration. However, a 

more general form of Equation (2.55) is 

F = 
𝑑𝑑𝑡(mV) (2.56)  

which reduces to Equation (2.55) for a body of constant mass. In Equation (2.56), mV is 

the momentum of a body of mass m. Equation (2.56) represents the second fundamental 

principle upon which theoretical fluid dynamics is based. Physical principle  
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Force = time rate of change of momentum 

We will apply this principle [in the form of Equation (2.56)] to the model of a finite control 

volume fixed in space as sketched in Figure 2.19. Our objective is to obtain expressions for 

both the left and right sides of Equation (2.56) in terms of the familiar flow-field variables p, 

ρ, V, etc.  

First, let us concentrate on the left side of Equation (2.56) (i.e., obtain an expression for F, 

which is the force exerted on the fluid as it flows through the control volume). This force 

comes from two sources: 

Body forces: gravity, electromagnetic forces, or any other forces which “act at a distance” on 

the fluid inside V.  

Surface forces: pressure and shear stress acting on the control surface S. 

Let f represent the net body force per unit mass exerted on the fluid inside V. The body force 

on the elemental volume dV in Figure 2.19 is therefore  

ρf dV  

and the total body force exerted on the fluid in the control volume is the summation of the 

above over the volume V: 

 

The elemental surface force due to pressure acting on the element of area d S is 

−p dS  

where the negative sign indicates that the force is in the direction opposite of dS. That is, the 

control surface is experiencing a pressure force that is directed into the control volume and 

which is due to the pressure from the surroundings, and examination of Figure 2.19 shows 

that such an inward-directed force is in the direction opposite of dS. The complete pressure 

force is the summation of the elemental forces over the entire control surface: 

 

 

In a viscous flow, the shear and normal viscous stresses also exert a surface force. A detailed 

evaluation of these viscous stresses is not warranted at this stage of our discussion. Let us 

simply recognize this effect by letting Fviscous denote the total viscous force exerted on the 

control surface.  

We are now ready to write an expression for the left-hand side of Equation (2.56). The total 

force experienced by the fluid as it is sweeping through the fixed control volume is given by 

the sum of Equations (2.57) and (2.58) and Fviscous: 
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Now consider the right side of Equation (2.56). The time rate of change of momentum of 

the fluid as it sweeps through the fixed control volume is the sum of two terms: 

 

 

 

 

Consider the term denoted by G in Equation (2.60a). The flow has a certain momentum as 

it enters the control volume in Figure 9, and, in general, it has a different momentum as it 

leaves the control volume (due in part to the force F that is exerted on the fluid as it is 

sweeping through V).  

The net flow of momentum out of the control volume across the surface S is simply this 

outflow minus the inflow of momentum across the control surface. This change in 

momentum is denoted by G, as noted above. To obtain an expression for G, recall that the 

mass flow across the elemental area dS is (ρV · dS); hence, the flow of momentum per 
second across dS is 

(ρV · dS)V 

The net flow of momentum out of the control volume through S is the summation of the 

above elemental contributions, namely, 

 

In Equation (2.61), recall that positive values of(ρV · dS)represent mass flow out of the 

control volume, and negative values represent mass flow into the control volume.  

Hence, in Equation (2.61) the integral over the whole control surface is a combination of 

positive contributions (outflow of momentum) and negative contributions (inflow of 

momentum), with the resulting value of the integral representing the net outflow of 

momentum. 

If G has a positive value, there is more momentum flowing out of the control volume per 

second than flowing in; conversely, if G has a negative value, there is more momentum 

flowing into the control volume per second than flowing out.  

Now consider H from Equation (2.60b). The momentum of the fluid in the elemental 

volume dV shown in Figure 9 is 

(ρ dV)V 

The momentum contained at any instant inside the control volume is therefore and its 

time rate of change due to unsteady flow fluctuations is 
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Combining Equations (2.61) and (2.62), we obtain an expression for the total time rate of 

change of momentum of the fluid as it sweeps through the fixed control volume, which in 

turn represents the right-hand side of Equation (2.56): 

 

 

 

 

Hence, from Equations (2.59) and (2.63), Newton’s second law 

 

 

 

 

 

 

Equation (2.64) is the momentum equation in integral form. Note that it is a vector 

equation. Just as in the case of the integral form of the continuity equation, Equation 

(2.64) has the advantage of relating aerodynamic phenomena over a finite region of space 

without being concerned with the details of precisely what is happening at a given distinct 

point in the flow.  

This advantage is illustrated. From Equation (2.64), we now proceed to a partial 

differential equation which relates flow-field properties at a point in space.  

Such an equation is a counterpart to the differential form of the continuity equation given 

in Equation (2.52). Apply the gradient theorem, Equation (2.27), to the first term on the 

right side of Equation (2.64): 
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ENERGY EQUATION 

For an incompressible flow, where ρ is constant, the primary flow-field variables are p 

and V. The continuity and momentum equations obtained earlier are two equations in 

terms of the two unknowns p and V. Hence, for a study of incompressible flow, the 

continuity and momentum equations are sufficient tools to do the job.  



 

43 

 

However, for a compressible flow, ρ is an additional variable, and therefore we need an 
additional fundamental equation to complete the system. This fundamental relation is the 

energy equation, to be derived in this section. In the process, two additional flow-field 

variables arise, namely, the internal energy e and temperature T . Additional equations 

must also be introduced for these variables, as will be mentioned later in this section.  

The material discussed in this section is germane to the study of compressible flow.  

Physical principle: Energy can be neither created nor destroyed; it can only change in 

form. 

Consider a fixed amount of matter contained within a closed boundary.  

This matter defines the system. Because the molecules and atoms within the system are 

constantly in motion, the system contains a certain amount of energy. For simplicity, let 

the system contain a unit mass; in turn, denote the internal energy per unit mass by e. The 

region outside the system defines the surroundings.  

Let an incremental amount of heat δq be added to the system from the surroundings. Also, 
let δw be the work done on the system by the surroundings.  

Both heat and work are forms of energy, and when added to the system, they change the 

amount of internal energy in the system. Denote this change of internal energy by de. 

From our physical principle that energy is conserved, we have for the system  

δq + δw = de -- -- -- (2.85) 

Equation (2.85) is a statement of the first law of thermodynamics. Let us apply the first 

law to the fluid flowing through the fixed control volume shown in Figure 10. Let  

B1 = rate of heat added to fluid inside control volume from surroundings  

B2 = rate of work done on fluid inside control volume  

B3 = rate of change of energy of fluid as it flows through control volume 

 

Figure 10: Finite control volume fixed in space 

From the first law, 

B1 + B2 = B3  -- -- -- -- (2.86) 
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Note that each term in Equation (2.86) involves the time rate of energy change; hence, 

Equation (2.86) is, strictly speaking, a power equation. However, because it is a 

statement of the fundamental principle of conservation of energy, the equation is 

conventionally termed the “energy equation.” We continue this convention here. 

 

First, consider the rate of heat transferred to or from the fluid. This can be visualized as 

volumetric heating of the fluid inside the control volume due to absorption of radiation 

originating outside the system or the local emission of radiation by the fluid itself, if the 

temperature inside the control volume is high enough.  

In addition, there may be chemical combustion processes taking place inside the control 

volume, such as fuel-air combustion in a jet engine. 

 Let this volumetric rate of heat addition per unit mass be denoted by q˙. Typical units for 
q˙ are J/s · kg or ft · lb/s · slug. Examining Figure 10, the mass contained within an 

elemental volume is ρ dV; hence, the rate of heat addition to this mass is q˙(ρ dV). 
Summing over the complete control volume, we obtain 

 

In addition, if the flow is viscous, heat can be transferred into the control volume by 

means of thermal conduction and mass diffusion across the control surface. 

At this stage, a detailed development of these viscous heat-addition terms is not 

warranted; they are considered in detail. Rather, let us denote the rate of heat addition to 

the control volume due to viscous effects simply by Q˙ viscous. Therefore, in Equation 

(2.86), the total rate of heat addition is given by Equation (2.87) plus Q˙ viscous: 

 

Before considering the rate of work done on the fluid inside the control volume, consider 

a simpler case of a solid object in motion, with a force F being exerted on the object, as 

sketched in Figure 10.  

The position of the object is measured from a fixed origin by the radius vector r. In 

moving from position r1 to r2 over an interval of time dt, the object is displaced through 

dr. By definition, the work done on the object in time dt is F ·  dr. Hence, the time rate of 

doing work is simply F ·  dr/dt. However, dr/dt = V, the velocity of the moving object. 

Hence, we can state that 

Rate of doing work on moving body = F · V 
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In words, the rate of work done on a moving body is equal to the product of its velocity 

and the component of force in the direction of the velocity. 

This result leads to an expression for B2, as follows. Consider the elemental area d S of 

the control surface in Figure 10.  

The pressure force on this elemental area is −p dS. From the above result, the rate of work 
done on the fluid passing through d S with velocity V is (−p dS)· V. Hence, summing 
over the complete control surface, we have 

 

In addition, consider an elemental volume dV inside the control volume, as shown in 

Figure 10. Recalling that f is the body force per unit mass, the rate of work done on the 

elemental volume due to the body force is (ρf dV)· V. Summing over the complete 
control volume, we obtain 

 

If the flow is viscous, the shear stress on the control surface will also perform work on 

the fluid as it passes across the surface. Let us denote this contribution simply by W˙ 
viscous. Then the total rate of work done on the fluid inside the control volume is the sum 

of Equations (2.89) and (2.90) and W˙ viscous: 

 

 

To visualize the energy inside the control volume, recall that in the first law of 

thermodynamics as stated in Equation (2.85), the internal energy e is due to the random 

motion of the atoms and molecules inside the system. Equation (2.85) is written for a 

stationary system. 

However, the fluid inside the control volume in Figure 10 is not stationary; it is moving at 

the local velocity V with a consequent kinetic energy per unit mass of V
2
/2.  

Hence, the energy per unit mass of the moving fluid is the sum of both internal and 

kinetic energies e+V
2
/2.  

This sum is called the total energy per unit mass. We are now ready to obtain an 

expression for B3, the rate of change of total energy of the fluid as it flows through the 

control volume.  
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Keep in mind that mass flows into the control volume of Figure 10 bringing with it a 

certain total energy; at the same time mass flows out of the control volume taking with it 

a generally different amount of total energy. 

The elemental mass flow across d S is ρV · dS, and therefore the elemental flow of total 
energy across d S is(ρV·dS)(e+V2

/2). Summing over the complete control surface, we 

obtain 

 

 

In addition, if the flow is unsteady, there is a time rate of change of total energy inside the 

control volume due to the transient fluctuations of the flow-field variables. The total 

energy contained in the elemental volume dV is ρ(e+ V2
/2) dV, and hence the total energy 

inside the complete control volume at any instant in time is 

 

 

 

 

 

 

 

 

 

Repeating the physical principle stated at the beginning of this section, the rate of heat 

added to the fluid plus the rate of work done on the fluid is equal to the rate of change of 

total energy of the fluid as it flows through the control volume (i.e., energy is conserved). 

In turn, these words can be directly translated into an equation by combining Equations 

(2.86), (2.88), (2.91), and (2.94) 
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Equation (2.95) is the energy equation in integral form; it is essentially the first law of 

thermodynamics applied to a fluid flow.  

For the sake of completeness, note that if a shaft penetrates the control surface in Figure 

10,  driving some power machinery located inside the control volume (say, a compressor 

of a jet engine), then the rate of work delivered by the shaft, W˙ shaft, must be added to 
the left side of Equation (2.95). Also note that the potential energy does not appear 

explicitly in Equation (2.95). Changes in potential energy are contained in the body force 

term when the force of gravity is included in f. 

we can obtain a partial differential equation for total energy from the integral form given 

in Equation (2.95). Applying the divergence theorem to the surface integrals in Equation 

(2.95), collecting all terms inside the same volume integral, and setting the integrand 

equal to zero, we obtain 

 

where Q˙ ′ viscous and W˙ ′ viscous represent the proper forms of the viscous terms. Equation 

(2.96) is a partial differential equation which relates the flow-field variables at a given 

point in space. 

If the flow is steady (∂/∂t = 0), inviscid (Q˙ viscous = 0 and W˙ viscous = 0), adiabatic (no heat 

addition, q˙ = 0), without body forces (f = 0), then Equations (2.95) and (2.96) reduce to 
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With the energy equation, we have introduced another unknown flow-field variable e. We 

now have three equations, continuity, momentum, and energy, which involve four 

dependent variables, ρ, p, V, and e. A fourth equation can be obtained from a 

thermodynamic state relation for e (see Chapter 7). If the gas is calorically perfect, then  

e = cvT  -- -- -- (2.99) 

where cv is the specific heat at constant volume. Equation (2.99) introduces temperature 

as yet another dependent variable. However, the system can be completed by using the 

perfect gas equation of state  

                                   p = ρRT -- -- -- (2.100) 

where R is the specific gas constant. Therefore, the continuity, momentum, and energy 

equations, along with Equations (2.99) and (2.100) are five independent equations for the 

five unknowns, ρ, p, V, e, and T . The matter of a perfect gas and related equations of 

state are reviewed; Equations (2.99) and (2.100) are presented here only to round out our 

development of the fundamental equations of fluid flow. 
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I.INTRODUCTION 

BUCKINGHAM'S Π-THEOREM 

The Rayleigh's method of dimensional  analysis becomes more laborious if the 

variables are more than the number of fundamental dimensions (M, L, T).  

This difficulty is overcame by using Buckingham's n-theorem, which states, "If there are n 

variables (independent and dependent variables) in a physical phenomenon and if these 

variables contain m fundamental dimensions (M, L, T). then the variables are arranged into (n 

- m) dimensionless terms. Each term is called n-term". 

Let X1, X2, X3, •••, Xn are the variables involved in a physical problem. Let X1 be the 

dependent variable and X2, X3,•••,Xn are the independent variables on which X1 depends. 

Then X1 is a function of X2, X3, •••, Xn and mathematically  it is expressed as 

                                            X1 = f(X2, X3, •••, Xn ) ...(12.1) 

Equation (12.1) can also be written as 

  

                                         f1(X1,X2, X3, •••, Xn) = 0. ...(12.2) 

Equation (12.2) is a dimensionally homogeneous equation. It contains n variables. If there are 

m fundamental dimensions then according to Buckingham's π-theorem, equation (12.2) can be 

written in terms of number  of  dimensionless  groups  or π -terms  in  which  number  of  π -
terms  is equal  to (n - m). Hence equation (12.2) becomes as 

                                              f(π1,, π2, ..., πn-m) = 0. ...(12.3) 

Each of n-terms is dimensionless and is independent of the system. Division or multiplication  

by a constant does not change the character of the π -term. Each n-term contains m + 1 

variables, where m is the number of fundamental dimensions and is also called repeating 

variables. Let in the above case X2, X3 and X4 are repeating variables if the fundamental 

dimension m (M, L, T) = 3. Then each n-term is written as 

 

 

 

Each equation is solved by the principle of dimensional homogeneity and values of a1 , b1 , c1 

etc., are obtained. These values are substituted in equation (12.4) and values of π1,π2, •••, πn-m 

are obtained. These  values  of  π's are  substituted  in  equation  (12.3). The  final  equation  

for  the  phenomenon  isobtained by expressing any one of the π-terms as a function of others 

as 
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METHOD OF SELECTING REPEATING VARIABLES 

The number of repeating variables are equal to the number of fundamental dimensions of the 

problem. The choice of repeating variables is governed by the following considerations : 

1. As far as possible, the dependent variable should not be selected as repeating variable. 

2. The repeating  variables should be chosen in such a way that one variable contains 

geometric property, other variable contains flow property  and third variable contains fluid 

property. 

       Variables with Geometric Property  are 

            (i) Length, l  (ii)  d (iii)  Height, H etc. 

Variables with flow property are 

           (i)  Velocity,  V (ii)  Acceleration  etc.  

       Variables with fluid property  :  

          (i) µ, (ii) p, (iii) m etc. 

3. The repeating variables selected should not form a dimensionless group. 

4.  The repeating  variables together must have the same number of fundamental 

dimensions. 

1. No two repeating variables should have the same dimensions. 

In most of fluid mechanics problems, the choice of repeating variables may be (i) d, v, p (ii) l, 

v, p or (iii) l, v, µ or (iv) d, v, µ. 

PROCEDURE   FOR  SOLVING  PROBLEMS   BY   BUCKINGHAN'S   Π-

THEOREM 

The procedure for solving problems by Buckingham's π -theorem is explained by considering 

the problem  : 

The resisting force R of a supersonic plane during flight can be considered as dependent upon 

the length of the aircraft l , velocity V, air viscosity µ, air density p and bulk modulus of air K. 

Express the functional relationship between these variables and the resisting force. 

Solution.  Step 1. The resisting force R depends upon (i) l , (ii) V, (iii) µ, (iv) p and (v) K. 

Hence R is a function of l , V, µ, p and K. Mathematically,  
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R = f(l, V, µ, p, K)  

or it can be written as  

f1(R, l , V, µ, p, K) = 0  

Total number of variables, n = 6. Number of fundamental dimensions, m = 3...(i) 

m is obtained by writing dimensions of each variables as R = MLT
-2

 , V= LT
-1

 , µ = ML
-1

T
-1

 , p 

= ML
-3

 , K = ML
-1

T
-2

  

Thus as fundamental dimensions in the problem are M, L, T and hence m = 3.] Number of 

dimensionless n-terms = n - m = 6 - 3 = 3. 

Thus three n-terms say n1 , n2 and n3 are formed. Hence equation (ii) is written as 

f1 (π1, π2, π3) = 0 

Stet 2. Each π-term = m + 1 variables, where m is equal to 3 and also called repeating variables. 

Out of six variables R, l, V, µ, p and K, three variables are to be selected as repeating variable. 

R is a dependent variable and should not be selected as a repeating variable.  

Out of the five remaining variables, one variable should have geometric property, the second 

variable should have flow  property and third one fluid property.  

These requirements are fulfilled by selecting l, V and p as repeating variables.  

The repeating variables themselves should not form a dimensionless term and  should have 

themselves fundamental dimensions equal to m, i.e., 3 here.  

Dimensions of l, V and p are L, LT
-1

 , ML
-3

 and hence the three fundamental dimensions exist in 

l, V and p and they themselves do not form dimensionless  group. 
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MODEL ANALYSIS 

For predicting  the  performance  of  the  hydraulic  structures  (such  as dams,  spillways etc.)  

or hydraulic machines (such as turbines, pumps etc.), before actually constructing or 

manufacturing, models of the structures or machines are made and tests are performed on 

them to obtain the desired information. 

The model is the small scale replica of the actual structure or machine. The actual structure or 

machine is called Prototype. It is not necessary that the models should be smaller than the 
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prototypes (though in most of cases it is), they may be larger than the prototype. The study of 

models of actual machines is called Model analysis.  

Model analysis is actually an experimental method of finding solutions of complex flow 

problems. Exact analytical solutions are possible only for a limited number of flow problems. 

The followings are the advantages of the dimensional and model analysis :  

1. The performance of the hydraulic structure or hydraulic machine can be easily predicted, 

in advance, from its model. 

2. With the help of dimensional analysis, a relationship  between the variables influencing a 

flow problem in terms of dimensionless parameters is obtained. This relationship helps in 

conducting tests on the model. 

3. The merits of alternative designs can be predicted with the help of model testing. The 

most economical and safe design may be, finally, adopted. 

4. The tests performed on the models can be utilized for obtaining, in advance, useful 

information about the performance of the prototypes only if a complete similarity exists 

between the model and the prototype. 

SIMILITUDE-TYPES  OF SIMILARITIES 

Similitude is defined as the similarity between the model and its prototype in every respect, 

which means that the model  and prototype have similar properties or model and prototype are 

completely similar. Three types of similarities must exist between  the model and prototype. 

They are 

   1. Geometric Similarity,  

  2. Kinematic Similarity, and  

  3. Dynamic Similarity. 

Geometric Similarity. The geometric similarity is said to exist between the model and the 

prototype. The ratio of all corresponding linear dimension in the model and prototype are 

equal. 

Let  Lm = Length of model,  

  bm = Breadth of model,  

  Dm = Diameter of model,  

  Am = Area of model,  

  Vm = Volume of model, and  

  Lp, bp, Dp, Ap, Vp = Corresponding values of the prototype. 
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For geometric similarity between  model and prototype, we must have the relation, 

 

where Lr is called the scale ratio. 

For area's ratio and volume's ratio the relation should be as given below : 

 

 

KINEMATIC SIMILARITY 

Kinematic similarity means the similarity of motion between model and prototype.  

Thus kinematic similarity is said to exist between the model and the prototype if the ratios of 

the velocity and acceleration at the corresponding points in the model and at the 

corresponding points in the prototype are the same.  

Since velocity and acceleration are vector quantities, hence not only the ratio of magnitude of 

velocity and acceleration at the corresponding points in model and prototype should be same ; 

but the directions of velocity and accelerations at the corresponding points in the model and 

prototype also should be parallel. 

Let  

VP1  = Velocity of fluid at point 1 in prototype, 

VP2  = Velocity of fluid at point 2 in prototype, 

ap1  = Acceleration of fluid at point 1 in prototype, 

ap2  = Acceleration of fluid at point 2 in prototype, and 

Vm1, , Vm2, , am1, , am2, = Corresponding values at the corresponding points of fluid velocity 

and acceleration in the model. 

For kinematic similarity, we must have 
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DYNAMIC SIMILARITY 

Dynamic similarity means the similarity of forces between the model and prototype. Thus 

dynamic similarity is said to exist between the model and the prototype if the ratios of the 

corresponding forces acting at the corresponding points are equal. Also the directions of the 

corresponding forces at the corresponding points should be same. 

Let  

 ( Fi)p = Inertia force at a point in prototype, 

( Fv)P = Viscous force at the point in prototype, 

( Fg)p = Gravity force at the point in prototype, and  

( Fi)m , ( Fv)w , ( Fg)m = Corresponding values of forces at the corresponding point in model. 

Then for dynamic similarity, we have, Also the directions of the corresponding forces at the 

corresponding points in the model and proto type should be same 

TYPES OF FORCES ACTING IN MOVING FLUID 

For the fluid flow problems, the forces acting on a fluid mass may be any one, or a 

combination of the several of the following forces : 

1. Inertia force, Fi  

2. Viscous force, Fv 

3. Gravity force, Fg  

4. Pressure force, FP 

5. Surface tension force, Fs 
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6. Elastic force, Fe 

1. Inertia Force ( Fi).  

It is equal to the product of mass and acceleration of the flowing fluid and acts in the direction 

opposite to the direction of acceleration. It is always existing in the fluid flow problems. 

2. Viscous Force ( FV).  

It is equal to the product of shear stress ('t) due to viscosity and surface area of the flow. It is 

present in fluid flow problems where viscosity is having an important role to play. 

3. Gravity Force (Fg).  

It is equal to the product of mass and acceleration due to gravity of the flowing fluid. It is 

present in case of open surface flow. 

4. Pressure Force (FP).  

It is equal to the product of pressure intensity and cross-sectional area of the flowing fluid. It 

is present in case of pipe-flow. 

5. Surface Tension Force ( Fs). 

 It is equal to the product of surface tension and length of surface of the flowing fluid. 

6. Elastic Force (Fe).  

It is equal to the product of elastic stress and area of the flowing fluid. 

For a flowing fluid, the above-mentioned forces may not always be present. And also the 

forces, which are present in a fluid flow problem, are not of equal magnitude. There are 

always one or two forces which dominate the other forces. These dominating forces govern 

the flow of fluid. 

DIMENSIONLESS  NUMBERS 

Dimensionless numbers are  those numbers which are obtained by dividing the inertia force  

by viscous force or gravity force or pressure  force or surface tension force or elastic force. As 

this is a ratio of one force to the other force, it will be a dimensionless number. These 

dimensionless numbers are also called non-dimensional parameters. The followings are the 

important dimensionless numbers : 

 1. Reynold's number, 2.  Froude's number, 

 3.  Euler's number, 4.  Weber's number, 

 5.  Mach's number. 
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Reynold's Number (Re)· It is defined as the ratio of inertia force of a flowing fluid and 

the viscous force of the fluid. The expression for Reynold's number is obtained as 

  

 

In case of pipe flow, the linear dimension  L is taken  as diameter, d. Hence Reynold's number 

for pipe flow, 

 

Froude's Number (Fe)·  The Froude's number is defined as the square root of the ratio of 

inertia force of a flowing fluid to the gravity force. Mathematically, it is expressed as 
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Euler's N umber (Eu)· It is defined as the square root of the ratio of the inertia force of 

a flowing fluid to the pressure force. Mathematically, it is expressed as 

 

Weber's Number (We)·  It is defined as the square root of the ratio of the inertia force of 

a flowing fluid to the surface tension force. Mathematically, it is expressed as 

 

Mach's N umber (M). Mach's number is defined as the square root of the ratio of the 

inertia force of a flowing fluid to the elastic force. Mathematically, it is defined as 

 

MODEL LAWS OR SIMILARITY LAWS 
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For the dynamic similarity between the model and the prototype, the ratio of the 

corresponding forces acting at the corresponding points in the model and prototype should be 

equal.  

The ratio of the forces are dimensionless numbers. It means for dynamic similarity between 

the model and prototype, the dimensionless numbers should be same for model and the 

prototype.  

But it is quite difficult to satisfy the condition that all the dimensionless numbers ( i.e., Re, Fe, 

We, Eu and M) are the same for the model and prototype.  

Hence models are designed on the basis of ratio of the force, which is dominating in the 

phenomenon. The laws on which the models are designed for dynamic similarity are called 

model laws or laws of similarity.  

The followings are the model laws : 

1. Reynold's model law, 2. Froude model law, 

3. Euler model law,            4. Weber model law, 

5. Mach model law. 

Reynold's Model Law.  

Reynold's model law is the law in which models are based on Reynold's  number. Models 

based  on Reynold's  number  includes : 

i. Pipe flow 

ii. Resistance experienced by sub-marines, airplanes, fully immersed bodies etc. 

As defined earlier that Reynold number is the ratio of inertia force and viscous force, and 

hence fluid flow problems where viscous forces alone are predominant, the models are 

designed for dynamic similarity on Reynolds law, which states that the Reynold number for 

the model must be equal to the Reynold number for the prototype. 

Let  

Vm = Velocity of fluid in model,  

Pm = Density of fluid in model, 

Lm = Length or linear dimension of the model, 

µm = Viscosity or fluid in model, and  

Vp , PP , Lp and µp are the corresponding values of velocity, density, linear dimension and 

viscosity of fluid in prototype. Then according to Reynold's model law, 
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Froude Model Law.    

 Froude  model  law  is the  law  in  which  the models  are based  on 

Froude number which means for dynamic similarity between the model and prototype, the 

Froude number for both of them should be equal. Froude model law is applicable when the 

gravity force is only predominant force which controls the flow in addition to the force of 

inertia. Froude model law is applied in the following fluid flow problems : 

1. Free surface flows such as flow over spillways, weirs, sluices, channels etc., 

2. Flow of jet from an orifice or nozzle, 

3. Where waves are likely to be formed on surface, 

4. Where fluids of different densities flow over one another. 

Let  

Vm = Velocity of fluid in model, 

Lm = Linear dimension or length of model, 

gm = Acceleration due to gravity at a place where model is tested. and 
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Vp, Lp and gp are the corresponding values of the velocity, length and acceleration due to 

gravity for the prototype. Then according to Froude model law, 
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EULER'S MODEL LAW. 

Euler's model law is the law in which the models are designed on Euler's number which 

means for dynamic similarity between the model and prototype, the Euler number for model 

and prototype should be equal.  

Euler's model law is applicable when the pressure forces are alone predominant in addition to 

the inertia force. According to this law : 

 

Vm = Velocity of fluid in model, 

Pm = Pressure of fluid in model, 𝜌m = Density of fluid in model, 

Vp, PP , 𝜌P = Corresponding values in prototype, then 

 

 

Substituting these values in equation ( 12.28), we get 

 

If fluid is same in model and prototype, then equation ( 12.29) becomes as 

 

 

Euler's model law is applied for fluid flow problems where flow is taking place in a closed 

pipe in which case turbulence is fully developed so that viscous forces are negligible and 

gravity force and surface tension force is absent.  

This law is also used where the phenomenon of cavitation takes place. 

WEBER MODEL LAW 

Weber model law is the law in which models are based on Weber's n umber, which is the ratio 

of the square root of inertia force to surface tension force.  

Hence where surface tension effects predominate in addition to inertia force, the dynamic 

similarity between the model and prototype is obtained by equating the Weber number of the 

model and its prototype.  

Hence according to this law : 
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Vm = Velocity of fluid in model, 

Jm = Surface tensile force in model, 𝜌 m = Density of fluid in model, 

Lm = Length  of surface in model,and  

Vp, Jp, 𝜌P, Lp = Corresponding values of fluid in prototype. 

Then according to Weber law, we have 

 

Weber model law is applied in following cases : 

1. Capillary rise in narrow passages, 

2. Capillary movement of water in soil, 

3. Capillary waves in channels, 

4. Flow over weirs for small heads. 

Mach Model law 

Mach model law is the law in which models are designed on Mach number, which is the ratio 

of the square root of inertia force to elastic force of a fluid.  

Hence where the forces due to elastic compression predominate in addition to inertia force, 

the dynamic similarity between the model and its prototype is obtained by equating the Mach 

number of the model and its prototype.  

Hence according to this law : 

 

Vm = Velocity of fluid in model, 

Km = Elastic stress for model, 𝜌m = Density of fluid in model, and 

Vp , Kp and 𝜌p = Corresponding values for prototype. Then according to Mach law, 
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Mach  model  law is applied  in the following  cases : 

1. Flow of aeroplane and projectile through air at supersonic speed, i.e., at a velocity 

more than the velocity  of sound, 

2. Aerodynamic testing, 

3. Under water testing of torpedoes, 

4. Water-hammer problems. 

MODEL TESTING  OF PARTIALLY  SUB-MERGED  BODIES 

Let us consider the testing of a ship model (ship is a partially sub-merged body) in a water-

tunnel in order to find the drag force F or resistance experienced by a ship. The drag 

experienced by a ship consists of  : 

1. The wave resistance, which is the resistance offered by the waves on the free sea-

surface, and 

2. The frictional or viscous resistance, which is offered by the water on the surface of 

contact of the ship with water. 

Thus in this case three forces namely inertia, gravity and viscous forces are present. Then for 

dynamic similarity between the model and its prototype, the Reynold's number (which is ratio 

of inertia force to viscous force) and the Froude number (which is the ratio of inertia force to 

gravity force) should be taken into account. This means that in this case, the Reynold model 

law and Froude model law should be applied. 

But for Reynold model law, the condition is 

 

Reynold number of model= Reynold number of prototype 

If fluid is same for the model and prototype, then 𝜌m = 𝜌p and µm = µp 
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If fluid is same for model and prototype and test is conducted at the same place where 

prototype is to operate, then gm = gp 

 

From equations (12.33) and (12.34), we observe that the velocity of fluid in model for 

Reynold model law and Froude model law is different.  

Thus it is quite impossible to satisfy both the laws together, which means the dynamic 

similarity between the model and its prototype will not exist. To overcome this difficulty, the 

method suggested by William Froude is adopted  for testing  the  ship model (or partially  

sub-merged bodies) as : 

Step 1. The total resistance experienced by a ship is equal to the wave resistance plus 

frictional or viscous resistance. 

Let  

(R)p = Total resistance experienced by prototype, 

(Rw)P = Wave resistance experienced by prototype, 

(R1)p  = Frictional resistance experienced by prototype, and 
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CLASSIFICATION OF MODELS 

The hydraulic models are classified as : 

     1. Undistorted  models, and  

     2.  Distorted  models. 

Undistorted Models.  

Undistorted models are those models which  are geometrically similar to their prototypes or in 

other words if the scale ratio for the linear dimensions of the model and its prototype is same, 

the model is called undistorted model.  

The behavior of the prototype can be easily predicted from the results of undistorted  model. 

DISTORTED MODELS. 

A model is said to be distorted if it is not geometrically  similar to its prototype. For a 

distorted model different scale ratios for the linear dimensions are  adopted.  

For example,  in  case  of  rivers,  harbours,  reservoirs  etc., two  different  scale  ratios,  one  

for horizontal dimensions and other for vertical dimensions are taken. Thus the models of 

rivers, harbours and reservoirs will become as distorted models.  

If for the river, the horizontal and vertical  scale ratios are taken to be same so that the model 

is undistorted, then the depth of water in the  model of the river will be very-very small which 

may not be measured accurately. The following are the advantage of distorted models : 

1. The vertical  dimensions of the model can be measured  accurately. 

2. The cost of the model can be reduced. 

3. Turbulent flow in the model can be maintained. 

• Though there are some advantages of the distorted model, yet the results of the 

distorted model cannot be directly transferred to its prototype. But sometimes from the 

distorted models very useful information  can be obtained. 
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FLOW THROUGH THE PIPE 

Laminar flow and turbulent flow  

We have seen that when the Reynolds number is less than 2000 for pipe flow, the flow is 

known as laminar flow whereas when the Reynolds number is more than 4000, the  flow is 

known as turbulent flow. In this chapter, the turbulent flow of fluids through pipes running 

full will be considered. 
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 If the pipes are partially full as in the case of sewer lines, the pressure inside the pipe is same 

and equal to atmospheric pressure. Then the flow of fluid in the pipe is not under pressure.  

This case will be taken in the section of flow of water through open channels. Here we will 

consider flow of fluids through pipes under pressure only. 

LOSS OF ENERGY IN PIPE 

When a fluid is flowing through a pipe, the fluid experiences some resistance due to which 

some of the energy of fluid is lost. This loss of energy is classified as : 

 

LOSS OF ENERGY (OR HEAD) DUE TO FRICTION 

(a) Darcy-Weisbach  Formula.   

The loss of head  (or energy) in  pipes due to friction  is calculated from Darcy-Weisbach  

equation which is given by 

 

 

Where  hf= loss of head due to friction 

 f = co-efficient of friction which is a function of Reynolds number 

L = length of pipe, V = mean velocity of flow, d = diameter of pipe 
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(b) Chezy's Formula  for loss  of  head  due to friction  in pipes, which expression for loss of 

head due to friction in pipes is derived. Equation is 

 

 

 

MINOR ENERGY (HEAD) LOSSES 

The loss of head or energy due to friction in a pipe is known as major loss while the loss of 

energy due to change of velocity of the following fluid in magnitude or direction is called  

minor  loss of energy. The minor loss of energy (or head) includes the following cases : 

1. Loss of head due to sudden enlargement, 

2. Loss of head due to sudden contraction, 

3. Loss of head at the entrance of a pipe, 

4. Loss of head at the exit of a pipe, 
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5. Loss of head due to an obstruction in a pipe, 

6. Loss of head due to bend in the pipe, 

7. Loss of head in various pipe fittings. 

In case of long pipe the above losses are small as compared with the loss of head due to 

friction and hence they are called minor losses and even may be neglected  without serious 

error. But in case of a short pipe, these losses are comparable with the loss of head due to 

friction. 

Loss of Head Due to Sudden Enlargement. Consider a liquid flowing through a pipe which 

has sudden enlargement as shown in Fig. 11. Consider two sections ( 1)-(1) and (2)-(2) before 

and after the enlargement. 

 

Figure 11. Sudden enlargement 

Let 

p 1 = pressure intensity at section  1-1, V1 = velocity of flow at section 1-1, 

A 1= area of pipe at section 1-1 

p2, V2 and A 2 = corresponding values at section 2-2. 

 

 

 

p2, V2 and A 2 = corresponding values at section 2-2. 

Due to sudden change of diameter of the pipe from D 1 to D2, the liquid flowing from the 

smaller 

pipe is not able to follow the abrupt change of the boundary. Thus the flow separates from 

the boundary and turbulent eddies are formed as shown in Fig. 11. The loss of head (or 

energy) takes place due to the formation of these eddies. 

Let p' = pressure intensity of the liquid eddies on the area (A 2 - A 1) 
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he = loss of head due to sudden enlargement Applying  Bernoulli's equation  at sections  

1-1 and 2-2, 
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Loss of Head due to Sudden Contraction.   

Consider a liquid flowing in a pipe which has a sudden contraction in area as shown in Fig. 

12. Consider two sections 1-1 and 2-2 before and after contraction.  

As the liquid flows from large pipe to smaller pipe, the area of flow goes on decreasing and 

becomes minimum at a section C-C as shown in Fig. 12.  

This section C-C is called Vena-contracta. After section C-C, a sudden enlargement of the 

area takes place. The loss of head due to sudden contraction is actually due to sudden 

enlargement from Vena-contracta to smaller pipe. 

 

Figure 12. Sudden contraction 

Ac = Area of flow at section C-C  

Ve = Velocity of flow at section C-C  

A2 = Area of flow at section 2-2  

V2 = Velocity of flow at section 2-2 

he = Loss of head due to sudden contraction. 
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Now he = actual loss of head due to enlargement from section C-C to section 2-2 and is given 

by equation (11.5) as 

 

 

 

Loss of Head at the Entrance of a Pipe 

This is the loss of energy which occurs when a liquid enters a pipe which is connected to a 

large tank or reservoir.  

This loss is similar to the loss of head due to sudden contraction. This loss depends on the 

form of entrance.  

For a sharp edge entrance, this loss is slightly more than  a rounded or bell mouthed  

entrance.  

In practice the value of loss of head at the entrance (or inlet) of a pipe with sharp cornered 

entrance is  taken = 0.5 
𝑉22𝑔     . Where V = velocity of liquid in pipe.  

This loss is denoted by hi 
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Loss of Head at the Exit of Pipe  

This is the loss of head (or energy) due to the velocity of liquid at outlet of the pipe which is 

dissipated either in the form of a free jet (if outlet of the pipe is free) or it is lost in the tank or 

reservoir (if the outlet of the pipe is connected to the tank or reservoir).  

This loss is equal to 
𝑉22𝑔 where V is the velocity of liquid at the outlet of pipe. This loss is 2g 

denoted h0 

 

where  V = velocity at outlet of pipe. 

Loss of Head Due to an Obstruction in a Pipe 

Whenever there is an obstruction in a pipe, the loss of energy takes place due to reduction of 

the area of the cross-section of the pipe at the place where obstruction is present. There is a 

sudden enlargement of the area of flow beyond the obstruction due to which loss of head 

takes place as shown in Fig. 13 (a) 

Consider a pipe of area of cross-section  

A having an obstruction  as   

shown  in  Fig.  13. 

Let  

a =  Maximum  area  of  obstruction 

A = Area of pipe 

V = Velocity of liquid in pipe 
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Figure.13 An obstruction in a pipe. 

Then (A - a) = Area of flow of liquid at section 1-1 As the liquid  flows and passes through  

section 1-1,  a   vena-contracta    is  formed   beyond   section    1-1, after  which  the  stream  

of  liquid  widens  again  and velocity   of  flow   at  section   2-2  becomes   uniform   and 

equal to velocity, V in the pipe.  

This situation is similar to the flow of liquid through  sudden enlargement  

Let  

Ve = Velocity of liquid at vena-contracta. 

Then loss of head due to obstruction = loss of head due to enlargement from vena-contracta  

to section 2-2. 

 

Loss of Head due to Bend in Pipe 
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When there is any bend in a pipe, the velocity of flow changes, due to which the separation of 

the flow from the boundary and also formation of eddies takes place. Thus the energy is lost. 

Loss of head in pipe due to bend is expressed as 

 

where hb = loss of head due to bend, V = velocity of flow, k = co-efficient of bend The value 

of k depends on 

(i) Angle of bend, ( ii)  Radius of curvature of bend, ( iii)  Diameter of pipe. 

Loss of Head in Various Pipe Fittings 

The loss of head in the various pipe fittings such as valves, couplings etc., is expressed as 

 

where V = velocity of flow, k = co-efficient of pipe fitting. 

 

HYDRAULIC  GRADIENT  AND  TOTAL  ENERGY  LINE 

 

The concept of hydraulic gradient line and total energy line is very useful in the study of flow 

of fluids through  pipes. They are defined as : 

Hydraulic Gradient Line.    

It is defined as the line which gives the sum of pressure head (  ) and datum head (z) of a 

flowing fluid in a pipe with respect to some reference line or it is the line which is obtained 

by joining the top of all vertical ordinates, showing the pressure head (p/w) of a flowing fluid 

in a pipe from the center of the pipe. It is briefly written as H.G.L. (Hydraulic Gradient Line). 

Total Energy Line.  

It is defined as the line which gives the sum of pressure head, datum head and kinetic head of 

a flowing fluid in a pipe with respect to some reference line.  

It is also defined as the line which is obtained by joining the tops of all vertical ordinates 

showing the sum of pressure head and kinetic head from the centre of the pipe. It is briefly 

written as T.E.L. (Total Energy Line). 

FLOW THROUGH  SYPHON 

Syphon is a long bent pipe which is used to transfer liquid from a reservoir at a higher 

elevation to another reservoir at a lower level when the two reservoirs are separated by a hill 

or high level ground as shown in Fig. 14. 
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Fig. 14 

The point C which is at the highest of the syphon is called the summit. As the point C is 

above the free surface of the water in the tank A, the pressure at C will be less than 

atmospheric pressure.  

Theoretically, the pressure at C may be reduced to - 10.3 m of water but in actual practice this 

pressure is only - 7.6 m of water or 10.3 - 7.6 = 2.7 m of water absolute.  

If the pressure at C becomes less than 2.7 m of water absolute, the dissolved air and other 

gases would come out from water and collect at the summit. The flow of water will be 

obstructed. Syphon is used in the following cases : 

To carry water from one reservoir to another reservoir  separated by  a hill or ridge. 

To take out the liquid from a tank which is not having any outlet. 

To empty a channel not provided  with any outlet sluice. 

 

 

FLOW THROUGH PIPES IN SERIES OR FLOW THROUGH COMPOUND PIPES 

Pipes in series or compound pipes are defined as the pipes of different lengths and different 

diameters connected end to end (in series) to form a pipe line as shown in Fig. 11.16. 

 

Fig. 15 
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Let,  

L 1, L2, L3 = length of pipes 1, 2 and 3 respectively 

d1, d2, d3 = diameter of pipes 1, 2, 3 respectively 

V1,  V2, V3 = velocity of flow through pipes 1, 2, 3 

f1 , f2, f3 = co-efficient of frictions for pipes 1, 2, 3 

H = difference of water level in the two tanks. 

 

EQUIVALENT PIPE 

This is defined as the pipe of uniform diameter having loss of head and discharge equal to 

the loss of head and discharge of a compound  pipe consisting of several pipes of different 

lengths and diameters.  

The uniform diameter of the equivalent pipe is called equivalent size of the pipe. The 

length of equivalent pipe is equal to sum of lengths of the compound pipe consisting of 

different pipes. 

Let   L 1 = length of pipe  1  and  d1 = diameter of pipe 1  

L2 = length of pipe 2 and d2 = diameter of pipe 2  

L3 = length of pipe 3 and d3 = diameter of pipe 3  

H = total head loss 

L = length of equivalent pipe 

d = diameter of the equivalent pipe  
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Then   L = L1 + L2 + L3 

Total head loss in the compound pipe, neglecting  minor losses 

 

 

 

 

FLOW THROUGH PARALLEL PIPES 

Consider a main pipe which divides into two or more branches as shown in Fig. 16 and again 

join together downstream to form a single pipe, then the branch pipes are said to be 

connected in parallel. The discharge through the main is increased by connecting pipes in 

parallel. 
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Fig.16 

The rate of flow in the main pipe is equal to the sum of rate of flow through  branch 

pipes. Hence from Fig.  16, we have 

 

Q = Q1+ Q2 

In this, arrangement, the loss of head for each branch pipe is same. 

:. Loss of head for branch pipe 1 = Loss of head for branch pipe 2 

 

FLOW THROUGH BRANCHED PIPES 

When three or more reservoirs are connected by means of pipes, having one or more 

junctions, the system is called a branching pipe system. Fig. 17 shows three reservoirs at 

different levels connected to a single junction, by means of pipes which are called 

branched pipes. The lengths, diameters and co-efficient of friction of each pipes is given. 

It is required to find the discharge and direction of flow in each pipe.  

 

Fig.17 
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The basic equations used for solving such problems are : 

1. Continuity equation which means the inflow of fluid at the junction should be equal to 

the outflow of fluid. 

2. Bernoulli' s equation, and 

3. Darcy-Weisbach equation 

Also it is assumed that reservoirs are very large and the water surface levels in the reservoirs 

are constant so that steady conditions exist in the pipes. Also minor losses are assumed very 

small.  

The flow from reservoir A takes place to junction D. The flow from junction D is towards 

reservoirs C. Now the flow from junction D towards reservoir B will take place only when 

piezometric head at D (which is equal to 
𝑃𝐷𝜌𝑔+ ZD ) is more than the piezometric head at B ( 

i.e., ZB). Let us consider that flow    is from D to reservoir B. 

 

POWER TRANSMISSION THROUGH PIPES 

Power is transmitted through pipes by flowing water or other liquids flowing through them.  

The power transmitted depends upon  

(i) the weight of liquid flowing through the pipe and  

(ii) the total head available at the end of the pipe.  

Consider a pipe AB connected to a tank as shown in Fig. 18. The power available at the end B 

of the pipe and the condition for maximum transmission of power will be obtained as 

mentioned below 

Let  

L = length of the pipe, 
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d = diameter of the pipe, 

H = total head available at  

      the inlet of pipe, 

V = velocity of flow in pipe, 

h1= loss of head due to  

    friction, and 

  f = co-efficient of friction. The head available at the outlet of the pipe, if minor losses are 

neglected = Total head at inlet - loss of head due to friction 

 

Fig.18 Power Transmission through pipe 
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CONDITION FOR MAXIMUM TRANSMISSION OF POWER 

The condition for maximum transmission of power is obtained by differentiating equation 

(11.21) with respect to V and equating the same to zero. 
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Equating (11.23) is the condition for maximum transmission of power. It states that power 

transmit ted through a pipe is maximum when the loss of head due to friction is one-third of 

the total head at inlet. 

Maximum Efficiency of Transmission of Power 

Efficiency of power transmission through pipe is given by equation (11.22) as 

 

FLOW THROUGH NOZZLES 

Fig. 19 shows a nozzle fitted at the end of a long pipe. The total energy at the end of the 

pipe consists of pressure energy and kinetic energy.  

By fitting the nozzle at the end of the pipe, the total energy is converted into kinetic 

energy. Thus nozzles are used, where higher velocities of flow are required. The 

examples are 
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Figure 19 Nozzle fitted to a pipe 

In case of Pelton turbine, the nozzle is fitted at the end of the pipe (called penstock) to 

increase velocity. 

In case of the extinguishing fire, a nozzle is fitted at the end of the hose pipe to increase 

velocity.  

Let D = diameter of the pipe,  

L = length of the pipe, 

A = area of the pipe =
𝜋4D

2
, 

V = velocity of flow in pipe, 

H = total head at the inlet of the pipe, 

d = diameter of nozzle at outlet, 

v = velocity of flow at outlet of nozzle, 

a = area of the nozzle at outlet =
𝜋4d

2
, 

f = co-efficient of friction for pipe. 

Loss of head due to friction in pipe, ℎ𝑓 = 4𝑓𝐿𝑉22𝑔𝑋𝐷  

:. Head available at the end of the pipe or at the base of nozzle = Head at inlet of pipe - head 

lost due to friction 
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UNIT – III –FLUID FLOW OVER BODIES AND BOUNDARY LAYER THEORY – SAEA1304 
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I.INTRODUCTION TO BOUNDARY LAYER FLOW 

When a real fluid flows past a solid body or a solid wall, the fluid particles adhere to the 

boundary and condition of no slip occurs. This means that the velocity of fluid close to the 

boundary will be same as that of the boundary.  

If the boundary is stationary, the velocity of fluid at the boundary will be zero.  Farther away 

from the boundary, the velocity will be higher and as a result of this variation of velocity, the 

velocity gradient  du/dy  will exist.  The velocity of fluid increases from zero velocity on the 

stationary boundary to free-stream velocity ( U) of the fluid in the direction normal to the 

boundary. This variation of velocity from zero to free-stream velocity in the direction normal 

to the boundary takes place in a narrow region in the vicinity of solid boundary.  

This narrow region of the fluid is called boundary layer. The theory dealing with boundary  

layer flows is called boundary  layer theory. 

According to boundary layer theory, the flow of fluid in the neighbourhood  of the solid 

boundary may be divided into two regions as shown in Fig. 20. 

 

Figure 20. Flow over solid body 

A very thin layer of the fluid, called the boundary layer, in the immediate neighbourhood  of 

the solid boundary, where the variation of velocity from zero at the solid boundary to free-

stream velocity in the direction normal to the boundary takes place.  

In this region, the velocity gradient  du/dy  exists andhence the fluid exerts a shear stress on 

the wall in the direction of motion. The value of shear stress is given by 

𝜏 = 𝜇 𝑑𝑢𝑑𝑦 

The remaining fluid, which is outside the boundary layer. The velocity outside the boundary 

layer is constant and equal to free-stream velocity. 
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 As there is no variation of velocity in this region, the velocity gradient du/dy  becomes zero. 

As a result of this the shear stress is zero. 

Laminar Boundary Layer 

For defining the boundary layer ( i.e., laminar boundary layer or turbulent boundary layer) 

consider the flow of a fluid, having free-stream velocity ( U), over a smooth thin plate which 

is flat and placed parallel to the direction for free stream of fluid as shown in Fig. 20.  

Let us consider the flow with zero pressure gradient on one side of the plate, which is 

stationary. 

Figure 20. Flow over a plate 

The velocity of fluid on the surface of the plate should be equal to the velocity of the plate. 

But plate is stationary and hence velocity of fluid on the surface of the plate is zero.  

But at a distance away from the plate, the fluid is having certain velocity. Thus a velocity 

gradient is set up in the fluid near the surface of the plate. 

This velocity gradient develops shear resistance, which retards the fluid. Thus the fluid with a 

uniform free stream velocity ( U) is retarded in the vicinity of the solid surface of the plate 

and the boundary layer region begins at the sharp leading edge.  

At subsequent points downstream the leading edge, the boundary layer region increases 

because the retarded fluid is further retarded. This is also referred as the growth of boundary 

layer.  

Near the leading edge of the surface of the plate, where the thickness is small, the flow in the 

boundary layer is laminar though the main flow is turbulent. This layer of the fluid is said to 

be laminar boundary layer. This is shown by AE in Fig. 20.  
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The length of the plate from the leading edge, up to which laminar boundary layer exists, is 

called laminar zone. This is shown by distance AB. The distance of B from leading edge is 

obtained from Reynold number equal to 5 x 10
5
 for a plate. Because up to this Reynold 

number the boundary layer is laminar.  

The Reynold number is given by (𝑅𝑒)𝑥 = 𝑈 𝑋 𝑥𝜗  

where   

x = Distance from leading edge,  

U = Free-stream velocity of fluid,  

v = Kinematic viscosity of fluid, 

Hence for laminar boundary  layer, we have 5 x 10
5
 = 

𝑈 𝑋 𝑥𝜗   ---(13.1) 

If the values of U and v are known, x or the distance from the leading edge up to which 

laminar boundary layer exists can be calculated. 

Turbulent Boundary Layer 

If the length of the plate is more  than  the  distance x, calculated from equation (13.1), the 

thickness of boundary layer will go on increasing in the down stream direction.  

Then the laminar boundary layer becomes unstable and motion of fluid within it, is disturbed 

and irregular which leads to a transition from laminar to turbulent boundary layer.  

This short length over which the boundary layer flow changes from laminar to turbulent is 

called transition zone. This is shown by distance BC in Fig. 20.  

Further downstream the transition zone, the boundary layer is turbulent and continues to grow 

in thickness. This layer of boundary is called turbulent boundary layer, which is shown by the 

portion FG in Fig. 20. 

Laminar Sub-layer 

This is the region in the turbulent boundary layer zone, adjacent to the solid surface of the 

plate as shown in Fig. 20.  

In this zone, the velocity variation is influenced only by viscous effects.  

Though the velocity distribution would be a parabolic curve in the laminar sub-layer zone, but 

in view of the very small thickness we can reasonably assume that velocity variation is linear 

and so the velocity gradient can be considered constant.  

Therefore, the shear stress in the laminar sub-layer would be constant and equal to the 

boundary shear stress 𝜏0. Thus the shear stress in the sub-layer is 
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Boundary Layer Thickness (𝛿). 

It is defined as the distance from the boundary of the solid body measured in the y-direction to 

the point, where the velocity of the fluid is approximately equal to 0.99 times the free stream 

velocity ( U) of the fluid. It is denoted by the symbol 𝛿O. 

For laminar and turbulent zone it is denoted as : 𝛿 Lam = Thickness of laminar boundary  layer, 𝛿 𝑡ur = Thickness of turbulent boundary layer, and 𝛿 ' = Thickness of laminar sub-layer. 

Displacement Thickness (𝛿 ∗) 

It is defined as the distance, measured perpendicular to the boundary of the solid body, by 

which the boundary should be displaced to compensate for the reduction in flow rate on 

account of boundary layer formation. It is denoted by (𝛿 ∗).  

It is also defined as : 

"The distance perpendicular to the boundary, by which the free-stream is displaced due to the 

formation of boundary layer". Expression for 𝛿 ∗  

 

Figure 21. Displacement thickness 

Consider the flow of a fluid having free-stream velocity equal to U over a thin smooth plate as 

shown in Fig. 21.  

At a distance x from the leading edge consider a section 1-1. The velocity of fluid at B i s zero 

and at C, which lies on the boundary layer, is U.  
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Thus velocity varies from zero at B to U at C, where BC is equal to the thickness of boundary 

layer i.e., 

Distance BC = 8 

At the section  1-1, consider an elemental strip. 

Let  

y = distance of elemental strip from the plate, 

dy = thickness of the elemental strip, 

u = velocity of fluid at the elemental strip, 

b = width of plate. 

Then area of elemental strip,  

dA = b x dy 

Mass of fluid per second flowing through elemental strip 

= p x Velocity x Area of elemental strip 

= pu x dA = pu x b x dy ...(i) 

If there had been no plate, then the fluid would have been flowing with a constant velocity 

equal to free-stream velocity ( U) at the section 1-1. Then mass of fluid per second flowing 

through elemental strip would have been 

= p x Velocity x Area = p x U x b x dy ...( ii ) 

 As U is more than u, hence due to the presence of the plate and consequently due to the 

formation of  the boundary layer, there will be a reduction in mass flowing per second through 

the elemental strip. 
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Momentum  Thickness (𝜽). 

Momentum   thickness   is  defined   as  the  distance, measured perpendicular to the boundary 

of the solid body, by which the boundary should be displaced 

to compensate for the reduction in momentum of the flowing fluid on account of boundary 

layer formation. It is denoted by θ. 

Consider the flow over a plate as shown in Fig. 21. Consider the section 1-1 at a distance x 

from leading edge. Take an elemental strip at a distance y from the plate having thickness ( 

dy). The mass of fluid flowing per second through this elemental strip is given by equation (i) 

and is equal to pubdy. 

Momentum of this fluid = Mass x Velocity = ( pubdy )u 

Momentum of this fluid in the absence of boundary  layer = ( pubdy )U 

Loss of momentum through elemental strip = ( pubdy )U - ( pubdy ) x u = pbu( U - u)dy 

Total loss of momentum/sec through BC = ∫ pbu( U - u)dy𝛿0  ...(13.3) 
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Energy Thickness (𝛿 **). 

It is defined as the distance measured perpendicular to the boundary of the solid body, by 

which the boundary should be displaced to compensate for the reduction in kinetic energy of 

the flowing fluid on account of boundary layer formation. It is denoted by  𝛿 **. 

Consider the flow over the plate as shown in Fig. 13.3 having section 1-1 at a distance x from 

leading edge. The mass of fluid flowing per second through the elemental strip of thickness 

'dy' at a distance y from the plate as given by equation (i) = pubdy 
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DRAG  FORCE ON A  FLAT PLATE DUE TO  BOUNDARY LAYER 

Consider the flow of a fluid having free-stream velocity equal to U, over a thin plate as 

shown in Fig. 22.  The drag force on the plate can be determined if the velocity profile 

near the plate is known. 

 Consider a small length Ax of the plate at a distance of x from the leading edge as show n 

in Fig. 22 (a). The enlarged view of the small length of the plate is shown in Fig. 22 (b). 
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Figure 22. Drag force on a plate due to boundary layer 
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TURBULENT BOUNDARY LAYER ON A FLAT PLATE 

The thickness of the boundary layer, drag force on one side of the plate and co-efficient of 

drag due to turbulent boundary layer on a smooth plate at zero pressure gradient are 

determined as in case of laminar boundary layer provided the velocity profile is known.  

Blasius on the basis of experiments give the following velocity profile for turbulent boundary 

layer 

 

 

Equation (13.36) is not applicable very near the boundary, where the thin laminar sub-layer of 

thickness 𝛿' exists. Here velocity distribution is influenced only by viscous effects. 

 

ANALYSIS OF TURBULENT BOUNDARY LAYER 

If Reynold number is more than 5 x 10
5
 and less than 10

7
 the thickness of boundary layer and 

drag co-efficient are given as : 

 

 

 

where   

           x = Distance from the leading edge 

          Rex = Reynold number for length x 

          ReL  = Reynold number at the end of the plate 
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If Reynold number is more than 107 but less than 109, Schlichting gave the empirical 

equation as 

 

 

 

TOTAL DRAG ON A FLAT PLATE DUE TO LAMINAR AN D TURBULENT 

BOUNDARY LAYER 

Consider the flow over a flat plate as shown in Fig. 13.5. 

 

Figure 23. Drag due to laminar and turbulent boundary layer 

Let  

 L = Total length of the plate, b = Width of plate, 

 A = Length of laminar boundary  layer 

If the length of transition region is assumed negligible, then 

 L - A = Length of turbulent boundary layer. 

We have obtained the drag on a flat plate for the laminar as well as turbulent boundary layer 

on the assumption that turbulent boundary layer starts from the leading edge.  

This assumption is valid only when the length of laminar boundary layer is negligible. But if 

the length of laminar boundary layer is not negligible, then the total drag on the plate due to 

laminar and turbulent boundary layer is calculated as : 
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(1) Find the length from the leading edge upto which  laminar boundary  layer exists. This 

is done by equating 5 x 10
5
 = Ux/v . The value of x gives the length of laminar 

boundary layer. Let this length is equal to A 

(2) Find drag using Blasius solution for laminar boundary  layer for length A. 

(3) Find drag due to turbulent boundary layer for the whole length of the plate. 

(4) Find the drag due to turbulent boundary layer for a length A only 

Then total drag on the plate 

 = Drag given by (2) + Drag given by (3) - Drag given by (4) 

 = Drag due to laminar boundary layer for length A 

  + Drag due to turbulent boundary  layer for length L 

  - Drag due to turbulent boundary layer for length A.  

SEPARATION OF BOUNDARY LAYER 

When a solid body is immersed in a flowing fluid, a thin layer of fluid called the boundary 

layer is formed adjacent to the solid body. In this thin layer of fluid, the velocity varies from 

zero to free-stream velocity in the direction normal to the solid body. Along the length of the 

solid body, the thickness of the boundary layer increases.  

The fluid layer adjacent to the solid surface has to do work against surface friction at the 

expense of its kinetic energy. This loss of the kinetic energy is recovered from the immediate 

fluid layer in contact with the layer adjacent to solid surface through momentum exchange 

process. Thus the velocity of the layer goes on decreasing.  

Along the length of the solid body, at a certain point a stage may come when the boundary 

layer may not be able to keep sticking to the solid body if it cannot provide kinetic energy to 

overcome the resistance offered by the solid body.  

In other words, the boundary layer will be separated from the surface. This phenomenon is 

called the boundary layer separation.  

The point on the body at which the boundary layer is on the verge of separation from the 

surface is called point of separation. 

Effect of Pressure Gradient  on Boundary layer  Separation 

The effect of pressure gradient  (dp/dx) on boundary  layer separation can be explained  by 

considering the flow over a curved surface ABCSD as shown in Fig. 24.  

In the region ABC of the curved surface, the  area of flow decreases and hence velocity 

increases. This means that flow gets accelerated in this  region.  
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Due to the increase of the velocity, the pressure decreases in the direction of the flow and  

hence pressure gradient  dp/dx  is negative in this region. As long as  dp/dx  < 0, the entire 

boundary  layer moves dx forward  as shown  in Fig.  24. 

Region CSD of the curved surface.  

The pressure is minimum at the point C. Along the region CSD of the curved surface, the area 

of flow increases and hence velocity of flow along the direction of fluid decreases.  Due to 

decrease of velocity, the pressure increases in the direction of flow and hence pressure 

gradient  dp/dx   is positive or  dp/dx  > 0.  Thus in the region  CSD, the pressure gradient is 

dx dx positive and velocity of fluid layer along the direction of flow decreases.  

 

 

Figure 24. Effect of pressure gradient on boundary layer separation 

As explained in the Art. 24, the velocity of the layer adjacent to the solid surface along the 

length of the solid surface goes on decreasing as the kinetic energy of the layer is used to 

overcome the  frictional  resistance  of  the surface.  

Thus the combined effect of positive pressure gradient and surface resistance reduce the 

momentum of the fluid is unable to the surface.  A stage comes, when the momentum of 

the fluid is unable  to overcome the surface resistance  and the boundary  layer starts 

separating  from the surface at the point S.  
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Downstream the point S, the flow is taking place in reverse direction and the velocity 

gradient  becomes  negative.  Thus the positive pressure gradient helps in separating the 

boundary layer. 
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UNIT – IV – PUMPS AND TURBINES – SAEA1304 
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I.INTRODUCTION TO IMPACT OF JETS 

The liquid comes out in the form of a jet from the outlet of a nozzle, which is 

fitted to a pipe through which the liquid is flowing under pressure. If some plate, 

which may be fixed or moving, is placed in the path of the jet, a force is exerted 

by the jet on the plate. This force is obtained from Newton's second law of 

motion or from impulse-momentum equation. Thus impact of jet means the 

force exerted by the jet on a plate which may be stationary or moving.  

In this presentation, the following cases of the impact of jet  i.e., the force 

exerted by the jet on a plate, will be considered : 

   1. Force exerted by the jet on a stationary plate when 

(a)  Plate is vertical to the jet,    

(a) Plate is inclined to the jet, and   

(b) Plate is curved. 

   2. Force exerted by the jet on a moving plate, when 

(a) Plate is vertical to the jet,    

(b)  Plate is inclined to the jet, and   

(c)  Plate is curved  

FORCE EXERTED BY THE JET ON A STATIONARY VERTICAL 

PLATE 

Consider a jet of water coming out from the nozzle, strikes a flat vertical plate as 

shown in Fig. 17.1 Let 

V = velocity of the jet,  

d = diameter of the jet, 

a = area of cross-section of the jet = 
𝜋4 d

2
. 
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The jet after striking the plate, will move along the plate. But the plate is at 

right angles to the jet. Hence the jet after striking, will get deflected through 

90°. Hence the component of the velocity of jet, in the direction of jet, after 

striking will be zero. 

The force exerted by the jet on the plate in the direction of jet, 

 

For deriving above equation, we have taken initial velocity minus final 

velocity and not final velocity minus initial velocity. If the force exerted on 

the jet is to be calculated then final minus initial velocity is taken. But if the 
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force exerted by the jet on the plate is to be calculated, then initial velocity 

minus final velocity is taken. 

Note. In equation (17. l ), if the value of density (p) is taken in S.I. units ( i.e., 

kg/m
3
), the force (Fx) will be in Newton (N). The value of p for water in S.I. 

units is equal to 1000 kg/m
3
. 

FORCE EXERTED BY A JET ON STATIONARY INCLINED FLAT 

PLATE 

• Let a jet of water, coming out from the nozzle, strikes an inclined flat 

plate as shown in Fig. 17.2. 

• Let  

V = Velocity of jet in the direction of x, 

θ = Angle between the jet and plate, 

a = Area of cross-section of the jet. 

Then mass of water per sec striking the plate = ρ x aV. 
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If the plate is smooth and if it is  assumed that there is no loss of energy due 

to impact of the jet, then jet will move over the plate after striking with a 

velocity equal to initial velocity i.e., with a velocity V.  

Let us find the force exerted by the jet on the plate in the direction normal to 

the plate. Let this force is represented  by Fn 

 

This force can be resolved into two components, one in the direction of the 

jet and other perpendicular to the direction of flow. Then we have, 

 

 

FORCE EXERTED BY A JET  ON STATIONARY CURVED  PLATE 

Jet strikes the curved plate at the Centre. Let a jet of water strikes a fixed curved 

plate at the Centre as shown in Fig. 17.3. The jet after striking the plate, comes 

out with the same velocity if the plate is smooth and there is no loss of energy 

due to impact of the jet, in the tangential direction of the curved plate.  

The velocity at outlet of the plate can be resolved into two components, one in 

the direction of jet and other perpendicular to the direction of the jet. 

Component of velocity in the direction of jet = - V cos θ. 
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JET STRIKES THE CURVED PLATE AT ONE  END  TANGEN-

TIALLY WHEN THE PLATE IS SYMMETRICAL 

Let the jet strikes the curved fixed plate at one end tangentially as shown in Fig. 

17.4. Let the curved plate is symmetrical about x-axis.  

Then the angle made by the tangents at the two ends of the plate will be same. 
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Let  

V = Velocity of jet of water, 

θ = Angle made by jet with x-axis at inlet tip of the curved  plate. 

 

If the plate is smooth and loss of energy due to impact is zero, then the  

velocity of water at the outlet tip of the curved plate will be equal to V.  

The forces exerted by the jet of water in the directions of x and y are 

 

JET STRIKES THE CURVED PLATE AT ONE  END  TANGENTIALLY  

WHEN  THE  PLATE  IS  UNSYMMETRICAL 
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When the curved plate is unsymmetrical about x-axis, then angle made by the 

tangents drawn at the inlet and outlet tips of the plate with x-axis will be 

different. 

Let θ = angle made by tangent at inlet tip with x-axis, 

φ= angle made by tangent at outlet tip with x-axis. 

 

 

 

FORCE EXERTED BY A JET ON A HINGED PLATE 

Consider a jet of water striking a vertical plate at the centre which is hinged at 

O. Due to the force exerted by the jet on the plate, the plate will swing through 

some angle about the hinge as shown in Fig. 17.6 

Let 

x = distance of the centre of jet from hinge 0, 

θ = angle of swing about hinge, 

W = weight of plate acting at C.G. of the plate. 
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The dotted lines show the position of the plate, before the jet strikes the plate. 

The point A on the plate will be at A' after the jet strikes the plate. The distance 

OA = OA' = x. Let the weight of the plate is acting at A'.When the plate is in 

equilibrium after the jet strikes the plate, the moment of all the forces about the 

hinge must be zero. Two forces are acting on the plate. They are : 

 

FORCE EXERTED BY A JET ON MOVING PLATES 

The following cases of the moving plates will be considered : 

1. Flat vertical plate moving in the direction of the jet and away from the jet, 

2. Inclined plate moving in the direction of the jet, and 
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3. Curved plate moving in the direction of the jet or in the horizontal 

direction. 

FORCE ON FLAT VERTICAL PLATE MOVING IN THE DIRECTION 

OF JET 

Fig. 17.10 shows a jet of water striking a flat vertical plate moving with a 

uniform  velocity away from the jet. 

Let  

V = Velocity of the jet (absolute ), 

a = Area of cross-section  of the jet, 

u = Velocity of the flat plate. 

In this case, the jet does not strike the plate with a velocity V, but it strikes with 

a relative velocity, which is equal to the absolute velocity of jet of water min us 

the velocity of the plate. 

Hence relative velocity of the jet with respect to plate = ( V - u)  

Mass of water striking the plate per sec 
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=  p  x  Area  of  jet  x  Velocity  with 

which jet strikes the plate 

  = pa x [V - u] 

 

 

FORCE ON THE INCLINED PLATE MOVING IN THE DIRECTION 

OF THE JET 

Let a jet of water strikes an inclined plate, which is moving with a uniform 

velocity in the direction of the jet as shown in Fig. 17.11. 

Let  

V = Absolute velocity of jet of water, 

u = Velocity of the plate in the direction of jet, 

a = Cross-sectional area of jet, and 0 = Angle between jet and plate. 

Relative velocity of jet of water = ( V - u) 

The velocity with which jet strikes = ( V - u) 

Mass of water  striking per second 

               = p x a x (V - u) 
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FORCE ON THE  CURVED  PLATE  WHEN  THE  PLATE  IS  

MOVING  IN  THE  DIRECTION  OF JET 

Let a jet of water strikes a curved plate at the centre  of the plate  which  is 

moving  with  a uniform  velocity in the direction of the jet  as shown in Fig. 

17.12. 

Let  

V = Absolute velocity of jet, 
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a = Area of jet, 

u = Velocity of the plate in the direction of the jet. 

Relative velocity of the jet of water or the velocity with which jet strikes the 

curved plate = ( V - u). 

If plate  is smooth  and the loss of energy  due to impact of jet  is zero, then the 

velocity  with which  the jet  will be leaving the curved vane = ( V - u). 

 

This velocity can be resolved into two components, one in the direction of the 

jet  and other perpendicular to the direction of the jet. 

Component of the velocity in the direction of jet = - ( V - u) cos θ 

     (-ve sign is taken as at the outlet, the component is in the opposite direction 

of the jet). 

Component of the velocity in the direction perpendicular to the direction of the 

jet = ( V - u) sin θ . 
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FORCE EXERTED BY A JET OF WATER ON AN 

UNSYMMETRICAL MOVING CURVED PLATE WHEN JET STRIKES 

TANGENTIALLY AT ONE OF THE TIPS. 

Fig. 17.15 shows a jet of water striking a moving curved plate (also called vane) 

tangentially, at one of its tips. As the jet strikes tangentially, the loss of energy 

due to impact of the jet will be zero.  

In this case as plate is moving, the velocity with which jet of water strikes is 

equal to the relative velocity of the jet with respect to the plate.  

Also as the plate is moving in different direction of the jet, the relative velocity 

at inlet will be equal to the vector difference of the velocity of jet and velocity of 

the plate at inlet. 

Let  

V1= Velocity of the jet at inlet. 
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u1  = Velocity of the plate (vane) at inlet. 

Vr1 = Relative velocity of jet and plate at inlet. 

α = Angle between  the direction  of the jet  and direction  of  motion  of the 

plate, also called guide blade angle. 

θ = Angle made by the relative velocity ( Vr2 ) with the direction of motion at 

inlet also called vane angle at inlet. 

Vw1  and Vf1 = The components of the velocity of the jet V1 , in the direction of 

motion and perpendicular to the direction of motion  of the vane respectively. 

Vw1 = It is also known as velocity of whirl at inlet. 

Vf1 = It is also known as velocity of flow at inlet. 

 

 

V2 = Velocity of the jet, leaving the vane or velocity of jet at outlet of the 

vane.  

u 2 = Velocity of the vane at outlet. 
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Vr2 = Relative velocity of the jet with respect to the vane at outlet. 

β = Angle made by the velocity  V2 with the direction of motion of the vane at 

outlet. 

φ = Angle made by the relative velocity Vr2 with the direction of motion of the 

vane at outlet and also called vane angle at outlet. 

Vw1  and  Vf1  = Components of the velocity V2,in the direction of motion of 

vane and perpendicular to the direction of motion of vane at outlet. 

Vw2 = It is also called the velocity of whirl at outlet. 

Vf2 = Velocity of flow at outlet. 

The triangles ABD and EGH are called the velocity triangles at inlet and outlet. 

These velocity triangles are drawn as given below : 

Velocity Triangle at Inlet.  

Take any point A  and draw a line AB = V1 in magnitude and direction which 

means line AB makes an angle a with the horizontal line AD. Next draw a line 

AC = u1 in magnitude. Join C to B.  

Then CB represents the relative velocity of the jet at inlet. If the loss of energy at 

inlet due to impact is zero, then CB must be in the tangential direction to the 

vane at inlet. From B draw a vertical line BD in the downward direction to meet 

the horizontal line AC produced at D. 

Then BD = Represents the velocity of flow at inlet = Vf1 

AD = Represents the velocity of whirl at inlet = Vw1 

ιBCD = Vane angle at inlet = θ. 

Velocity  Triangle  at Outlet.  

If the vane surface is assumed to be very  smooth, the loss of energy due to 

friction will  be zero. The water will be gliding over the surface of the vane with 

a relative velocity equal to Vr1 and will come out of the vane with a relative 

velocity Vr2.  

This means that the relative velocity at outlet Vr1 = Vr2. And also the relative 

velocity at outlet should be in tangential direction to the vane at outlet. 



17 

 

Draw EG in the tangential direction of the vane at outlet and cut EG = Vr2• From 
G, draw a line GF in the direction of vane at outlet and equal to u2, the velocity 

of the vane at outlet. Join EF.  

Then EF represents the absolute velocity of the jet at outlet in magnitude and 

direction. From E draw a vertical line EH to meet the line GF produced at H. 

Then 
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FORCE EXERTED BY A JET OF WATER ON A SERIES OF VANES 

The force exerted by a jet of water on a single moving plate (which may be flat 

or curved) is not practically feasible.  

This case is only a theoretical one. In actual practice, a large number of plates 

are mounted on the circumference of a wheel at a fixed distance apart as shown 

in Fig. 17.22.  
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Jet strikes a plate and due to the force exerted by the jet on the plate, the wheel 

starts moving and the 2
nd

 plate mounted on the wheel appears before  the jet, 

which again exerts the force on the 2
nd

  plate.  

• Thus each plate appears successively before the jet and the jet exerts force 

on each plate. The wheel starts moving at a constant  speed. Let  

V = Velocity of jet, 

d = Diameter of jet, 

a = Cross-sectional area of jet, 

= 
𝜋4d

2
 

u = Velocity of vane. 

In this case the mass of water coming out from the nozzle per second is always 

in contact with the plates, when all the plates are considered. Hence mass of 

water per second striking the series of plates = ρaV . 

Also the jet strikes the plate with a velocity = ( V - u) 

After striking, the jet moves tangential to the plate and hence the velocity 

component in the direction of motion of plate is equal to zero. 
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Force Exerted  on  a  Series of  Radial  Curved Vanes. 

For a radial curved vane, the radius of the vane at inlet and outlet is different and 

hence the tangential velocities of the radial vane at inlet and outlet will not be 

equal. Consider a series of radial curved vanes mounted on a wheel as shown in 

Fig. 17.23.  

The jet of water strikes the vanes and the wheel starts rotating at a constant 

angular speed. 
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HYDRAULIC MACHINES- INTRODUCTION 

Hydraulic machines are defined as those machines which convert either 

hydraulic energy (energy possessed by water) into mechanical energy (which is 

further converted into electrical energy ) or mechanical energy into hydraulic 

energy.  

The hydraulic machines, which convert the hydraulic energy into mechanical 

energy, are called turbines while the hydraulic machines which convert the 

mechanical energy into hydraulic energy are called pumps.  
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Thus the study of hydraulic machines consists of study of turbines and pumps.  

Turbines consists of mainly study of  Pelton  turbine,  Francis  Turbine  and 

Kaplan Turbine while pumps consist of study of centrifugal pump and 

reciprocating  pumps. 

Turbines 

Turbines are defined as the hydraulic machines which convert  hydraulic energy 

into mechanical energy. This mechanical energy is used  in running an electric 

generator which is directly coupled to the shaft of the turbine. Thus the 

mechanical energy is converted into electrical energy.  

The electric power which is obtained from the hydraulic energy (energy of 

water) is known as Hydroelectric power. At present the generation of 

hydroelectric power is the cheapest as compared by the power generated by 

other sources such as oil, coal etc. 

GENERAL LAYOUT OF A HYDROELECTRIC POWER PLANT 

Fig. 18.1 shows a general layout of a hydroelectric power plant which consists 

of 

I. A dam constructed  across a river to store water. 

II. Pipes of  large diameters called penstocks,  which  carry  water  under 

pressure  from the storage reservoir to the turbines. These pipes are made   

of steel or reinforced concrete. 

III. Turbines having different types of vanes fitted to the wheels. 

IV. Tail race, which is a channel which carries water away from the turbines 

after the water has worked on the turbines. The surface of water in the tail 

race channel is also known as tail race. 
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DEFINITIONS OF HEADS AND EFFICIENCIES OF A TURBINE 

Gross Head. The difference between the head race level and tail race level 

when no water is flowing is known as Gross Head. It is denoted by 'Hg'  in Fig. 

18.1. 

Net Head. It is also called effective head and is defined as the head available at 

the inlet of the turbine.  

When water is flowing from head race to the turbine, a loss of head due to 

friction between the water and penstocks occurs. Though there are other losses 

also such as loss due to bend, pipe fittings, loss at the entrance of penstock etc., 

yet they are having small magnitude as compared to head loss due to friction. If 

'hj is the head loss due to friction between penstocks and water then net heat on 

turbine is given by 
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V = Velocity of flow in penstock, 

L = Length of penstock, 

D = Diameter of penstock. 

• Efficiencies of a Turbine. The following are the important efficiencies of 

a turbine. 

  (a)Hydraulic  Efficiency, ƞh (b)  Mechanical Efficiency, ƞm 

   (c)  Volumetric Efficiency, ƞv and  (d)  Overall Efficiency, ƞo 

Hydraulic Efficiency(ƞh) 

It is defined as the ratio of power given by water to the runner of a turbine (runner is a 

rotating part of a turbine and on the runner vanes are fixed) to the power supplied by the water 

at the inlet of the turbine.  

The power at the inlet of the turbine is more and this power goes on decreasing as the water 

flows over the vanes of the turbine due to hydraulic losses as the vanes are not smooth.  

Hence, the power delivered to  the runner of the turbine will be less than  the  power available 

at the inlet of the turbine. Thus, mathematically, the hydraulic efficiency of a turbine  is 

written as 
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Mechanical Efficiency, ƞm 

The power delivered by water to the runner of a turbine is transmitted to the shaft of the 

turbine. Due to mechanical losses, the power available at the shaft of the turbine is less than 

the power delivered to the runner of a turbine.  

The ratio of the power available at the shaft of the turbine (known as S.P. or B.P. ) to the 

power delivered to the runner is defined as mechanical efficiency. Hence, mathematically, it 

is written as 

 

Volumetric Efficiency, ƞv 

The volume of the water striking the runner of a turbine is slightly less than the volume of the 

water supplied to the turbine. Some of the volume of the water is discharged to the tail race 

without striking the runner of the turbine. Thus the ratio of the volume of the water actually 

striking the runner to the volume of water supplied to the turbine is defined as volumetric 

efficiency.  

It is written  as 

 

Overall Efficiency, ƞo 

It is defined as the ratio of power available at the shaft of the turbine to the power supplied by 

the water at the inlet of the turbine. It is written as : 
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CLASSIFICATION  OF  HYDRAULIC  TURBINES 

The hydraulic turbines are classified according to the type of energy available at the inlet of 

the turbine, direction of flow through the vanes, head at the inlet of the turbine and specific 

speed of the turbines. Thus the following are the important classifications of the turbines : 

According to the type of energy at inlet : 

(a)Impulse turbine, and (b) Reaction  turbine. 

According  to the direction of flow through runner : 

(a)Tangential  flow  turbine, (b)  Radial flow turbine, 

(c) Axial flow turbine, and  (d)  Mixed flow turbine. 

According to the head at the inlet of turbine : 

(a) High head turbine,  (b)  Medium head turbine, and (c)  Low head turbine. 

According to the specific speed of the turbine : 

(a) Low  specific speed turbine, (b)  Medium specific speed turbine, and (c) High 

specific speed turbine. 

If at the inlet of the turbine, the energy available is only kinetic energy, the turbine is known 

as impulse turbine. As the water flows over the vanes, the pressure is atmospheric from inlet 

to outlet of the turbine.  

If at the inlet of the turbine, the water possesses kinetic energy as well as pressure energy, the 

turbine is known as reaction turbine.  
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As the waters flows through the runner, the water  is under pressure and the pressure energy 

goes on changing into kinetic energy. The runner is completely enclosed in an air-tight casing 

and the runner and casing is completely full of water. 

If the water flows along the tangent of the runner, the turbine is known as tangential flow turbine.  

If the water flows in the radial direction through the runner, the turbine is called radial flow turbine.  

If the water flows from outwards to inwards, radially, the turbine is known as inward radial flow 

turbine, 

On the other hand, if water flows radially from inwards to outwards, the turbine is known as outward 

radial flow turbine.  

If the water flows through the runner along the direction parallel to the axis of rotation of the runner, 

the turbine is called axial flow turbine.  

If the water flows through the runner in the radial direction but leaves in the direction parallel to axis 

of rotation of the runner, the turbine is called mixed flow turbine. 

 

PELTON WHEEL (OR TURBINE) 

The Pelton wheel or Pelton turbine is a tangential flow impulse turbine. The water strikes the 

bucket along the tangent of the runner.  

The energy available at the inlet of the turbine is only kinetic energy. The pressure at the inlet 

and outlet of the turbine is atmospheric.  

This turbine is used for high heads and is named after L.A. Pelton, an American Engineer. 

Fig. 18.1 shows the layout of a hydroelectric power plant in which the turbine is Pelton wheel. 

The water from the reservoir flows through the penstocks at the outlet of which a nozzle is 

fitted.  

• The nozzle increases the kinetic energy of the water flowing through the penstock.  

• At the outlet of the nozzle, the water comes out in the form of a jet and strikes the 

buckets (vanes) of the runner. The main parts of the Pelton turbine are : 

   1. Nozzle and flow regulating  arrangement  (spear),  

   2.  Runner and buckets, 

   3.  Casing, and  

   4.  Breaking jet. 

Nozzle and Flow Regulating Arrangement. 
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The amount of water striking the buckets (vanes) of the runner is controlled by providing a 

spear in the nozzle as shown in Fig. 18.2. 

 The spear is a conical needle which is operated either by a hand wheel or automatically in an 

axial direction depending upon the size of the unit.  

When the spear is pushed forward into the nozzle the amount of water striking the runner is 

reduced.  

On the other hand, if the spear is pushed back, the amount of water striking the runner 

increases. 

 

Runner with Buckets 

Fig. 18.3 shows the runner of a Pelton wheel. It consists of a circular disc on the periphery of 

which a number of buckets evenly spaced are fixed.  The shape of the buckets is of a double 

hemispherical cup or bowl. Each bucket is divided into two symmetrical parts by a dividing 

wall which is known as splitter. The jet of water strikes on the splitter. The splitter divides the 

jet into two equal parts and the jet comes out at the outer edge of the bucket.  The buckets are 

shaped in such a way that the jet gets deflected through 160° or 170°. The buckets are made 

of cast iron, cast steel bronze or stainless steel depending upon the head at the inlet of the 

turbine. 
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Casing 

Fig. 18.4 shows a Pelton turbine with a casing. The function of the casing is to prevent the 

splashing of the water and to discharge water to tail race. It also acts as safeguard against 

accidents. It is made of cast iron or fabricated steel plates. The casing of the Pelton wheel 

does not perform any hydraulic function. 

Breaking Jet 

When the nozzle is completely closed by moving the spear in the forward direction, the 

amount of water striking the runner reduces to zero. But the runner due to inertia goes on 

revolving for a long time. To stop the runner in a short time, a small nozzle is provided which 

directs the jet of water on the back of the vanes. This jet of water is called breaking jet. 
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VELOCITY TRIANGLES AND WORK DONE FOR PELTON WHEEL 
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Fig. 18.5 shows the shape of the vanes or buckets of the Pelton wheel. The jet of water from 

the nozzle strikes the bucket at the splitter, which splits up the jet into two parts.  

These parts of the jet, glides over the inner surfaces and comes out at the outer edge.  

Fig. 18.5 (b) shows the section of the bucket at Z-Z. The splitter is the inlet tip and outer edge 

of the bucket is the outlet tip of the bucket.  

The inlet velocity triangle is drawn at the splitter and outlet velocity triangle is drawn at the 

outer edge of the bucket. 
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RADIAL FLOW REACTION TURBINES 

Radial flow turbines are those turbines in which the water flows in the radial direction. The 

water may flow radially from outwards to inwards (i.e., towards the axis of rotation) or from 

inwards to outwards.  

If the water flows from outwards to inwards through the runner, the turbine is known as 

inward radial flow turbine. And if the water flows from inwards to outwards, the turbine is 

known as outward radial flow turbine. 

Reaction turbine means that the water at the inlet of the turbine possesses kinetic energy as 

well as pressure energy. As the water flows through the runner, a part of pressure energy goes 

on changing into kinetic energy.  

Thus the water through the runner is under pressure. The runner is completely enclosed in an 

air-tight casing and casing and the runner is always full of water. 

MAIN  PARTS  OF  A  RADIAL  FLOW  REACTION  TURBINE. 

The main parts of a radial flow reaction turbine are : 

• Casing,  

• Guide mechanism,  

• Runner, and 
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• Draft-tube. 

 

 

Casing.  

As mentioned above that in case of reaction turbine, casing and runner are always full of 

water. The water from the penstocks enters the casing which is of spiral shape in which area 

of cross section of the casing goes on decreasing gradually.  

The casing completely surrounds the runner of the turbine. The casing as shown in Fig. 18.10 

is made of spiral shape, so that the water may enter the runner at constant velocity throughout 

the circumference of the runner. The casing is made of concrete, cast steel or plate steel. 

Guide Mechanism.  

It consists of a stationary circular wheel all round the runner of the turbine. The stationary 

guide vanes are fixed on the guide mechanism. The guide vanes allow the water to strike the 

vanes fixed on the runner without shock at inlet.  

Also by a suitable arrangement, the width between two adjacent vanes of guide mechanism 

can be altered so that the amount of water striking the runner can be varied. 

Runner.  



37 

 

It is a circular wheel on which a series of radial curved vanes are fixed. The surface of the 

vanes are made very smooth.  

The radial curved vanes are so shaped that the water enters and leaves the runner without 

shock. The runners are made of cast steel, cast iron or stainless steel. They are keyed to the 

shaft. 

Draft-tube.  

The pressure at the exit of the  runner of a reaction turbine is generally less than atmospheric 

pressure.  

The water at exit cannot be directly discharged to the tail race. A tube or pipe of gradually 

increasing area is used for discharging water from the exit of the turbine to the tail race. This 

tube of increasing area is called draft tube. 

INWARD RADIAL  FLOW TURBINE 

Fig.  18.11 shows inward radial flow  turbine, in  which case the water from the casing enters 

the stationary guiding wheel. The guiding wheel consists of guide vanes which direct the 

water to enter the runner which consists of moving vanes.  

The water flows over the moving vanes in the inward radial direction and is discharged at the 

inner diameter of the runner. The outer diameter of the runner is the inlet and the inner 

diameter is the outlet. Velocity Triangles and Work done by Water on Runner. we have 

discussed in detail the force exerted by the water on the radial curved vanes fixed on a wheel.  

From the force exerted on the vanes, the work done by water, the horse power given by the 

water to the vanes and efficiency of the vanes can be obtained. Also we have drawn velocity 

triangles at inlet and outlet of the moving radial vanes in Fig. 17.23.  

From the velocity triangles, the work done by the water  on the runners, horse power and 

efficiency of the turbine can be obtained. 
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OUTWARD RADIAL FLOW REACTION TURBINE. 
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Fig. 18.18 shows outward radial flow reaction turbine in which the water from casing enters 

the stationary guide wheel. The guide wheel consists of guide vanes which direct water to 

enter the runner which is around the stationary guide wheel. The  water flows through the 

vanes of the runner in the outward radial direction and is discharged at the  outer diameter of 

the runner. The inner diameter of the runner is inlet and outer diameter is the outlet. 

The velocity triangles at inlet and outlet will be drawn by the same procedure as adopted for 

inward flow turbine. The work done by the water on the runner per second, the horse power 

developed and hydraulic efficiency will be obtained from the velocity triangles. In this case as 

inlet of the runner is at the inner diameter of the runner, the tangential velocity at inlet will be 

less than that of  at outlet, i.e., 

  u1 < u2 as D1 < D2 

FRANCIS  TURBINE 

The inward flow reaction turbine having  radial discharge  at outlet is known  as Francis 

Turbine, after the name of J.B. Francis, an American engineer who in the beginning designed 

inward radial flow reaction type of turbine.  

In the modern Francis turbine, the water enters the runner of the turbine in the radial direction 

at outlet and leaves in the axial direction at the inlet of the runner.  

Thus the modern Francis Turbine is a mixed flow type turbine The velocity triangle at inlet 

and outlet of the Francis turbine are drawn in the same way as in case of inward  flow  

reaction  turbine.   

As in case of Francis turbine, the discharge  is radial  at outlet, the velocity of whirl at outlet ( 

i.e., Vw2 ) will be zero. Hence the work done by water on the runner per second will be 
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AXIAL  FLOW REACTION TURBINE 

If the water flows parallel to the axis of the rotation of the shaft, the turbine is known as axial 

flow turbine. And if the head at the inlet of the turbine is the sum of pressure energy and 

kinetic energy and during the flow of water through runner a part of pressure energy is 

converted into kinetic energy, the turbine is known as reaction turbine. 

For the axial flow reaction turbine, the shaft of the turbine is vertical. The lower end of the 

shaft is made larger which is known as 'hub' or 'boss'. The vanes are fixed on the hub and 

hence hub acts as a runner for axial flow reaction turbine. The following are the important 

type of axial flow reaction turbines: 

                              1.Propeller  Turbine, and 2.  Kaplan  Turbine.  

 

When the vanes are fixed to the hub and they are not adjustable, the turbine is known as 

propeller turbine. But if the vanes on the hub are adjustable, the turbine is known as a Kaplan 

Turbine, after the name of V Kaplan, an  Austrian  Engineer.  

This turbine is suitable where a large quantity of water at low head is available. Fig. 18.25 

shows the runner of a Kaplan turbine, which consists of a hub fixed to the shaft. On the hub, 

the adjustable vanes are fixed as shown in Fig. 18.25. 
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The main parts of a Kaplan turbine are : 

1. Scroll casing, 

2. Guide vanes mechanism, 

3. Hub with vanes or runner of the turbine, and 

4. Draft tube. 

Fig. 18.26 shows all main parts of a Kaplan turbine. The water from penstock enters the scroll 

casing and then moves to the guide vanes. From the guide vanes, the water turns through 90° 

and flows axially through the runner as shown in Fig. 18.26. The discharge through the runner 

is obtained as 
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CENTRIFUGAL PUMPS 

The hydraulic machines which convert the mechanical energy into hydraulic 

energy are called pumps. The hydraulic energy is in the form of pressure 

energy. If the mechanical energy is converted into pressure energy by means of 

centrifugal force acting on the fluid, the hydraulic machine is called centrifugal 

pump. 

The centrifugal pump acts as a reverse of an inward radial flow reaction turbine. 

This means that the flow in centrifugal pumps is in the radial outward 

directions.   

The centrifugal pump works on the principle of forced vortex flow which means 

that when a certain mass of liquid is rotated  by  an external torque, the rise in 

pressure head of the rotating liquid takes place. The rise in pressure head at any 

SCROLL CASING 

• 

RUNNER 
VANES 
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point of the rotating liquid is proportional to the square of tangential velocity of 

the liquid at that point. i.e., rise in pressure head. 

 

 

Thus at the outlet of the impeller, where radius is more, the rise in pressure head 

will be more and the liquid will be discharged at the outlet with a high pressure 

head. Due to this high pressure head, the liquid can be lifted to a high level. 

MAIN PARTS OF A CENTRIFUGAL PUMP 

The following are the main parts of a centrifugal pump : 

• Impeller. 

• Casing. 

• Suction pipe with a foot valve and a strainer. 

• Delivery pipe 

All the main parts of the centrifugal pump are shown in Fig. 19.1. 

 

Impeller.  

• The rotating part of a centrifugal pump is called 'impeller'.  

• It consists of a series of backward curved vanes. The impeller is mounted 

on a shaft which is connected to the shaft of an electric motor. 

Casing.  

• The casing of a centrifugal pump is similar to the casing of a reaction 

turbine.  

• It is an air tight passage surrounding the impeller and is designed in such 

a way that the kinetic energy of the water discharged at the outlet of the 

impeller is converted into pressure energy before the water leaves the 

casing and enters the delivery pipe. The following three types of the 

casings are commonly adopted : 

• Volute casing as shown in Fig. 19.1. 

• Vortex casing as shown in Fig. 19.2 (a). 
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• Casing with guide blades as shown in Fig. 19.2 (b). 
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Volute Casing.  

• Fig 19.1 shows the volute casing, which surrounds the impeller. It is of 

spiral type in which area of flow increases gradually. The increase in area 

of flow decreases the velocity of flow.  

• The decrease in velocity increases the pressure of the water flowing 

through the casing.  

• It has been observed that in case of volute casing, the efficiency of the 

pump increases slightly as a large amount of energy is lost due to the 

formation of eddies in this type of casing. 

Vortex Casing.  

• If a circular chamber is introduced between the casing and the impeller as 

shown in Fig. 19.2 (a), the casing is known as Vortex Casing.  

• By introducing the circular chamber, the loss of energy due to the 

formation of eddies is reduced to a considerable extent. Thus the 

efficiency of the pump is more than the efficiency when only volute 

casing is provided. 

Casing with Guide Blades.  

• This casing is shown in Fig. 19.2 (b) in which the impeller is surrounded 

by a series of guide blades mounted on a ring which is known as diffuser.  

• The guide vanes are designed in such a way that the water from the 

impeller enters the guide vanes without stock. 
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• Also the area of the guide vanes increases, thus reducing the velocity of 

flow through guide vanes and consequently increasing the pressure of 

water.  

• The water from the guide vanes then passes through the surrounding 

casing which is in most of the cases concentric with the impeller as 

shown in Fig.  19.2 (b). 

Suction Pipe with a Foot valve and a Strainer.  

• A pipe whose one end is connected to the inlet of the pump and other end 

dips into water in a sump is known as suction pipe.  

• A foot valve which is a non-return valve or one-way type of valve is 

fitted at the lower end of the suction pipe.  

• The foot valve opens only in the upward direction. A strainer is also fitted 

at the lower end of the suction pipe. 

Delivery Pipe.  

• A pipe whose one end is connected to the outlet of the pump and other 

end delivers the water at a required height is known as delivery pipe. 

WORK DONE BY THE CENTRIFUGAL PUMP  

(OR BY IMPFLLER) ON WATER 

In case of the centrifugal pump, work is done by the impeller on the water. 

The expression for the work done by the impeller on the water is obtained by 

drawing velocity triangles at inlet and outlet of the impeller in the same way 

as for a turbine.  

The water enters the impeller radially at inlet for best efficiency of the pump, 

which means the absolute velocity of water at inlet makes an angle of 90° 

with the direction of motion of the impeller at inlet.  

Hence angle α = 90° and  Vw1 = 0. For drawing the velocity  triangles,  the I 

same notations are used as that for turbines. Fig. 19.3 shows the velocity 

triangles at the inlet and outlet tips of the vanes fixed to an impeller. 

N = Speed of the impeller in r.p.m., 

D1 = Diameter of impeller at inlet, 

u1 = Tangential velocity of impeller at inlet = 
𝜋𝐷1𝑁60  

D2 = Diameter of impeller at outlet, 
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u2 = Tangential velocity of impeller at outlet= 
𝜋𝐷2𝑁60  

V1 = Absolute velocity of water at inlet, 

Vr1  = Relative velocity of water at inlet, 

 

 

α = Angle made by absolute velocity (V1) at inlet with the direction of 

motion of vane, 

 θ = Angle made by relative velocity (Vr1 ) at inlet with the direction of 

motion of vane, and V2. Vr2 ,𝛽 and φ are the corresponding values at outlet. 

As the water enters the impeller radially which means the absolute velocity 

of water at inlet is in the radial direction and hence angle  α  = 90°  and Vw1 = 

0. 
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A centrifugal pump is the reverse of a radially inward flow reaction turbine. 

But in case of a radially 

inward flow reaction turbine, the work done by the water on the runner per 

second   per unit weight of the water striking per second is given by equation 

(18.19) as 

 

DEFINITIONS  OF HEADS  AND  EFFICIENCIES  OF A  

CENTRIFUGAL  PUMP 

Suction Head (hs). It is the vertical height of the centre line of the 

centrifugal pump above the water surface in the tank or pump from which 

water is to be lifted as shown in Fig. 19.1. This height is also called suction 

lift and is denoted by 'hs'  

Delivery  Head  (hd).  The  vertical  distance  between  the centre  line of  

the pump  and the  water surface in the tank to which water is delivered is 

known as delivery head. This is denoted by  'hd’ . 

Static Head (HS). The sum of suction head and delivery head is known as 

static head. This is represented by 'HS’ and is written as Hs= hs+ hd. 
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Manometric Head (Hm). The manometric head is defined as the head 

against which a centrifugal pump has to work. It is denoted by 'Hm'. It is 

given by the following expressions : 
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 BASIC PROPELLER PRINCIPLES  

The aircraft propeller consists of two or more blades and a central hub to 

which the blades are attached. Each blade of an aircraft propeller is 

essentially a rotating wing.  

As a result of their construction, the propeller blades are like airfoils and 

produce forces that create the thrust to pull, or push, the aircraft through the 

air.  

The engine furnishes the power needed to rotate the propeller blades through 

the air at high speeds, and the propeller transforms the rotary power of the 

engine into forward thrust. 

A cross-section of a typical propeller blade is shown in Figure 4-35. This 

section or blade element is an airfoil comparable to a cross-section of an 

aircraft wing.  
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One surface of the blade is cambered or curved, similar to the upper surface of 

an aircraft wing, while the other surface is flat like the bottom surface of a wing.  

The chord line is an imaginary line drawn through the blade from its leading 

edge to its trailing edge. As in a wing, the leading edge is the thick edge of the 

blade that meets the air as the propeller rotates. 

Blade angle, usually measured in degrees, is the angle between the chord of the 

blade and the plane of rotation and is measured at a specific point along the 

length of the blade.  

[Figure 4-36] Because most propellers have a flat blade “face,” the chord line is 

often drawn along the face of the propeller blade. Pitch is not blade angle, but 

because pitch is largely determined by blade angle, the two terms are often used 

interchangeably. An increase or decrease in one is usually associated with an 

increase or decrease in the other. 

 

 

The pitch of a propeller may be designated in inches. A propeller designated as 

a “74-48” would be 74 inches in length and have an effective pitch of 48 inches.  

The pitch is the distance in inches, which the propeller would screw through the 

air in one revolution if there were no slippage. When specifying a fixed-pitch 
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propeller for a new type of aircraft, the manufacturer usually selects one with a 

pitch that operates efficiently at the expected cruising speed of the aircraft.  

Every fixed-pitch propeller must be a compromise because it can be efficient at 

only a given combination of airspeed and revolutions per minute (rpm). Pilots 

cannot change this combination in flight. 

When the aircraft is at rest on the ground with the engine operating, or moving 

slowly at the beginning of takeoff, the propeller efficiency is very low because 

the propeller is restrained from advancing with sufficient speed to permit its 

fixed-pitch blades to reach their full efficiency.In this situation, each propeller 

blade is turning through the air at an AOA that produces relatively little thrust 

for the amount of power required to turn it. 

To understand the action of a propeller, consider first its motion, which is both 

rotational and forward. As shown by the vectors of propeller forces in Figure 4-

36, each section of a propeller blade moves downward and forward. The angle 

at which this air (relative wind) strikes the propeller blade is its AOA.  

The air deflection produced by this angle causes the dynamic pressure at the 

engine side of the propeller blade to be greater than atmospheric pressure, thus 

creating thrust.The shape of the blade also creates thrust because it is cambered 

like the airfoil shape of a wing. As the air flows past the propeller, the pressure 

on one side is less than that on the other.  

As in a wing, a reaction force is produced in the direction of the lesser pressure. 

The airflow over the wing has less pressure, and the force (lift) is upward. In the 

case of the propeller, which is mounted in a vertical instead of a horizontal 

plane, the area of decreased pressure is in front of the propeller, and the force 

(thrust) is in a forward direction.  

Aerodynamically, thrust is the result of the propeller shape and the AOA of the 

blade. Thrust can be considered also in terms of the mass of air handled by the 

propeller. In these terms, thrust equals mass of air handled multiplied by 

slipstream velocity minus velocity of the aircraft. The power expended in 

producing thrust depends on the rate of air mass movement.  

On average, thrust constitutes approximately 80 percent of the torque (total 

horsepower absorbed by the propeller). The other 20 percent is lost in friction 

and slippage.  

For any speed of rotation, the horsepower absorbed by the propeller balances 

the horsepower delivered by the engine. For any single revolution of the 
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propeller, the amount of air handled depends on the blade angle, which 

determines how big a “bite” of air the propeller takes.  

Thus, the blade angle is an excellent means of adjusting the load on the 

propeller to control the engine rpm. The blade angle is also an excellent method 

of adjusting the AOA of the propeller. On constant-speed propellers, the blade 

angle must be adjusted to provide the most efficient AOA at all engine and 

aircraft speeds. Lift versus drag curves, which are drawn for propellers, as well 

as wings, indicate that the most efficient AOA is small, varying from +2° to 

+4°. The actual blade angle necessary to maintain this small AOA varies with 

the forward speed of the aircraft. 

Fixed-pitch and ground-adjustable propellers are designed for best efficiency at 

one rotation and forward speed. They are designed for a given aircraft and 

engine combination. A propeller may be used that provides the maximum 

efficiency for takeoff, climb, cruise, or high-speed flight. Any change in these 

conditions results in lowering the efficiency of both the propeller and the 

engine.  

Since the efficiency of any machine is the ratio of the useful power output to the 

actual power input, propeller efficiency is the ratio of thrust horsepower to 

brake horsepower. Propeller efficiency varies from 50 to 87 percent, depending 

on how much the propeller “slips.” 

 

 

Propeller slip is the difference between the geometric pitch of the propeller and 

its effective pitch. [Figure 4-37] Geometric pitch is the theoretical distance a 

propeller should advance in one revolution; effective pitch is the distance it 

actually advances. Thus, geometric or theoretical pitch is based on no slippage, 

but actual or effective pitch includes propeller slippage in the air. 
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The reason a propeller is “twisted” is that the outer parts of the propeller blades, 

like all things that turn about a central point, travel faster than the portions near 

the hub.  

[Figure 4-38] If the blades had the same geometric pitch throughout their 

lengths, portions near the hub could have negative AOAs while the propeller 

tips would be stalled at cruise speed. 

 

Twisting or variations in the geometric pitch of the blades permits the propeller 

to operate with a relatively constant AOA along its length when in cruising 

flight. Propeller blades are twisted to change the blade angle in proportion to the 

differences in speed of rotation along the length of the propeller, keeping thrust 

more nearly equalized along this length.  

Usually 1° to 4° provides the most efficient lift/drag ratio, but in flight the 

propeller AOA of a fixed-pitch propeller varies—normally from 0° to 15°. This 

variation is caused by changes in the relative airstream, which in turn results 

from changes in aircraft speed. Thus, propeller AOA is the product of two 

motions: propeller rotation about its axis and its forward motion. 
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A constant-speed propeller automatically keeps the blade angle adjusted for 

maximum efficiency for most conditions encountered in flight. During takeoff, 

when maximum power and thrust are required, the constant-speed propeller is at 

a low propeller blade angle or pitch. The low blade angle keeps the AOA small 

and efficient with respect to the relative wind. At the same time, it allows the 

propeller to handle a smaller mass of air per revolution.  

This light load allows the engine to turn at high rpm and to convert the 

maximum amount of fuel into heat energy in a given time. The high rpm also 

creates maximum thrust because, although the mass of air handled per 

revolution is small, the rpm and slipstream velocity are high, and with the low 

aircraft speed, there is maximum thrust. 

After liftoff, as the speed of the aircraft increases, the constantspeed propeller 

automatically changes to a higher angle (or pitch). Again, the higher blade angle 

keeps the AOA small and efficient with respect to the relative wind. The higher 

blade angle increases the mass of air handled per revolution. This decreases the 

engine rpm, reducing fuel consumption and engine wear, and keeps thrust at a 

maximum.  

After the takeoff climb is established in an aircraft having a controllable-pitch 

propeller, the pilot reduces the power output of the engine to climb power by 

first decreasing the manifold pressure and then increasing the blade angle to 

lower the rpm. 

At cruising altitude, when the aircraft is in level flight and less power is 

required than is used in takeoff or climb, the pilot again reduces engine power 

by reducing the manifold pressure and then increasing the blade angle to 

decrease the rpm.  

Again, this provides a torque requirement to match the reduced engine power. 

Although the mass of air handled per revolution is greater, it is more than offset 

by a decrease in slipstream velocity and an increase in airspeed. The AOA is 

still small because the blade angle has been increased with an increase in 

airspeed. 

 

TORQUE AND P-FACTOR 

To the pilot, “torque” (the left turning tendency of the airplane) is made up of 

four elements which cause or produce a twisting or rotating motion around at 

least one of the airplane’s three axes. These four elements are:  

1. Torque reaction from engine and propeller,  



63 

 

2. Corkscrewing effect of the slipstream,  

3. Gyroscopic action of the propeller, and  

4. Asymmetric loading of the propeller (P-factor). 

Torque Reaction 

Torque reaction involves Newton’s Third Law of Physics— for every action, 

there is an equal and opposite reaction.  

As applied to the aircraft, this means that as the internal engine parts and 

propeller are revolving in one direction, an equal force is trying to rotate the 

aircraft in the opposite direction. [Figure 4-39]  

 

 

When the aircraft is airborne, this force is acting around the longitudinal axis, 

tending to make the aircraft roll. To compensate for roll tendency, some of the 

older aircraft are rigged in a manner to create more lift on the wing that is being 

forced downward.  

The more modern aircraft are designed with the engine offset to counteract this 

effect of torque.  

NOTE: Most United States built aircraft engines rotate the propeller clockwise, 

as viewed from the pilot’s seat. The discussion here is with reference to those 

engines. 
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Generally, the compensating factors are permanently set so that they 

compensate for this force at cruising speed, since most of the aircraft’s 

operating lift is at that speed. However, aileron trim tabs permit further 

adjustment for other speeds.  

When the aircraft’s wheels are on the ground during the takeoff roll, an 

additional turning moment around the vertical axis is induced by torque 

reaction.  

As the left side of the aircraft is being forced down by torque reaction, more 

weight is being placed on the left main landing gear. This results in more 

ground friction, or drag, on the left tire than on the right, causing a further 

turning moment to the left.  

The magnitude of this moment is dependent on many variables. Some of these 

variables are: 

1. Size and horsepower of engine,  

2. Size of propeller and the rpm,  

3. Size of the aircraft, and  

4. Condition of the ground surface.  

    This yawing moment on the takeoff roll is corrected by the pilot’s proper use 

of the rudder or rudder trim 

Corkscrew Effect 

The high-speed rotation of an aircraft propeller gives a corkscrew or spiraling 

rotation to the slipstream. 
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At high propeller speeds and low forward speed (as in the takeoffs and 

approaches to power-on stalls), this spiraling rotation is very compact and exerts 

a strong sideward force on the aircraft’s vertical tail surface. [Figure 4-40]  

When this spiraling slipstream strikes the vertical fin it causes a turning moment 

about the aircraft’s vertical axis. The more compact the spiral, the more 

prominent this force is.  

As the forward speed increases, however, the spiral elongates and becomes less 

effective.The corkscrew flow of the slipstream also causes a rolling moment 

around the longitudinal axis. 

Note that this rolling moment caused by the corkscrew flow of the slipstream is 

to the right, while the rolling moment caused by torque reaction is to the left—
in effect one may be counteracting the other.  

However, these forces vary greatly and it is the pilot’s responsibility to apply 

proper corrective action by use of the flight controls at all times. These forces 

must be counteracted regardless of which is the most prominent at the time. 

Gyroscopic Action 

Before the gyroscopic effects of the propeller can be understood, it is necessary 

to understand the basic principle of a gyroscope. All practical applications of 
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the gyroscope are based upon two fundamental properties of gyroscopic action: 

rigidity in space and precession.  

The one of interest for this discussion is precession. Precession is the resultant 

action, or deflection, of a spinning rotor when a deflecting force is applied to its 

rim. As can be seen in Figure 4-41, when a force is applied, the resulting force 

takes effect 90° ahead of and in the direction of rotation. 

 

 

 

The rotating propeller of an airplane makes a very good gyroscope and thus has 

similar properties.  

Any time a force is applied to deflect the propeller out of its plane of rotation, 

the resulting force is 90° ahead of and in the direction of rotation and in the 

direction of application, causing a pitching moment, a yawing moment, or a 

combination of the two depending upon the point at which the force was 

applied. 

This element of torque effect has always been associated with and considered 

more prominent in tailwheel-type aircraft, and most often occurs when the tail is 

being raised during the takeoff roll.  

[Figure 4-42] This change in pitch attitude has the same effect as applying a 

force to the top of the propeller’s plane of rotation. The resultant force acting 

90° ahead causes a yawing moment to the left around the vertical axis.  
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The magnitude of this moment depends on several variables, one of which is the 

abruptness with which the tail is raised (amount of force applied).  

However, precession, or gyroscopic action, occurs when a force is applied to 

any point on the rim of the propeller’s plane of rotation;  

the resultant force will still be 90° from the point of application in the direction 

of rotation. Depending on where the force is applied, the airplane is caused to 

yaw left or right, to pitch up or down, or a combination of pitching and yawing. 

 

It can be said that, as a result of gyroscopic action, any yawing around the 

vertical axis results in a pitching moment, and any pitching around the lateral 

axis results in a yawing moment. To correct for the effect of gyroscopic action, 

it is necessary for the pilot to properly use elevator and rudder to prevent 

undesired pitching and yawing. 

Asymmetric Loading (P-Factor) 

When an aircraft is flying with a high AOA, the “bite” of the downward moving 

blade is greater than the “bite” of the upward moving blade.  

This moves the center of thrust to the right of the prop disc area, causing a 

yawing moment toward the left around the vertical axis.  
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To prove this explanation is complex because it would be necessary to work 

wind vector problems on each blade while considering both the AOA of the 

aircraft and the AOA of each blade. 

This asymmetric loading is caused by the resultant velocity, which is generated 

by the combination of the velocity of the propeller blade in its plane of rotation 

and the velocity of the air passing horizontally through the propeller disc.  

 

With the aircraft being flown at positive AOAs, the right (viewed from the rear) 

or downswinging blade, is passing through an area of resultant velocity which is 

greater than that affecting the left or upswinging blade.  

Since the propeller blade is an airfoil, increased velocity means increased lift. 

The downswinging blade has more lift and tends to pull (yaw) the aircraft’s 

nose to the left. 

When the aircraft is flying at a high AOA, the downward moving blade has a 

higher resultant velocity, creating more lift than the upward moving blade.  

[Figure 4-43] This might be easier to visualize if the propeller shaft was 

mounted perpendicular to the ground (like a helicopter).  

If there were no air movement at all, except that generated by thepropeller itself, 

identical sections of each blade would have the same airspeed.  
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With air moving horizontally across this vertically mounted propeller, the blade 

proceeding forward into the flow of air has a higher airspeed than the blade 

retreating with the airflow.  

Thus, the blade proceeding into the horizontal airflow is creating more lift, or 

thrust, moving the center of thrust toward that blade. Visualize rotating the 

vertically mounted propeller shaft to shallower angles relative to the moving air 

(as on an aircraft).  

This unbalanced thrust then becomes proportionately smaller and continues 

getting smaller until it reaches the value of zero when the propeller shaft is 

exactly horizontal in relation to the moving air.  

If there were no air movement at all, except that generated by thepropeller 

itself, identical sections of each blade would have the same airspeed.  

With air moving horizontally across this vertically mounted propeller, the blade 

proceeding forward into the flow of air has a higher airspeed than the blade 

retreating with the airflow.  

Thus, the blade proceeding into the horizontal airflow is creating more lift, or 

thrust, moving the center of thrust toward that blade. Visualize rotating the 

vertically mounted propeller shaft to shallower angles relative to the moving air 

(as on an aircraft).  

This unbalanced thrust then becomes proportionately smaller and continues 

getting smaller until it reaches the value of zero when the propeller shaft is 

exactly horizontal in relation to the moving air.  

Propeller 

The propeller is a rotating airfoil, subject to induced drag, stalls, and other 

aerodynamic principles that apply to any airfoil. It provides the necessary thrust 

to pull, or in some cases push, the aircraft through the air.  

The engine power is used to rotate the propeller, which in turn generates thrust 

very similar to the manner in which a wing produces lift.  

The amount of thrust produced depends on the shape of the airfoil, the angle of 

attack of the propeller blade, and the revolutions per minute (rpm) of the engine. 

The propeller itself is twisted so the blade angle changes from hub to tip. The 

greatest angle of incidence, or the highest pitch, is at the hub while the smallest 

angle of incidence or smallest pitch is at the tip. [Figure 6-6] 
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The reason for the twist is to produce uniform lift from the hub to the tip. As 

the blade rotates, there is a difference in the actual speed of the various 

portions of the blade.  

The tip of the blade travels faster than the part near the hub, because the tip 

travels a greater distance than the hub in the same length of time.  

[Figure 6-7] Changing the angle of incidence (pitch) from the hub to the tip 

to correspond with the speed produces uniform lift throughout the length of 

the blade.  
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• A propeller blade designed with the same angle of incidence throughout 

its entire length would be inefficient because as airspeed increases in 

flight, the portion near the hub would have a negative angle of attack 

while the blade tip would be stalled. 

• Small aircraft are equipped with either one of two types of propellers. 

One is the fixed pitch, and the other is the adjustable pitch. 

Fixed-Pitch Propeller 

• A propeller with fixed blade angles is a fixed-pitch propeller. The pitch of 

this propeller is set by the manufacturer and cannot be changed.  

• Since a fixed-pitch propeller achieves the best efficiency only at a given 

combination of airspeed and rpm, the pitch setting is ideal for neither 

cruise nor climb.  

• Thus, the aircraft suffers a bit in each performance category. The fixed-

pitch propeller is used when low weight, simplicity, and low cost are 

needed.  
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• There are two types of fixed-pitch propellers: climb and cruise. Whether 

the airplane has a climb or cruise propeller installed depends upon its 

intended use. The climb propeller has a lower pitch, therefore less drag.  

• Less drag results in higher rpm and more horsepower capability, which 

increases performance during takeoffs and climbs, but decreases 

performance during cruising flight.  

• The cruise propeller has a higher pitch, therefore more drag. More drag 

results in lower rpm and less horsepower capability, which decreases 

performance during takeoffs and climbs, but increases efficiency during 

cruising flight. 

• The cruise propeller has a higher pitch, therefore more drag. More drag 

results in lower rpm and less horsepower capability, which decreases 

performance during takeoffs and climbs, but increases efficiency during 

cruising flight.  

• The propeller is usually mounted on a shaft, which may be an extension 

of the engine crankshaft. In this case, the rpm of the propeller would be 

the same as the crankshaft rpm. On some engines, the propeller is 

mounted on a shaft geared to the engine crankshaft. In this type, the rpm 

of the propeller is different than that of the engine.  

• In a fixed-pitch propeller, the tachometer is the indicator of engine power. 

[Figure 6-8] A tachometer is calibrated in hundreds of rpm and gives a 

direct indication of the engine and propeller rpm.  

• The instrument is color coded, with a green arc denoting the maximum 

continuous operating rpm. Some tachometers have additional markings to 

reflect engine and/or propeller limitations.  

• The manufacturer’s recommendations should be used as a reference to 

clarify any misunderstanding of tachometer markings. 
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• The rpm is regulated by the throttle, which controls the fuel/air flow to 

the engine. At a given altitude, the higher the tachometer reading, the 

higher the power output of the engine.  

• When operating altitude increases, the tachometer may not show correct 

power output of the engine. 

• For example, 2,300 rpm at 5,000 feet produces less horsepower than 

2,300 rpm at sea level because power output depends on air density. Air 

density decreases as altitude increases and a decrease in air density 

(higher density altitude) decreases the power output of the engine.  

• As altitude changes, the position of the throttle must be changed to 

maintain the same rpm. As altitude is increased, the throttle must be 

opened further to indicate the same rpm as at a lower altitude. 

Adjustable-Pitch Propeller 

• The adjustable-pitch propeller was the forerunner of the constant-speed 

propeller. It is a propeller with blades whose pitch can be adjusted on the 

ground with the engine not running, but which cannot be adjusted in 

flight.  

• It is also referred to as a ground adjustable propeller. By the 1930s, 

pioneer aviation inventors were laying the ground work for automatic 
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pitch-change mechanisms, which is why the term sometimes refers to 

modern constant-speed propellers that are adjustable in flight.  

• The first adjustable-pitch propeller systems provided only two pitch 

settings: low and high. Today, most adjustable-pitch propeller systems 

are capable of a range of pitch settings. 

• A constant-speed propeller is a controllable-pitch propeller whose pitch is 

automatically varied in flight by a governor maintaining constant rpm 

despite varying air loads. 

• It is the most common type of adjustable-pitch propeller. The main 

advantage of a constant-speed propeller is that it converts a high 

percentage of brake horsepower (BHP) into thrust horsepower (THP) 

over a wide range of rpm and airspeed combinations.  

• A constant-speed propeller is more efficient than other propellers because 

it allows selection of the most efficient engine rpm for the given 

conditions. An aircraft with a constant-speed propeller has two controls: 

the throttle and the propeller control.  

• The throttle controls power output and the propeller control regulates 

engine rpm. This in turn regulates propeller rpm which is registered on 

the tachometer. 

• Once a specific rpm is selected, a governor automatically adjusts the 

propeller blade angle as necessary to maintain the selected rpm.  

• For example, after setting the desired rpm during cruising flight, an 

increase in airspeed or decrease in propeller load will cause the propeller 

blade angle to increase as necessary to maintain the selected rpm.  

• A reduction in airspeed or increase in propeller load will cause the 

propeller blade angle to decrease.  

• The propeller’s constant-speed range, defined by the high and low pitch 

stops, is the range of possible blade angles for a constant-speed propeller. 

As long as the propeller blade angle is within the constant-speed range 

and not against either pitch stop, a constant engine rpm will be 

maintained.  

• If the propeller blades contact a pitch stop, the engine rpm will increase 

or decrease as appropriate, with changes in airspeed and propeller load.  

• For example, once a specific rpm has been selected, if aircraft speed 

decreases enough to rotate the propeller blades until they contact the low 
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pitch stop, any further decrease in airspeed will cause engine rpm to 

decrease the same way as if a fixed-pitch propeller were installed. The 

same holds true when an aircraft equipped with a constant-speed 

propeller accelerates to a faster airspeed.  

• As the aircraft accelerates, the propeller blade angle increases to maintain 

the selected rpm until the high pitch stop is reached. Once this occurs, the 

blade angle cannot increase any further and engine rpm increases. 

• On aircraft equipped with a constant-speed propeller, power output is 

controlled by the throttle and indicated by a manifold pressure gauge. The 

gauge measures the absolute pressure of the fuel/air mixture inside the 

intake manifold and is more correctly a measure of manifold absolute 

pressure (MAP).  

• At a constant rpm and altitude, the amount of power produced is directly 

related to the fuel/air flow being delivered to the combustion chamber. As 

the throttle setting is increased, more fuel and air flows to the engine and 

MAP increases.  

• When the engine is not running, the manifold pressure gauge indicates 

ambient air pressure (i.e., 29.92 inches mercury (29.92 "Hg)).  

• When the engine is started, the manifold pressure indication will decrease 

to a value less than ambient pressure (i.e., idle at 12 "Hg).  

• Engine failure or power loss is indicated on the manifold gauge as an 

increase in manifold pressure to a value corresponding to the ambient air 

pressure at the altitude where the failure occurred. [Figure 6-9] 

• The manifold pressure gauge is color coded to indicate the engine’s 

operating range. The face of the manifold pressure gauge contains a green 

arc to show the normal operating range, and a red radial line to indicate 

the upper limit of manifold pressure.  

• For any given rpm, there is a manifold pressure that should not be 

exceeded. If manifold pressure is excessive for a given rpm, the pressure 

within the cylinders could be exceeded, placing undue stress on the 

cylinders.  

• If repeated too frequently, this stress can weaken the cylinder components 

and eventually cause engine failure. As a general rule, manifold pressure 

(inches) should be less than the rpm 
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• A pilot can avoid conditions that overstress the cylinders by being 

constantly aware of the rpm, especially when increasing the manifold 

pressure.  

• Conform to the manufacturer’s recommendations for power settings of a 

particular engine to maintain the proper relationship between manifold 

pressure and rpm.  

• When both manifold pressure and rpm need to be changed, avoid engine 

overstress by making power adjustments in the proper order: 

• When power settings are being decreased, reduce manifold pressure 

before reducing rpm. If rpm is reduced before manifold pressure, 

manifold pressure will automatically increase, possibly exceeding the 

manufacturer’s tolerances.  
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• When power settings are being increased, reverse the order—increase 

rpm first, then manifold pressure.  

• To prevent damage to radial engines, minimize operating time at 

maximum rpm and manifold pressure, and avoid operation at maximum 

rpm and low manifold pressure.  

• The engine and/or airframe manufacturer’s recommendations should be 

followed to prevent severe wear, fatigue, and damage to high-

performance reciprocating engines. 
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I.INTRODUCTION TO TYPES OF FLUID FLOW 

The fluid flow is classified as : 

i. Steady and unsteady flows ; 

ii. Uniform and non-uniform flows ; 

iii. Laminar and turbulent flows ; 

iv. Compressible and incompressible flows ; 

v. Rotational and irrotational flows ; and 

vi. One, two and three-dimensional flows. 

 

Steady and Unsteady Flows.  

Steady flow is defined as that type of flow in which the fluid characteristics like 

velocity, pressure, density, etc., at a point do not change with time. Thus for 

steady flow, mathematically, we have 

 

 

 

where (x0, y 0, z0)  is a fixed point in fluid field. 

Unsteady flow is that type of flow, in which the velocity, pressure or density at 

a point changes with respect  to time. Thus, mathematically,  for unsteady  flow 

 

 

 

Uniform and Non-uniform Flows. Uniform flow is defined as that type of flow 

in which the velocity at any given time does not change with respect to space ( 

i.e., length of direction of the flow). Mathematically, for uniform flow 
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where      v = Change of velocity 

 s = Length of flow in the direction S. 

Non-uniform flow is that type of flow in which the velocity at any given time 

changes with respect to space. Thus, mathematically, for non-uniform  flow 

 

 

 

Laminar and Turbulent Flows.   

Laminar flow is defined as that type of flow in which the fluid particles move 

along well-defined paths or stream line and all the stream-lines are straight and 

parallel.  

Thus the particles move in laminas or layers gliding smoothly over the adjacent 

layer. This type of flow is also called stream-line flow or viscous flow. 

Turbulent flow is that type of flow in which the fluid particles move in a zig-zag  

way. Due to the movement of fluid particles in a zig-zag  way, the eddies 

formation takes place which are responsiblefor high energy loss. For a pipe 

flow, the type of flow is determined by a non-dimensional number 
𝑉𝐷𝜗  called the 

Reynold  number,  

where    

D  = Diameter of pipe 

V = Mean velocity of flow in pipe and  

v = Kinematic viscosity of fluid. 

If the Reynold number is less than 2000, the flow is called laminar. If the 

Reynold number is more than 4000, it is called turbulent flow. If the Reynold 

number lies between 2000 and 4000, the flow may be laminar or turbulent. 
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Compressible and Incompressible Flows.  

Compressible  flow  is that type of  flow  in which the density  of the fluid 

changes from point to point or in other words the density (p) is not constant for 

the fluid. Thus, mathematically,  for compressible  flow 

p ≠Constant 

Incompressible flow is that type of flow in which the density is constant for the 

fluid flow. Liquids are generally incompressible while gases are compressible. 

Mathematically, for incompressible flow 

p = Constant. 

Rotational  and lrrotational Flows. Rotational flow is that type of flow in 

which the fluid particles while flowing along stream-lines, also rotate about their 

own axis. And if the fluid particles while flowing along stream-lines, do not 

rotate about their own axis then that type of flow is called irrotational flow. 

One-, Two- and Three-Dimensional Flows. One-dimensional  flow is that type 

of flow in which the flow parameter such as velocity is a function of time and 

one space co-ordinate only, say x. For a steady one-dimensional flow, the 

velocity is a function of one-space-co-ordinate only. The variation of velocities 

in other two mutually perpendicular directions is assumed negligible. Hence 

mathematically, for one-dimensional flow 

u = f( x), v = 0 and w = 0 

where u, v and w are velocity components in x, y and z directions respectively. 

Two-dimensional flow is that type of flow in which the velocity is a function of 

time and two rectangular space co-ordinates say x and y. For a steady two-

dimensional flow the velocity is a function of two space co-ordinates only. The 

variation of velocity in the third direction is negligible. Thus, mathematically  

for two-dimensional  flow 

u =f1(x, y ), v =f2(x, y ) and w = 0. 

Three-dimensional flow is that type of flow in which the velocity is a function of 

time and three mutually perpendicular directions. But for a steady three-

dimensional flow the fluid parameters are functions of three space co-ordinates 

(x, y and z) only. Thus, mathematically, for three-dimensional flow 
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u =f1(x, y, z), v = f2(x, y, z) and w = f3(x, y, z). 

 

VELOCITY AND ACCELERATION 

Let V is the resultant velocity at any point in a fluid flow. Let u, v and w are its 

component in x, y and z directions. The velocity components are functions of 

space-co-ordinates and time. Mathematically, the velocity components are given 

as 

 u = f1(x, y, z, t) 

 v = f2(x, y, z, t) 

           w = f3( x, y, z, t) 

and Resultant  velocity, 

V = ui+vj+wk = √u2 + v2 + w2 
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IDEAL FLOW (POTENTIAL FLOW) 

Ideal fluid is a fluid which is incompressible and inviscid. Incompressible 

fluid is a fluid for which density (p)remains constant. Inviscid fluid is a fluid 

for which viscosity (µ) is zero. Hence a fluid for which density is constant 

and viscosity is zero, is known as an ideal fluid. 

The shear stress is given by, = 𝜇 𝜕𝑢𝜕𝑦 . Hence for ideal fluid the shear stress 

will be zero as µ = 0 for ideal fluid. Also the shear force (which is equal to 

shear stress multiplied  by area) will be zero in 

case of ideal or potential flow. The ideal fluids will  be moving  with uniform 

velocity. All the fluid particles will be moving with the same velocity. 

The concept of ideal fluid simplifies the typical mathematical analysis. Fluids 

such as water and air have low viscosity. Also when the speed of air is 

appreciably lower than that of sound in it, the compressibility is so low that 

air is assumed to be incompressible. Hence under certain conditions, certain 

real fluids such as water and air may be treated like ideal fluids. 

IMPORTANT CASES OF POTENTIAL FLOW 

The following are the important cases of potential flow : 

i. Uniform flow,  
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ii. Source flow, 

iii. Sink flow,  

iv. Free-vortex  flow,  

v. Superimposed flow. 

UNIFORM FLOW 

In a uniform flow, the velocity remains constant. All the fluid particles are 

moving with the same velocity. The uniform flow may be : 

    (i)  Parallel to x-axis ( ii )  Parallel to y-axis. 
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PATHLINES, STREAMLINES, AND STREAKLINES OF A FLOWE 

Consider an unsteady flow with a velocity field given by V = V(x, y, z, t). Also, 

consider an infinitesimal fluid element moving through the flow field, say, 

element A as shown in Figure 2.27a.  

 

Figure 6. Pathlines for two different fluid elements passing through the same 

point in space: unsteady flow 

Element A passes through point 1. Let ustrace the path of element A as it moves 

downstream from point 1, as given by the dashed line in Figure 6 a.  

Such a path is defined as the pathline for element A. Now, trace the path of 

another fluid element, say, element B as shown in Figure 6 b. Assume that 

element B also passes through point 1, but at some different time from element 

A.  
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The pathline of element B is given by the dashed line in Figure 6 b. Because the 

flow is unsteady, the velocity at point 1 (and at all other points of the flow) 

changes with time.  

Hence, the pathlines of elements A and B are different curves in Figure 6 a and 

b. In general, for unsteady flow, the pathlines for different fluid elements 

passing through the same point are not the same.  

The concept of a streamline was introduced in a somewhat heuristic manner. Let 

us be more precise here. By definition, a streamline is a curve whose tangent at 

any point is in the direction of the velocity vector at that point. Streamlines are 

illustrated in Figure 7.  

The streamlines are drawn such that their tangents at every point along the 

streamline are in the same direction as the velocity vectors at those points. If the 

flow is unsteady, the streamline pattern is different at different times because the 

velocity vectors are fluctuating with time in both magnitude and direction.  

In general, streamlines are different from pathlines. You can visualize a pathline 

as a time-exposure photograph of a given fluid element, whereas a streamline 

pattern is like a single frame of a motion picture of the flow. In an unsteady 

flow, the streamline pattern changes; hence, each “frame” of the motion picture 

is different.  

However, for the case ofsteady flow(which applies to most of the applications in 

this book), the magnitude and direction of the velocity vectors at all points are 

fixed, invariant with time.  

Hence, the pathlines for different fluid elements going through the same point 

are the same. Moreover, the pathlines and streamlines are identical. Therefore, 

in steady flow, there is no distinction between pathlines and streamlines; they 

are the same curves in space. This fact is reinforced in Figure 8, which illustrates 

the fixed, time-invariant streamline (pathline) through point 1. 

In Figure 8, a given fluid element passing through point 1 traces a pathline 

downstream. All subsequent fluid elements passing through point 1 at later times 

trace the same pathline. Since the velocity vector is tangent to the pathline at all 

points on the pathline for all times, the pathline is also a streamline.  

For the remainder of this book, we deal mainly with the concept of streamlines 

rather than pathlines; however, always keep in mind the distinction described 

above. 
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Figure 7 Streamlines. 

 

Figure 8. For steady flow, streamlines and pathlines are the same 

Question: Given the velocity field of a flow, how can we obtain the mathematical 

equation for a streamline? Obviously, the streamline illustrated in Figure 8 is a 

curve in space, and hence it can be described by the equation f (x, y, z) = 0. How 

can we obtain this equation?  

To answer this question, let ds be a directed element of the streamline, such as 

shown at point 2 in Figure 8.  

The velocity at point 2 is V, and by definition of a streamline, V is parallel to ds. 

Hence, from the definition of the vector cross product [see Equation (2.4)], 

ds × V = 0                 ----- 2.115 

Equation (2.115) is a valid equation for a streamline. To put it in a more 

recognizable form, expand Equation (2.115) in cartesian coordinates: 

ds = dxi + dyj + dzk  
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V = ui + vj + wk 

 

Equations (2.117a to c) are differential equations for the streamline. Knowing 

u, v, and w as functions of x, y, and z, Equations (2.117a to c) can be 

integrated to yield the equation for the streamline: f (x, y, z) = 0. To reinforce 

the physical meaning of Equations (2.117a to c), consider a streamline in two 

dimensions, as sketched in Figure 9.  

The equation of this streamline is y = f (x). Hence, at point 1 on the 

streamline, the slope is dy/dx. However, V with x and y components u and v, 

respectively, is tangent to the streamline at point 1.Thus, the slope of the 

streamline is also given by v/u, as shown in Figure 9. Therefore,  

 

Figure 9. (a) Equation of a stream in two-dimensional Cartesian space. (b) 

Sketch of a streamtube in three-dimensional space. 
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Equation (2.118) is a differential equation for a streamline in two dimensions. 

From Equation (2.118), v 

v dx − udy = 0 

which is precisely Equation (2.117c). Therefore, Equations (2.117a to c) and 

(2.118) simply state mathematically that the velocity vector is tangent to the 

streamline.  

A concept related to streamlines is that of a streamtube. Consider an arbitrary 

closed curve C in three-dimensional space, as shown in Figure 9b.  

Consider the streamlines which pass through all points on C. These streamlines 

form a tube in space as sketched in Figure 9b; such a tube is called a streamtube.  

For example, the walls of an ordinary garden hose form a streamtube for the 

water flowing through the hose. For a steady flow, a direct application of the 

integral form of the continuity equation [Equation (2.53)] proves that the mass 

flow across all cross sections of a streamtube is constant. 

ANGULAR VELOCITY, VORTICITY, AND STRAIN 

Consider an infinitesimal fluid element moving in a flow field. As it translates 

along a streamline, it may also rotate, and in addition its shape may become 

distorted as sketched in Figure 10. The amount of rotation and distortion 

depends on the velocity field; the purpose of this section is to quantify this 

dependency.  

Consider a two-dimensional flow in the xy plane. Also, consider an infinitesimal 

fluid element in this flow. Assume that at time t the shape of this fluid element is 

rectangular, as shown at the left of Figure 10. 
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Figure 10. The motion of a fluid element along a streamline is a combination 

of translation and rotation; in addition, the shape of the element can become 

distorted.   

 

Figure 11. Rotation and distortion of a fluid element. 

Assume that the fluid element is moving upward and to the right; its position 

and shape at time t + t are shown at the right in Figure 11.  

Note that during the time increment  t, the sides AB and AC have rotated 

through the angular displacements − θ1 and θ2, respectively. 
(Counterclockwise rotations by convention are considered positive; since line 

AB is shown with a clockwise rotation in Figure 11, the angular displacement is 

negative, −θ1.) At present, consider just the line AC.  

It has rotated because during the time increment t, point C has moved differently 

from point A. Consider the velocity in the y direction.  

At point A at time t, this velocity is v, as shown in Figure 11. Point C is a 

distance dx from point A; hence, at time t the vertical component of velocity of 

point C is given by v +(∂v/∂x) dx. Hence, 



37 

 

 

Now consider line AB. The x component of the velocity at point A at time t is u, 

as shown in Figure 11. Because point B is a distance dy from point A, the 

horizontal component of velocity of point B at time t is u + (∂u/∂y) dy.  

By reasoning similar to that above, the net displacement in the x direction of B 

relative to A over the time increment t is [(∂u/∂y) dy] t, as shown in Figure 11. 

Hence, 
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In the above discussion, we have considered motion in the xy plane only. 

However, the fluid element is generally moving in three-dimensional space, and 

its angular velocity is a vector ω that is oriented in some general direction, as 

shown in Figure 12. In Equation (2.126),  

we have obtained only the component of ω in the z direction; this explains the 
subscript z in Equations (2.125) and (2.126). The x and y components of ω can 
be obtained in a similar fashion.  

The resulting angular velocity of the fluid element in three-dimensional space is  

ω = ωxi + ωyj + ωzk 

 

• Equation (2.127) is the desired result; it expresses the angular velocity of 

the fluid element in terms of the velocity field, or more precisely, in terms 

of derivatives of the velocity field.  

• The angular velocity of a fluid element plays an important role in 

theoretical aerodynamics, as we shall soon see.  
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• However, the expression 2ω appears frequently, and therefore we define a 
new quantity, vorticity, which is simply twice the angular velocity. 

Denote vorticity by the vector ξ : 

ξ ≡ 2ω  

• Hence, from Equation (2.127),  

 

Figure 12. Angular velocity of a fluid element in three-dimensional space. 

 

Recall Equation (2.22) for ∇ × V in cartesian coordinates. Since u, v, and w 

denote the x, y, and z components of velocity, respectively, note that the right 

sides of Equations (2.22) and (2.128) are identical. Hence, we have the 

important result that  
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In a velocity field, the curl of the velocity is equal to the vorticity. The above 

leads to two important definitions: 1. If ∇ × V = 0 at every point in a flow, the 

flow is called rotational. This implies that the fluid elements have a finite 

angular velocity. 2. If ∇ × V = 0 at every point in a flow, the flow is called 

irrotational. This implies that the fluid elements have no angular velocity; rather, 

their motion through space is a pure translation. 

The case of rotational flow is illustrated in Figure 13. Here, fluid elements 

moving along two different streamlines are shown in various modes of rotation.  

In contrast, the case of irrotational flow is illustrated in Figure 14. Here, the 

upper streamline shows a fluid element where the angular velocities of its sides 

are zero.  

The lower streamline shows a fluid element where the angular velocities of two 

intersecting sides are finite but equal and opposite to each other, and so their 

sum is identically zero. 

 In both cases, the angular velocity of the fluid element is zero (i.e., the flow is 

irrotational).  

 

Figure 13. Fluid elements in a rotational flow 
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Figure 14. Fluid elements in an irrotational flow. 

 

 

• Equation (2.131) is the condition of irrotationality for two-dimensional 

flow. We will have frequent occasion to use Equation (2.131). 

• Why is it so important to make a distinction between rotational and 

irrotational flows? The answer becomes blatantly obvious as we progress 

in our study of aerodynamics; we find that irrotational flows are much 

easier to analyze than rotational flows.  

• However, irrotational flow may at first glance appear to be so special that 

its applications are limited. Amazingly enough, such is not the case. There 

are a large number of practical aerodynamic problems where the flow 

field is essentially irrotational, for example, the subsonic flow over 
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airfoils, the supersonic flow over slender bodies at small angle of attack, 

and the subsonic-supersonic flow through nozzles.  

• For such cases, there is generally a thin boundary layer of viscous flow 

immediately adjacent to the surface; in this viscous region the flow is 

highly rotational.  

• However, outside this boundary layer, the flow is frequently irrotational. 

As a result, the study of irrotational flow is an important aspect of 

aerodynamics. 

• Return to the fluid element shown in Figure 2.33. Let the angle between 

sides AB and AC be denoted by κ.  

• As the fluid element moves through the flow field, κ will change. In 
Figure 2.33, at time t, κ is initially 90◦ . At time t +  t, κ has changed by 
the amount κ, where 

• By definition, the strain of the fluid element as seen in the xy plane is the 

change in κ, where positive strain corresponds to a decreasing κ. Hence, 
from Equation (2.132), 

Strain = −  κ =  θ2 −  θ1     (2.133) 

• In viscous flows (to be discussed in Chapters 15 to 20), the time rate of 

strain is an important quantity. Denote the time rate of strain by εxy , 

where in conjunction with Equation (2.133) 
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 The sum of the diagonal terms is simply equal to ∇ · V, which from Section 

2.3 is equal to the time rate of change of volume of a fluid element; hence, 

the diagonal terms represent the dilatation of a fluid element.  

The off-diagonal terms are cross derivatives which appear in Equations 

(2.127), (2.128), and (2.135a to c).  

Hence, the off-diagonal terms are associated with rotation and strain of a 

fluid element. In summary, in this section, we have examined the rotation 

and deformation of a fluid element moving in a flow field.  

The angular velocity of a fluid element and the corresponding vorticity at a 

point in the flow are concepts that are useful in the analysis of both inviscid 

and viscous flows; in particular, the absence of vorticity—irrotational flow—
greatly simplifies the analysis of the flow, as we will see. We take advantage 

of this simplification in much of our treatment of inviscid flows in 

subsequent chapters. 
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CIRCULATION 

You are reminded again that this is a tool-building chapter. Taken individually, 

each aerodynamic tool we have developed so far may not be particularly 

exciting. However, taken collectively, these tools allow us to obtain solutions for 

some very practical and exciting aerodynamic problems.  

In this section, we introduce a tool that is fundamental to the calculation of 

aerodynamic lift, namely, circulation. This tool was used independently by 

Frederick Lanchester (1878–1946) in England, Wilhelm Kutta (1867–1944) in 

Germany, and Nikolai Joukowski (1847–1921) in Russia to create a 

breakthrough in the theory of aerodynamic lift at the turn of the twentieth 

century.  

The relationship between circulation and lift and the historical circumstances 

surrounding this breakthrough are discussed in Chapters 3 and 4.  

The purpose of this section is only to define circulation and relate it to vorticity. 

Consider a closed curve C in a flow field, as sketched in Figure 2.38. Let V and 

ds be the velocity and directed line segment, respectively, at a point on C. The 

circulation, denoted by Ŵ, is defined as  

 

The circulation is simply the negative of the line integral of velocity around a 

closed curve in the flow; it is a kinematic property depending only on the 

velocity field and the choice of the curve C.  

Line Integrals, by mathematical convention the positive sense of the line integral 

is counterclockwise. However, in aerodynamics, it is convenient to consider a 

positive circulation as being clockwise.  

Hence, a minus sign appears in the definition given by Equation (2.136) to 

account for the positive-counterclockwise sense of the integral and the positive-

clockwise sense of circulation 

The use of the word circulation to label the integral in Equation (2.136) may be 

somewhat misleading because it leaves a general impression of something 
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moving around in a loop. Indeed, according to the American Heritage 

Dictionary of the English Language, the first definition given to the word 

“circulation” is “movement in a circle or circuit.”  

However, in aerodynamics, circulation has a very precise technical meaning, 

namely, Equation (2.136). It does not necessarily mean that the fluid elements 

are moving around in circles within this flow field—a common early 

misconception of new students of aerodynamics.  

Rather, when circulation exists in a flow, it simply means that the line integral in 

Equation (2.136) is finite.  

For example, if the airfoil in Figure 2.28 is generating lift, the circulation taken 

around a closed curve enclosing the airfoil will be finite, although the fluid 

elements are by no means executing circles around the airfoil (as clearly seen 

from the streamlines sketched in Figure 2.28). 

Circulation is also related to vorticity as follows. Refer back to Figure 2.11, 

which shows an open surface bounded by the closed curve C. Assume that the 

surface is in a flow field and the velocity at point P is V, where P is any point on 

the surface (including any point on curve C ). From Stokes’ theorem [Equation 

(2.25)], 

Hence, the circulation about a curve C is equal to the vorticity integrated over 

any open surface bounded by C. This leads to the immediate result that if the 

flow is irrotational everywhere within the contour of integration (i.e., if ∇ × V = 

0 over any surface bounded by C), then Ŵ = 0. A related result is obtained by 

letting the curve C shrink to an infinitesimal size, and denoting the circulation 

around this infinitesimally small curve by dŴ. Then, in the limit as C becomes 
infinitesimally small, Equation (2.137) yields 
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where d S is the infinitesimal area enclosed by the infinitesimal curve C. 

Referring to Figure 2.39, Equation (2.138) states that at a point P in a flow, the 

component of vorticity normal to d S is equal to the negative of the “circulation 

per unit area,” where the circulation is taken around the boundary of d S. 

 

 

 

 


