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ALTERNATIVE FORMS OF THE
ONE-DIMENSIONAL ENERGY EQUATION
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We have the energy equation for steady one-dimensional flow
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Assuming no heat addition, this becomes

where points 1 and 2 correspond to the regions 1 and 2 identified in the above
figure (Fig. 3.5).

Specializing further to a calorically perfect gas, where h = CpT, the above
equation becomes,
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The above equation can be written as,
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The actual speed of sound and velocity at point A are a and u, respectively. At the
imagined condition of Mach 1 (point 2 in the above equations), the speed of
sound is a* and the flow velocity is sonic, hence u; = a*. Thus, the above equation
yields,
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If the actual flowfield is nonadiabatic from A to B, a*A # a*B .



On the other hand, if the general flowfield is adiabatic throughout, then a* is a
constant value at every point in the flow. Since many practical aerodynamic flows
are reasonably adiabatic, this is an important point to remember.

Let point 1 in correspond to point A and let point 2 correspond to our imagined
conditions where the fluid element is brought to rest isentropically at point A. If T
and u are the actual values of static temperature and velocity, respectively, at
point A, then T; =T and u; = u. Also, by definition of total conditions, u, =0 and T
= To Hence, equation
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becomes

The above equation provides a formula from which the defined total temperature,
To, can be calculated for the given actual conditions of T and u at any point in a
general flow field. Remember that total conditions are defined earlier as



those where the fluid element is isentropically brought to rest. However, in the
derivation of the above equation, only the energy equation for an adiabatic flow is
used. Isentropic conditions have not been imposed so far. Hence, the definition
of To such as expressed in the above Eq is less restrictive than the definition of
total conditions. Isentropic flow implies reversible and adiabatic conditions; Eq.
tells us that, for the definition of To, only the "adiabatic" portion of the isentropic
definition is required. That is, we can now redefine To as that temperature that
would exist if the fluid element were brought to rest adiabatically. However, for
the definition of total pressure, po, and total density, p,, the imagined isentropic
process is still necessary.

We have,




Several very useful equations for total conditions are obtained as follows from
the above two equations.
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The above equation gives the ratio of total to static temperature at a point in a
flow as a function of the Mach number M at that point Furthermore, for an
isentropic process, the below equation
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Combining the above two equations, we find
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The above two equations give the ratios of total to static pressure and
density, respectively, at a point in the flow as a function of Mach number M at
that point. Along with the following Eq.,
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they represent important relations for total properties—so important that their
values are tabulated in Table (see Gas table) as a function of M for y = 1.4 (which

corresponds to air at standard conditions).

Example 3.1.

At a point in the flow over an F-15 high-performance fighter airplane, the pressure,
temperature, and Mach number are 1890 Ib/ft?, 450°R, and 1 5, respectively. At this
point, calculate To, po, T*, p* and the flow velocity.

Rankine temperature conversion formulae

from Rankine to Rankine
Cels
ius [°C] = ([R] — 491.67) x % [R] = ([°C] + 273.15) x %
Fahr
enhe
it [°F] =[R] — 459.67 [R] = [°F] + 459.67
Kel
vin [K] =[R] x % [R] = [K] x %




Consider the flow through a rocket engine nozzle Assume that the gas flow
through the nozzle is an isentropic expansion of a calorically perfect gas In the
combustion chamber, the gas which results from the combustion of the rocket
fuel and oxidizer is at a pressure and temperature of 15 atm and 2500 K,
respectively, the molecular weight and specific heat at constant pressure of the
combustion gas are 12 and 4157 J/kg K, respectively The gas expands to
supersonic speed through the nozzle, with a temperature' of 1350 K at the nozzle
exit Calculate the pressure at the exit.

Solution. From our earlier discussion on the equation of state,
R=—=—3-=06928l/kg K

From Eq. (1 20)
¢, = ¢, — R = 4157 — 692 8 = 3464 J /kg - K

Thus

T ry/{y—1} 12/(12-1y
33—(—-2-) =(%—§%) — 00248

p, = 0025p, = (0.0248)(15 atm) = | 0.372 atm
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Infinitesimal fluid element approach

11



It should be emphasized again that the below four equations

provide formulas from which the defined quantities T,, po, and po can be
calculated from the actual conditions of M, u, T, p, and p at a given point in a
general flowfield, as sketched in Fig 2.2 (see above). Again, the actual flowfield
itself does not have to be adiabatic or isentropic from one point to the next. In
these equations, the isentropic process is just in our minds as part of the
definition of total conditions at a point.

uZ
g T = =T
T s ]
— =1+ M?
T 2
1
Ay=1)
p y — 1 !
— =1+ M?
D 2
L/(y—1)
p y — 1
— =11+ M?
0 2
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Applied at point A in the above Fig 2.2, the above equations give us the values of
To, Po, and pg associated with point A.

Similarly, applied at point B, the above equations give us the values of Ty, po, and
po associated with point B. If the actual flow between A and B is nonadiabatic and
irreversible, then

TDA * TGR, P, # Po.s and P, F Py,

On the other hand, if the general flowfield is isentropic throughout, then T,, po,
and po are constant values at every point in the flow. The idea of constant total
(stagnation) conditions in an isentropic flow will be very useful in our later

discussions of various practical applications in compressible flow — keep it in
mind’
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We have

A few additional equations will be useful in subsequent sections. For example,
from the above equation,

—

a* u? a’

—_— 4 m —_—
5 — 1 2 3 = }

where a, is the stagnlétion speed of sound.

Stagnation speed of sound a, = |yRT,.

We have,

2
1_: Y+1 0*2
2

2(y — 1)

Equating the R.H.S of the above two equations,

v+ 1 a?

*2 _ 4

a
2(y — 1) y — 1
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Solving the above equation for a*/a,, and invoking

a = yRT

We get,

a* : T* 2

0

LAy —1)
P, y — 1
_m=(1+ AMﬁ

Recall that p* and p* are defined for conditions at Mach 1; hence, the above two
equations with M =1 lead to

P* ) Y/ (y— 1
. \y+1
p* 2 1/(y-1)
Po Vet 1
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For air at standard conditions, where y = 1.4, these ratios are

T*
— = (J.833
To

*
LA 0.528
Po

5
L 0.634
Po

which will be useful numbers to keep in mind for subsequent discussions.

q- u’ y + 1

+—-——-2
y-1" 2 2(y-1)°

Dividing the above equation by u? , we have

%® 2

+ — =
y—-1 2 2y-1)

(/M) y+1 (1) 1
vy — 1 2(?*1)(1‘4*) 2

(a/u)t 1 v+ 1 (a*)2

u

2
S GFym - (v -

The above equation provides a direct relation between the actual Mach number M
and the characteristic Mach number M*.
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Characteristic Mach number M* = V/a*. (Note that the real Mach num
beris M = V/a.)

)
M v+ /M) = (v - 1)

Using the above relation find the value of M when,

M* =1
M* < 1
M* > 1
+ 1
M* — i
Wy — J

I
-

M* if M=1
M* <1 if M <1
M* > 1 if M > 1

. y+1
M* — ; il M > o
y —

Hence, qualitatively, M* acts in the same fashion as M, except when M goes to
infinity.

17



In future discussions involving shock and expansion waves, M* will be a useful
parameter because it approaches a finite number as M approaches infinity.

All the equations in this section, either directly or indirectly, are alternative forms
of the original, fundamental energy equation for one-dimensional, adiabatic flow
(see below Eq.).

Make certain that you examine these equations and their derivations closely. It is
important at this stage that you feel comfortable with these equations, especially
those with a box around them for emphasis.

18
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Problem:

An aircraft flies at 800km/hr at an altitude of 10,000 meters (T=223.15 K, p = 0.264
bar). The air is reversibly compressed in an inlet diffuser (y = 1.4, R = 287 J/kg K).
The Mach number at the exit of the diffuser is 0.36 determine (a) entry Mach
number and (b) velocity, pressure and temperature of air at the diffuser exit. (Hint:
Use gas table)

Solution:

Let subscripts i and e refer to conditions at entry and exit of the diffuser
respectively.

P;=0.264 bar, T; =223.15K
u; =800 x 1000 /3600 =222.22 m/s
We have

Usingthe above equation, we will get Tp = 247.84 K

=0.74 Ans.

19



(b) From isentropic flow table for y = 1.4 at
M; =0.74 (calculated) find Pi/Po
Me =0.36 (given) find P</Po and Te/To

From the isentropic flow table we have,

Pi/Po = 0.695
Po =P;/0.695 =0.264/0.695
0.379
P./Py =0.914
Pe =Py x 0.914
0.379 x 0.914
0.346 Ans.

Again from table: T¢/To =0.975
Te = Ty (calculated) x 0.975
247.84 x 0.975

241.6 K Ans.

I
e = ‘\/y RTe = \/1.4x287x241.6

=311.57 m/s

Ue = Meae = 0.36 x 311.57

20



= 112.17 m/s Ans

Physical Properties of Standard Atmosphere in Sl Units

Te
mp
Alti era Pre De Vis
tud tur ssu nsi cos
e e re ty ity
(m (kg (N-
ete (Pa /m?3 s/m
rs) (K) ) ) ?)
1.7
- 78 1.9
50 32 E+ 1.9 42E
00 0.7 5 31 -5
15
- 96 1.9
4,0 31 E+ 1.7 12E
00 4.2 5 70 -5
1.4
- 30 1.8
3,0 30 E+ 1.6 82E
00 7.7 5 19 -5
1.2
- 78 1.8
2,0 30 E+ 1.4 52E
00 1.2 5 78 -5
1.1
- 39 1.8
1,0 29 E+ 1.3 21E
00 4.7 5 47 -5
1.0
13 1.7
28 E+ 1.2 89E
0 8.2 5 25 -5
8.9
88 1.7
1,00 28 E+ 1.1 58E
0 1.7 4 12 -5
7.9
50 1.7
2,00 27 E+ 1.0 26E
0 5.2 4 07 -5
7.0
12 9.0 1.6
3,00 26 E+ 93E 94E
0 8.7 4 -1 -5

4,00 26 6.1 8.1 1.6
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(a)
(b)
(c)
(d)

Problem-2

Air (Cp =1.03 kJ/kg K,y =1.38) at P; =3 x 10° N/m? and T,
= 500 K flows with a velocity of 200 m/s in a 30 cm diameter duct.
Calculate:

(a) Mass flow rate
(b) Stagnation temperature © Mach number, and

(d)  Stagnation pressure values assuming the flow as compressible and
incompressible.

Solution:
R = Cp — Cv =0.289 ki/kg K
P1= P1/RT1 =2.076 kg/m

Mass flow rate = 29.348 kg/s
Stagnation temperature, To =519.047 K
Mach number = 0.4478

Stagnation pressure

For compressible flow
Y/(y—1)
P _ (1L

P I

1.%45 (To = 519.047 (calculated) and T; = 500 K (given)) Po=1.145 x 3 x 10°
N/m

24



= 3.435 x 10° N/m?
For incompressible flow
Po =Py + % p1 us?

3Xx
34

10° + 1% x 2.076 x 2002
15 x 10° N/m?

25
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shock wave Normal shock Diagram of a normal shock
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NORMAL SHOCK RELATIONS

Let us now apply the previous information to the practical
problem of a normal shock wave. As discussed earlier normal
shocks occur frequently as part of many supersonic
flowfields. By definition, a normal shock wave is perpendicular
to the flow, as sketched in Fig. 3.3 (see above). The shock is a
very thin region (the shock thickness is usually on the order of

a few molecular mean free paths, typically 10™ cm for air at
standard conditions). The flow is supersonic ahead of the
wave, and subsonic behind it, as noted in Fig 3.3. Furthermore,
the static pressure, temperature, and density increase across
the shock, whereas the velocity decreases, all of which we will
demonstrate shortly. Nature establishes shock waves in a
supersonic flow as a solution to a perplexing problem having
to do with the propagation of disturbances in the flow.



To obtain some preliminary physical feel for the creation
of such shock waves, consider a flat-faced cylinder
mounted in a flow, as sketched in Fig. 3.7 (see below).

e (a) Subsonic flow

> 3 (b) Supersonic flow

FIGURE 3.7
Comparison between subsonic and supersonic streamlines for flow over a flat-faced cylinder or slab.

Recall that the flow consists of individual molecules, some of
which impact on the face of the cylinder. There is in general a
changein molecular energy and momentum due to impact with
the cylinder, which is seen as an obstruction by the molecules.
Therefore, just as in our example of the creation of a sound
wave, as discussed earlier, the random motion of the
molecules communicates this change in energy and



momentum to other regions of the flow. The presence
of the body tries to be propagated everywhere,
Including directly upstream, by sound waves.

In Fig. 3.7a, the incoming stream is subsonic, V- < a«, and the
sound waves can work their way upstream and forewarn the
flow about the presence of the body. In this fashion, as shown
in Fig. 3.7a, the flow streamlines begin to change and the flow
properties begin to compensate for the body far upstream
(theoretically, an infinite distance upstream). In contrast, if the

flow is supersonic, then V« > a«~, and the sound waves can no
longer propagate upstream. Instead, they tend to coalesce a
short distance ahead of the body. In so doing, their
coalescence forms a thin shock wave, as shown in Fig. 3.1b.
Ahead of the shock wave, the flow has no idea of the presence
of the body. Immediately behind the normal shock, however,
the flow is subsonic, and hence the streamlines quickly
compensate for

the obstruction. Although the picture shown in Fig. 3
1b is only one of many situations in which nature
creates shock waves, the physical mechanism
discussed above is quite general.

To begin a quantitative analysis of changes across a normal
shock wave, consider again Fig. 3.3. Here, the normal shock is
assumed to be a discontinuity across which the flow
properties suddenly change. For purposes of discussion,



assume that all conditions are known ahead of the shock
(region 1), and that we want to solve for all conditions behind
the shock (region 2). There is no heat added or taken away
from the flow as it traverses the shock wave (for example, we
are not putting the shock in a refrigerator, nor are we
irradiating it with a laser); hence the flow across the shock
wave Iis adiabatic. Therefore, the basic normal shock
equations are obtained directly from the below equations
(formulated earlier with g = 0) as,

P, = Pyl (continuity)
p, + pui = p, + p,u:  (momentum)
uy %
hy + i h, + B (energy)

The above equations are general—they apply no matter
what type of gas is being considered. Also, in general
they must be solved numerically for the properties
behind the shock wave, as will be discussed later for the
cases of thermally perfect and chemically reacting
gases. However, for a calorically perfect gas, we can
Immediately add the thermodynamic relations



Pl = PyU, (continuity)

Py + pui = p, + pu’ (momentum)
uf u;
h, + i h, + B (energy)

and

The above five equations with five unknowns, p2, u2,
P2, h2, and T2 can be solved algebraically, as follows.

First divide the momentum equation by the continuity
equation,

21 P>

————R re—

Py PrU,

Recalling that a = yp/p,

the above equation becomes,

= Uy T U



) 2

dy s y

T T = Uy T Uy

YU, YU, (1)

The above equation is a combination of the continuity
and momentum equations. The energy equation can be
utilized in one of its alternative forms,

a* w? vy + 1

+ %2
y=1" 2 2(vy-1)°

which yields,
2__y»i—l \ _7—1 ,
al-— 7 d 5 U
(2)
and
2___Y+1 *2_7—1 2
(3)

Since the flow is adiabatic across the shock wave, a*in Eqgs

(2) and (3) is the same constant value. Substituting
Egs. (2) and (3) into (1), we obtain



y+1a*2

2 vy

y +1

or

2yuu,

Dividing by (u, — u,),

Solving for a*, this gives

(”2 - “1)“*2 +

2‘{&1142

a*? + =]

a*

= Uy,

The above equation is called the Prandtl relation, and is
a useful intermediate relation for normal shocks. For
example, from this simple equation we obtain directly

u, U,

] =

or

a* a*

= MyM}




Based on our previous physical discussion, the flow
ahead of a shock wave must be supersonic, i.e, M1 > 1.
It implies M1* > 1. Thus, from the above Eq. M2* <1 and

thus M2 < 1. Hence, the Mach number behind the
normal shock is always subsonic. This is a general
result, not just limited to a calorically perfect gas.

We have

)
[+ - (v - 1)

MZ

Which solved for M" gives

(y + YM*
M*? =
24+ (y — 1)M?
Substitute the above equation into
1

M} =
2 Ml*




We get,
(v + 1)M; (y + 1) M/

24 (y- M2 |2+ (v~ )M

Solving the above Eq. for M2?

1+ {(y - 1)/2) M
YM = (y = 1)/2

M} =

-,

The above equation demonstrates that, for a
calorically perfect gas with a constant value of y, the
Mach number behind the shock is a function of only
the Mach number ahead of the shock. It also shows

that when M1=1, then M2 =1 This is the case of an
Infinitely weak normal shock, which is defined as a

Mach wave. In contrast, as M1 increases above 1, the
normal shock becomes stronger and M2

becomes progressively less than 1. However, in the limit, as M, — co, M,
approaches a finite minimum value, M, — /(y — 1) /2y, which for air is 0 378

10



The upstream Mach number M1 is a powerful parameter which
dictates shock wave properties. This is already seen in the
above Eq. Ratios of other properties across the shock can also

be found in terms of M1. For example, from Eq.

Pl = Pyl (continuity)
combined with
%2
a = Uyl ,
2 2
Pa 4 o Y o2
—— T e e = 2 b Ml
P, Uq U,y d
Substituting (we have)
(y + )M’
M*? =
2+ (y — 1)M?
Into the above equation,
2
07 U (v + 1) M,

F— ————

oy w24 (y - )M/

11



To obtain the pressure ratio, return to the momentum
equation

. - z pi
P2 Pi1 = Py Py,

which, combined with the continuity equation, yields
U
_ _ s il
PP = Plul(ul uy) = pyui |l ¥ )
i

Dividing the above Eq. by p1,
and recalling that af = yp,/p;, we obtain

Pr— P u
2" P _ YME(l —~ ._E.)
Py i)
We have
U (v + 1) M}
e L !

Substitute it in the above Eq., we get,

p, — p 2 4+ (y = 1) M2
2 l"'—_'YMlzl— ( )21
Py ] (v + 1) M,

It simplifies to,

12



L 2--..
, 1+Y+1(M1 1)

To obtain the temperature ratio, recall the equation of state, p = pRT. Hence -

L _(n)[e
I P11\ P2
We have
P2 _”_1 ('}’ * 1)11‘112

|

01 U, 24+ (y - 1) M/

s

Combining the above three equations,

[2 + (v - 1)M12]

(v + 1) M{

13



Examine the following equations.

ai? 1+ E(Y - 1)/2) M
YM - (y—1)/2
[ (y + 1)ﬁ'{12

pr w2+ (y - 1)M}

14



For a calorically perfect gas with a given vy, they give M2,

02/p1, P2/P1, and T2/T1 as functions of M1 only. This is our
first major demonstration of the importance of Mach

number in the quantitative governance of
compressible fiowfields.

In contrast, as will be shown later for an equilibrium
thermally perfect gas, the changes across a normal shock

depend on both M1 and Ti1, whereas for an equilibrium

chemically reacting gas they depend on Mj, T1 and p1.
Moreover, for such high-temperature cases, closed-form
expressions such as the above derived equations are
generally not possible, and the normal shock properties
must be calculated numerically. Hence, the simplicity
brought about by the calorically perfect gas assumption in
this section is clearly evident. Fortunately, the results of this

section hold reasonably accurately up to approximately M1 =

5in_ air at standard conditions. Beyond Mach 5, the
temperature behind the normal shock becomes high enough
that yis no longer constant. However, the flow regime

M1 < 5 contains a large number of everyday practical

problems, and therefore the results of this section are
extremely useful.

Problem-3

A normal shock wave is standing in the test section of a
supersonic wind tunnel. Upstream of the wave, M1 = 3,

15



p1= 0.5 atm, and T1 = 200 K. Find M2, p2, T2, and u2
downstream of the wave.

Solution. From Table A2, for M, =3 p,/p, =1033, T, /T, = 2679, and ¥,
= | 0 4752 | Hence

D = &pl = 1033(05) = | 5 165 atm
P

1

T
Tz=—TiTl = 2679(200) = | 535 8 K
i

ay = JYRT, = J(1 4)(287)(535 8) = 464 m/s

u, = Mya, = (0.4752)(464) = { 220 m /s‘

The limiting case of M1 — «~ can be visualized as u1 — «,
where the calorically perfect gas assumption is invalidated

by high temperatures, or as a1 — «, where the perfect gas
equation of state is invalidated by extremely low
temperatures. Nevertheless, it is interesting to examine the

variation of properties across the normal shock as M1 — « in
the following equations (derived earlier).

16



We find, when M1 — « fory=1.4

17



lim M, =1/ —— =0.378  (as discussed previously)
M, — oo 27

.opp v+l

lim — = —— =6
My~ py Y1

: 1)

Iim — = o0
My —o0 Dy

: T,

lim — = o0
M=o T

P2/P1 = Pa/Py = Ty /T = 1.

This is the case of an infinitely weak normal shock
degenerating into a Mach wave, where no finite

changes occur across the wave. This is the same as
the sound wave discussed earlier.

18



14+ [(y—1)/2]| M?
YM? - (y—1)/2
Py u (v )M
oy uy 24 (y - )M/
Y
P1 y +1

To prove that the above equations have physical
meaning only when M| > 1, we must invoke the second

law of thermodynamics.
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We have,

I, P2
T, 7
Substitute for T2/T1 and P2/P1 , we get

2y 2+ (y — 1) M{
— s, =c In{ |1+ 2 -1 -

b ) Cp ﬂ{ Y+1(M1 ) { (Y+1)M12

2y )
- -1
Rln[l+y+](M1 )}

The above equation demonstrates that the entropy
change across the normal shock is also a function of

upstream mach number, M1 only.
Moreover, it shows that,
If M1 =1thens2-s1=0,
If M| <1thens2-s1<0,
and if M1 > 1then s2-s1>0.
Therefore, since it is necessary that s2 - s1 >0 from the
second law of thermodynamics, the upstream Mach
number M| must be greater than or equal to 1.
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Here is another example of how the second law tells us the

direction in which a physical process will proceed. If M1 is
subsonic, then the above equation says that the entropy
decreases across the normal shock — an impossible

situation. The only physically possible case is M1 > 1, which
in turn dictates from the above four equations that

P/ 21, and T, /T, > 1.

Py P2 =Py
T T, > T,
£y P2 > Ny
) u, < uy
= S— x direction
@ Ml > M2 < 1
Given conditions Unknown conditions
ahead of the behind the shock wave FIGURE 3.3
shock wave Wormal shock Diagram of a normal shock

Thus, we have now established the phenomena
sketched in Fig. 3.3, namely, that across a normal
shock wave the pressure, density, and temperature
Increase, whereas the velocity decreases and the Mach
number decreases to a subsonic value.



What really causes the entropy increase across a
shock wave?

To answer this, recall that the changes across the shock

occur over a very short distance, on the order of 10™ cm
Hence, the velocity and temperature gradients inside the
shock structure itself are very large. In regions of large
gradients, the viscous effects of viscosity and thermal
conduction become important In turn, these are
dissipative, irreversible phenomena which generate
entropy. Therefore, the net entropy increase predicted by
the normal shock relations in conjunction with the
second law of thermodynamics is appropriately provided
by nature in the form of friction and thermal conduction
Inside the shock wave structure itself.
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Finally, we need to resolve one more question!

How do the total (stagnation) conditions vary across a
normal shock wave?

M, >1 M, <1
S ————
—r———————
_—— -7
) F=1;
- L o > 1 !
> L O L_d’
e e NS
Fluid element Imaginary state lu Real state with Tmaginary state 2a
in real state where fluid element My, Ty 59 whese fluid element
with M, . pq, has been brought to has been brqug,ht to
T, dndlx rest isentropically rest 1se_mr0p1cally
] ! Thus in state La, Thus, in state 2a,
the pressure is p,, pressure is p,, and
(by definition} entropy is s,
Entropy is still 5 Temperature is 7,
Temperature is T,

FIGURE 3.8
Illustration of total (stagnation) conditions ahead of and behind a normal shock wave

Consider Fig. 3.8, which illustrates the definition of total
conditions before and after the shock. In region 1 ahead of
the shock, a fluid element is moving with actual conditions

of M1, p1, T1 and s1. Consider in this region the imaginary
state la where the fluid element has been brought to rest
isentropically. Thus, by definition, the pressure and

temperature in state la are the total values po1, and To1,
respectively. The entropy at state la is still s1 because the
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stagnating of the fluid element has been done isentropically.
In region 2 behind the shock, a fluid element is moving with

actual conditions of M2, p2, T2, and s2. Consider in this region

the imaginary state 2a where the fluid element has been
brought to rest isentropically. Here, by definition, the pressure

and temperature in state 2a are the total values of po2 and Toz,
respectively. The entropy at state 2a is still s2, by definition.
The question is now raised how po2 and To2 behind the shock

compare with po1 and Toz1, respectively, ahead of the shock. To
answer this question, we use the following equation for
calorically perfect gas,

uj u

The total temperature is given by

ul

Can = CPT + '"5“

Hence

cT =c¢T

P a £ 02
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and thus

I =T

From the above equation, we see that the total
temperature is constant across a stationary normal
shock wave, which holds for a calorically perfect gas,
IS a special case of the more general result that the
total enthalpy is constant across the shock, as
demonstrated earlier using the following equation,

uy 3
hy + g ™ h, + 5 (energy)

For a stationary normal shock, the total enthalpy is always
constant across the shock wave, which for calorically or
thermally perfect gases translates into a constant total
temperature across the shock. However, for a chemically
reacting gas, the total temperature is not constant across
the shock (will be discussed later). Also, if the shock wave
IS not stationary — if it is moving through space — neither
the total enthalpy nor total temperature are constant across
the wave. This becomes a matter of reference systems (will
discuss later).
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M, >1 M, <1

e i
.- - {11 - ! 1
| 2 Load
e L Gt R, = - S
Fiuid element Imaginary state lu Real state with Imaginary statc 2a
in real state where {luid element My, Ty 59 where fluid element
with M, . pyq, has been bro_ughl to has been bro.ug::l to
T, ands, resy isgntr0pzcally rest isentropically
Thus 1nstate La, Thus, in state 2u,
the pressure 1s p,, pressure is p,, and
(by definition} entropy is s;
Fntropy is still 5 Temperature 1s T,
Temperature is T,
FIGURE 3.8

Ilustration of total (stagnation) conditions ahead of and behind a normal shock wave

We have,

L
szﬂslchln-—T—j len%;‘l

Considering the above figure again, rewrite the above
equation between the imaginary states la and 2a:
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Tﬂ (4]
2 lenpz

Tla pla

HOWCVBI', S2a = SZ’ Sla i Sl? T2a i To = Tta’ pla i po,? and Pia ™ Po«, -

S20 ™ 514 = €, In

ad

Hence the above equation becomes,

P,
P,
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From the above two equations we see that the ratio of
total pressures across the normal shock depends on

M1 only. Also, because s2 > s1 the following equations

(derived above) show that po2 < po1. The total pressure
decreases across a shock wave.

D |
P
14
poz — e—(Sz“Sl)/R
Po,

The variations of p,/py, 0,/p1. /T, p../p.. and M, with M, as|il

obtained from the above equations are tabulated in the
gas table for various values of vy.

To provide more physical feel, these variations are
plotted in the below figure for y =1.4. Note that (as stated

earlier) these curves show how, as M1 becomes very
large, T2/T1 and p2/p1 also become very large, whereas
p2/p1 and M2 approach finite limits.
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FIGURE 39
Properties behind a normal shock wave as a function of upstreamn Mach number
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Example-4

A blunt-nosed missile is flying at Mach 2 at standard
sea level. Calculate the temperature and pressure at
the nose of the missile.

Solution. The nose of the missile is a stagnation point, and the streamline through
the stagnation point has also passed through the normal portion of the bow shock
wave Hence, the temperature and pressure at the nose are equal to the total
temperature and pressure behind a normal shock Also, at standard sea level,
T, = 519°R and p, = 2116 lb/ft?

From Table A1, for M, =2: T, /T, =18 and p, /p, = 73824 Also, for
adiabatic flow through a normal shock, 7, = 7, Hence

T, =T, = -—-+T; = 18(519) = | 934 2°R
T,

1

From Table A2, for M; = 2* p, /p, = 07209 Hence

Poy Po
Po, = —py = (0 7209)(7 824)(2116) = | 11,935 Ib /{1’
pol Pi
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Analytical Exercises

Prove that the change in internal energy equals the
mean pressure across the shock times the change in
specific volume. i.e.,

(0, — )

Hint;

Eliminate the velocity term from the following energy
equation.

uy 3
hl + 7 EhlﬂL —2‘-

Where,
h=e¢e+p/p

Use the following continuity and momentum equation
for getting the desired solution.

Py = Pyldy (continuity)

P+ pyui = py + pyu3 (momentum)
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HUGONIOT EQUATION

The results obtained in the previous section for the
normal shock wave were couched in terms of velocities
and Mach numbers—quantities which quite properly
emphasize the fluid dynamic nature of shock waves.
However, because the static pressure always increases
across a shock wave, the wave itself can also be
visualized as a thermodynamic device which compresses
the gas. Indeed, the changes across a normal shock wave
can be expressed in terms of purely thermodynamic
variables without explicit reference to a velocity or Mach
number, as follows From the continuity equation

Py
15!
Substitute the above equation into the momentum equation,
2
2 _ P
Py T pitty =Pyt Py ";””1
2

Solve the above equation for u1?
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5 Pr =P P2
U =
P2 — P1L \

Alternatively, writing the continuity equation as

P2
P1

and again substituting into the momentum
equation, this time solving for u2, we obtain

, P27 Py Py

u1=u2

Uy =
P2 =™ P1\ P2
From the energy equation, we have
uy )
2 2
and recalling that by definition h = e + p/p, we have
2 2
P iy P Uy
ey + — + — =¢e, + — +

1 2 P2 2
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Substituting the values of u1® and u2? into the above
equation, the velocities are eliminated, yielding

+P1+1 Pz_P1(Pz) +P2+1[P2_P1(pl)jl
e — 4+ = — 1l =e — 4 = e
: 1 2 Pr— P\ P : £ 2 Py — P1\ P

This simplifies to

&
|
’_.fﬁ
u
|
|

The above equation is called the Hugoniot equation. It
has certain advantages because it relates only
thermodynamic quantities across the shock. Also, we
have made no assumption about the type of gas; the
above is ageneral relation that holds for a perfect gas,
chemically reacting gas, real gas, etc.
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In addition, note that the above Hugoniot equation has
the form of

Ae = ~ Pave ‘ﬁv:

l.e., the change in internal energy equals the mean
pressure across the shock times the change in specific
volume. This strongly reminds us of the first law of
thermodynamics in the form of

80qg — pdv = de
with

dqg = Q

for the adiabatic process across the shock

In general, in equilibrium thermodynamics any state variable can be ex-
pressed as a function of any other two state variables, for example e = e( p, v)
This relation could be substituted into Eq (3 72), resulting in a functiona
relation

Py =/f(py, vy, 0y) (373)

For given conditions of p, and v, upstream of the normal shock, Eq (373
iepresents p, as a function of v,. A plot of this relation on a pv graph is calle
the Hugoniot curve, which is sketched in Fig 3.10. This curve is the locus of al
possible pressure-volume conditions behind normal shocks of various strength
for one specific set of upstream values for p, and v, (point 1 in Fig 3 10) Eac
point on the Hugoniot curve in Fig. 3 10 therefore represents a different shoc
+ith a different upstream velocity u;.
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Isentropic curve (pv? = constant)

Hugoniot curve (shock wave compression)

Dl mraimnes

P; _______ “]_

FIGURE 3.10
Hugoniot curve, comparison with isentropic
1 v comptession
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OBLIQUE SHOCK WAVES







A Boeing F/A-18 with afterburners on. Note shock/expansion patterns int he supersonic nozzle exhaust.

http://images.google.co.infimgres?imgurl=http://www.ae.gatech.edu/labs/windtunl/classes/Propulsion/mig25mm.jpg&imgrefurl=http://www.ae.gatech.

edu/labs/windtunl/classes/Propulsion/ae42512.html&usg=__20ZgbPgFEdoyr-
GAsJ3FDrzlf9w=&h=391&wW=638&sz=27&hl=en&start=8&um=1&tbnid=u37vEw2I3IOESM: &tbnh=84&tbnw=137&prev=/images %3Fq%3Dobliqu
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38



| A T
) },/
Bl '
i g
CoMet
r.II i .-:‘" T
normal / |---=1" T
shock I"1 \ \\‘“nh vk
5\

39

W



Shock Progression on Airfoll
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EXTERNAL FLOW APPLIED TO AIRCRAFT /
SPACECRAFT

Viscosity.- There are basically three states of
matter - solid, liquid, and gas. H20 is
commonly called "ice" in the solid state,
"water" in the liquid state, and "water vapor"
In the gaseous state. Assume one has a piece
of ice and side forces are applied to it (called
shearing forces). Very large forces are
needed to deform or break it. The solid has a
very high internal friction or resistance to
shearing. The word for internal friction is
viscosity and for a solid its value is generally
very large.

Liguids and gases are considered to be
fluids since they behave differently from a
solid. Imagine two layers of water or air. If
shear forces are applied to these layers, one
discovers a substantial and sustained
relative motion of the layers with the air layers
sliding faster over one another than the water
layers. However, the fact that a
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shear force must be applied to deform the
fluids Indicates that they also possess
Internal friction.

Water, under normal temperatures, is about
fifty times more viscous than air. Ice Is 5 X

10'® times more viscous than air. One
concludes that, in general, solids have
extremely high viscosities whereas fluids
have low viscosities. Under the category of
fluids, liquids generally possess higher
viscosities than gases. Air, of primary
Interest In aerodynamics, has a relatively
small viscosity, and in some theories, it Is
described as a perfect fluid-one that has zero
viscosity or is "inviscid." But it will be shown
that even this small viscosity of air (or
internal friction) has important effects on an
airplane in terms of lift and drag.
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Obligue Shock

- The discontinuities in supersonic flows do not always
exist as normal to the flow direction. There are obligue
shocks which are inclined with respect to the flow
direction. Refer to the shock structure on an obstacle, as
depicted qualitatively in the below Fig.

- The segment of the shock immediately in front of the
body behaves like a normal shock.

- Oblique shock can be observed in following cases-

1.Obligue shock formed as a consequence of the
bending of the shock in the free-stream direction

(shown in the below Fig.)

2.In a supersonic flow through a duct, viscous
effects cause the shock to be obliqgue near
the walls, the shock being normal only in the
core region.

3. The shock is also oblique when a supersonic flow
IS made to change direction near a sharp corner
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Normal and obliqgue Shock in front of an Obstacle

- The relationships derived earlier for the normal shock are
valid for the velocity components normal to the oblique
shock. The oblique shock continues to bend in the
downstream direction until the Mach number of the velocity
component normal to the wave is unity. At that instant, the
obligue shock degenerates into a so called

Mach wave across which changes in flow
properties are infinitesimal.
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Tutorial:

A pitot tube mounted on the nose of a supersonic
aircraft shows that the ratio of stagnation to static

pressureis 27. Find out the aircraft speed in terms
of Mach number.

[’F‘HMEI(% 1)

Fatagnation _ 2
Ptatic [ ](/_)
¥+1 *y+1
_pHl, 2 r+1)° M V/—)
2 dypt —2(y—1)

Therefore, the Mach angle is simply determined by the local Mach number as

p=sin~ W (4.1)

FIGURE 43

Companson between the wave angle and
the Mach angle
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SUMMARY

Whenever a supersonic flow is turned into itself, shock waves can occur; when
the flow is turned away from itself, expanston waves can occur. In either case, if
the wave is infinitely weak, it becomes a Mach wave, which makes an angle p
with respect to the upstream flow direction; p is called the Mach angle,
defined as

i
L -1
p=sin"' — (4.1)
Across an oblique shock wave, the tangential components of velocity in
1ont of and behind the wave are equal (However, the tangential components of
ach number are nor the same.) The thermodynamic properties across the
bllque shock are dictated by the normal component of the upstream Mach
umber M, . The values of p,/p, p,/py, T, /Ty, 5, — 5, and p, /p, across the
blique shock are the same as for a normal shock wave with an upstream Mach
aumber of M, In this fashion, the normal shock tables in Appendix A.2 can be

1sed for oblidllle shocks. The value of M, depends on both -Ml and the wave
wgle, B, via

M, = M, sin 3 (47)
turn, B is related to M, and the flow deflection angle ¢ through the 6-8-M

tlation

ME(y + cos2B) + 2

tan @ = 2 cot 8 (417)

1 light of the above, we can make the following comparison (1) In Chapter 3,
e noted that the changes across a normal shock depended only on one flow
_arameter, pamely the upstream Mach number M, (2) In the present chapter, we
Jote that two flow parameters are needed to uniquely define the changes across
an oblique shock. Any combination of two parameters will do For example, an
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oblique shock is uniquely defined by any one of the following pairs of parame-
ters: M; and 8, M, and 6, 8 and B, M, and p,/p,, B and p,/p, elc.

For the solution of shock wave problems, especially cases involving shock
intersections and reflections, the graphical constructions associated with the
shock polar and the pressure-deflection diagrams are instructional,

For the curved, detached bow shock wave in front of a supersonic blunt
body, the properties at any point immediately behind the shock are given by the
oblique shock relations studied in this chapter, for the values of M, and the local
B. Indeed, the oblique shock relations studied here apply in general to points
immediately behind any curved, three-dimensional shock wave, so long as the
component of the upstream Mach number normal to the shock at a given point is
used to obtain the shock properties.

The properties through and behind a Prandtl-Meyer expansion fan are
dictated by the differential relation

(4.31)

When integrated across the wave, this equation becomes
8, = v(M,) — v(M,) (4.41)

where 4, is assumed to be zero and v is the Prandtl-Meyer function given by

v(M)=‘/ tan \/-—W—(Mz—l)—tan VM2~ 1 (4.40)

The flow through an expansion wave is isentropic; from the local Mach numbe
obtatned from the above relations, all other flow properties are given by il
1sentropic flow relations discussed 1n Section 3.5

48



1 | i I i 1 1
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Deflection angle 8, degrees

FIGURE 4.5
6-8-M curves Oblique shock properties Important See end pages for a more detailed chart
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FIGURE 4.7
V77777777777 s A Weak and strong shocks
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=M, > M,
Py < p
T, <T,
Py <y
{a) Concave corner (h) Convex corner
FIGURE 4.1

Supersonic flow over a corner

Example 4.1. A uniform supersomc stream with M; = 30, p, = 1 atm, and T, =
288 K encounters a compression corner (see Fig 4 1a) which deflects the stream by

an angle & = 20° Calculate the shock wave angle, and p,, T,, M,, P,, and T,
behind the shock wave

Solution. For the geometnical picture, refer to Fig 44 Also, from Fig 45, for
M, =3 and § = 20°, | 8 = 37.5°|. Thus

M, = M, sin B = 3sin37 5° =1 826

From Table A2, for M, =1826. p,/p, =3723, T,/T, = 1551, M, = 06108,
and p, /p, = 08011 Hence,

g5 = 22 = (3 F29Y(1) = | 3,723l
.

r

T,
T, = }ZT, = (1551)(288) = | 446 7K
1

M, 06108
M, = — = — .

sin(B - 48) sinl7.5
From Table A.l, for M; = 3: p, /p, = 36.73 and 7, /T, = 28 Hence

=203

Po, = — ——p; = (0 8011)(36 73)(1) = | 29 42 atm

T
T =Ty = 7T = (28)(288) = | 806 4K
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M, =2

(a)

FIGURE 48
Comparison between wedge and cone flow; illustration of the three-dimensional relieving eflect.

SHOCK POLAR

Graphical explanations go a long way towards
the understanding of supersonic flow with

shock waves. One such graphical
representation of oblique shock properties is
given by the shock polar, described below.
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FIGURE 4.10
The physical (xv) plane

Consider an oblique shock with a given upstream velocity ¥, and deflection
angle 8,, as sketched in Fig. 4.10. Also, consider an xy cartesian coordinate
system with the x axis in the direction of V. Figure 4.10 is called the physical
plane Define V, , V. V.  and V as the x and y components of velocity ahead
of and behind the shock, respectively. Now plot these velocities on a graph which
uses V, and V| as axes, as shown in Fig. 4.11. This graph of velocity components
is called the hodograph plane. The line OA represents V; ahead of the shock; the
line OB represents ¥, behind the shock. In turn, point A in the hodograph plane
of Fig. 4.11 represents the entire flowfield of region 1 in the physical plane of Fig
4.10. Similarly, point B in the hodograph plane represents the entire flowfield of
region 2 in the physical plane. If now the deflection angle in Fig. 4.10 is increased
to a larger value, say 8., then the velocity V, is inclined further to angle 8., and
its magnitude is decreased because the shock wave becomes stronger. This
condition is shown as point C in the hodograph diagram of Fig. 4.12. Indeed, if

¥

Y3

FIGURE 4 11
1 The hodograph plane
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85 ¥y \, 4 FIGURE 4.12
- I, Shock polar for a given ¥,

the deflection angle 6 in Fig. 4.9 is carried through all possible values for which
there is an oblique shock solution (6 < 6,,,), then the locus of all possible
velocities behind the shock is given in Fig. 4.12. This locus is defined as a shock
polar. Points A, B, and C in Figs. 4.11 and 4.12 are just three points on the
shock polar for a given V.

For convenience, let us now nondimensionalize the velocities in Fig. 4.12 by
a*, defined in Sec. 3.4. Recall that the flow across a shock is adiabatic, hence a*
is the same ahead of and behind the shock Consequently, we obtain a shock
polar which is the locus of all possible M} values for a given M, as sketched in
Fig. 4.13. The convenience of using M* instead of M or V to plot the shock polar
is that, as M — oo, M* — 2.45 (see Sec. 3.5). Hence, the shock polars for a wide
range of Mach numbers fit compactly on the same page when plotted in terms of
M*_ Also note that a circle with radius M* = 1 defines the sonic circle shown in
Fig. 4.13. Inside this circle, all velocities are subsonic; outside it, all velocities are

supersonic.

Xy
a*

FIGURE 4.13
0 E 10 1, Geometric constructions using the
o+ shock polar
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Several important properties of the shock polar are illustrated in Fig. 4.13
as follows:

1. For a given deflection angle 6, the shock polar is cut at two points B and D
Points B and D represent the weak and strong shock solutions, respectively
Note that D is inside the sonic circle, as would be expected.

2. The line OC drawn tangent to the shock polar represents the maximum
deflection angle 6, for the given .#} (hence also for the given M,). For
8 > 8_,., there is no oblique shock solution

3. Points £ and A represent flow with no deflection. Point E is the normal
shock solution; point A corresponds to a Mach line.

4. If a line is drawn through A and B, and line OH is drawn perpendicular to
AB, then the angle HOA is the wave angle f corresponding to the shock
solution at point B. This can be proved by simple geometric argument,
recalling that the tangential component of velocity is preserved across the
shock wave. Try it yourself.

5. The shock polars for different Mach numbers form a family of curves, as
drawn in Fig. 4.14, Note that the shock polar for M{¥ = 245(M; — ) is a
circle.

The analytic equation for the shock polar (V,/a* versus V,/a*) can be
obtained from the oblique shock equations given in Sec. 4.3. The derivation is
given in such classic texts as those by Ferri (Ref. 5) or Shapiro (Ref. 16). The

FIGURE 4.14
Shock polars for different Mach numbers
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INTERSECTION OF SHOCKS OF THE
SAME FAMILY

Consider the compression corner sketched in Fig. 4.20, where the supersonic flow
in region 1 is deflected through an angle #, with the consequent oblique shock
wave emanating from point B. Now consider a Mach wave generated at point A
ahead of the shock. Will this Mach wave interest the shock, or will it simply
diverge, i.e, is p, greater than or less than B? To find out, consider Eq. (4.7),
which written in terms of velocities is

u, = V;sin g

FIGURE 4.20
Mach waves ahead of and behind a
shock wave
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FIGURE 4.27
Prandtl-Meyer expansion

An expansion wave emanating from a sharp convex corner such as sketched
in Figs. 4.1b and 4.27 is called a centered expansion fan. Moreover, because
Prandtl in 1907, followed by Meyer in 1908, first worked out the theory for such
a supersonic flow, it is denoted as a Prandil-Meyer expansion wave.

The quantitative problem of a Prandti-Meyer expansion wave can be stated
as follows (referring to Fig. 4.27): For a given M,, p,, T, and 8,, calculate M,,
Py, and T,. The analysis can be started by considering the infinitesimal changes
across a very weak wave (essentially a Mach wave) produced by an infinitesimally
small flow deflection, d#, as illustrated in Fig. 4 28 From the law of sines,

V+dVv sin(7/2 + p)
V  sin(n/2 - p— df)

(4.24)
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FIGURE 111
Rectangular finite-difference grid
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ONE-DIMENSIONAL FLOW WITH HEAT ADDITION

ES
N R
e
A é —n
—

PRSI X /_ NES— . C
1 w
itectangular contrel volume FIGURE 35

. Rectangular control volume for
x direction " one-dimensional flow

Consider again Fig 3 5, which illustrates a control volume for
one-dimensional flow Inside this control volume some action
IS occurring which causes the flow properties in region 2 to
be different than in region 1. In the previous sections, this
action has been due to a normal shock wave, where the large
gradients inside the shock structure ultimately result in an
Increase in entropy via the effects of viscosity and thermal
conduction. However, these effects are taking place inside
the control volume in Fig. 3.5 and therefore the governing
normal shock equations relating conditions in regions 1 and
2 did not require explicit terms accounting for friction and
thermal conduction.



The action occurring inside the control volume in Fig. 3.5
can be caused by effects other than a shock wave For
example, if the flow is through a duct, friction between the
moving fluid and the stationary walls of the duct causes
changes between regions 1 and 2. This can be particularly
iImportant in long pipelines transferring gases over miles of
land, for example. Another source of change in a one-
dimensional flow is heat addition If heat is added to or
taken away from the gas inside the control volume in Fig
3.5, the properties in region 2 will be different than those in
region 1. This is a governing phenomenon in turbojet and
ramjet engine burners, where heat is added in the form of
fuel-air combustion. It also has an important effect on the
supersonic flow in the cavities of modern gas dynamic and
chemical lasers, where heat is effectively added by
chemical reactions and molecular vibrational energy
deactivation. Another examble would be the heat added to
an absorbing gas by an intense beam of radiation; such an
idea has been suggested for laser-heated wind tunnels. In
general, therefore, changes in a one-dimensional flow can
be created by both friction and heat addition without the
presence of a shock wave.



Consider the one-dimensional flow in Fig. 3.5, with
heat addition (or extraction) taking place between
regions 1 and 2. The governing equations are repeated
here for convenience,

Pyt = Pty

y 3
Pyt puy = Pyt opoldy

2 2

hy+ —4+qg=h,+ —
1 5 q Ly )

If conditions in region 1 are known, then for a specified
amount of heat added per unit mass, q, these equations
along with the appropriate equations of state can be
solved for conditions in region 2 In general, a numerical
solution is required. However, for the specific case of a
calorically perfect gas, closed-form analytical
expressions can be obtained—just as in the normal
shock problem. Therefore, the remainder of this section
will deal with a calorically perfect gas.



y 2
Uy Uy

hy+ — +qg=h, + —
1 ) q Iy )

Solving the above energy equation for g with h
= CpT we get,

% u?

From the definition of total temperature, the terms on the
right-hand side of the above equation simply result in

g=c,T, —c,T, = CP(TZ = Tﬂl)

o

The above equation clearly indicates that the effect of
heat addition is to directly change the total

temperature of the flow. If heat is added, To increases;
If heat is extracted, To decreases.



Let us proceed to find the ratios of properties
between regions 1 and 2 in terms of the Mach

numbers M1 and M2. We have,

2 2
Pyt Py = pyt pou;

Noting that
YP
pu’ =pa*M? =p—M? = ypM?>
0
We obtain,

P2 — Py = pyuf — pyul = yp MY — yp, M7

Hence,

f_g 1 + ny

A—

Dy 1 +YM22




Also, from the perfect gas equation of state and the
below continuity equation,

Pty = Pl

We get,

i — i —

a=m1

From the above equation for velocity of sound and
the definition of Mach number, we get

Uy Mya, M,[T, I/

A —

iy - M, a, M\ T,

Using the above equations and substituting the
values of P2/P1, and u2/u1 in T2/T1 we get,



1+ yM; ’

1 + yM}

I

T —

I

il

Since p, /0, = (p/PINT/Th),

We get,

We have




p, 1+ yMf?

——

p, 14 yM}

The ratio of total pressures is obtained directly from
the above two equations,

( y — 1 2\ y/(y— 1)
poz 1+ ,YMlQ 1 + M2
) . - =
P, 1+ yM; 1 4+ M2
\ g
We have,
i
T -1




T, 1 + yM; ’ M, ’

—

T 1+ yM7 1\ M,

The ratio of total temperatures is obtained directly
from the above equations,

v
2 2t 1 + M}

1—I—yM12 & 7 2

1+ yM} M, y — 1

Finally, the entropy change can be found from the
below equation with the above derived equations for
T2/T1 and P2/P1 .

T
32-—*—31=cpln~T—jﬂRln%:l

10



( g 1 \ Y/(y—1)

2
po 1+ YMlz 1+ M2 83
P, 1+ M} -1 3
& \1 + M;
_1 )
T, [1+yMZI\ M\ M y
T, 1+ yM2|\ M, ¥ =1 (3:84)
! L+ ——M,

11



For convenience of calculation, we use sonic flow as a reference condition.
Let M, = 1, the corresponding flow properties are denoted by p, = p*, T, = T*,
Py = p*, p, = py,and T, = T The flow properties at any other value of M are

then obtained by inserting M, =1 and M, = M into Eq (3.78) and Eqs (3 81)
to (3.84), yielding

12



Example 3.8, Air enters a constant-area ductat M, = 02, p; = 1 atm,and 7} = 273
K Inside the duct, the heat added per umt mass is ¢ = 10 X 10® J/kg Calculate
the flow properties M,, p;, 75, p;, T, , and p, at the exat of the duct

Solution. From Table Al,for M, =02 T, /T, =1008 and p, /p; = 1028 Hence
T, = 10087, = 1 008(273) = 275 2K

Po, = 1028p, =1 028(1 atm) = 1 028 atm

yR O (14)(287)
“T3=1 04

=1005J/kg K

We have

g=c,T, ~c,T, =cT, —T,)

P03 P oy 03 0
T 4 T L0 275 2 1270 K
@2 ¢, ¥ 1005 ‘ l

From Gas Table

13



From Table A3, for M, =02 T,/T* = 02066, p,/p* = 2273, p, /p} = 1235,
and 7, /T = 01736 Hence

T T. T 1270
L= 22— = ——{01736) = 08013

TF T, IF 2152

From Table A.3, this corresponds to | M, = 0 58

Also from Table A3, for M, = 058 T,/T* = 0.8955, p,/p* = 1632, P., /b
= 1 083 Hence

T, T

T, = T'*‘Ei"“ = (0 3955)( 021066)(273) =11183 Ka
1
o o LT 2273“ltm=
Po, P} 1
p02=;3}}:p01=1083-1e2—351023=

Since 1 atm = 101 X 10° N/n?,

p, {0.718)(1 01 X 10°) j]
= = = =|0214k
RT, (278)(1183) 0214 ke/m

i)

14



a (Sonic flow)

FIGURE 3.12
The Rayleigh curve

15



From the above, it is important to note that heat addition always drives the
Mach numbers toward 1, decelerating a supersonic flow and accelerating a
subsonic flow This is emphasized in Fig 312, which is a Mollier diagram
(enthalpy versus entropy) of the one-dimensional heat-addition piocess. The
curve in Fig. 312 is called the Rayleigh curve, and is drawn for a set of given
mtitial conditions. If the conditions in region 1 are given by point 1 in Fig. 3.12,
then the particular Rayleigh curve through point 1 is the locus of all possible
states in region 2. Each point on the curve corresponds to a different value of ¢
added or taken away. Point a corresponds to maximum entropy, also at point a
the flow is sonic. The lower branch of the Rayleigh curve below point a
corresponds to supersonic flow; the upper branch above point a corresponds to
subsonic flow. If the flow in region 1 of Fig 3.5 is supersonic and corresponds to
point 1 in Fig. 312, then heat addition will cause conditions in region 2 to move
(loser to point a, with a consequent decrease of Mach number towards unity As
« is made larger, conditions in region 2 get closer and closer to point a. Finally,
for a certain value of g, the flow will become sonic in region 2 For this

condition, the flow is said to be choked, because any further increase in ¢ is not
possible without a drastic revision of the upstream conditions in region 1 For
example, if the initial supersonic conditions in region 1 were obtained by
expansion through a supersonic nozzle, and if a value of ¢ is added to the flow
above that allowed for attaining Mach 1 in region 2, then a normal shock will
form inside the nozzle and conditions in region 1 will suddenly become subsonic

16



alM = 1)

FIGURE 3.14
s The Fanno curve
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From the above, note that friction always drives the Mach number toward
1, decelerating a supersonic flow and accelerating a subsonic flow. This is
emphasized in Fig 3 14, which is a Mollier diagram of one-dimensional flow with
friction. The curve in Fig 3.14 is called the Fanno curve, and is drawn for a set of
given initial conditions. Point a corresponds to maximum entropy, where the
flow is sonic. This point sphits the Fanno curve into subsonic (upper) and

supersonic (lower) portions. If the inlet How is supersonic and corresponds to
point 1 in Fig 3.14, then friction causes the downstream flow to move closer to
point a, with a consequent decrease of Mach number towards unity Each point
on the curve between points 1 and a corresponds to a certain duct length L As
L. is made larger, the conditions at the exit move closer to point a Finally, for a
certain value of L, the flow becomes sonic For this condition, the flow is choked,
because any further increase in L is not possible without a drastic revision of the
inlet conditions. For example, if the inlet conditions at point 1 were obtained by
expansion through a supersonic nozzle, and if I were larger than that allowed for
attaining Mach 1 at the exit, then a normal shock would form inside the nozzle,
and the duct inlet conditions would suddenly become subsonic

18



Example 3.9, Aur enters a constant-area duct at M, = 3, p; = 1 atm, and 7} = 300
K. Inside the duct, the heat added per unit mass is ¢ = 3 X 10% J /kg Calculate the
flow properties M,, p,, T3, p;, 1,,, and p,  at the exit of the duct

23 b

Also find how much heat per unit mass must be added to

choke the flow.
Solution. From Table A1, for M, =3 T, /T, =28 Hence
T, = 28(300) = 840K
YR (1 4)(287)

= == = 1004 5J/kg K
“r y—1 04 /K8

From Eq. (3.77)
i = cplTs, ~ 1)

T g T el 340 1139 K
» T T 10045

From Table A3, for M, =3 p,/p* =01765, T,/T* = 02803, and T, /T* =
0 6540 Hence

Thus

T 1139
—2 = — — = ——{(( 6540) = 0 8868
840

From Table A3, for T, /T* = 08868 M, = Also from Table A 3, p,/p*’
= 05339 and T,/T* = 07117 Thus

P P 1
pr= 5 —p = 05339 ———|(latm) = |3 025 atm
P* P 01765
T 5 T*T 0711 300 761 7K
= = —T = 7
N (02803)( ) =

pr  (3025)(101 X 105)
RT, (287)(761 7)

Py = 1 398 kg/m‘\

19



Example-5.

Consider a point in a supersonic flow where the static
pressureis 0.4 atm. When a Pitot tube is inserted in the
flow at this point, the pressure measured by the Pitot
tube is 3 atm. Calculate the Mach number at this point.
Calculate the entropy change across the shock (Hint:
Normal shock occurs in front of the Pitot tube).

20



Solution.

The pressure measured by a Pitot tube is the total pressure
However, when the tube is inserted into a supersonic flow, a
normal shock is formed a short distance ahead of the mouth
of the tube. In this case, the Pitot tube is sensing the total
pressure behind the normal shock.

Hence

Po 3
—t = e =75
pl 04

From Table A2, for p, /p, =75 M, =|235]

From Table A2, for M; = 235 p, /p, = 05615

Using the following equation,

= —In=2 = —In(0 5615) = 0 577

21



s, — 8§ = 0577R

Example-6:

A supersonic wind tunnel settling chamber expands air
or Freon-21 through a nozzle from a pressure of 10 bar
to 4 bar in the test section. Calculate the stagnation
temperature to be maintained in the settling chamber to
obtain a velocity of 500 m/s in the test section for,

(a) Air, Cp = 1.025 kJ/kg K, Cp =0.735 kJ/ K

(b) Freon — 21, Cp =0.785 kJ/kg K, Cv = 0.675 kJ/K

What is the test section Mach number in each case?

Ans: M (air) = 1.225
M (Freon) = 1.296

22



Example-7:

A nozzle in awind tunnel gives a test-section Mach number
of 2.0. air enters the nozzle from a large reservoir at 0.69
bar and 310 K. The cross-sectional area of the throat is 1000

cm? . Determine the following quantities for the tunnel for
one dimensional isentropic flow:

(i) pressure, temperature and velocities at the
throat and test section

(i1) area of cross-section of the test section
(ili) mass flow rate
(iv) power required to drive the compressure.

Solution:
Given: Pp=0.69 bar, To=310K, A =1000 cm?

Find po = Po/RTo . and ao

From Gas table at M =1 (throat section)
Find P*/Po, T*/To, p /po

P*=0.365 bar (Ans.)
T* =258 K (Ans.)
p*x=0.49 kg/m3 (Ans.)

C*=a*= 323 m/s (Ans.)

From Gas table at Mt = 2.0 (test section)
P/PO=0.128 P =0.0885 bar (Ans.)

23



T/TO=0.555 T=175K (Ans.)
A/A* = 1.687; A =1687 cm2

Velocity at test section =M a =2 x 264 = 528 m/s
(Ans.) Mass flow rate = 15.9 kg/s

Compressor work = mass flow rate x Cp X
temperature drop

= 2182 kW

NORMAL, OBLIQUE SHOCKS AND EXPANSION WAVES

Prandtl equation and Rankine — Hugonoit relation, Normal
shock equations, Pitot static tube, corrections for subsonic
and supersonic flows, Oblique shocks and corresponding
equations, Hodograph and pressure turning angle, shock
polars, flow past wedges and concave corners, strong, weak
and detached shocks, Raleigh and Fanno Flow. Flow past
convex corners, Expansion hodograph, Reflection and
Interaction of shocks and expansion, waves, Families of
shocks, Methods of Characteristics, Two dimensional
supersonic nozzle contours.

24



From Table A3, for M, =3. p, /p¥ =3424 For M, =158 p,/p; =1164
Thus

Poy _ Po /Py 1164

Po, Do /P5 3424

From Table A1, For M, = 3: p_/p; = 3673 Hence

= 0 340

— p, = (0 340)(36 73)(1 atm) = | 12 49 atm

Solution. From Example 39, 7, = 840 K Also from Table A3, for M, = 3
T, /T = 0.6540 Thus

T 840

* ot

> " 06540 06540
When the flow is choked, the Mach number at the end of the duct is M, = 1 Thus
T, = T} = 1284 K

el

= 1284 K

g=c,(T, — T, ) = (1004 5)(1284 — 840) = | 4 46 x 10° J /kg
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Small perturbation potential theory

LINEARIZED FLOW

Transport yourself back in time to the year 1940,
and imagine that you are an aerodynamicist
responsible for calculating the lift on the wing of

a high-performance fighter plane. You
recognize that the airspeed is high enough so
that the well-established incompressible flow
technigues of the day will give inaccurate
results. Compressibility must be taken into
account. However, you also recognize that the
governing equations for compressible flow are
nonlinear, and that no general solution exists
for these equations. Numerical solutions are
out of the question! So, what do you do? The
only practical recourse is to seek assumptions
regarding the physics of the flow which will
allow the governing equations to become
linear, but which at the same time do not totally
compromise the accuracy of the real problem.
In turn, these linear equations can be attacked
by conventional mathematical techniques.



—_— /
-———_..'. -
/
Uniform flow Perturbed flow

Comparison between uniform and perturbed
flows

There are a number of practical aerodynamic
problems where, on a physical basis, a uniform
flow is changed, or perturbed, only slightly. One
such example is the flow over a thin airfoil
Illustrated in in the above figure. The flow is
characterized by only a small deviation of the flow
from its original uniform state. The analyses of
such flows are usually called small-perturbation
theories. Small-perturbation theory is frequently
(but not always) linear theory, an example is the
acoustic theory, where the assumption of small
perturbations allowed a linearized solution.
Linearized solutions in compressible flow always
contain the assumption of small perturbations,
but small perturbations



do not always guarantee that the governing
equations can be linearized.

LINEARIZED VELOCITY POTENTIAL
EQUATION

Uniform flow Perturbed flow

FIGURE 9.1
Comparison between uniform and perturbed flows

Consider a slender body immersed in a uniform flow, as sketched in Fig. 9.1. In
the uniform flow, the velocity is ¥, and is oriented in the x direction. In the
perturbed flow, the local velocity is V, where V = Vi + V,j + V,k, and where

V., V,, and V, are now used to denote the x, y, and z components of velocity,
respectively. In this chapter, «’, v, and w’ denote perturbations from the uniform
flow, such that

V.=V, +u
V,=1
V,=w'

Here, u', v, and w' are the perturbation velocities in the x, y, and z directions,
respectively. Also in the perturbed flow, the pressure, density, and temperature
are p, p, and T, respectively. In the uniform stream, ¥V, =V, ¥, =0, and
V, = 0. Also in the uniform stream, the pressure, density, and temperature are
Poos Pos and T, respectively.

In terms of the velocity potential,

VO =V=(V, +u)i+vj+wk



where @ is now denoted as the “total velocity potential”

LINEARIZED PRESSURE COEFFICIENT

The pressure coefficient Cp is defined as

Y R

where p is the local pressure, and p«, p~, and V- are
the pressure, density, and velocity, respectively, in
the uniform free stream. The pressure coefficient is

simply a non-dimensional pressure difference; it is
extremely useful in fluid dynamics.

An alternative form of the pressure
coefficient, convenient for compressible flow,
can be obtained as follows

1 vp y Viooy
1 2 o el 2 i 2
0.V OV = TP = TP .M
Ipoc a0 2 Ypm 2pw ai zpm o0

Substitute it in the above equation, we get



o PP P(P/Pn 1)
(/2 pME (v/2) p M

The above equation is an alternative form of Cp
expressed in terms of y and M« rather than p «,
and V. It is still an exact representation of Cp.

We now proceed to obtain an approximate

expression for Cp which is consistent with

linearized theory. Since the total enthalpy is
constant,



V2 VZ
h+ —=h_+ —
2 * 2
For a calorically perfect gas, this becomes
V2 V2
T+ —=T_+ —
C, 2cp
V2 . VZ V?. . V2
T-1T, = = —
28, 2yR/(y — 1)
I _y-lvi-vioy-1yg-w
T, = 2 yRT, 2 a’

[
Since

V= (V, + w) + vt 4+ w2

The above equation becomes,

T ¥ =1
— — o f (4 ."2 "2
Tm—-l raZ (2uV, +u?+v?+ w?)

Since the flow is isentropic, p/p. = (T/T )Y/~ b,

and the above equation gives,



P 3 Y — 1 v/ (y— 1)

N = [1— 52 QuV, + uw? + v? + w’z)}

p i y -1 20 wl+ 0?4+ w2\
or — =1 - ——M? + :

Do 2 V. V.

The above equation is still an exact expression.
However considering small perturbations:

w'/V, < 1; w?/V,_ v?/V2: and w?/V? < 1.
Hence the above equation is of the form

i _ (1 . E) v/ (y—1)
Peo
where ¢ is small. Hence, from the binomial expansion, neglecting higher-order
terms,
P ¥
— =1 - g B
Poe y — 1

Thus, the previous equation can be
expressed in the form of the above equation
as follows, neglecting higher-order terms:

’ r2 22 '2
D Y 2u s+ v+ w
=1 - =M — + _ PR




Substituting the above equation in the below
equation,

We get,
2 y 2u! ur?. ey 012 4 wrZ
C = 21—-—MfO + 5 + o0 =1
PoyMz 2 V. V-
2u’ wl+ v+ wt
- - 45 s
V V2

Since w2/ V2 v?/V2 and w?/ V! << 1,
The above equation becomes,

2u’
Cp = “Z

The above equation gives the linearized pressure
coefficient, valid for small perturbations. Note its
particularly simple form; the linearized pressure



coefficient depends only on the x component
of the perturbation velocity.

Prandtl-Glauert rule

It is a similarity rule, which relates incompressible
flow over a given two-dimensional profile to
subsonic compressible flow over the same profile.

C - Cp,
P = m?

where Cpo Is the incompressible pressure
coefficient.

The above equation is called the Prandtl-
Glauert rule.

Consider the compressible subsonic flow over a
thin airfoil at small angle of attack (hence small
perturbations), as sketched in the Fig 9.2 (pp.259).
The usual inviscid flow boundary condition must
hold at the surface, i e., the flow velocity must be

10



tangent to the surface. Referring to Fig. 9 2, at
the surface this boundary condition is

df v’
— = = tan§
dx. V_ +u’

We have the linearized perturbation-velocity
potential equation.

¢ d¥ d%
1 - e PR "
( M )8x M dy? M 0z2 .

Note that this is an approximate equation and no
longer represent the exact physics of the flow.

1. The perturbations must be small.
2. Transonic flow 0.8 <M« < 1.2) is excluded.
3. Hypersonic flow (M« > 5) is excluded.

This equation is valid for subsonic and
supersonic flow only. However, this equation
has the striking advantage that it is linear.

In summary, we have demonstrated that subsonic
and supersonic flows lend themselves to

11



approximate, linearized theory for the case of
irrotational, Isentropic flow with small
perturbations. In contrast, transonic and
hypersonic flows cannot be linearized, even with
small perturbations. This is another example of
the consistency of nature. Note some of the
physical problems associated with transonic flow
(mixed subsonic-supersonic regions with possible
shocks, and extreme sensitivity to geometry
changes at sonic conditions) and with hypersonic
flow (strong shock waves close to the geometric
boundaries, i e., thin shock layers, as well as high
enthalpy, and hence high-temperature conditions
in the flow). Just on an intuitive basis, we would
expect such physically complicated flows to be
iInherently nonlinear. For the remainder of this
chapter, we will consider linear flows only; thus,
we will deal with subsonic and supersonic flows.

12



C, = r (9.36)
1~ M,

Equation (9.36) is called the Prandtl-Glauert tule; it is a similarity rule
which relates incompressible flow over a given two-dimensional profile to subsvnic

compressible flow over the same profile. Moreover, consider the aerodynamic lift
L and moment M on this airfoil We define the lift and moment coefficients, C,
and C,,, respectively, as

& L,
AN
M
Cw = Lp V2SI

C, = = (9.37a)

C,, = : (9.37b)

Equations 9.37a and 9.37b are also called the Prandtl-Glauert rule. They arc
exceptionally practical aerodynamic formulas for the approximate compressibil-
ity correction to low-speed lift and moments on slender two-dimensional aero-
dynamic shapes. Note that the effect of compressibility is to increase the
magnitudes of C, and C,,.

XXX

13



In an effort to obtain an improved compressibility correction, Laitone (see
Ref. 23) applied Eq (9.36) locally in the flow, ie,

C

C=——P—°——
1 - Mm?

where M is the local Mach number In turn, M can be related to M_ and the
pressure coefficient through the isentropic flow relations. The resulting compress-
ibility correction is

CP
C,= - - | (9.39)

[T= M2+ [M;(l + 12 M;)/z i mM;}q,"

Note that, as C, becomes small, Eq. (9.39) approaches the Prandtl-Glauert rule.

Another compressibility correction that has been adopted widely is that due
to von Karman and Tsien (see Refs. 24 and 25). Utilizing a hodograph solution
of the nonlinear equations of motion along with a simplified “tangent gas”
equation of state, the following result was obtained:

v CPo
C,= poe c (9.40)
V1—- M2 + e £
1+ 1-M2 | 2

Equation (9.40) is called the Karman-Tsien rule.

14
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METHOD OF CHARACTERISTICS

Method of characteristics is a numerical method
for solving the full nonlinear equations of motion for
Inviscid, irrotational flow. If we are looking for better
accuracy of results than that obtained by using the
approximate linearized equations, it iS necessary to
work out improved solutions, by including higher-order
terms in the approximate equations or by considering
the exact equations. However, in the latter case, it is
rarely possible to get solutions in analytical form
because of the nonlinear nature of the equations. We
must then resort to numerical techniques; the method
of characteristics being one such technique.



11.2 PHILOSOPHY OF THE METHOD
OF CHARACTERISTICS

Let us begin to obtain a feeling for the method of characteristics by considering
again Fig. 11.1 and Eq (11.1). Neglect the second-order term in Eq (11 1), and
write

( a“) A (112)

Uosq = Uy o o X+ - 1
[ N % ) ax w

The value of the derivative du/dx can be obtained from the general conservation
equations. For example, consider a two-dimensional irrotational flow, so that
Eq (8 17) yields, in terms of velocities,

Wi\ du v*\ dv  2uv du

du_ _a? dy 11 4
ax (1- uz/al) ( )

Now assume the velocity V, and hence u and v, is known at each point along a
vertical line, x = x,, as sketched in Fig 11 3' Specifically, the values of u and v
are known at point (i, j), as well as above and below, at points (i, y + 1) and
(i, j — 1) Hence, the y derivatives, du/dy and dv/dy, are known at point
(i, 7) (They can be calculated from finite-difference quotients, to be discussed
later.) Consequently, the right-hand side of Eq (11.4) yields a number for
(du/dx), ;, which can be substituted into Eq (11.2) to calculate u ., , How-
ever, there is one notable exception 1f the denominator of Eq (11 4) is zero, then
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- FIGURE 113
X, v lllustration of the characteristic direction

du/dx is at least indeterminate, and may even be discontinuous. The denomina-
tor 1s zero when u = a, 1.e., when the component of flow velocity perpendicular
to x = x, 1s sonic, as shown in Fig. 11.3 Moreover, from the geometry of Fig
11.3, the angle p is defined by sinp = u/V = a/V =1/M, ie., p 1s the Mach
angle. The orientation of the x and y axes with respect to V in Fig. 113 is
arbitrary, the germane aspect of the above discussion is that a line which makes a

Mach angle with respect to the streamline direction at a point is also a line along
which the derivative of u is indeterminate, and across which it may be discontin-
uous. We have just demonstrated that such lines exist, and that they are Mach
lines. The choice of u was arbitrary in the above discussion. The derivatives of
the other flow variables, p, p, T, v, etc., are also indeterminate along these lines
Such lines are defined as characteristic lines

With the above in mind, we can now outline the general philosophy of the
method of characteristics Consider a region of steady, supersonic flow in xy
space. (For simplicity, we will initially deal with two-dimensional flow; exten-
sions to three-dimensional flows will be discussed later.) This flowfield can be
solved in three steps, as follows"




STEP 1. Find some particular lines (directions) in the xy space where flow
variables (p, p, T, u, v, etc) are continuous, but along which the derivatives
(dp/dx, du/dy, etc) are indeterminate, and in fact across which the derivatives
may even sometimes be discontinuous. As defined above, such lines in the xy
space are called characteristic lines.

STEP 2. Combine the partial differential conservation equations in such a {ashion
that ordinary differential equations are obtained which hold only along the
characteristic lines Such ordinary differential equations are called the compatibil-
ity equations.




STEP 3. Solve the compatibility equations step by step along the characteristic
lines, starting from the given initial conditions at some point or region in the
flow. In this manner, the complete flowfield can be mapped out along the
characteristics. In general, the characteristic lines (sometimes referred to as
the “characteristics net”) depend on the flowficld, and the compatibility equa-
tions are a function of geometric location along the characteristic lines, hence,
the characteristics and the compatibility equations must be constructed and
solved simultaneously, step by step. An exception to this is two-dimensional
irrotational flow, for which the compatibility equations become algebraic equa-
tions explicitly independent of geometric location This will be made clear in
subsequent sections

As an analog to this discussion, the above philosophy is clearly exemplified
in the unsteady, one-dimensional flow discussed in Chap. 7 Consider a centered
expansion wave traveling to the left, as sketched in Fig 114 In Chap. 7, the
governing partial differential equations were reduced to ordinary differential
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FIGURE 114
Relationship of characteristics in unsteady one-dimensional flow




equations (compatibility equations) which held only along certain lines in the xt
plane that had slopes of dx/df = u + a. The compatibility equations are Egs.
(7.65) and (7.66), and the lines were defined as characteristic lines in Sec. 7.6.
These characteristics are sketched in Fig. 11 4a. However, in Chap. 7, we did not
explicitly identify such characteristic lines with indeterminate or discontinuous
derivatives. Nevertheless, this identification can be made by examining Eq (7 89),
which gives u = u(x, t) Consider a given time ¢ = ¢,, which is illustrated by the
dashed horizontal line in Fig. 11.4a At time t,, the head of the wave 1s located at
x,, and the tail at x, Equation (7.89) for the mass motion u is evaluated at time
1, as sketched in Fig. 11.4b. Note that at x, the velocity is continuous, but
du/dx 1s discontinuous across the leading characteristic. Similarly, at x_, u is
continuous but du/dx is discontinuous across the trailing characteristic. Hence,
by examining Fig. 11 4a and b, we see that the characteristic lines identified in
Chap. 7 are indeed consistent with the definition of characteristics given in the
present chapter.

For more details Ref: Anderson

1.7 SUPERSONIC NOZZLE DESIGN

In order to expand an internal steady flow through a duct from subsonic to
supersonic speed, we established in Chap. 5 that the duct has to be convergent-
divergent in shape, as sketched in Fig 11 11a Moreover, we developed relations
for the local Mach number, and hence the pressure, density, and temperature, as
functions of local area ratio 4 /4* However, these relations assumed quasi-one-
dimensional flow, whereas, strictly speaking, the flow in Fig. 11.11a is two-
dimensional. Moreover, the quasi-one-dimensional theory tells us nothing about
the proper coniour of the duct, ie, what is the proper variation of area with
respect to the flow direction 4 = A(x). If the nozzle contour is not proper, shock
waves may occur inside the duct.

The method of characteristics provides a technique for properly designing
the contour of a supersonic nozzle for shockfree, isentropic flow, taking into
account the multidimensional flow inside the duct The purpose of this section is
to illustrate such an application

The subsonic flow in the convergent portion of the duct in Fig 11.11a is
accelerated to sonic speed in the throat region In general, because of the




multidimensionality of the converging subsonic flow, the sonic line is gently
curved. However, for most applications, we can assume the sonic line to be
straight, as illustrated by the straight dashed line from a to b in Fig. 11.11¢
Downstream of the sonic line, the duct diverges. Let 6, represent the angle of the
duct wall with respect to the x direction. The section of the nozzle where 8, is
increasing is called the expansion section, here, expansion waves are generated
and propagate across the flow downstream, reflecting from the opposite wall
Point ¢ is an inflection point of the contour, where 8, = 6, ~ Downstream of
point ¢, 8, decreases until the wall becomes parallel to the x direction at points d
and f. The section from ¢ to d is a “straightening” section specifically designed
to cancel all the expansion waves generated by the expansion section For
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FIGURE 11.11
Schematic of supersonic nozzle design by the method of characteristics
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example, as shown by the dashed line in Fig. 11.11a, the expansion wave
generated at g and reflected at / is cancelled at i/ Also shown in Fig. 11.11a are
the characteristic lines going through points d and f at the nozzle exit. These
characteristics represent infinitesimal expansion waves in the nozzle, i.e., Mach
waves. Tracing these two characteristics upstream, we observe multiple reflections
up to the throat region. The area acejb is the expansion region of the nozzle,
covered with both left- and right-running characteristics. Such a region with
waves of both families is defined as a nonsimple region (analogous to the
nonsimple waves described for unsteady one-dimensional flow in Sec 7.7). In this
region, the characteristics are curved lines. In contrast, the regions cde and jef
are covered by waves of only one family because the other family is cancelled at
the wall. Hence, these are simple regions, where the characteristic lines are
straight Downstream of def, the flow is uniform and parallel, at the desired
Mach number Finally, due to the symmetry of the nozzle flow, the waves

7{1"['1'1 racterictice) npnprntpdjrnm the s ton wall act ac if t heayu are “raflactad” from

actenstics) generated from the top ag if they flected” from
the centerline. Th1s geometric ploy due to symmetry allows us to consider in our
calculations only the flow above the centerline, as sketched in Fig. 11.115.

Supersonic nozzles with gently curved expansion sections as sketched in
Fig 11.11a and b are characteristic of wind tunnel nozzles where high-quality,
uniform flow is desired in the test section (downstream of def) Hence, wind
tunnel nozzles are long, with a relatively slow expansion By comparison, rocket
nozzles are short in order to minimize weight Also, in cases where rapid
expansions are desirable, such as the nonequilibrium flow in modern gasdynamic
lasers (see Ref. 21), the nozzle length is as short as possible In such nininum-
length nozzles, the expansion section in Fig. 11 1la is shrunk to a point, and the
expansion takes place through a centered Prandtl-Meyer wave emanating from a
sharp-corner throat with an angle 6, . as sketched in Fig 11.12¢ The length
of the supersonic nozzle, denoted as L in Fig 11124 is the minimum value
consistent with shockfree, isentropic flow. If the contour is made shorter than L,
— shiocks will develop 1nside the nozzie.

Assume that the nozzles sketched in Figs 11.11a and 11 12« are designed
for the same exit Mach numbers For the nozzle in Fig 11 11a with an arbitrary
expansion contour ac, multiple reflections of the characteristics (expansion
waves) occur from the wall along ac A fluid element moving along a streamline
is constantly accelerated while passing through these multiple reflected waves In
contrast, for the minimum-length nozzle shown in Fig 11 124, the expansion
contour is replaced by a sharp corner at point a. There are no multiple reflections
and a fluid element encounters only two systems of waves-—the right-running
waves emanating from point a and the left-running waves emanating from point
d. As a result, 4, M, 10 Fig 11 12a must be larger than §, in Fig 11 11a,
although the exit Mach numbers are the same.

Let »,, be the Prandtl-Meyer function associated with the design exit Mach
number Hence, along the C, characteristic ¢b in Fig 11.12a, v = vy, = v =p,.
Now consider the C_ characteristic through points @ and ¢ At point ¢, from

10






Eq. (11.20),

6 +v.=(K_), (11 28)
However, 8, = 0 and », = v,,. Hence, from Eq. (11.28),
(K_) =y (11 29)
At point a, along the same C_ characteristic ac, from Eq. (11.20),
b, m tV,= (K.), (11.30)

Since the expansion at point @ is a Prandtl-Meyer expansion from initially sonic
conditions, we know from Sec. 4.13 that »,=#6, , Hence, Eq. (1130)
becomes

O v = 3(K), (11.31)

max

However, along the same C_ characteristic, (K_), = (K_),, hence Eq. (11 31)
becomes

&, w, = $CK_), (11 32)
Combining Egs. (11.29) and (11.32), we have

= — (11.33)

Wmax» Mj 2

Equation (11.33) demonstrates that, for a minimuni-length nozzle the expansion
angle of the wall downstream of the throat is equal to one-half the Prandtl-Meyer
function for the design exit Mach number. For other nozzles such as that sketched
i Fig. 11.114a, the maximum expansion angle is /ess than »,,/2

The shape of the finite-length expansion section in Fig. 11.11a can be
somewhat arbitrary (within reason). It is frequently taken to be a circular arc
with a diameter larger than the nozzle throat height However, once the shape of
the expansion section is chosen, then its length and 6, are determined by the
design exit Mach number These properties can be easil}r(n found by noting that the
characteristic line from the end of the expansion section intersects the centerline
at point e, where the local Mach number is the same as the design exit Mach
number Hence, to find the expansion section length and 6, , simply keep track
of the centerline Mach number (at points 1, 2, 3, etc.) as you construct your
characteristics solution starting from the throat region. When the centerline
Mach number equals the design exit Mach number, this is point e. Then the
expansion section is terminated at point ¢, which fixes both its length and the
value of 8,

max

12



CRITICAL MACH NUMBER

By definition, the critical Mach number Mcr is
that free-stream Mach number at which sonic
flow iIs first encountered on the airfoil.

Local M, = 0435
a
M, =03 k_\ @
m— A

Local M, = 0772 b
Mo = 0.5 %\
—— A
LocalM, =10
MCI =061 - %\ (C)

Fig. Definition of critical Mach number Point A
IS the location of minimum pressure on the top
surface of the airfoil
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The critical Mach number can be calculated as
follows. Assuming isentropic flow throughout
the flow field and using the following equation

derived from the previous isentropic flow
relationship, we get

( Y__l \’}’/('Y‘“I)

1+ M?

Pa _ ,
- — 1

Peo 1+Y M;

\ 2 )

We have,

Combining the above two equations the
pressure coefficient at point A is

14



A1)
y-1 V'

T |

From Eq. (9.54), for a given M_ the values of local pressure coefficient and local
Mach number are uniquely related at any given point 4. Now assume as before
that point A is the minimum-pressure (hence maximum-velocity) point on the
airfoil Furthermore, assume M, = 1. Then, by definition, M_ = M_ Also, for
this case the value of the pressure coefficient is defined as the critical pres-
sure coeflicient C, . Setting M, =1, M_ = M _, and C, = in Eq. (9 54), we
obtain

Per

Sy —=1) ]
y — 1 !
2 (1+ {_;.:'\\
C = 2
pcrﬁ M2 Y__l
Werdll 14

|\ 2 ) |

Note that C, is a unique function of M_; this variation is plotted as curve C in
Fig. 9.14

-1
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C”cr = (M)
Eq (955

Eq 19 36).
(9 39) or
(9 40)

|
|
!
1
]
|

0 02 04? 06 08 10 Mx
AICI'

Fig.9.14 Calculation of critical Mach number
(For more details Refer: Anderson)

Note in Fig 9.14 that curve C [from eq. for Cpcr] is a
result of the fundamental gas dynamics of the flow; it is
unique, and does not depend on the size or shape of
the airfoil. In contrast, curve B is different for different
airfoils. For example, consider two airfoils, one thin and
one thick. For the thin airfoil, the flow experiences only
a mild expansion over the top surface, and hence Cpo
Is small. Combined with the chosen compressibility
correction, curve B in Fig 9.14 is low on the graph,
resulting in a high value of Mcr. For the thick airfoil, |Cp|
IS naturally larger because the flow experiences a
stronger expansion over the top surface. Curve B is
higher on the graph, resulting in a lower value of Mcr.
Hence, an airfoil designed for a high critical Mach
number must have a thin profile.
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When the free-stream Mach number exceeds Mcr, a
finite region of supersonic flow exists on the top
surface of the airfoil. At a high enough subsonic Mach
number, this embedded supersonic region will be
terminated by a weak shock wave. The total pressure
loss associated with the shock will be small, however,
the adverse pressure gradient induced by the shock
tends to separate the boundary layer on the top surface,
causing a large pressure drag. The net result is a
dramatic increase in drag. The free-stream Mach
number at which the large drag rise begins is defined
as the drag-divergence Mach number, it is always

slightly larger than Mcr The massive increase in drag
encountered at the drag-divergence Mach number is
the technical base of the "sound barrier" which was
viewed with much trepidation before 1947.

17



Drag divergence Mach number
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If M~ increases slightly above Mcr, a bubble of
supersonic flow will occur, surrounding the
minium pressure point (see above figure (b)).
Correspondingly, Cd will still remain reasonably
low, as indicated by point b in the above figure.

However, if M« is still further increased, a very
sudden and dramatic rise in the drag coefficient
will be observed as noted by point c in the above
figure. The effect of the shock wave on the
surface pressure distribution can be seen.

The shock waves themselves are dissipative
phenomena, which result in an increase in drag on
the airfoil. But in addition, the sharp pressure
Increase across the shock wave creates a strong
adverse gradient, causing the flow to separate
from the surface. Such flow separation can create
substantial increases in drag. Thus, the sharp
Increase in Cd shown in the above figure is a
combined effect of shock waves and flow
separation. The free stream Mach number at
which Cd begins to increase rapidly is defined as
drag-divergence Mach number.

Note that Mcr < Mdrag divergence < 1.0
The flow pattern sketched above is characteristic
of a flight regime called transonic. When 0.8 < M«

19



< 1.2,theflowis generally designated as transonic
flow, and it is characterized by some complex
effects only hinted in the above figure ©.

Cp

Cf’ er f{‘M{:r)

[~ Thick airfoil

-1.5

. Medium airfoil

-1.0

Thin airfoil

-0.5

A o (thin)
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Supercritical airfoll

The supercritical airfoil is a different approach
to the increase in drag-divergence Mach
number. Here, the shape of the airfoil is
designed with a relatively flat top surface as
shown in the below figure.

x/c

Shape of a typical supercritical airfoil and its pressure
coefficient distribution over the top surface

When the free stream Mach number exceeds Mcr , a
pocket of supersonic flow occurs over the top surface
as usual; but because of the top is relatively flat, the
local supersonic Mach number is a lower value than
would exist in the case of a conventional
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airfoil. As a result, the shock wave that terminates
the pocket of supersonic flow is weaker. In turn, the
super critical airfoil can penetrate closer to Mach 1
before drag divergence occurs. In essence, the
increment in Mach number (the “grace period”)

between Mcr and Mdrag divergence IS increased by the
shape of the supercritical airfoil. One way to think
about this is that the supercritical airfoil is “more
comfortable” than conventional airfoils in the region

above Mcr, and it can fly closer to Mach 1 before drag
divergence is encountered. Because they are more
comfortable in the flight regime above the critical
Mach number and because they can penetrate closer
to Mach 1 after exceeding Mcr

, these airfoils are called supercritical airfoils. They

are designed to cruise in the Mach number range
above Mcr. The pressure coefficient distribution
over the top surface of a supercritical airfoil flying

above Mcr but below Mdrag divergence IS sketched in

the above figure. After a sharp decrease in pressure
around the leading edge, the pressure remains
relatively constant over a substantial portion of the
top surface. This is in contrast to the pressure
coefficient distribution for a conventional airfoil

flying above Mcr , as shown below (wind
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Tunnel data) for NACA 0012 airfoil for Me =
0.808, which is above the critical Mach number.

-1.0
Locally supersoinc flow
c, A — —Ca=-0412]
() i Locally subsom
M., =0.808,
0.5 Re = 6.12 x 10°
1.0
0 x/c 1.0

Wind Tunnel measurements of the surface pressure
coefficient distribution for the NACA0012 airfoil at zero
angle of attack for M. = 0.808, which is above the critical
Mach number.

Clearly, the flow over the supercritical airfoil is
carefully tailored to achieve the desired result.

The early aerodynamic research on supercritical
airfoils was carried out by Whitecomb’s an
aeronautical engineer at NASA Langly Research
Center, during the middle 1960s.
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Designers of transonic aircraft can use
supercritical airfoils to accomplish one of two
objectives:

(1) For a given airfoil thickness, the
supercritical airfoil shape allows a higher
cruise velocity; or

(2) for agiven lower cruise velocity, airfoll
thickness can be larger.

The later option has some design
advantages. The structural design of a thicker
wing I1s more straightforward and actually
results in a more light weight (albeit thicker)
wing. Also athicker wing provides more volume
for an increased fuel capacity. Clearly, the use
of asupercritical airfoil provides alarger design
space for transonic airplanes.
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-1.0
Locally supersoinc flow
c, "7~ [ " — —Cpa=-0412
G, Locally subsom
M, =0.808
0.5 Re=6.12x 10°
1.0
0 xlc 1.0

Wind Tunnel measurements of the surface pressure
coefficient distribution for the NACA0012 airfoil at zero
angle of attack for M. = 0.808, which is above the critical
Mach number.

xlc -

Shape of a typical supercritical airfoil and its pressure
coefficient distribution over the top surface

Nature places the maximum velocity at a point
that satisfies the physics of the whole flow
field not just what is happening in a local
region of flow. The point of maximum velocity
IS dictated by the complete shape of the airfoil,

not just by the shape in alocal region.
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(a) Airfoil upper surface static-pressure distributions.

Wave Drag (At supersonic speeds)

With respect to airfoils (as well as all other
aerodynamics bodies), shock waves in supersonic

flow create a new source of drag, called wave drag.

Wave drag is an aerodynamics term that refers to a sudden and very
powerful form of drag that appears on aircraft and blade tips moving at high-

subsonic and supersonic speeds....

Location of sound
wave attime t

Location of

beeper at time t Location of beeper

attime t=0:it
gives off a sound
wave att=0

Beeper stays outside
the sound wave

The origin of Mach waves and shock waves.
Beeper is moving faster than the speed of sound

Mach angle
It is defined as p = arcsin 1/M
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Drag divergence Mach number

It is that free-stream Mach number at which the
drag coefficient begins to rapidly increase due to
occurrence of transonic shock waves. For a
given body, the drag divergence Mach number is
slightly higher than the critical Mach number.
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The whole idea of sweeping an aircraft's
wing is to delay the drag rise caused by the
formation of shock waves. The swept-wing
concept had been appreciated by German
aerodynamicists since the mid-1930s, and by 1942 a
considerable amount of research had gone into it.
However, in the United States and Great Britain, the
concept of the swept wing remained virtually
unknown until the end of the war. Due to the early
research in this area, this allowed Germany to
successfully introduce the swept wing in the jet
fighter Messerschmitt ME-262 as early as 1941.
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Figure 3.15. Aerodynamic Effects Due to Sweepback
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Transonic Area Rule

Within the limitations of small perturbation theory, at a given
transonic Mach number, aircraft with the same longitudinal
distribution of cross-sectional area, including fuselage,
wings and all appendages will, at zero lift, have the same
wave drag.

Why: Mach waves under transonic conditions are
perpendicular to flow.

I

Implication:

Keep area distribution smooth, constant if possible. Else,
strong shocks and hence drag result.
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Wing-body interaction leading to shock formation:

Observed: cp distributions are such that maximum velocity
Is reached far aft at root and far forward at tip. Hence,
streamlines curves In at the root, compress, shock
propagates out.



The Whitcomb area rule, also called the transonic
area rule, i1s a design technique used to reduce an
aircraft's drag at transonic and supersonic speeds,
particularly between Mach 0.8 and 1.2. This is the
operating speed range of the majority of commercial and
military fixed-wing aircraft today.

At high-subsonic flight speeds, supersonic airflow can
develop in areas where the flow accelerates around the
aircraft body and wings. The speed at which this occurs
varies from aircraft to aircraft, and is known as the critical
Mach number. The resulting shock waves formed at these
points of supersonic flow can bleed away a considerable
amount of power, which is experienced by the aircraft as a
sudden and very powerful form of drag, called wave drag. To
reduce the number and power of these shock waves, an
aerodynamic shape should change in cross sectional area as
smoothly as possible. This leads to a "perfect" aerodynamic
shape known as the Sears-Haack body, roughly shaped
like a cigar but pointed at both ends.

The area rule says that an airplane designed with the same
cross-sectional area as the Sears-Haack body generates the
same wave drag as this body, largely independent of the
actual shape. As a result, aircraft have to be carefully
arranged so that large volumes like wings are positioned at
the widest area of the equivalent Sears-Haack body, and
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that the cockpit, tailplane, intakes and other "bumps" are
spread out along the fuselage and or that the rest of the
fuselage along these "bumps" is correspondingly thinned.

The area rule also holds true at speeds higher than the speed
of sound, but in this case the body arrangement is in respect
to the Mach line for the design speed. For instance, at Mach
1.3 the angle of the Mach cone formed off the body of the
aircraft will be at about p = arcsin (1/M) = 50,3 deg (U Is the
sweep angle of the Mach cone). In this case the "perfect
shape" is biased rearward, which is why aircraft designed for
high speed cruise tend to be arranged with the wings at the
rear. A classic example of such a design is Concorde.

Anti-shock bodies or Kilchemann carrots are pods
placed at the trailing edge of a transonic aircraft's wings in
order to reduce wave drag, thus improving fuel economy, as
the aircraft enters the transonic flight regime (Mach 0.8-1.2).
Most jet airliners have a cruising speed between Mach 0.8
and 0.85. For aircraft operating in the transonic regime, wave
drag can be minimized by having a cross-sectional area
which changes smoothly along the length of the aircraft. This
IS known as the area rule, and iIs the operating principle
behind the design of anti-shock bodies.
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On most jet airliners, the mechanisms for deploying the wing
flaps are enclosed in fairings, called "flap track fairings",
which also serve as anti-shock bodies.

Anti-shock bodies were concurrently developed by Richard
Whitcomb at NASA and Dietrich Kiichemann, a German
aerodynamicist, in the early 1950s. The Handley-Page Victor
bomber was particularly well-known for featuring a
conspicuous pair of Klichemann carrots, so-called because of
their distinctive shape.

Area Rule

The Area Rule was discovered by NASA
aerodynamicist Richard Whitcomb in 1950. The rule
states that, in order to produce the least amount of drag
when approaching supersonic flight, the cross-
sectional area of an aircraft body should be consistent
throughout the aircraft's length. To compensate for the
place on an aircraft where the wings are attached to the
fuselage, the fuselage needs to be made narrower so
that the cross-section remains the same. This is why
aircraft that are designed to fly around the speed of
sound have a pinched fuselage where the wings are
attached to the body.
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Wing Types

Aircraft designers have designed several wing types
that have different aerodynamic properties. These have
different shapes and attach to the aircraft body at
different angles at different points along the fuselage.
Not all of these planes have a practical use-some have
just been use for research.

The conventional straight wing extends out from the
fuselage at approximately right angles. On early
biplanes, one wing often was suspended above the
fuselage by some sort of bracing supports while the
second crossed directly under the fuselage. On
monoplanes, designers positioned the wings at different
heights depending on the design-some crossed above
the fuselage while others were attached at the lower
part of the fuselage.

The swept-back wing extends backward from the
fuselage at an angle.

The delta wing looks much like a triangle when viewed
from above (or the Greek letter "delta" D.) It sweeps
sharply back from the fuselage with the angle between
the front of the wing (the leading edge) often as high as
60 degrees and the angle between the
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fuselage and the trailing edge (the back edge of the
wing) at around 90 degrees. The tip of a delta wing is
often, but not always, cut off.

The forward-swept wing gives an airplane the
appearance of flying backward. The wing Is angled
toward the front of the aircraft and is usually attached
to the airplane far back on the fuselage. A small wing
called a canard Is often attached to the fuselage near the
front on this type of aircraft.

A variable-sweep wing can be moved during flight-
usually between a swept-back position and a straight
position.

The flying wing is an aircraft design where the wing
forms virtually the entire airplane and it sweeps back
from the center of the aircraft. The fuselage is a very
narrow section in the center that joins the wings without
any seams.

The term "dihedral” is used to describe wings that are
angled upward from the fuselage. Dihedral is the angle
at which the wings are slanted upward from the root of
the wing (where it is attached to the fuselage) to the
wing tip. "Canards" are small wings placed toward the
front of the fuselage.
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Types of Wings and Transonic Flow

There are a number of ways of delaying the increase in
drag encountered when an aircraft travels at high
speeds, i.e., the transonic wave drag rise, or of
Increasing the drag-divergence Mach number (the free-
stream Mach number at which drag rises precipitously)
so that it Is closer to 1. One way Is by the use of thin
airfoils: increase in drag associated with transonic flow
Is roughly proportional to the square of the thickness-
chord ratio (t/c). If a thinner airfoil section is used, the
airflow speeds around the airfoil will be less than those
for the thicker airfoil. Thus, one may fly at a higher
free-stream Mach number before a sonic point appears
and before one reaches the drag-divergence Mach
number. The disadvantages of using thin wings are that
they are less effective (in terms of lift produced) in the
subsonic speed range and they can accommodate less
structure (wing fuel tanks, structural support members,
armament stations, etc.) than a thicker wing.

In 1935, the German aerodynamicist Adolf Busemann
proposed that a swept wing might delay and reduce the
effects of compressibility. A swept wing would delay
the formation of the shock waves encountered in
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transonic flow to a higher Mach number. Additionally,
It would reduce the wave drag over all Mach numbers.

A swept wing would have virtually the same effect as a
thinner airfoil section (the thickness-cord ratio (t/c) is
reduced). The maximum ratio of thickness to chord for
a swept wing Is less than for a straight wing with the
same airflow. One is effectively using a thinner airfoil
section as the flow has more time in which to adjust to
the high-speed situation. The critical Mach number (at
which a sonic point appears) and the drag-divergence
Mach number are delayed to higher values; Sweep
forward or sweepback will accomplish these desired
results. Forward sweep has disadvantages, however, in
the stability and handling characteristics at low speeds.

A major disadvantage of swept wings is that there is a
spanwise flow along the wing, and the boundary layer
will thicken toward the wingtips for sweepback and
toward the roots (the part of the wing closest to the
fuselage) for sweep-forward. In the case of sweepback,
there is an early separation and stall of the wingtip
sections and the ailerons lose their roll control
effectiveness. The spanwise flow may be reduced by
the use of stall fences, which are thin plates parallel to
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the axis of symmetry of the airplane. In this manner a
strong boundary layer buildup over the ailerons is
prevented. Wing twist is another possible solution to
this spanwise flow condition.

The wing's aspect ratio is another parameter that
Influences the critical Mach number and the transonic
drag rise. Substantial increases in the critical Mach
number (the subsonic Mach number at which sonic
flow occurs at some point on the wing for the first time)
occur when using an aspect ratio less than about four.
However, low-aspect-ratio wings are at a disadvantage
at subsonic speeds because of the higher induced drag.

By bleeding off some of the boundary layer along an
airfoil's surface, the drag-divergence Mach number can
be increased. This increase results from the reduction
or elimination of shock interactions between the
subsonic boundary layer and the supersonic flow
outside of It.

Vortex generators are small plates, mounted along the
surface of a wing and protruding perpendicularly to the
surface. They are basically small wings, and by
creating a strong tip vortex, the vortex generators feed
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high-energy air from outside the boundary layer into
the slow moving air inside the boundary layer. This
condition reduces the adverse pressure gradients and
prevents the boundary layer from stalling. A small
Increase in the drag-divergence Mach number can be
achieved. This method Is economically beneficial to
airplanes designed for cruise at the highest possible
drag-divergence Mach number.

A more recent development in transonic technology,
and destined to be an important influence on future
wing design, is the supercritical wing developed by
Dr. Richard T. Whitcomb of NASA's Langley Research
Center. With the supercritical wing, a substantial rise in
the drag-divergence Mach number is realized and the
critical Mach number is delayed even up to 0.99. This
delay represents a major increase in commercial
airplane performance.

The curvature of a wing gives the wing its lift. Because
of the flattened upper surface of the supercritical airfoil,
lift Is reduced. However, to counteract this, the new
supercritical wing has increased camber at the trailing
edge.
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There are two main advantages of the supercritical
airfoil. First, by using the same thickness-chord ratio,
the supercritical airfoil permits high subsonic cruise
near Mach 1 before the transonic drag rise.
Alternatively, at lower drag divergence Mach numbers,
the supercritical airfoil permits a thicker wing section
to be used without a drag penalty. This airfoil reduces
structural weight and permits higher lift at lower
speeds.

Coupled to supercritical technology Is the "area-rule"
concept also developed by Dr. Richard T. Whitcomb in
the early 1950s for transonic airplanes and later applied
to supersonic flight in general.

Basically, the area rule states that minimum transonic
and supersonic drag is obtained when the cross-
sectional area distribution of the airplane along the
longitudinal axis can be projected into a body of
revolution that is smooth and shows no abrupt changes
In cross section along its length. Or, if a graph is made
of the cross-sectional area against body position, the
resulting curve is smooth. If it is not a smooth curve,
then the cross section is changed accordingly.
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The original Convair F-102A was simply a scaled-up
version of the XF-92A with a pure delta wing. But early
tests indicated that supersonic flight was beyond its
capability because of excessive transonic drag and the
project was about to be canceled. Area ruling, however,
saved the airplane from this fate. In the original YF-
102A, the curve of the cross-sectional area plotted
against body station was not very smooth as there was
a large increase in cross-sectional area when the wings
were attached. The redesigned F-102A had a “coke-
bottle’-waist-shaped fuselage and bulges added aft of
the wing on each side of the tail to give a better area-
rule distribution. The F-102A could then reach
supersonic speeds because of the greatly reduced drag
and entered military service in great numbers.

Later, the area-rule concept was applied to design of a
near-sonic transport capable of cruising at Mach
numbers around 0.99. In addition to area ruling, a
supercritical wing was used.
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Transonic is an aeronautics term referring to a range of
velocities just below and above the speed of sound. It is
defined as the range of speeds between the critical mach,
when some parts of the airflow over an aircraft become
supersonic, and a higher speed, typically near Mach
number, when all of the airflow is supersonic....

speed range. Supercritical airfoils are characterized by
their flattened upper surface, highly cambered (curved) aft
section, and greater leading edge

The leading edge is a line connecting the forward-most
points of a wing's profile. In other words, it's the front edge
of the wing. When an aircraft is moving forward, the
leading edge is that part of the wing that first contacts the
air....
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Geometric and aerodynamic twist

Same NACA sections
used throughout

(a) Geometric twist.

Root section
//— NACA

; , 634-221
Tip section

(b) Aerodynamic twist.

Wings are given twist so that the angle of attack varies
along the span. A decrease in angle of attack toward the
wing tip is called washout whereas an increase in angle
of attack toward the wing tip is called washin.
Geometric twist (fig. (a)) represents a geometric method
of changing the lift distribution, whereas aerodynamic
twist, by using different airfoil sections along the span
represents an aerodynamic method of changing the lift
distribution in a spanwise manner (fig. (b)). To give
minimum induced drag it was demonstrated that the
spanwise efficiency factor e should be as close to 1 as
possible. This is the case of an elliptic spanwise lift
distribution. A number of methods are available to
modify the spanwise distribution of lift.
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Vortex flow effects

Note that upwash and downwash are due to both the
bound vortex and the tip vortices
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The important effects of the vortex system are shown in
figure. Indicated are the directions of air movement due to
the vortex system. The left-tip vortex rotates clockwise,
the right-tip vortex rotates counterclockwise (when viewed
from behind), and the bound vortex rotates clockwise
(when viewed from the left side). The bound vortex is
directly related to the lift on the wing as in the dimensional
case.

46



Upwash and downwash fields around an airplane

Upwash I\ T T T Upwash

T - Very turbulent
‘Bé'//:,- ride in (lying

across vortices

- Large sradients

in tip vortex

—Large gradiconts |
// in fip vortex Aireraft rolls
over in
~ tip vortex

In both the 2D and 3D cases the upflow (or upwash) in front of the wing balanced
the downflow (or downwash) in back of the wing caused by the bound vortex. But,
in the finite-wing case one must also take into account the Lip vortices (assuming
that the influence of the starting vortex is negligible). The tip vortices cause
additional down... wash behind the wing within the wing span. One can see that, for
an observer fixed in the air (fig. 55) all the air within the vortex system is moving
downwards (this is called downwash) whereas all the air outside the vortex system
Is moving upwards (this is called upwash). Note that an aircraft flying perpendicular
to the flight path of the airplane creating the vortex pattern will encounter upwash,
downwash, and upwash in that order. The gradient, or change of downwash to
upwash, can become very large at the tip vortices and cause extreme motions in the
airplane flying through it. Also shown is an airplane flying into a tip vortex. Note
that there is a large tendency for the airplane to roll over. If the control surfaces of
the airplane are not effective enough to counteract the airplane roll tendency, the
pilot may lose control or in a violent case experience structural failure.

The problems of severe tip vortices are compounded by the take-off and landings of
the new generation of jumbo jets. During these times the speed of the airplane is
low and the airplane is operating at high lift coefficients to maintain night. The
Federal Aviation Agency has shown that for a 0.27 MN (600 000 Ib) plane, the tip...
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Infinite aspect ratio
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Effect of aspect ratio on coefficient of lift

Figure shows the coefficient of lift curves ('lift
curves") obtained for both wings by experiment.
Readily evident is the effect that the tip vortices
have in creating the additional downwash w at
the wing; the lift curve is flattened out so that at
the same angle of attack less lift is obtained for
the smaller aspect ratio wing. This is not a
beneficial effect.
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