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ALTERNATIVE FORMS OF THE  
ONE-DIMENSIONAL ENERGY EQUATION  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We have the energy equation for steady one-dimensional flow  
 
 
 
 
 
 
 
 
 
 
 
 

 

Assuming no heat addition, this becomes  
 
 
 
 
 
 
 
 
 

 

where points 1 and 2 correspond to the regions 1 and 2 identified in the above 
figure (Fig. 3.5). 
 
Specializing further to a calorically perfect gas, where h = CpT, the above 
equation becomes, 
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Combining the above we get,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The above equation becomes,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

When 
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The above equation can be written as,  
 
 
 
 
 
 
 
 
 
 

 
The actual speed of sound and velocity at point A are a and u, respectively. At the 
imagined condition of Mach 1 (point 2 in the above equations), the speed of 
sound is a* and the flow velocity is sonic, hence u2 = a*. Thus, the above equation 
yields,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the actual flowfield is nonadiabatic from A to B, a*A ≠ a*B . 
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On the other hand, if the general flowfield is adiabatic throughout, then a* is a 

constant value at every point in the flow. Since many practical aerodynamic flows 

are reasonably adiabatic, this is an important point to remember. 
 

 

Let point 1 in correspond to point A and let point 2 correspond to our imagined 
conditions where the fluid element is brought to rest isentropically at point A. If T 
and u are the actual values of static temperature and velocity, respectively, at 
point A, then T1 = T and u1 = u. Also, by definition of total conditions, u2 = 0 and T2 
= To Hence, equation  
 
 
 
 
 
 
 
 
 
 

becomes  
 
 
 
 
 
 
 
 
 
 
 
 

 

The above equation provides a formula from which the defined total temperature, 

To, can be calculated for the given actual conditions of T and u at any point in a 

general flow field. Remember that total conditions are defined earlier as 
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those where the fluid element is isentropically brought to rest. However, in the 

derivation of the above equation, only the energy equation for an adiabatic flow is 

used. Isentropic conditions have not been imposed so far. Hence, the definition 

of To such as expressed in the above Eq is less restrictive than the definition of 

total conditions. Isentropic flow implies reversible and adiabatic conditions; Eq. 

tells us that, for the definition of To, only the "adiabatic" portion of the isentropic 

definition is required. That is, we can now redefine To as that temperature that 

would exist if the fluid element were brought to rest adiabatically. However, for 

the definition of total pressure, p0, and total density, ρo, the imagined isentropic 

process is still necessary. 
 
 

We have,  
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Several very useful equations for total conditions are obtained as follows from 
the above two equations.  
 
 
 
 
 
 
 
 
 
 
 

Hence  
 
 
 
 
 
 
 
 
 
 
 

 

The above equation gives the ratio of total to static temperature at a point in a 
flow as a function of the Mach number M at that point Furthermore, for an 
isentropic process, the below equation  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

holds, such that 
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Combining the above two equations, we find  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above two equations give the ratios of total to static pressure and 
density, respectively, at a point in the flow as a function of Mach number M at 
that point. Along with the following Eq., 
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they represent important relations for total properties—so important that their 
values are tabulated in Table (see Gas table) as a function of M for γ = 1.4 (which 
corresponds to air at standard conditions). 
 
 

Example 3.1. 
 

 
At a point in the flow over an F-15 high-performance fighter airplane, the pressure, 
temperature, and Mach number are 1890 lb/ft2, 450°R, and 1 5, respectively. At this 
point, calculate To, p0, T*, p*, and the flow velocity. 

 

Rankine temperature conversion formulae  
 

 from Rankine to Rankine 

   

Cels

ius [°C] = ([R] − 491.67) × 5⁄9 [R] = ([°C] + 273.15) × 9⁄5 

Fahr

enhe

it [°F] = [R] − 459.67 [R] = [°F] + 459.67 

Kel

vin [K] = [R] × 5⁄9 [R] = [K] × 9⁄5   
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Consider the flow through a rocket engine nozzle Assume that the gas flow 

through the nozzle is an isentropic expansion of a calorically perfect gas In the 

combustion chamber, the gas which results from the combustion of the rocket 

fuel and oxidizer is at a pressure and temperature of 15 atm and 2500 K, 

respectively, the molecular weight and specific heat at constant pressure of the 

combustion gas are 12 and 4157 J/kg K, respectively The gas expands to 

supersonic speed through the nozzle, with a temperature' of 1350 K at the nozzle 

exit Calculate the pressure at the exit.  
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It should be emphasized again that the below four equations 
provide formulas from which the defined quantities To, po, and ρ0 can be 
calculated from the actual conditions of M, u, T, p, and ρ at a given point in a 
general flowfield, as sketched in Fig 2.2 (see above). Again, the actual flowfield 
itself does not have to be adiabatic or isentropic from one point to the next. In 
these equations, the isentropic process is just in our minds as part of the 
definition of total conditions at a point.  
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Applied at point A in the above Fig 2.2, the above equations give us the values of 
To, po, and ρ0 associated with point A.  
Similarly, applied at point B, the above equations give us the values of T0, p0, and 
ρ0 associated with point B. If the actual flow between A and B is nonadiabatic and 
irreversible, then  
 
 
 

 

On the other hand, if the general flowfield is isentropic throughout, then To, po, 
and ρ0 are constant values at every point in the flow. The idea of constant total 
(stagnation) conditions in an isentropic flow will be very useful in our later 
discussions of various practical applications in compressible flow — keep it in 
mind' 
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We have  
 
 
 
 
 
 
 
 
 

 

A few additional equations will be useful in subsequent sections. For example, 
from the above equation,  
 
 
 
 
 
 
 
 
 

where ao is the stagnation speed of sound.  
 
 

 

We have,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Equating the R.H.S of the above two equations,  



15 
 

Solving the above equation for a*/ao, and invoking  
 
 
 
 
 

 

We get,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Recall that p* and ρ* are defined for conditions at Mach 1; hence, the above two 
equations with M = 1 lead to  
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Dividing the above equation by u2 , we have  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above equation provides a direct relation between the actual Mach number M 
and the characteristic Mach number M*. 
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Using the above relation find the value of M when,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Hence, qualitatively, M* acts in the same fashion as M, except when M goes to 
infinity. 
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In future discussions involving shock and expansion waves, M* will be a useful 
parameter because it approaches a finite number as M approaches infinity. 
 

 

All the equations in this section, either directly or indirectly, are alternative forms 

of the original, fundamental energy equation for one-dimensional, adiabatic flow 

(see below Eq.).  
 
 
 
 
 
 
 
 
 
 
Make certain that you examine these equations and their derivations closely. It is 
important at this stage that you feel comfortable with these equations, especially 
those with a box around them for emphasis. 
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Problem: 
 
An aircraft flies at 800km/hr at an altitude of 10,000 meters (T=223.15 K, p = 0.264 

bar). The air is reversibly compressed in an inlet diffuser (γ = 1.4, R = 287 J/kg K). 

The Mach number at the exit of the diffuser is 0.36 determine (a) entry Mach 

number and (b) velocity, pressure and temperature of air at the diffuser exit. (Hint: 

Use gas table) 
 
 

Solution: 
 
Let subscripts i and e refer to conditions at entry and exit of the diffuser 
respectively. 

 

(a) Pi = 0.264 bar, Ti = 223.15 K 
ui  = 800 x 1000 / 3600  = 222.22 m/s 
We have  
 
 
 
 
 
 
 
 
 
 
 

Using the above equation, we will get T0  =  247.84 K  
 
  
 

 

= 0.74  Ans. 
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(b)  From isentropic flow table for γ = 1.4 at 
Mi  = 0.74 (calculated) find Pi/P0 

Me  = 0.36  (given)  find Pe/P0  and Te/T0 
 
 

From the isentropic flow table we have, 

 

Pi/P0 = 0.695 

 

P0 = Pi / 0.695  = 0.264 / 0.695 
= 0.379 

 

Pe/P0   = 0.914 

 

Pe = P0 x 0.914 
= 0.379 x 0.914  
= 0.346 Ans. 

 

Again from table: Te/T0  = 0.975 
Te = T0 (calculated) x 0.975 

= 247.84 x 0.975  
= 241.6 K Ans.  

 
 
 

 

ae =  γ  R Te =  1.4 x 287 x 241.6 
 
= 311.57 m/s 

 

ue  =  Me ae  =  0.36 x 311.57 
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=  112.17 m/s Ans  
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Problem-2 
 
 

Air (Cp = 1.03 kJ/kg K, γ = 1.38) at P1 = 3 x 105 N/m2 and T1  
= 500 K flows with a velocity of 200 m/s in a 30 cm diameter duct. 
Calculate:  
(a) Mass flow rate 
 
(b) Stagnation temperature © Mach number, and 
 
(d) Stagnation pressure values assuming the flow as compressible and 
incompressible. 
 
 

Solution: 
R = Cp – Cv = 0.289 kJ/kg K 
ρ1 = P1/RT1  = 2.076 kg/m3 

 
 

(a) Mass flow rate = 29.348 kg/s 
(b) Stagnation temperature, T0  = 519.047 K  
(c) Mach number  =  0.4478  
(d) Stagnation pressure  

For compressible flow  
 
 
 
 
 
 
 
 
 
 
 

= 1.145 (T0 = 519.047 (calculated) and Ti = 500 K (given)) P0 = 1.145 x 3 x 105 
N/m2 
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= 3.435 x 105 N/m2 

For incompressible flow 
P0  = P1 + ½ ρ1 u1

2 

= 3 x 105 + ½ x 2.076 x 2002  
= 3.415 x 105 N/m2  
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NORMAL SHOCK RELATIONS 
 

Let us now apply the previous information to the practical 

problem of a normal shock wave. As discussed earlier normal 

shocks occur frequently as part of many supersonic 

flowfields. By definition, a normal shock wave is perpendicular 

to the flow, as sketched in Fig. 3.3 (see above). The shock is a 

very thin region (the shock thickness is usually on the order of 

a few molecular mean free paths, typically 10-5 cm for air at 

standard conditions). The flow is supersonic ahead of the 

wave, and subsonic behind it, as noted in Fig 3.3. Furthermore, 

the static pressure, temperature, and density increase across 

the shock, whereas the velocity decreases, all of which we will 

demonstrate shortly. Nature establishes shock waves in a 

supersonic flow as a solution to a perplexing problem having 

to do with the propagation of disturbances in the flow. 
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To obtain some preliminary physical feel for the creation 
of such shock waves, consider a flat-faced cylinder 
mounted in a flow, as sketched in Fig. 3.7 (see below).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Recall that the flow consists of individual molecules, some of 

which impact on the face of the cylinder. There is in general a 

change in molecular energy and momentum due to impact with 

the cylinder, which is seen as an obstruction by the molecules. 

Therefore, just as in our example of the creation of a sound 

wave, as discussed earlier, the random motion of the 

molecules communicates this change in energy and 
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momentum to other regions of the flow. The presence 
of the body tries to be propagated everywhere, 
including directly upstream, by sound waves. 
 

 

In Fig. 3.7a, the incoming stream is subsonic, V∞ < a∞, and the 

sound waves can work their way upstream and forewarn the 

flow about the presence of the body. In this fashion, as shown 

in Fig. 3.7a, the flow streamlines begin to change and the flow 

properties begin to compensate for the body far upstream 

(theoretically, an infinite distance upstream). In contrast, if the 

flow is supersonic, then V∞ > a∞, and the sound waves can no 

longer propagate upstream. Instead, they tend to coalesce a 

short distance ahead of the body. In so doing, their 

coalescence forms a thin shock wave, as shown in Fig. 3.1b. 

Ahead of the shock wave, the flow has no idea of the presence 

of the body. Immediately behind the normal shock, however, 

the flow is subsonic, and hence the streamlines quickly 

compensate for 
 

the obstruction. Although the picture shown in Fig. 3 
1b is only one of many situations in which nature 
creates shock waves, the physical mechanism 
discussed above is quite general. 
 
 
 
 
 

To begin a quantitative analysis of changes across a normal 

shock wave, consider again Fig. 3.3. Here, the normal shock is 

assumed to be a discontinuity across which the flow 

properties suddenly change. For purposes of discussion, 
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assume that all conditions are known ahead of the shock 

(region 1), and that we want to solve for all conditions behind 

the shock (region 2). There is no heat added or taken away 

from the flow as it traverses the shock wave (for example, we 

are not putting the shock in a refrigerator, nor are we 

irradiating it with a laser); hence the flow across the shock 

wave is adiabatic. Therefore, the basic normal shock 

equations are obtained directly from the below equations 

(formulated earlier with q = 0) as, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The above equations are general—they apply no matter 
what type of gas is being considered. Also, in general 
they must be solved numerically for the properties 
behind the shock wave, as will be discussed later for the 
cases of thermally perfect and chemically reacting 
gases. However, for a calorically perfect gas, we can 
immediately add the thermodynamic relations 
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and 
 
 
 
 
 
 
 

The above five equations with five unknowns, ρ2, u2, 

p2, h2, and T2 can be solved algebraically, as follows. 
 

 

First divide the momentum equation by the continuity 
equation,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

the above equation becomes, 
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(1) 
 

The above equation is a combination of the continuity 
and momentum equations. The energy equation can be 
utilized in one of its alternative forms,  
 
 
 
 
 
 
 
 

 

which yields,  

 (2) 
and 
 
 
 
 
 
 
 

 

(3) 
 

Since the flow is adiabatic across the shock wave, a* in Eqs 
 

(2) and (3) is the same constant value. Substituting 
Eqs. (2) and (3) into (1), we obtain 



 

8 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The above equation is called the Prandtl relation, and is 
a useful intermediate relation for normal shocks. For 
example, from this simple equation we obtain directly  
 
 
 
 
 
 

 

or 
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Based on our previous physical discussion, the flow 

ahead of a shock wave must be supersonic, i.e, M1 > 1. 

It implies M1* > 1. Thus, from the above Eq. M2* < 1 and 

thus M2 < 1. Hence, the Mach number behind the 
normal shock is always subsonic. This is a general 
result, not just limited to a calorically perfect gas. 
 

 

We have  

, Which solved for M* , gives 
 
 
 
 
 
 
 
 

 

Substitute the above equation into 
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We get, 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solving the above Eq. for M2
2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The above equation demonstrates that, for a 
calorically perfect gas with a constant value of γ, the 
Mach number behind the shock is a function of only 
the Mach number ahead of the shock. It also shows 

that when M1=1, then M2 =1 This is the case of an 
infinitely weak normal shock, which is defined as a 

Mach wave. In contrast, as M1 increases above 1, the 

normal shock becomes stronger and M2  
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The upstream Mach number M1 is a powerful parameter which 

dictates shock wave properties. This is already seen in the 

above Eq. Ratios of other properties across the shock can also 

be found in terms of M1. For example, from Eq. 
 
 
 
 
 
 

 

combined with 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substituting (we have) 
 
 
 
 
 
 
 
 
 

 

into the above equation, 
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To obtain the pressure ratio, return to the momentum 
equation  
 
 
 
 

 

which, combined with the continuity equation, yields 
 
 
 
 
 
 
 

 

Dividing the above Eq. by p1, 
 
 
 
 
 
 
 
 
 
 

 

We have 
 
 
 
 
 
 
 
 
 
 
 

Substitute it in the above Eq., we get, 
 
 
 
 
 
 
 
 
 
 

 

It simplifies to, 



 

13 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We have 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Combining the above three equations,  
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Examine the following equations.  
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For a calorically perfect gas with a given γ, they give M2, 

ρ2/ρ1, P2/P1, and T2/T1 as functions of M1 only. This is our 
first major demonstration of the importance of Mach 
 

number in the quantitative governance of 
compressible fiowfields. 
 

 

In contrast, as will be shown later for an equilibrium 

thermally perfect gas, the changes across a normal shock 

depend on both M1 and T1, whereas for an equilibrium 

chemically reacting gas they depend on M1, T1 and p1. 

Moreover, for such high-temperature cases, closed-form 

expressions such as the above derived equations are 

generally not possible, and the normal shock properties 

must be calculated numerically. Hence, the simplicity 

brought about by the calorically perfect gas assumption in 

this section is clearly evident. Fortunately, the results of this 

section hold reasonably accurately up to approximately M1 = 

5 in air at standard conditions. Beyond Mach 5, the 
  

temperature behind the normal shock becomes high enough 
that γ is no longer constant. However, the flow regime  

M1 < 5 contains a large number of everyday practical 
problems, and therefore the results of this section are 
extremely useful. 
 

 

Problem-3 
 

A normal shock wave is standing in the test section of a 

supersonic wind tunnel. Upstream of the wave, M1 = 3, 
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p1= 0.5 atm, and T1 = 200 K. Find M2, p2, T2, and u2 
downstream of the wave.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The limiting case of M1 → ∞ can be visualized as u1 → ∞, 

where the calorically perfect gas assumption is invalidated 

by high temperatures, or as a1 → ∞, where the perfect gas 

equation of state is invalidated by extremely low 
temperatures. Nevertheless, it is interesting to examine the 

variation of properties across the normal shock as M1 → ∞ in 

the following equations (derived earlier). 
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We find, when M1 → ∞ for γ = 1.4 
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At the other extreme, we also find when M1 = 1 for γ = 1.4 
 

M2= 1 
 
 
 
 
 
 

 

This is the case of an infinitely weak normal shock 
degenerating into a Mach wave, where no finite 
changes occur across the wave. This is the same as 
the sound wave discussed earlier. 
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To prove that the above equations have physical 

meaning only when Ml > 1, we must invoke the second 
law of thermodynamics. 
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We have, 
 
 
 
 
 
 
 
 
 
 

 

Substitute for T2/T1 and P2/P1 , we get 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The above equation demonstrates that the entropy 
change across the normal shock is also a function of 

upstream mach number, M1 only. 
Moreover, it shows that, 

if M1 = 1 then s2 - s1 = 0, 
if Ml < 1 then s2 - s1 < 0, 

and if M1 > 1 then s2 - s1 > 0.  

Therefore, since it is necessary that s2 - s1 > 0 from the 
second law of thermodynamics, the upstream Mach 

number Ml must be greater than or equal to 1. 
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Here is another example of how the second law tells us the 

direction in which a physical process will proceed. If M1 is 

subsonic, then the above equation says that the entropy 
decreases across the normal shock — an impossible 

situation. The only physically possible case is M1 > 1, which 

in turn dictates from the above four equations that  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Thus, we have now established the phenomena 
sketched in Fig. 3.3, namely, that across a normal 
shock wave the pressure, density, and temperature 
increase, whereas the velocity decreases and the Mach 
number decreases to a subsonic value. 
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What really causes the entropy increase across a 
shock wave? 
 

 

To answer this, recall that the changes across the shock 

occur over a very short distance, on the order of 10-5 cm 

Hence, the velocity and temperature gradients inside the 
shock structure itself are very large. In regions of large 
gradients, the viscous effects of viscosity and thermal 
conduction become important In turn, these are 
dissipative, irreversible phenomena which generate 
entropy. Therefore, the net entropy increase predicted by 
the normal shock relations in conjunction with the 
second law of thermodynamics is appropriately provided 
by nature in the form of friction and thermal conduction 
inside the shock wave structure itself. 
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Finally, we need to resolve one more question! 
 

 

How do the total (stagnation) conditions vary across a 
normal shock wave? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Consider Fig. 3.8, which illustrates the definition of total 
conditions before and after the shock. In region 1 ahead of 
the shock, a fluid element is moving with actual conditions 

of M1, p1, T1 and s1. Consider in this region the imaginary 

state la where the fluid element has been brought to rest 
isentropically. Thus, by definition, the pressure and 

temperature in state la are the total values p01, and T01, 

respectively. The entropy at state la is still s1 because the 
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stagnating of the fluid element has been done isentropically. 

In region 2 behind the shock, a fluid element is moving with 

actual conditions of M2, p2, T2, and s2. Consider in this region 

the imaginary state 2a where the fluid element has been 
brought to rest isentropically. Here, by definition, the pressure 

and temperature in state 2a are the total values of p02 and T02, 

respectively. The entropy at state 2a is still s2, by definition. 

The question is now raised how p02 and T02 behind the shock 

compare with p01 and T01, respectively, ahead of the shock. To 

answer this question, we use the following equation for 

calorically perfect gas,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The total temperature is given by 
 
 
 
 
 
 
 
 
 
 

 

Hence 
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and thus 
 
 
 
 
 
 
 
 
 
 

 

From the above equation, we see that the total 
temperature is constant across a stationary normal 
shock wave, which holds for a calorically perfect gas, 
is a special case of the more general result that the 
total enthalpy is constant across the shock, as 
demonstrated earlier using the following equation, 
 
 
 
 
 
 
 
 
 
 
 

 

For a stationary normal shock, the total enthalpy is always 

constant across the shock wave, which for calorically or 

thermally perfect gases translates into a constant total 

temperature across the shock. However, for a chemically 

reacting gas, the total temperature is not constant across 

the shock (will be discussed later). Also, if the shock wave 

is not stationary — if it is moving through space — neither 

the total enthalpy nor total temperature are constant across 

the wave. This becomes a matter of reference systems (will 

discuss later). 
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We have, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Considering the above figure again, rewrite the above 
equation between the imaginary states la and 2a: 
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Hence the above equation becomes,  
 
 
 
 
 
 
 
 
 
 
 

 

OR 
 
 
 
 
 
 
 
 

 

Where, 
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From the above two equations we see that the ratio of 
total pressures across the normal shock depends on 

M1 only. Also, because s2 > s1, the following equations 

(derived above) show that po2 < po1. The total pressure 
decreases across a shock wave.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

obtained from the above equations are tabulated in the 
gas table for various values of γ. 
 

 

To provide more physical feel, these variations are 
plotted in the below figure for γ = 1.4. Note that (as stated 

earlier) these curves show how, as M1 becomes very 

large, T2/T1 and p2/p1 also become very large, whereas 

ρ2/ρ1 and M2 approach finite limits. 
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Example-4 
 

 

A blunt-nosed missile is flying at Mach 2 at standard 
sea level. Calculate the temperature and pressure at 
the nose of the missile.  
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Analytical Exercises 
 

 

Prove that the change in internal energy equals the 
mean pressure across the shock times the change in 
specific volume. i.e.,  
 
 
 
 
 
 
 
 

 

Hint: 
 

 

Eliminate the velocity term from the following energy 
equation.  
 
 
 
 
 

 

Where, 
 
 
 
 
 

 

Use the following continuity and momentum equation 
for getting the desired solution. 
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HUGONIOT EQUATION 
 

 

The results obtained in the previous section for the 

normal shock wave were couched in terms of velocities 

and Mach numbers—quantities which quite properly 

emphasize the fluid dynamic nature of shock waves. 

However, because the static pressure always increases 

across a shock wave, the wave itself can also be 

visualized as a thermodynamic device which compresses 

the gas. Indeed, the changes across a normal shock wave 

can be expressed in terms of purely thermodynamic 

variables without explicit reference to a velocity or Mach 

number, as follows From the continuity equation 
 
 
 
 
 
 
 
 
 
 

 

Substitute the above equation into the momentum equation,  
 
 
 
 
 
 
 
 
 

Solve the above equation for u1
2 
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Alternatively, writing the continuity equation as 
 
 
 
 
 
 
 
 
 

 

and again substituting into the momentum 
equation, this time solving for u2, we obtain 
 
 
 
 
 
 
 
 
 
 

 

From the energy equation, we have 
 
 
 
 
 
 
 
 
 
 

and recalling that by definition h = e + p/ρ, we have 
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Substituting the values of u1
2 and u2

2 into the above 
equation, the velocities are eliminated, yielding  
 
 
 
 
 
 
 

 

This simplifies to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The above equation is called the Hugoniot equation. It 
has certain advantages because it relates only 
thermodynamic quantities across the shock. Also, we 
have made no assumption about the type of gas; the 
above is a general relation that holds for a perfect gas, 
chemically reacting gas, real gas, etc. 
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In addition, note that the above Hugoniot equation has 
the form of  
 
 
 
 
 

 

i.e., the change in internal energy equals the mean 
pressure across the shock times the change in specific 
volume. This strongly reminds us of the first law of 
thermodynamics in the form of 
 

, 
with 
 
 
 
 
 
 
 

 

for the adiabatic process across the shock 
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OBLIQUE SHOCK WAVES
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A Boeing F/A-18 with afterburners on. Note shock/expansion patterns int he supersonic nozzle exhaust. 
 
 
 

 
http://images.google.co.in/imgres?imgurl=http://www.ae.gatech.edu/labs/windtunl/classes/Propulsion/mig25mm.jpg&imgrefurl=http://www.ae.gatech. 

edu/labs/windtunl/classes/Propulsion/ae42512.html&usg=__2oZgbPgFEdoyr-

GAsJ3FDrzlf9w=&h=391&w=638&sz=27&hl=en&start=8&um=1&tbnid=u37vEw2l3IOESM:&tbnh=84&tbnw=137&prev=/images%3Fq%3Dobliqu 

e%2Bshock%26hl%3Den%26sa%3DX%26um%3D1 
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Shock Progression on Airfoil 
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Normal shock ratios at supersonic speeds 
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EXTERNAL FLOW APPLIED TO AIRCRAFT / 
SPACECRAFT 

 

 

Viscosity.- There are basically three states of 
matter - solid, liquid, and gas. H2O is 
commonly called "ice" in the solid state, 
"water" in the liquid state, and "water vapor" 
in the gaseous state. Assume one has a piece 
of ice and side forces are applied to it (called 
shearing forces). Very large forces are 
needed to deform or break it. The solid has a 
very high internal friction or resistance to 
shearing. The word for internal friction is 
viscosity and for a solid its value is generally 
very large. 
 

Liquids and gases are considered to be 
fluids since they behave differently from a 
solid. Imagine two layers of water or air. If 
shear forces are applied to these layers, one 
discovers a substantial and sustained 
relative motion of the layers with the air layers 
sliding faster over one another than the water 
layers. However, the fact that a 
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shear force must be applied to deform the 
fluids indicates that they also possess 
internal friction. 
 
 

 

Water, under normal temperatures, is about 
fifty times more viscous than air. Ice is 5 x 

1016 times more viscous than air. One 
concludes that, in general, solids have 
extremely high viscosities whereas fluids 
have low viscosities. Under the category of 
fluids, liquids generally possess higher 
viscosities than gases. Air, of primary 
interest in aerodynamics, has a relatively 
small viscosity, and in some theories, it is 
described as a perfect fluid-one that has zero 
viscosity or is "inviscid." But it will be shown 
that even this small viscosity of air (or 
internal friction) has important effects on an 
airplane in terms of lift and drag. 
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Oblique Shock 
 

 The discontinuities in supersonic flows do not always 
exist as normal to the flow direction. There are oblique 
shocks which are inclined with respect to the flow 
direction. Refer to the shock structure on an obstacle, as 
depicted qualitatively in the below Fig. 

 

 The segment of the shock immediately in front of the 
body behaves like a normal shock. 

 

 Oblique shock can be observed in following cases- 
 

1. Oblique shock formed as a consequence of the 
bending of the shock in the free-stream direction 

(shown in the below Fig.) 
 

2. In a supersonic flow through a duct, viscous 
effects cause the shock to be oblique near 
the walls, the shock being normal only in the 
core region.  

3. The shock is also oblique when a supersonic flow 

is made to change direction near a sharp corner 
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Normal and oblique Shock in front of an Obstacle 
 
 
 
 
 
 

 

 The relationships derived earlier for the normal shock are 

valid for the velocity components normal to the oblique 

shock. The oblique shock continues to bend in the 

downstream direction until the Mach number of the velocity 

component normal to the wave is unity. At that instant, the 

oblique shock degenerates into a so called  
 

Mach wave across which changes in flow 
properties are infinitesimal. 
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Tutorial: 
 

A pitot tube mounted on the nose of a supersonic 
aircraft shows that the ratio of stagnation to static 
pressure is 27. Find out the aircraft speed in terms 
of Mach number. 
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SUMMARY 
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SHOCK POLAR 
 

Graphical explanations go a long way towards 
the understanding of supersonic flow with 
 

shock waves. One such graphical 
representation of oblique shock properties is 
given by the shock polar, described below. 
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INTERSECTION OF SHOCKS OF THE 
SAME FAMILY 
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UNIT – III FLOW THROUGH DUCTS – SAE1301 
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ONE-DIMENSIONAL FLOW WITH HEAT ADDITION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider again Fig 3 5, which illustrates a control volume for 

one-dimensional flow Inside this control volume some action 

is occurring which causes the flow properties in region 2 to 

be different than in region 1. In the previous sections, this 

action has been due to a normal shock wave, where the large 

gradients inside the shock structure ultimately result in an 

increase in entropy via the effects of viscosity and thermal 

conduction. However, these effects are taking place inside 

the control volume in Fig. 3.5 and therefore the governing 

normal shock equations relating conditions in regions 1 and 

2 did not require explicit terms accounting for friction and 

thermal conduction. 
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The action occurring inside the control volume in Fig. 3.5 

can be caused by effects other than a shock wave For 

example, if the flow is through a duct, friction between the 

moving fluid and the stationary walls of the duct causes 

changes between regions 1 and 2. This can be particularly 

important in long pipelines transferring gases over miles of 

land, for example. Another source of change in a one-

dimensional flow is heat addition If heat is added to or 

taken away from the gas inside the control volume in Fig 

3.5, the properties in region 2 will be different than those in 

region 1. This is a governing phenomenon in turbojet and 

ramjet engine burners, where heat is added in the form of 

fuel-air combustion. It also has an important effect on the 

supersonic flow in the cavities of modern gas dynamic and 

chemical lasers, where heat is effectively added by 

chemical reactions and molecular vibrational energy 

deactivation. Another examble would be the heat added to 

an absorbing gas by an intense beam of radiation; such an 

idea has been suggested for laser-heated wind tunnels. In 

general, therefore, changes in a one-dimensional flow can 

be created by both friction and heat addition without the 

presence of a shock wave. 
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Consider the one-dimensional flow in Fig. 3.5, with 
heat addition (or extraction) taking place between 
regions 1 and 2. The governing equations are repeated 
here for convenience, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

If conditions in region 1 are known, then for a specified 
amount of heat added per unit mass, q, these equations 
along with the appropriate equations of state can be 
solved for conditions in region 2 In general, a numerical 
solution is required. However, for the specific case of a 
calorically perfect gas, closed-form analytical 
expressions can be obtained—just as in the normal 
shock problem. Therefore, the remainder of this section 
will deal with a calorically perfect gas. 
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Solving the above energy equation for q with h 

= CpT we get, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the definition of total temperature, the terms on the 
right-hand side of the above equation simply result in  
 
 
 
 
 
 
 
 
 
 
 
 

The above equation clearly indicates that the effect of 
heat addition is to directly change the total 
temperature of the flow. If heat is added, To increases; 

if heat is extracted, To decreases. 
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Let us proceed to find the ratios of properties 
between regions 1 and 2 in terms of the Mach 

numbers M1 and M2. We have, 
 
 
 
 
 
 
 
 

 

Noting that 
 
 
 
 
 
 
 
 
 
 
 

 

We obtain, 
 
 
 
 
 
 
 

 

Hence, 
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Also, from the perfect gas equation of state and the 
below continuity equation,  
 
 
 
 
 
 
 
 

We get, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

From the above equation for velocity of sound and 
the definition of Mach number, we get  
 
 
 
 
 
 
 
 
 
 
 

 

Using the above equations and substituting the 
values of P2/P1, and u2/u1 in T2/T1 we get, 
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We get, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We have  
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The ratio of total pressures is obtained directly from 
the above two equations,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We have, 
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The ratio of total temperatures is obtained directly 
from the above equations, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Finally, the entropy change can be found from the 
below equation with the above derived equations for 

T2/T1 and P2/P1 . 
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We have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

From Gas Table 
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Also find how much heat per unit mass must be added to 
choke the flow.  



 

20 
 

Example-5. 
 

Consider a point in a supersonic flow where the static 
pressure is 0.4 atm. When a Pitot tube is inserted in the 
flow at this point, the pressure measured by the Pitot 
tube is 3 atm. Calculate the Mach number at this point. 
Calculate the entropy change across the shock (Hint: 
Normal shock occurs in front of the Pitot tube). 
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Solution. 
 

 

The pressure measured by a Pitot tube is the total pressure 

However, when the tube is inserted into a supersonic flow, a 

normal shock is formed a short distance ahead of the mouth 

of the tube. In this case, the Pitot tube is sensing the total 

pressure behind the normal shock. 
 
 

Hence 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Using the following equation, 
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Example-6: 
 

 

A supersonic wind tunnel settling chamber expands air 
or Freon-21 through a nozzle from a pressure of 10 bar 
to 4 bar in the test section. Calculate the stagnation 
temperature to be maintained in the settling chamber to 
obtain a velocity of 500 m/s in the test section for,  

(a) Air, Cp = 1.025 kJ/kg K, Cp = 0.735 kJ/ K 
(b) Freon – 21, Cp = 0.785 kJ/kg K, Cv = 0.675 kJ/K 
 

 

What is the test section Mach number in each case? 
 
 
 

 

Ans: M (air) = 1.225  

M (Freon) = 1.296 
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Example-7: 
 

A nozzle in a wind tunnel gives a test-section Mach number 
of 2.0. air enters the nozzle from a large reservoir at 0.69 
bar and 310 K. The cross-sectional area of the throat is 1000 

cm2 . Determine the following quantities for the tunnel for 

one dimensional isentropic flow: 
 

(i) pressure, temperature and velocities at the 
throat and test section 
(ii) area of cross-section of the test section  
(iii) mass flow rate 
(iv) power required to drive the compressure. 
 

 

Solution: 

Given: P0 = 0.69 bar, T0 = 310 K, A* = 1000 cm2 

 

Find ρ0  = P0/RT0  ,  and  a 0 
 
 

From Gas table at M =1 (throat section) 

Find P*/P0 , T*/To, ρ*/ρ0 
 

P* = 0.365 bar  (Ans.)  

T* = 258 K (Ans.) 

ρ* = 0.49 kg/m3 ( Ans.) 
 
 

C* = a* =  323 m/s (Ans.) 
 

 

From Gas table at Mt = 2.0 (test section)  

P/P0 = 0.128 P = 0.0885 bar (Ans.) 
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T/T0 = 0.555 T = 175 K (Ans.)  

A/A* = 1.687; A = 1687 cm2 
 

Velocity at test section = M a = 2 x 264 = 528 m/s 
(Ans.) Mass flow rate = 15.9 kg/s 

 

 

Compressor work = mass flow rate x Cp x 
temperature drop 

 

 

= 2182 kW 
 
 

 

NORMAL, OBLIQUE SHOCKS AND EXPANSION WAVES 
 
 
 

 

Prandtl equation and Rankine – Hugonoit relation, Normal 
shock equations, Pitot static tube, corrections for subsonic 
and supersonic flows, Oblique shocks and corresponding 
equations, Hodograph and pressure turning angle, shock 
polars, flow past wedges and concave corners, strong, weak 
and detached shocks, Raleigh and Fanno Flow. Flow past 
convex corners, Expansion hodograph, Reflection and 
interaction of shocks and expansion, waves, Families of 
shocks, Methods of Characteristics, Two dimensional 
supersonic nozzle contours. 
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UNIT – IV LINEARIZED THEORY – SAE1301 
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Small perturbation potential theory 
 

 

LINEARIZED FLOW 
 
 
 

Transport yourself back in time to the year 1940, 

and imagine that you are an aerodynamicist 

responsible for calculating the lift on the wing of 
 

a high-performance fighter plane. You 

recognize that the airspeed is high enough so 

that the well-established incompressible flow 

techniques of the day will give inaccurate 

results. Compressibility must be taken into 

account. However, you also recognize that the 

governing equations for compressible flow are 

nonlinear, and that no general solution exists 

for these equations. Numerical solutions are 

out of the question! So, what do you do? The 

only practical recourse is to seek assumptions 

regarding the physics of the flow which will 

allow the governing equations to become 

linear, but which at the same time do not totally 

compromise the accuracy of the real problem. 

In turn, these linear equations can be attacked 

by conventional mathematical techniques. 
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Comparison between uniform and perturbed 
flows 

 
 
 

There are a number of practical aerodynamic 

problems where, on a physical basis, a uniform 

flow is changed, or perturbed, only slightly. One 

such example is the flow over a thin airfoil 

illustrated in in the above figure. The flow is 

characterized by only a small deviation of the flow 

from its original uniform state. The analyses of 

such flows are usually called small-perturbation 

theories. Small-perturbation theory is frequently 

(but not always) linear theory, an example is the 

acoustic theory, where the assumption of small 

perturbations allowed a linearized solution. 

Linearized solutions in compressible flow always 

contain the assumption of small perturbations, 

but small perturbations 
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do not always guarantee that the governing 
equations can be linearized. 

 
 
 

LINEARIZED VELOCITY POTENTIAL 
EQUATION 
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LINEARIZED PRESSURE COEFFICIENT 
 

 

The pressure coefficient Cp is defined as 
 
 
 
 
 
 
 
 
 
 

where p is the local pressure, and p∞, p∞, and V∞ are 

the pressure, density, and velocity, respectively, in 

the uniform free stream. The pressure coefficient is 

simply a non-dimensional pressure difference; it is 

extremely useful in fluid dynamics. 
 

 

An alternative form of the pressure 
coefficient, convenient for compressible flow, 
can be obtained as follows 
 
 
 
 
 
 
 
 
 
 
 

 

Substitute it in the above equation, we get 
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The above equation is an alternative form of Cp 

expressed in terms of γ and M∞ rather than ρ ∞, 

and V∞. It is still an exact representation of Cp. 
 

We now proceed to obtain an approximate 

expression for Cp which is consistent with 
linearized theory. Since the total enthalpy is 
constant, 
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The above equation becomes, 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

and the above equation gives, 
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The above equation is still an exact expression. 

However considering small perturbations: 
 
 
 

 

Hence the above equation is of the form 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus, the previous equation can be 
expressed in the form of the above equation 
as follows, neglecting higher-order terms: 
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Substituting the above equation in the below 
equation, 
 
 
 
 
 
 
 
 
 
 
 
 

 

We get, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The above equation becomes, 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The above equation gives the linearized pressure 
coefficient, valid for small perturbations. Note its 
particularly simple form; the linearized pressure 
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coefficient depends only on the x component 
of the perturbation velocity. 
 

 

Prandtl-Glauert rule 
 

It is a similarity rule, which relates incompressible 

flow over a given two-dimensional profile to 

subsonic compressible flow over the same profile. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where Cp0 is the incompressible pressure 
coefficient. 
 
 
 

The above equation is called the Prandtl-
Glauert rule. 
 
 
 

Consider the compressible subsonic flow over a 

thin airfoil at small angle of attack (hence small 

perturbations), as sketched in the Fig 9.2 (pp.259). 

The usual inviscid flow boundary condition must 

hold at the surface, i e., the flow velocity must be 
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tangent to the surface. Referring to Fig. 9 2, at 
the surface this boundary condition is 
 
 
 
 
 
 
 
 
 
 
 

 

We have the linearized perturbation-velocity 
potential equation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note that this is an approximate equation and no 
longer represent the exact physics of the flow. 
 

 

1. The perturbations must be small. 

2. Transonic flow 0.8 < M∞ < 1.2) is excluded.  
3. Hypersonic flow (M∞ > 5) is excluded. 
 

This equation is valid for subsonic and 
supersonic flow only. However, this equation 
has the striking advantage that it is linear. 
 

In summary, we have demonstrated that subsonic 
and supersonic flows lend themselves to 
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approximate, linearized theory for the case of 

irrotational, isentropic flow with small 

perturbations. In contrast, transonic and 

hypersonic flows cannot be linearized, even with 

small perturbations. This is another example of 

the consistency of nature. Note some of the 

physical problems associated with transonic flow 

(mixed subsonic-supersonic regions with possible 

shocks, and extreme sensitivity to geometry 

changes at sonic conditions) and with hypersonic 

flow (strong shock waves close to the geometric 

boundaries, i e., thin shock layers, as well as high 

enthalpy, and hence high-temperature conditions 

in the flow). Just on an intuitive basis, we would 

expect such physically complicated flows to be 

inherently nonlinear. For the remainder of this 

chapter, we will consider linear flows only; thus, 

we will deal with subsonic and supersonic flows. 
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METHOD OF CHARACTERISTICS 
 

Method of characteristics is a numerical method 

for solving the full nonlinear equations of motion for 

inviscid, irrotational flow. If we are looking for better 

accuracy of results than that obtained by using the 

approximate linearized equations, it is necessary to 

work out improved solutions, by including higher-order 

terms in the approximate equations or by considering 

the exact equations. However, in the latter case, it is 

rarely possible to get solutions in analytical form 

because of the nonlinear nature of the equations. We 

must then resort to numerical techniques; the method 

of characteristics being one such technique. 
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For more details Ref: Anderson 
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CRITICAL MACH NUMBER 
 

 

By definition, the critical Mach number Mcr is 
that free-stream Mach number at which sonic 
flow is first encountered on the airfoil. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. Definition of critical Mach number Point A 
is the location of minimum pressure on the top 
surface of the airfoil 
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The critical Mach number can be calculated as 
follows. Assuming isentropic flow throughout 
the flow field and using the following equation 
derived from the previous isentropic flow 
relationship, we get 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We have, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Combining the above two equations the 
pressure coefficient at point A is 
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Fig.9.14 Calculation of critical Mach number  

(For more details Refer: Anderson) 
 

Note in Fig 9.14 that curve C [from eq. for CPcr] is a 

result of the fundamental gas dynamics of the flow; it is 

unique, and does not depend on the size or shape of 

the airfoil. In contrast, curve B is different for different 

airfoils. For example, consider two airfoils, one thin and 

one thick. For the thin airfoil, the flow experiences only 

a mild expansion over the top surface, and hence Cp0 

is small. Combined with the chosen compressibility 

correction, curve B in Fig 9.14 is low on the graph, 

resulting in a high value of Mcr. For the thick airfoil, |Cp| 

is naturally larger because the flow experiences a 

stronger expansion over the top surface. Curve B is 

higher on the graph, resulting in a lower value of Mcr. 

Hence, an airfoil designed for a high critical Mach 

number must have a thin profile. 
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When the free-stream Mach number exceeds Mcr, a 

finite region of supersonic flow exists on the top 

surface of the airfoil. At a high enough subsonic Mach 

number, this embedded supersonic region will be 

terminated by a weak shock wave. The total pressure 

loss associated with the shock will be small, however, 

the adverse pressure gradient induced by the shock 

tends to separate the boundary layer on the top surface, 

causing a large pressure drag. The net result is a 

dramatic increase in drag. The free-stream Mach 

number at which the large drag rise begins is defined 

as the drag-divergence Mach number, it is always 

slightly larger than Mcr The massive increase in drag 

encountered at the drag-divergence Mach number is 

the technical base of the "sound barrier" which was 

viewed with much trepidation before 1947. 
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Drag divergence Mach number 
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If M∞ increases slightly above Mcr, a bubble of 

supersonic flow will occur, surrounding the 
minium pressure point (see above figure (b)). 
Correspondingly, Cd will still remain reasonably 
low, as indicated by point b in the above figure. 

However, if M∞ is still further increased, a very 

sudden and dramatic rise in the drag coefficient 
will be observed as noted by point c in the above 
figure. The effect of the shock wave on the 
surface pressure distribution can be seen. 
 

The shock waves themselves are dissipative 

phenomena, which result in an increase in drag on 

the airfoil. But in addition, the sharp pressure 

increase across the shock wave creates a strong 

adverse gradient, causing the flow to separate 

from the surface. Such flow separation can create 

substantial increases in drag. Thus, the sharp 

increase in Cd shown in the above figure is a 

combined effect of shock waves and flow 

separation. The free stream Mach number at 

which Cd begins to increase rapidly is defined as 

drag-divergence Mach number. 
 

Note that Mcr < Mdrag divergence < 1.0 
 

The flow pattern sketched above is characteristic 

of a flight regime called transonic. When 0.8 < M∞ 
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< 1.2, the flow is generally designated as transonic 

flow, and it is characterized by some complex 

effects only hinted in the above figure ©. 
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Supercritical airfoil 
 
 
 

The supercritical airfoil is a different approach 
to the increase in drag-divergence Mach 
number. Here, the shape of the airfoil is 
designed with a relatively flat top surface as 
shown in the below figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

When the free stream Mach number exceeds Mcr , a 

pocket of supersonic flow occurs over the top surface 

as usual; but because of the top is relatively flat, the 

local supersonic Mach number is a lower value than 

would exist in the case of a conventional 
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airfoil. As a result, the shock wave that terminates 

the pocket of supersonic flow is weaker. In turn, the 

super critical airfoil can penetrate closer to Mach 1 

before drag divergence occurs. In essence, the 

increment in Mach number (the “grace period”) 

between Mcr and Mdrag divergence is increased by the 

shape of the supercritical airfoil. One way to think 

about this is that the supercritical airfoil is “more 

comfortable” than conventional airfoils in the region 

above Mcr, and it can fly closer to Mach 1 before drag 

divergence is encountered. Because they are more 

comfortable in the flight regime above the critical 

Mach number and because they can penetrate closer 

to Mach 1 after exceeding Mcr 
 

, these airfoils are called supercritical airfoils. They  
are designed to cruise in the Mach number range 

above Mcr. The pressure coefficient distribution 
over the top surface of a supercritical airfoil flying  

above Mcr but below Mdrag divergence is sketched in 

the above figure. After a sharp decrease in pressure 

around the leading edge, the pressure remains 

relatively constant over a substantial portion of the 

top surface. This is in contrast to the pressure 

coefficient distribution for a conventional airfoil 

flying above Mcr , as shown below (wind 
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Tunnel data) for NACA 0012 airfoil for M∞ = 

0.808, which is above the critical Mach number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Clearly, the flow over the supercritical airfoil is 
carefully tailored to achieve the desired result. 
 

The early aerodynamic research on supercritical 

airfoils was carried out by Whitecomb’s an 

aeronautical engineer at NASA Langly Research 

Center, during the middle 1960s. 
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Designers of transonic aircraft can use 
supercritical airfoils to accomplish one of two 
objectives: 
 

(1) For a given airfoil thickness, the 
supercritical airfoil shape allows a higher 
cruise velocity; or  

(2) for a given lower cruise velocity, airfoil 
thickness can be larger.  

The later option has some design 
advantages. The structural design of a thicker 
wing is more straightforward and actually 
results in a more light weight (albeit thicker) 
wing. Also a thicker wing provides more volume 
for an increased fuel capacity. Clearly, the use 
of a supercritical airfoil provides a larger design 
space for transonic airplanes. 
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Nature places the maximum velocity at a point 
that satisfies the physics of the whole flow 
field not just what is happening in a local 
region of flow. The point of maximum velocity 
is dictated by the complete shape of the airfoil, 
not just by the shape in a local region. 
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Wave Drag (At supersonic speeds) 
 

With respect to airfoils (as well as all other 

aerodynamics bodies), shock waves in supersonic 

flow create a new source of drag, called wave drag. 
 

Wave drag is an aerodynamics term that refers to a sudden and very 
powerful form of drag that appears on aircraft and blade tips moving at high-
subsonic and supersonic speeds....  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Mach angle 
It is defined as µ = arcsin 1/M 
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Drag divergence Mach number 
 

It is that free-stream Mach number at which the 

drag coefficient begins to rapidly increase due to 

occurrence of transonic shock waves. For a 

given body, the drag divergence Mach number is 

slightly higher than the critical Mach number. 
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The whole idea of sweeping an aircraft's 
wing is to delay the drag rise caused by the 
formation of shock waves. The swept-wing 
concept had been appreciated by German 
aerodynamicists since the mid-1930s, and by 1942 a 
considerable amount of research had gone into it. 
However, in the United States and Great Britain, the 
concept of the swept wing remained virtually 
unknown until the end of the war. Due to the early 
research in this area, this allowed Germany to 
successfully introduce the swept wing in the jet 
fighter Messerschmitt ME-262 as early as 1941. 
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Transonic Area Rule 
 

Within the limitations of small perturbation theory, at a given 
transonic Mach number, aircraft with the same longitudinal 
distribution of cross-sectional area, including fuselage, 
wings and all appendages will, at zero lift, have the same 
wave drag. 
 

Why: Mach waves under transonic conditions are 
perpendicular to flow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Implication: 
 

Keep area distribution smooth, constant if possible. Else,  

strong shocks and hence drag result. 
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Wing-body interaction leading to shock formation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Observed: cp distributions are such that maximum velocity 

is reached far aft at root and far forward at tip. Hence, 
streamlines curves in at the root, compress, shock 
propagates out. 
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The Whitcomb area rule, also called the transonic 
area rule, is a design technique used to reduce an 
aircraft's drag at transonic and supersonic speeds, 
particularly between Mach 0.8 and 1.2. This is the 
operating speed range of the majority of commercial and 
military fixed-wing aircraft today. 

 
 
 

 

At high-subsonic flight speeds, supersonic airflow can 
develop in areas where the flow accelerates around the 
aircraft body and wings. The speed at which this occurs 
varies from aircraft to aircraft, and is known as the critical 
Mach number. The resulting shock waves formed at these 
points of supersonic flow can bleed away a considerable 
amount of power, which is experienced by the aircraft as a 
sudden and very powerful form of drag, called wave drag. To 
reduce the number and power of these shock waves, an 
aerodynamic shape should change in cross sectional area as 
smoothly as possible. This leads to a "perfect" aerodynamic 
shape known as the Sears-Haack body, roughly shaped 
like a cigar but pointed at both ends. 
 

The area rule says that an airplane designed with the same 
cross-sectional area as the Sears-Haack body generates the 
same wave drag as this body, largely independent of the 
actual shape. As a result, aircraft have to be carefully 
arranged so that large volumes like wings are positioned at 
the widest area of the equivalent Sears-Haack body, and 
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that the cockpit, tailplane, intakes and other "bumps" are 
spread out along the fuselage and or that the rest of the 
fuselage along these "bumps" is correspondingly thinned. 
 

The area rule also holds true at speeds higher than the speed 
of sound, but in this case the body arrangement is in respect 
to the Mach line for the design speed. For instance, at Mach 
1.3 the angle of the Mach cone formed off the body of the 
aircraft will be at about µ = arcsin (1/M) = 50,3 deg (µ is the 
sweep angle of the Mach cone). In this case the "perfect 
shape" is biased rearward, which is why aircraft designed for 
high speed cruise tend to be arranged with the wings at the 
rear. A classic example of such a design is Concorde. 
 
 
 
 

 

Anti-shock bodies or Küchemann carrots are pods 
placed at the trailing edge of a transonic aircraft's wings in 
order to reduce wave drag, thus improving fuel economy, as 
the aircraft enters the transonic flight regime (Mach 0.8–1.2). 
Most jet airliners have a cruising speed between Mach 0.8 
and 0.85. For aircraft operating in the transonic regime, wave 
drag can be minimized by having a cross-sectional area 
which changes smoothly along the length of the aircraft. This 
is known as the area rule, and is the operating principle 
behind the design of anti-shock bodies. 
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On most jet airliners, the mechanisms for deploying the wing 
flaps are enclosed in fairings, called "flap track fairings", 
which also serve as anti-shock bodies. 
 

Anti-shock bodies were concurrently developed by Richard 
Whitcomb at NASA and Dietrich Küchemann, a German 
aerodynamicist, in the early 1950s. The Handley-Page Victor 
bomber was particularly well-known for featuring a 
conspicuous pair of Küchemann carrots, so-called because of 
their distinctive shape. 
 

Area Rule 
 

 

The Area Rule was discovered by NASA 
aerodynamicist Richard Whitcomb in 1950. The rule 
states that, in order to produce the least amount of drag 
when approaching supersonic flight, the cross-
sectional area of an aircraft body should be consistent 
throughout the aircraft's length. To compensate for the 
place on an aircraft where the wings are attached to the 
fuselage, the fuselage needs to be made narrower so 
that the cross-section remains the same. This is why 
aircraft that are designed to fly around the speed of 
sound have a pinched fuselage where the wings are 
attached to the body. 
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Wing Types 
 

Aircraft designers have designed several wing types 
that have different aerodynamic properties. These have 
different shapes and attach to the aircraft body at 
different angles at different points along the fuselage. 
Not all of these planes have a practical use-some have 
just been use for research. 
 

The conventional straight wing extends out from the 
fuselage at approximately right angles. On early 
biplanes, one wing often was suspended above the 
fuselage by some sort of bracing supports while the 
second crossed directly under the fuselage. On 
monoplanes, designers positioned the wings at different 
heights depending on the design-some crossed above 
the fuselage while others were attached at the lower 
part of the fuselage. 
 

The swept-back wing extends backward from the 
fuselage at an angle. 
 

The delta wing looks much like a triangle when viewed 
from above (or the Greek letter "delta" D.) It sweeps 
sharply back from the fuselage with the angle between 
the front of the wing (the leading edge) often as high as 
60 degrees and the angle between the 
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fuselage and the trailing edge (the back edge of the 
wing) at around 90 degrees. The tip of a delta wing is 
often, but not always, cut off. 
 

The forward-swept wing gives an airplane the 
appearance of flying backward. The wing is angled 
toward the front of the aircraft and is usually attached 
to the airplane far back on the fuselage. A small wing 
called a canard is often attached to the fuselage near the 
front on this type of aircraft. 
 

A variable-sweep wing can be moved during flight-
usually between a swept-back position and a straight 
position. 
 

The flying wing is an aircraft design where the wing 
forms virtually the entire airplane and it sweeps back 
from the center of the aircraft. The fuselage is a very 
narrow section in the center that joins the wings without 
any seams. 
 

The term "dihedral" is used to describe wings that are 
angled upward from the fuselage. Dihedral is the angle 
at which the wings are slanted upward from the root of 
the wing (where it is attached to the fuselage) to the 
wing tip. "Canards" are small wings placed toward the 
front of the fuselage. 
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Types of Wings and Transonic Flow 
 

There are a number of ways of delaying the increase in 
drag encountered when an aircraft travels at high 
speeds, i.e., the transonic wave drag rise, or of 
increasing the drag-divergence Mach number (the free-
stream Mach number at which drag rises precipitously) 

so that it is closer to 1. One way is by the use of thin 
airfoils: increase in drag associated with transonic flow 
is roughly proportional to the square of the thickness-
chord ratio (t/c). If a thinner airfoil section is used, the 
airflow speeds around the airfoil will be less than those 
for the thicker airfoil. Thus, one may fly at a higher 
free-stream Mach number before a sonic point appears 

and before one reaches the drag-divergence Mach 
number. The disadvantages of using thin wings are that 
they are less effective (in terms of lift produced) in the 
subsonic speed range and they can accommodate less 
structure (wing fuel tanks, structural support members, 
armament stations, etc.) than a thicker wing. 
 

In 1935, the German aerodynamicist Adolf Busemann 
proposed that a swept wing might delay and reduce the 
effects of compressibility. A swept wing would delay 
the formation of the shock waves encountered in 
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transonic flow to a higher Mach number. Additionally, 
it would reduce the wave drag over all Mach numbers. 
 

A swept wing would have virtually the same effect as a 
thinner airfoil section (the thickness-cord ratio (t/c) is 
reduced). The maximum ratio of thickness to chord for 
a swept wing is less than for a straight wing with the 
same airflow. One is effectively using a thinner airfoil 
section as the flow has more time in which to adjust to 
the high-speed situation. The critical Mach number (at 
which a sonic point appears) and the drag-divergence 
Mach number are delayed to higher values; Sweep 
forward or sweepback will accomplish these desired 
results. Forward sweep has disadvantages, however, in 
the stability and handling characteristics at low speeds. 
 

A major disadvantage of swept wings is that there is a 
spanwise flow along the wing, and the boundary layer 
will thicken toward the wingtips for sweepback and 
toward the roots (the part of the wing closest to the 
fuselage) for sweep-forward. In the case of sweepback, 
there is an early separation and stall of the wingtip 
sections and the ailerons lose their roll control 
effectiveness. The spanwise flow may be reduced by 
the use of stall fences, which are thin plates parallel to 
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the axis of symmetry of the airplane. In this manner a 
strong boundary layer buildup over the ailerons is 
prevented. Wing twist is another possible solution to 
this spanwise flow condition. 
 

The wing's aspect ratio is another parameter that 
influences the critical Mach number and the transonic 
drag rise. Substantial increases in the critical Mach 
number (the subsonic Mach number at which sonic 
flow occurs at some point on the wing for the first time) 
occur when using an aspect ratio less than about four. 
However, low-aspect-ratio wings are at a disadvantage 
at subsonic speeds because of the higher induced drag. 
 

By bleeding off some of the boundary layer along an 
airfoil's surface, the drag-divergence Mach number can 
be increased. This increase results from the reduction 
or elimination of shock interactions between the 
subsonic boundary layer and the supersonic flow 
outside of it. 
 

Vortex generators are small plates, mounted along the 
surface of a wing and protruding perpendicularly to the 
surface. They are basically small wings, and by 
creating a strong tip vortex, the vortex generators feed 
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high-energy air from outside the boundary layer into 
the slow moving air inside the boundary layer. This 
condition reduces the adverse pressure gradients and 
prevents the boundary layer from stalling. A small 
increase in the drag-divergence Mach number can be 
achieved. This method is economically beneficial to 
airplanes designed for cruise at the highest possible 
drag-divergence Mach number. 
 

A more recent development in transonic technology, 
and destined to be an important influence on future 
wing design, is the supercritical wing developed by 
Dr. Richard T. Whitcomb of NASA's Langley Research 
Center. With the supercritical wing, a substantial rise in 
the drag-divergence Mach number is realized and the 
critical Mach number is delayed even up to 0.99. This 
delay represents a major increase in commercial 
airplane performance. 
 

The curvature of a wing gives the wing its lift. Because 
of the flattened upper surface of the supercritical airfoil, 
lift is reduced. However, to counteract this, the new 
supercritical wing has increased camber at the trailing 
edge. 
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There are two main advantages of the supercritical 
airfoil. First, by using the same thickness-chord ratio, 
the supercritical airfoil permits high subsonic cruise 
near Mach 1 before the transonic drag rise. 
Alternatively, at lower drag divergence Mach numbers, 
the supercritical airfoil permits a thicker wing section 
to be used without a drag penalty. This airfoil reduces 
structural weight and permits higher lift at lower 
speeds. 
 

Coupled to supercritical technology is the "area-rule" 
concept also developed by Dr. Richard T. Whitcomb in 
the early 1950s for transonic airplanes and later applied 
to supersonic flight in general. 
 

Basically, the area rule states that minimum transonic 

and supersonic drag is obtained when the cross-

sectional area distribution of the airplane along the 

longitudinal axis can be projected into a body of 

revolution that is smooth and shows no abrupt changes 

in cross section along its length. Or, if a graph is made 

of the cross-sectional area against body position, the 

resulting curve is smooth. If it is not a smooth curve, 

then the cross section is changed accordingly. 
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The original Convair F-102A was simply a scaled-up 
version of the XF-92A with a pure delta wing. But early 
tests indicated that supersonic flight was beyond its 
capability because of excessive transonic drag and the 
project was about to be canceled. Area ruling, however, 
saved the airplane from this fate. In the original YF-
102A, the curve of the cross-sectional area plotted 
against body station was not very smooth as there was 
a large increase in cross-sectional area when the wings 
were attached. The redesigned F-102A had a “coke-
bottle”-waist-shaped fuselage and bulges added aft of 
the wing on each side of the tail to give a better area-
rule distribution. The F-102A could then reach 
supersonic speeds because of the greatly reduced drag 
and entered military service in great numbers. 
 
 

Later, the area-rule concept was applied to design of a 
near-sonic transport capable of cruising at Mach 
numbers around 0.99. In addition to area ruling, a 
supercritical wing was used. 
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Transonic is an aeronautics term referring to a range of 
velocities just below and above the speed of sound. It is 
defined as the range of speeds between the critical mach, 
when some parts of the airflow over an aircraft become 
supersonic, and a higher speed, typically near Mach 
number, when all of the airflow is supersonic.... 

 

speed range. Supercritical airfoils are characterized by 
their flattened upper surface, highly cambered (curved) aft 
section, and greater leading edge 

 

 

The leading edge is a line connecting the forward-most 
points of a wing's profile. In other words, it's the front edge 
of the wing. When an aircraft is moving forward, the 
leading edge is that part of the wing that first contacts the 
air.... 
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Geometric and aerodynamic twist 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Wings are given twist so that the angle of attack varies 
along the span. A decrease in angle of attack toward the 
wing tip is called washout whereas an increase in angle 
of attack toward the wing tip is called washin. 
Geometric twist (fig. (a)) represents a geometric method 
of changing the lift distribution, whereas aerodynamic 
twist, by using different airfoil sections along the span 
represents an aerodynamic method of changing the lift 
distribution in a spanwise manner (fig. (b)). To give 
minimum induced drag it was demonstrated that the 
spanwise efficiency factor e should be as close to 1 as 
possible. This is the case of an elliptic spanwise lift 
distribution. A number of methods are available to 
modify the spanwise distribution of lift. 
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Vortex flow effects 
 

Note that upwash and downwash are due to both the 
bound vortex and the tip vortices 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The important effects of the vortex system are shown in 
figure. Indicated are the directions of air movement due to 
the vortex system. The left-tip vortex rotates clockwise, 
the right-tip vortex rotates counterclockwise (when viewed 
from behind), and the bound vortex rotates clockwise 
(when viewed from the left side). The bound vortex is 
directly related to the lift on the wing as in the dimensional 
case. 
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Upwash and downwash fields around an airplane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In both the 2D and 3D cases the upflow (or upwash) in front of the wing balanced 

the downflow (or downwash) in back of the wing caused by the bound vortex. But, 

in the finite-wing case one must also take into account the Lip vortices (assuming 

that the influence of the starting vortex is negligible). The tip vortices cause 

additional down... wash behind the wing within the wing span. One can see that, for 

an observer fixed in the air (fig. 55) all the air within the vortex system is moving 
downwards (this is called downwash) whereas all the air outside the vortex system 

is moving upwards (this is called upwash). Note that an aircraft flying perpendicular 

to the flight path of the airplane creating the vortex pattern will encounter upwash, 

downwash, and upwash in that order. The gradient, or change of downwash to 

upwash, can become very large at the tip vortices and cause extreme motions in the 

airplane flying through it. Also shown is an airplane flying into a tip vortex. Note 

that there is a large tendency for the airplane to roll over. If the control surfaces of 

the airplane are not effective enough to counteract the airplane roll tendency, the 

pilot may lose control or in a violent case experience structural failure. 
 

The problems of severe tip vortices are compounded by the take-off and landings of 
the new generation of jumbo jets. During these times the speed of the airplane is 
low and the airplane is operating at high lift coefficients to maintain night. The 
Federal Aviation Agency has shown that for a 0.27 MN (600 000 lb) plane, the tip... 
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Effect of aspect ratio on coefficient of lift 
 
 
 

Figure shows the coefficient of lift curves ('lift 

curves") obtained for both wings by experiment. 

Readily evident is the effect that the tip vortices 

have in creating the additional downwash w at 

the wing; the lift curve is flattened out so that at 

the same angle of attack less lift is obtained for 

the smaller aspect ratio wing. This is not a 

beneficial effect. 
 


