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UNIT-1

PARTIAL FRACTION

An algebraic fraction can be broken down into simpler parts known as “partial fractions*.
Consider an algebraic fraction, (3x+5)/(2x2-5x-3). This expression can be split into simple form
like (2)/(x-3) — (1)/(2x+1).

The simpler parts [(2)/(x-3)]-[(1)/(2x+1)] are known as partial fractions.
This means that the algebraic expression can be written in the form of:
(3x+5)/(2x2-5%-3) = ((2)/(x-3))-((1)/(2x+1))

Note: The partial fraction decomposition only works for the proper rational expression (the
degree of the numerator is less than the degree of the denominator). In case, if the rational
expression is in improper rational expression (the degree of the numerator is greater than the
degree of the denominator), first do the division operation to convert into proper rational
expression. This can be achieved with the help of polynomial long division method.

PARTIAL FRACTION FORMULA

The procedure or the formula for finding the partial fraction is:

1. While decomposing the rational expression into the partial fraction, begin with the proper
rational expression.

2. Now, factor the denominator of the rational expression into the linear factor or in the
form of irreducible quadratic factors (Note: Don’t factor the denominators into the
complex numbers).

3. Write down the partial fraction for each factor obtained, with the variables in the
numerators, say A and B.

4. To find the variable values of A and B, multiply the whole equation by the denominator.

5. Solve for the variables by substituting zero in the factor variable.

6. Finally, substitute the values of A and B in the partial fractions.

PARTIAL FRACTIONS FROM RATIONAL FUNCTIONS

Any number which can be easily represented in the form of p/q, such that p and g are integers
and q#0 is known as a rational number. Similarly, we can define a rational function as the ratio
of two polynomial functions P(x) and Q(x), where P and Q are polynomials in x and Q(x)#0.
A rational function is known as proper if the degree of P(X) is less than the degree of Q(X);
otherwise, it is known as an improper rational function. With the help of the long division
process, we can reduce improper rational functions to proper rational functions. Therefore, if
P(x)/Q(x) is improper, then it can be expressed as:

P()QM)=AX)+R(X)Q(X)

Here, A(X) is a polynomial in x and R(x)/Q(X) is a proper rational function.


https://byjus.com/maths/polynomial-division/
https://byjus.com/maths/rational-function/

We know that the integration of a function f(x) is given by F(x) and it is represented by:
[f(x)dx =F(x) + C

Here R.H.S. of the equation means integral of f(x) with respect to x.

PARTIAL FRACTIONS DECOMPOSITION

In order to integrate a rational function, it is reduced to a proper rational function. The method in
which the integrand is expressed as the sum of simpler rational functions is known as
decomposition into partial fractions. After splitting the integrand into partial fractions, it is
integrated accordingly with the help of traditional integrating techniques. Here the list of Partial
fractions formulas is given.

PARTIAL FRACTION OF IMPROPER FRACTION

An algebraic fraction is improper if the degree of the numerator is greater than or equal to that of
the denominator. The degree is the highest power of the polynomial. Suppose, m is the degree of
the denominator and n is the degree of the numerator. Then, in addition to the partial fractions
arising from factors in the denominator, we must include an additional term: this additional term
is a polynomial of degree n — m.

Note:

A polynomial with zero degree is K, where K is a constant
A polynomial of degree 1 isPx + Q
A polynomial of degree 2 is Px>+Qx+K

. N(x) : Partial Fraction Form
Case | Fraction B(x) Form of denominator, D(x) A A B ety Ais)
N(x) . A B
1 (@x + b)(cx + d) Linear Factors —= + =g
N(x) . A B
(ax + b Repeated Linear Factors e + (@x + b)?
2
N(x) Linear and Repeated A i B . G
(ax + b)(cx + d)? Linear Factors ax+b cx+d (cx+d)y?
o | [ T A Brec
(ax = b)(x’ ~ cz) (whic! ca;no e factorised) P 2+ o2
actors




Type: 1

When the factors of the denominator are all linear and distinet i.e..
non repeating.

Example 1:
x-25 . .
Resolve mto partial fractions.
(x - 3)x - 4)
Solution:
7% —23 A B

= * (1)
(x-3)x-4) x-3 x-4

Multiplying both sides by L.C. M. 1.e.. (x - 3)(x — 4), we get
Tx=25=A(x—4) T B(x = 3) ==mmeeennea - (2
Tx-25=Ax-4A+Bx-3B

7x-25=Ax+Bx-4A-3B
Ix-25=(A+B)x-4A-3B
Comparing the co-efficients of like powers of x on both sides, we
have
7=A+Band
-25=-4A-3B
Solving these equation we get
A=4 and B=3
Hence the required partial fractions are:
7x — 25 4 3

= +
x-3x-4) x-3 x-4

Alternative Method:

Smce 7x-25=A(x-4)+B(x-3)

Put  x-4=0,=x=4m equation (2)
7(4)-25=A(4-4)+B(4-3)
28-25=0+B(1)

B=3

Putx-3=0 = X =3 m equation (2)
7(3)-25=A(3-4)+B(3-3)
21-25=A(-1)+0

~4==A

A=4
Hence the required partial fractions are
7x - 25 4 3

= -
x-3)(x-4) x-3 x-4



2. Solve 3x+1/(x-2)(x+1) into partial fractions

3x+1 N A B
(x=2)(x+1) (x=2) (x+1)
3x+1 A +D+B(x-2)
(x—=2)(x+1) (x=2)(x+1)
= 3x+1 = Ax+1)+Bx-2) ..(1)
Putting x = —1 in (1) we get,
-3+1 = B(-3)

2
=5 2. = ~3B = BZS
Putting x =2 in (1) we get.

6+1 = AQ2+1)
-
= 7 = 3A= 3 =A
7 2
. 3x+1 B < T
T (x=2)(x+1) x=2 x+1
7
- 0
3(x—=2) 3(x+1)
3. Resolve 1/x?-1 into partial fractions
. 1 A » B
Solutios: e —
1 = Ax+1)+B(x-1) (1)

Put x=1=0, =
1=A(1+])+B(1-1) =
Put x+1=0. =

1=A(-1+1) + B (-1-1)

1o | —

B=

1 1 1

T 2(x-1) T 2x+1)

x =1 in equation (1)

[y

A=

X =-1 1n equation (1)



Type: 2

When the factors of the denominator are all linear but some are
repeated.

Example 1:
x?—3x+1
(x-1)*(x~2)

Resolve mto partial fractions:

Solution:
x% —3x +1 A B C

2 o + =t
E-yx-2) =x-1 @E-1)° x-2
Multiplying both sides by L.CM. i.e.. (x — 1)* (x —2), we get
X' -3x+1=Ax-1)(x-2)+BEx-2)+Cx-1* @

Puttingx—-1=20 —>  x=1in(]). then
A -3 +1=80<9
1-3+1=--B
~1=-B

=  B=1

Puttingx—-2=0 —>  x=2in(I), then
@2r-3@)+1=Cc@2-1)
4-6+1=C(1)

= S [ s

Nowx?-3x+1=Ax-3x+2)+Bx-2)+C(x*-2x + 1)

Comparing the co-efficient of like powers of x on both sides, we get

AHE =1
A=1-C
=1-(-1)
=] +Y=2
= A=2
Hence the required partial fractions are
x-8x+1 3 1 1

. = - =
x-D"x-2) x-1 -1 x-2

Type 3:



When the denominator contains ir-reducible quadratic factors

which are non-repeated.
Example 1:
oOx—7

Resolve mto partial fractions =
x+3)(x"+1

Solution:
Ox—7 A Bx+C
xX+3)x*+1) x+3 x*+1
Multiplying both sides by L.C.M. i.e., (x + 3)(x* + 1), we get
9x—-7=AE+1)+Bx+C)(x+3) (I)
Put x+3=0 :>7 x =-3 in Eq. (I), we have
93)-T=A(3) +1)+B(E3) + O3 +3)

27 7=10A+0
_ 34 et
10 2

9% —7=A(x" + 1) + B(x" +3x) + C(x + 3)
Comparing the co-efficient of like powers of x on both sides

A+B=0
IB+E=9
Putting value of A in Eq. (i)
17 17
-——+B=0 = =
S =

From Eq. (1)

C=9-38 =9-=3 17]

4
ﬁ
=9—4 =5 Q= _E
J 5

Hence the required partial fraction are

=7 17x -6
+
5x+3) 5x*+1)




LOGARITHMS

The logarithmic function is an inverse of the exponential function. It is defined as:
y=logax, if and only if x=a¥; for x>0, a>0, and a#1.

Natural logarithmic function: The log function with base e is called natural logarithmic function
and is denoted by loge.

f(x) = logex

The questions of logarithm could be solved based on the properties, given below
Product rule: logo MN = log, M + logs N
Quotient rule: logs M/N = logr M — logs N
Power rule: log, MP =P log, M
Zero Exponent Rule: loga1 =0
Change of Base Rule: logs (X) = In x/ In b or logs (X) = logio X / log10 b
Logarithm Properties
log, xy =log, x+log, ¥
logaf_ =log,x—log, ¥

no_
log, x" =nlog, x

log, b :M
log, a

log, b= L
log, a

log ,1=0
log  a=
log,a" =r
1
log,—=-log,b
b
log, b=—1log_b

log , blog, c=log,c


https://byjus.com/maths/logarithmic-functions/

Solved Examples:

1. Express 5= 125 in logarithm form.
Solution:

53=125

As we know,

a® = ¢ = log.c=b

Therefore;

Logs125 =3

2. Express logiol = 0 in exponential form.
Solution:

Given, logi0l =0

By the rule, we know;

logac=b = a’ = ¢

Hence,

10°=1

3. Find the log of 32 to the base 4.
Solution: 109432 = x

4 =32

(29)% = 2x2x2x2x2

22X - 25

2X=5

x=5/2

Therefore,

logs32 =5/2

4. Find x if logs(x-7)=1.

Solution: Given,

logs(x-7)=1

Using logarithm rules, we can write;
5! = x-7

S5 =x-7



X=5+7
x=12

5. If logam=n, express a™* in terms of a and m.
Solution:

logam=n

a=m

a"la=m/a

a"™=m/a

6. Solve for x if log(x-1)+log(x+1)=log.1
Solution: log(x-1)+log(x+1)=log>1
log(x-1)+log(x+1)=0

log[(x-1)(x+1)]=0

Since, log1=0

(x-1)(x+1) =1

x2-1=1

x?=2

x=+\2

Since, log of negative number is not defined.
Therefore, x=\2

7. Express log(75/16)-2log(5/9)+log(32/243) in terms of log 2 and log 3.

Solution: log(75/16)-2log(5/9)+log(32/243)
Since, nlogam=log.m"
=log(75/16)-log(5/9)?+log(32/243)
=log(75/16)-log(25/81)+log(32/243)
Since, logam-logan=loga(m/n)
=log[(75/16)+(25/81)]+log(32/243)
=log[(75/16)x(81/25)]+log(32/243)
=1l0g(243/16)+log(32/243)

Since, logam+logan=logamn



=log(32/16)

=log2

8. Express 2logx+3logy=log a in logarithm free form.
Solution: 2logx+3logy=log a

logx?+logy®=log a

logx?y*=log a

x?y*=log a

9. Prove that: 2log(15/18)-log(25/162)+log(4/9)=log2
Solution: 2log(15/18)-log(25/162)+log(4/9)=log2
Taking L.H.S.:

=2log(15/18)-log(25/162)+log(4/9)
=log(15/18)%-log(25/162)+log(4/9)
=log(225/324)-log(25/162)+log(4/9)
=log[(225/324)(4/9)]-l0g(25/162)
=log[(225/324)(4/9)]/(25/162)

=log(72/36)

=log2 (R.H.S)

10. Express logio(2+1) in the form of logiox.
Solution: logio(2+1)

=logi02+l0g10l

=log10(2x%10)

=log1020

11. Find the value of X, if logio(x-10)=1.

Solution: Given, logio(x-10)=1.

logi0(x-10) = log1010

x-10 =10

x=10+10

x=20

12. Find the value of x, if log(x+5)+log(x-5)=4log2+2log3

Solution: Given,



log(x+5)+log(x-5)=4log2+2log3

log(x+5)(x-5) = 4log2+2log3 [log mn=log m+log n]
log(x?-25) = log2*+log3?

log(x-25) = log16+log9

log(x?-25)=log(16x9)

log(x?-25)=log144

x2-25=144

x?=169

x=+V169

X=%+13

13. Solve for x, if log(225/log15) = log x
Solution: log x = log(225/log15)
log x=log[(15x%15)]/log15

log x = log 15%/log 15

log x = 2log 15/log 15

logx=2

Or

logiox=2

10%=x

x=10x10

x=100

Solved Examples

Evaluate the expression below using Log Rules

log;162 — log;2

(i)Sol:



log; 162 —log; 2 = log; (%)

=log; (81)
=log; 3*
=4log;3

=4(1)

log; 162 ~log;2 =4
log,8 + log,4
(if)sol:

log, 8 +log, 4 = log, 2* +log, 2
=3log,2+2log,2

=3(1)+2(1)
=3+2
log,8+log,4=5

Some Important Expansions

Llog(l+ z)= ¢— 2 + 2 — 2 4

. 3 E
d.sinz=z—- H+ %

5.co8z= 1— Z 4 Z

J ¢ -
6. tanr = = + %-i— %;1:"-!—



Example: lim (322 + 4z + 5)=3(1)2+4(1)+5=12

r—1

Example: lim £ —
r—2

5 x+3 '=O

I
(2] '
w|o

e Yi Zo—Dr+b
Example: 11—]3 =3

poone. o (z—2)(x—3) s z—3 _ -1
Solution: lim roy—py = Im 295 = 3

Continuity of a Function

A function fis said to be continuous at the point x = a if the following conditions are true:
* f(a)is defined

* lim,_ 5 f(x) exists

* |im,_; f(x) = f(a).

e Both side limits must also be equal i.e. limy__ f(x) = f (a) = limy_ 5. f(x).

IMPORTANT RESULTS:

RESULT:1

Show that

. x"—an _
]lm = =nan ll
X —>a

when, n is any integer.



Case 1. Firstly suppose that n is a positive integer. By actual

division,

X" —an i i =

= x"2a+......+a*?

e i £ =
the equality being valid for every value of x other than a. As the
limit does not depend upon the value for x=a, we can write
. Xn—a"
“lim - - = lm (x4 X220 A7),

z—>aX"% 2.4

Being a polynomial, the function

x4 x""3g4-...... a1
is continuous for every value of x and, as such, its limit when x — a
must be equal to its value for x=a. Thus

n___gn
lim —— =a*"14-q"2a4-.... .. +a"1=na""!
X ot R

Case II. Now suppose that nis a negative integer, say —m,
where m is a positive integer. We have

x"—ag* x"m—ag™™ a™"—x™ 1
—— — .
X—a X—a X-=—qa. anx”

X" —a™ 1
- x—a a™x™
x"—q" m m
v Ilim ———=—1lim m —, —
x—>a *—4 x=>a ¥4 xq
=—ma" . ——=—ma " 1=ng"-,
a

RESULT:1
TR e o
Example: }_lil}? P
L 2. 5
lim— L0 s
2 X - 52

<

¥ =

s

(S oS

rJ

X



lim == =1

RESULT: 2 Prove that +—"

Proof:

imn X X tan x
, X S X 1
3 -
SN X COSX SMX  COSX
]
lm =1
¥=2UCOSX
Jhm——=1
r=0smXx
smx
11!1}_ -]
FUNCTIONS
DEFINITION:

Function (mathematics) is defined as if each element of set A is connected with the elements of set B, it
is not compulsory that all elements of set B are connected; we call this relation as function.

f: A — B (fis a function from A to B)

Types of function:
One-one Function or Injective Function :

If each elements of set A is connected with different elements of set B, then we call this function as One-
one function.

Many-one Function :

If any two or more elements of set A are connected with a single element of set B, then we call this
function as Many one function.

Onto function or Surjective function :

Function f from set A to set B is onto function if each element of set B is connected with set of A
elements.

Into Function :

Function f from set A to set B is Into function if at least set B has a element which is not connected with
any of the element of set A.



Constant Function:

A function f: A—B is a constant function if the range of f contains only one element.
f(x)=4
Identity Function:

Let A be anon - empty set then f: A— A defined by f(x)=x, called the identity function on A
EXAMPLE

1. What is the range of the following function?

f(x) = {(4.6) .(5.7).(6,8),(7.9)}

Solution:-

Given a set of ordered pairs, the range is found by identifying the y-coordinates from the set.
So the range is {6, 7, 8, 9}.

2. What is the domain of the following function?

f(x) = {(4.6) .(5.7).(6,8),(7.9)}

Solution:-

The domain contains the x-coordinates of a set of ordered pairs.

{4,5,6,7}

3. Identify one to one and onto function
Which of the following functions from A to B are one-one and onto,

B f-{@ 39,7 a-23), e (557
(i) 7 ={{z.a){2,6).{+c)}; A={2,2,4}, 8 ={a,b,5}
fiii} = {{a,x}{b,x] e z) (e z]} pA={abc.d), 8 ={xy =}

Solution:



o As{ue) e )

A=1{1,2,3}, 8={357

YWe can earily observe thatin /i every element of A4 has different image from &.
fi in one-one

also, each element of 8 is the image of some element of A,
f; in onto.

f2={(2,3).(3.8), (4 <))
A={2,34 &={ab,c}

It in clear that different elements of 4 have different images in &
fo in one-one

Aqgain, each element of B is the image of some element of A,
f- in anta

iii} fo = {[aJx] B x), o, 2)(d, z]}
A={ab,c,dl B={xy 2}

Since, f3{a)=x = (b)) and fi(c)=z=1(d)
fz in not one-one

Again, v & in not the image of any of the element of A
f5 in not onto
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UNIT-2
MATRICES

Sir ARTHUR CAYLEY (1821-1895) of England was the first Mathematician to
introduce the term MATRIX in the year 1858. But in the present day applied
Mathematics in overwhelmingly large majority of cases it is used, as a notation to
represent a large number of simultaneous equations in a compact and convenient manner.

Matrix Theory has its applications in Operations Research, Economics and
Psychology. Apart from the above, matrices are now indispensible in all branches of
Engineering, Physical and Social Sciences, Business Management, Statistics and Modern
Control systems.

Definition of a Matrix
A rectangular array of numbers or functions represented by the symbol

i

M1 Ay ey

321 4"121 - | n

Vg Bipg el d
is a MATRIX.

The numbers or functions ajj of this array are called elements, may be real or
complex numbers, where as m and n are positive integers, which
denotes the number of Rows and number of Column.

For example
1 @) [ x’ .
A= | | and B= are the matrices
L2 4 Vx

sinx |
L]

Order of a Matrix
A matrix A with m rows and n columns is said to be of the order m by n (m X n).

Symbolically

A = (ajj )mxn 18 a matrix of order m x n. The first subscript i in (ajj ) ranging from 1 to
m identifies the rows and the second subscript j in (ajj ) ranging from 1 to n identifies the
columns.



Types of Matrices

SQUARE MATRIX
When the number of rows is equal to the number of columns, the matrix is called a

Square Matrix.

For example

1 2 : ;
A = 4. & 7 ] 15 a Matrix of order 2 x 3 and
(1 2] 4 ;
B= .. " } 15 a Matrix of order 2 x 2
( s cosO | . )
C= : 15 a Matrix of order 2 x 2
cofd smnb

(0 22 30)
D=|=4 35 =67
(78 -8 93 |

1s a Matrix oforder 3x 3

ROW MATRIX
A matrix having only one row is called Row Matrix

For example

A =(201)is arow matrix of order 1 x 3
B = (1 0) is a row matrix or order 1 x 2
COLUMN MATRIX

A matrix having only one column is called Column Matrix.

For example

A=]0 ‘ is a column matrix of order 3 x 1 and
1
i 1 1 I I i
B = ‘ ‘ 15 a colunmn matrix of order 2 x 1
ZERO OR NULL MATRIX

A matrix in which all elements are equal to zero is called Zero or Null Matrix and
is denoted by O.

For example
I 0
0= 0 0 l 15 3 Null Matrix of order 2 x 2 and
(0 0 0) _
0= | 15 a2 Null Matnx of order 2 x 3

0 0 0}



DIAGONAL MATRIX
A square Matrix in which all the elements other than main diagonal elements are
zero is called a diagonal matrix.

Consider the square matrix

-4

L

A=

Lid L4 —

] I

-

Here 1. -2. 5 are called main diagonal elements and 3. -2_ 7 are called
secondary diagonal elements.

For example
(5 0

| 0 9 | 15 a Diagonal Matrix of order 2 and

]
B=|0 2 0 lisaDiagonal Matrix of order 3
0

UNIT MATRIX OR IDENTITY MATRIX

A scalar Matrix having each diagonal element equal to 1 (unity) is called a Unit
Matrix and is denoted by I.

For example
01 . ; .
L= i | 15 a Unit Matrix of order 2
L 4
1 0 0)
L=|9 1 0lisaUnit Matrix of order 3
o 0 1/

Equality of matrices

Two matrices are said to equal when

i) they have the same order and
ii) the corresponding elements are equal.

Addition of matrices

Addition of matrices is possible only when they are of same order (i.e., conformal
for addition). When two matrices A and B are of same order, then their sum (A+B) is
obtained by adding the corresponding elements in both the matrices.

Subtraction of matrices
Subtraction of matrices is also possible only when they are of same order. Let A
and B be the two matrices of the same order. The matrix A - B is obtained by subtracting



the elements of B from the corresponding elements of A.

Multiplication of matrices
Multiplication of two matrices is possible only when the number of columns of the

first matrix is equal to the number of rows of the second matrix (i.e. conformable for

multiplicationjor example

Let A = (ajj) beanm x p matrix,and let B = (bjj ) be an p x n matrix

For example

5
if.ﬂL:‘l -1 oB=| |
& Tl —2 % i
2 5 oy
then AB=|2 -1 | 3 |
& 7 =& &
3x 5+5%(-2) WD 4G ) (5 -1
= | 2x%5+(-D)x (-2 2x{-T+(-)x(4) | = 12 -18
116 —14

| 6x5+Tx(2) Gx (-7)+ T (4)

Transpose of a matrix
Let A = (ajj) be a matrix of order mxn. The transpose of A, denoted by AT of order nxm

is obtained by interchanging rows into columns of A.

For example

i ok —|f1 “H
. —.‘3 4 6J2&3,teﬂ
% (1 3)
;- 28
;J:|1 ek
3 4 6 3

\ e |

¥
-

Problems based on Addition , Subtraction and Multiplication of Matrices

Example 1
(6 0 7)

s 9 6"
2 4 -8 -3

Im:[ﬁ 10

find A+ B and A-B

’ and B =



Solution :

546 940  6+7 1 9 13
A+B = =
6+4 2+(-8 10+(-3)) (10 -6 7
if = 6— ] |—1 9 —1“‘|
\ 64 {—3} 10- (—3} 10 13)
Example 2
2 3 5) 3 1 12
IfA=|4 7 9| and B= 4 2 Sl
1 6 4 l6 -2 7,
show that 5{A+B)=35A +5B
Solution :
ko S 25 20 35
A+B =|8 9 14| - 5(A+B)=|40 45 ?n]
|7 4 11 L35 20 33
10 15 2% 15 5 1y
SA =20 35 45|andSB=20 10 25
| 5 30 20 30 —10 35]
25 20 35
- 5A+5B=|40 45 70| - 5(A+B)=5A+5B
|35 20 55
Example 3
i _.1.'
IfA= ] ~ | . then compute A>-5A + 31
Solution:
AE—AA—rl —2] 1 —2]_’—5 6
S 3 —4) (3 -4) -9 10
sg—s[.l =2 _fs —m']
3 -a) 15 -20
(1 0 3 B
31 =3| =
L0 1 LD 3
- A2_5A+3] —[_5 ﬁw o Y b ﬂ.]
e -9 10} {15 -20] lo 3
-10 15] (3 ‘@ -7 16’]
= -+ =
24 30) \0 3 —24 33,




@

(i)

(iii)

DETERMINANTS

An important attribute in the study of Matrix Algebra is the concept of Determinant,
ascribed to a square matrix. A knowledge of Determinant theory is indispensable in the
study of Matrix Algebra.

The determinant associated with each square matrix A = (ajj ) is a scalar and denoted
by the symbol det.A The scalar may be real or complex number, positive, Negative or Zero.
A matrix is an array and has no numerical value, but a determinant has numerical value.

For example

!

[ a
when A = | d | then determinant of A 15
\ C )
a _ .
lA] = and the determuinant value 15 = ad - be
c
Example 1
= |
Evaluate
i
Solution:
1 -1
3 -2

=1x(2)-3x(-1)=2+3=1

Example 2
2 ] 4
Evaluate |5 -1 1
9 7 8
Solution:
Ea .
= 1::—1 1‘_{):: +4‘5 —1‘
9 o g 7 8 9 9 7

2 (1x8-1x7)-0(5x89x1)+4(5x7-(-1)x9)
2 (-8-7)-0(40-9)+4 (35+9)
=-30-0+176 =146

Properties of Determinants
If all the elements in a row or in a (column) of a determinant are multiplied by a constant k,
then the value of the determinant is multiplied by k.

The value of the determinant is unaltered when a constant multiple of the elements of any row

(column), is added to the corresponding elements of a different row (column) in a
determinant.

If each element of a row (column) of a determinant is expressed as the sum of two or more
terms, then the determinant is expressed as the sum of two or more determinants of the
same order

T€ anyr +v137' 37 1t ~alitrmne AF a Aoafearrmirnont are wranatrfiannal than the vraliieae AF +thae



(vip Ifany two rows (columns) of a determinant are interchanged, then the value of the
determinant changes only in sign.

(vii) Ifthe determinant has two identical rows (columns), then the value of the determinant is
Zero.

CRAMERS RULE

1. Solve the following equations by using Cramer’s rule
(D2x+3y=7:3x+5y=9

(i) Sx+3y=17;3x+7v=31
(ilii)2x+y—z=3,x+y+z=1,x—2vyv—3z=4

(V) X+Yy+Z=0,2X+3¥y—Z=5,0X—2¥y~—32=—7

Solution:

(i) 2x + 3y =17, 3x+5p=9
Solution: 2 3

3 5

Since A # 0, we can apply Cramer’s rule and the
system is consistent with unique solution.

A = =10-9=1=0.

7
Ay = r9 5 =?{5}-9{3)
= 35-27=8
|
Ay = |3 o =209)-3()
= 18-21=-3
A B 8
xX = g e R
A |
I
Y= AT 7T
(i) Sx+3p=17; Ix+Ty=31
Solution:
5 3
A = | = 5{7) —3(3
5 7[ (7) - 3(3)
= 35-9=24

Since A # 0, we can apply Cramer’s rule and the
z system is consistent with unique solution.



17 3
Ax = 5 ?’_17(7;1-31{3}
= 119-93=26
5 17
Ay = 13 3]’;5(31}4?(3)
= 155-51=104.
oo A 26
A 26
4
- .ﬁ_v:wcf i
A 26

(iif) 2x+p-g=3,x +y+z=1,x- 2y - 3z7=4
Solution:
2 1 -1
A=l 1 1| =2
1 =2 -3

1 =2

(I
=3 3

y

2.(5343) - 1 E3-1) -1
(-2-1)
2(-1) -1 (-4) -1 (=3)

n

I

= -2+4+3=5,

Since A # 0, we can apply Cramer’s rule and the
system is consistent with unique solution.
i O
~ J 4 -3 |4 -2
4 =2 -3
=3(-3+2) -1(-3 -4) -1(-2 -4)
=3(-1) -1 (-7) -1 (-6)

A |
~2 =3

=]

= 3+7+6=10,
4

T“:' iloglt Bl 1] gl

D= T ] e S
Lodinsg

=2(-34)-3(3-1)-1(4-1)
=2 (-7)-3 (9 -1(3)
=-_14+12-3=-35,



| |‘ ‘| 1‘ li I‘
~1 +3

2 4 I 4 h -2

24 +2) 14 -1)+3(=2-1)

=2(6) ~1(3) +3(-3)

|
A

=12-3-9
=) 5
Ax W
r=— = — =12
A 3
&y A
¥ A = ﬁ =—1
Az 0
T A 5

(iV)x+y+7=6,2x+3y-z=5,6x-2y-35=-7.
Solution:
I |

1
A=2 3 -1
6 -2 -3
3 <1 2 ] ]2 3
= | -1 +1
2 -3 |6 -3 16 -2

= 1(-9-2) -1(-6 +6) + 1(-4 -18)

1{-11) -1(0) +1({-22)
=11 -22=-33%0

Since A =0, Cramer’s rule can be applied and the
system is consistent with unique solution.

(i) | |
Ax = |5 3 "-1
it 23

b e
= -1 +1
-2 -3 -7 =3 |-7 -2
=6(-9-2)-1(-15-7) + 1(-10+21)
=6 (-113-1 (=22) + 1 (11)

= _HBE4+224F11 =—33



Ay
6 -7 =3
5 =1 |2 ] |2 5
=t |—6 + 1 il
=7 =3 6 —3 6 -
= 1{=15-7) —6{-6+6) + 1{—14 -30)
= 1(-22)-6(0) + 1 (-44)
= -22-44=-66
\1 1 6
Az=12 3 3
6 —2 =7
T & [ 5. .12 3|
I -1 L+ 6
‘—2 =7 6 -7 6 -2

= (=21 +10)=1(-14 -30) +6 (-4 18)

1(—11)—1(=44) +6(-22)
= _11+44-132 = -99
TN T A8
2
My ;:-('fh
e — = - ::
¥ ‘j _%1
A: _50
g T o FE R
TA 283

CHARACTERISTIC EQUATION

The equation |4 — AI| = U is called the characteristic equation of the matrix A
Note:

1. Solving |4 — 4| =0, we get nroots for 4 and these roots are called characteristic

roots or eigen values or latent values of the matrix A

2. Corresponding to each value of j: the equation AX = AX has a non-zero solution
Vector

. C L. . 3 1
2. Find the characteristic equation of (_1 2:1

Solution: Let A =(_31 é]

The characteristic equatiop] of Aid 42— 5,4+ 5,5, = sumofthemaindiagonalelements = 3
+2=5and 5, = Determinantofd = [A| = 3(2)-1(-1)=7



Working rule to find characteristic
equation: For a 3 x 3 matrix:

Method 1:
The characteristic equation is |4 — Al| = 0

Method 2:

Its characteristic equation can be written as A3 — 5;4% + 5,4 — 53 = 0 where
S1 = sum of the main diagonal elements,

S2 = sum of the minors of the main diagonal elements,
S3 = Determinant of A =|A|

Fora2x2
matrix:

Method 1:
The characteristic equation is |4 — AIl = 0
Method 2:

Its characteristic equation can be written as A% — 534+ 5; = 0 where S1 = sum of the

main diagonal elements, S2 = Determinant of A

Examples:

8 -6 2
1. Find the characteristic equation of (—6 7 —4)
2 —4 3

Solution: Its characteristic equation is A% — 5,42 + 5,4 — 53 = 0,

where S1 = sum of the main diagonal elements =8 + 7 + 3 =18,

S2 = sum of the minors of the main diagonal elements=45
S3 = Determinant of A =| | A=0

Therefore, the characteristic equation is A* — 184% + 454 = 0.

CAYLEY-HAMILTON THEOREM

Qtatements Fuverv caliare matriv eaticfiece 1t own characterictic ealiation



Uses of Cayley-Hamilton theorem:
(1) To calculate the positive integral powers of A.
(2) To calculate the inverse of a square matrix A.

Problems:

1
1. Show that the matrix [2 1] satisfies its own characteristic equation

1 T
Solution:Let A =[2 1 } The characteristic equation of A is Az — S+ 5,=0 where
5 = Sumof the maindiagonal elements = 1+1 =2
5,= |A| =1-(-4) =5
The characteristic equationis A2 — 24+ 5 =

Toprove A2 — 24+ 51 =0
a=aw=[, 7L 7107

seaesi=[3 YL F4E 9= -

Therefore, the given matrix satisfies its own characteristic equation.



1 13
2. Verify Cayley-Hamilton theorem for the matrix A = [1 o ] and hence find its

.

inverse.

Solution: The characteristic polynomial of Ais p(A)=A2- A —1.

A2=[2 1
3 1

2 1)y 1y f1 0y (o o)
A2-A—I= . g :{

A 1)l e/ 1] 100
A2-A—1=0,

Multiplying by A 'weget A—-1-A"1=0,

A= A

['o 1 ]
&=
-\1 i 1/

1 -1 4
3. Verify Cayley-Hamilton theorem for the matrix A= |3 2 —1|and hence find
2 1 =i

is inverse.

Solution: The characteristic polynomial of Aisp(A) =A*-2 A2 -5 A + 6.

(6 1 1) 11 =3 22)

A*=|7 0 11| A4 =29 4 17

3 -1 8) L\_lﬁ 3 2
Tovedly A—J9R2 _S5A+61=0 — (1)

A3-2A2_5A+6I=

(11 -3 22y {6 1 1) (1 -1 4} (10 0
- | 4 |
29 4 17]-217 o 11!—5'3 2 —1i+c1_0 1 0‘
|
(s 3 5 [\‘3 -1 8) {2 1 -1) lo o 1)
(6 @ D)
= (0 0 of

0 0 o

A



Multiply equation ( 1) by A
WegetA?—2A —51+6A"'=10
6AT=51+2A-A?
Py ot < a2\ fe 1 2

647=50 1 0|+2/3 2 -1|-|7 0 11
g w1 2 1 =g ke ey g

Ji =3
=-f & i3
i 3 =5
1 =3 ¥
a1
Y, = al W QT Q|
6
i A =5

Verify Cayley-Hamilton theorem, find A®* and A~ when A=

2 =1 2
=% 2 —1‘
T -1 Z

Solution: The characteristic equation of Ais A% — 5,1+ 5.1—5; = 0 where

5, =Sumof the main diagonal elements=2+24+2=6

Ss=S5umof the minirsof the maindiagonal elements=3+2+3 =38
S;= |A| =2(4-)+U-2+1)+2(L=-2)= 2(3)—1-2=3

Therefore, the characteristic equation is 1*° — 61°+81 -3 =0

To prove that: 43 —647+84 -3/ = 0————— (1)
2 -1 2 2 =1 2 7 -6 9
A=|-1 2 —1||-1 2 -1|=|-5 6 -6
1 -1 2 1 -1 2 3 -5 7
R 7 —6 9 2 —1 2z 29 -—-28 136
A¥= A%(4)=|-5 6 -6||-1 2 -1|=|-22 23 -28
5 =5 7 1 =1 2 22 =22 29

29 —28 36 42 —36 54 16 —8 16 3 0 0
=|=-22 23 mZS}-[—Sﬂ 36 =36 +[4—8 16 -8 —[O 3 0]
22 22 29 30 30 42 8 -8 16 0 0 3
g 0 0
=[0 0 0]=0
g 0 0
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Unit - 111
Differential Calculus

Introduction

Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a
moving object with respect to time is the object's velocity. This measures how quickly the
position of the object changes when time is advanced.

Differentiation

The rate at which a function changes with respect to independent variable is called the
derivative of the function. The derivative of a function y = f(x)is defined in terms of the limit

d
involving increments of the independent and dependent variables and this limit is denoted byd—z.

The process of finding the derivative of a function is called the derivative of a function.

First derivative formulas

dy
S. No. y =f(x) dx
1. nx™1
xn
2. e*
ex
log x 1
3. x
4, sinx coS X
5. COS X —sinx
6. tan x sec?x
7. cotx —cosec?x
8. secx sec x tanx
9. cosecx —Co sec x cotx
10. k 0
11. du
ku e
dx
12. utv du + dv
dx — dx
13. uv dv 4 du
u dx — v dx
14. u P _ Y
; dx dx
UZ
15. a* a*logx




Example 1:

Differentiate the following with respect to x
() x+y (i) 7% +4x> —3x+2

2logx

(V)
Solution

(1) Lety=x+%=x+x_1

(i) Lety = 7x° + 4x* —3x + 2

W —73x2 +42x—3+0
dx

=21x% +8x — 3.

(i) x2(2x—1)

(iii)Lety = x2 (2x — )2 = x2 42D ¢ (¢ — 1) 4D

=x2.2+ (2x —1)2x
=2x% +4x% — 2x
= 6x2 — 2x.

(iv)Lety = 5’ e*logx
dy _ , .d(logx)
T S5x“e e

= 5x? e"i + 5x2% logxe* + e*logx.10x

+ 5x%logx

d(e®)
dx

1
= 5xe"(; + xlogx + 2logx).

ety 2oy _ A gt
Y= "% dx x?
2

_x —2logx.1 _ 2(1 ~logx)

+ e*logx

(iv)5x2 e*logx

d(5x?)




Example 2

Differentiate 6x* — 7x* + 3x* — x + 8 with respect to x.
Solution:

Lety= 06— 7+ 3% —x+8

dy d d d /4.0 d d
phi Pt SEl N e S o el b
B ) g R B BRI o ()
o 79 6y+3d @ 4+ d
6 - ()7 @) T3 &) -+ (8
= 6(4%) - 7(3=2) +3(2x) - (1) + 0
% = 24% 212 +6x-1
Example 14
Find the derivative of 3x¥°-21log x+ ¢&
Solution:
Let y=3x7%-2log x+¢&
dy & sne A d
A o gt i U & T s gty =
dx 3 dx (=) =2 dx (lngex) dx )
= 3(2/3)x13-2(1/x)+ &
S i iy T S
Example 4

Differentiate : cosx.logx with respect to x

Solution:
Let y = cosx . logx
dy d d
2 = cosx — (logx) +logx — (cosx)
dx dx P

= cosX i + (logx) (-sinx)

— COos X

——— - sinx logx



Example 5

Differentiate x*e=logx with respect to x
Selution:
Let y = ®e*logx
dy

d 5 d d
e hLvie— oo + vl )y + it
— Xe - (logx )+ % logx = (e¥) + e logx = (xX)

= (®e*) (1/x)+ % logx (e*) + & logx (2x)
= x &+ 2 e*logx + 2x & logx

= x&(1+xlogx +2logx)

7.3.11 Successive Differentiation

: : T,
Let y be a function of x. and 1ts derivative — 1s in general another

ax
: day i 2 ; ;
function of x. Therefore —; can also be differentiated. The derivative of
X
dy d (dv\ . o120 .
= namely — { 4 | 1s called the derivative of the second order. It is
x dx |\ dx J
2 »

written as

2

(or) y_. Similarly the derivative of 4 'y namely d
x : dx’ dx

3
y

=

3

— and so on.

[ d"¥ | iscalled the third order derivative and it is written as
Ji ) dx



Derivatives of second and higher orders are called higher derivatives and
the process of finding them is called Successive differentiation.

Example 29
If v = e*logx find y_
Solution: i
y =clogx

d d
Y1 =¢ g (log x) + log x e (%)

=2+ logx (&)
X

1 .
}’1 = 11—+ lngxl

d (1 l ) .
}f: —E"Ek.?—rlngxr + |—+lag;] —(E)

{ 1 1} ['1 ]
y = ——+—¢+|—+logx |e
: X X X

r 1, 1 1
E"{— = e

x X x

ax <|[| 2% —lj] P ,_.]

o
MAXIMA AND MINIMA

EXAMPLE:

Find the maximum and the minimum values, if any, without using derivatives of the
following functions:

(i) f(X) =4x?—4x+40nR

Solution:
Givenf (x) =4x>—4x +40nR
=4x%—4x+1+3

By grouping the above equation we get,
=(2x-1)2+3
Since, (2x—1)2>0



=(2x-1)?%+3>3
=1{(x) > f(}%)
Thus, the minimum value of f(x) is3 at x =%

Since, f(x) can be made large. Therefore maximum value does not exist.

(ii) f (X) = x3—6x% + 9x +15

Solution:

Given, f(x) =x3—6x%+ 9x + 15

Differentiate with respect to x, we get, f*(x) = 3x% — 12x + 9 = 3(x2 — 4x + 3)
=3(x-3) (x-1)

For all maxima and minima,

£(x)=0

=3x-3)(x-1)=0

=x=3,1

At x =1 f’(x) changes from negative to positive

Since, x =— 1 isapoint of Maxima

At x =3 f*(x) changes from negative to positive

Since, x =3 is point of Minima.

Hence, local maximavalue f (1) = (1)° - 6(1)% + 9(1) + 15= 19
Local minimavalue f (3) = (3)3—6(3)? + 9(3) + 15=15
(iii) f(x) = x3 = 3x

Solution:

Given, f (x) = x3 - 3x

Differentiate with respect to x then we get,

£ (x)=3x°-3

Now, f'(x) =0

=3x*=3>x=1%1

Again differentiate £(x) = 3x?— 3

°(x)= 6x

£°(1)=6>0



7 (-1)=-6>0

By second derivative test, x = 1 isapoint of local minimaand local minimum value of g at
x=1isf(1)=13>-3=1-3=-2

However, x = — 1isapoint of local maximaand local maxima value of g at
x=-1isf(-1)=(-1)3%-3(-1)

=-1+3

=2

Hence, the value of minimais— 2 and maximais 2.

Applications of derivative

Example 6:
The total cost function for the production of x units of anitemisgivenby T = 10— 4x3 + 3x*.
Find (a) average cost (b) marginal cost () marginal average cost.

Solution
GivenT = 10— 4x3 + 3x*

(a) Average cost = ; = ”’"”;{ﬂ (b) marginal cost = Z—i = —12x3 + 12x3 (c) margina

x(—12x3+ 12x3)— (10— 4x3+ 3x*).1 _ 9x*—8x3-10
x2 - x? )

average cost = d G) =

Example 7:
Let the cost function of a firm be given by the following equation: C(x) = 300x — 10x? + §x3

where C(x) stands for the cost function and x for output. Calculate (i) output a which marginal
cost is minimum (i) output at which average cost is minimum (iii) output at which average cost
isequal marginal cost.

Solution
Given C(x) = 300x — 10x +2x3 (i) Marginal cost (MC) = 2= = 300 — 20x + x> 20 =
20 + 22 & OB =202 = 0 gives —20+2x =0+ x = 10d P <0 -MCis
maximum When the output is 10. (ii) Average cost (AC)
=0 =300 - 10x + 224D = _10 + 24 "Z(Af) ~ gdffc) =0 gives—10 +2x =0 ~x =15
& (C) (iii) When average cost =

marglnal cost300 — 10x + ? =300 — 20x + x2i.e,2x% — 30x = 02x(x — 15) =0 ~ x = 0



or ~. x = 15x = 0 isinadmissible...Output a which average cost is equal to marginal cost is 15
units.

Example 8:

The cost function for producing x units of aproduct is C(x) = x3 — 12x2% + 48x + 11 (in
rupees) and the revenue function is R(x) = 83x — 4x2 — 21. Find the output for which profit is
maximum.

Solution
Given C(x) = x3 —12x%2 + 48x + 11 and R(x) = 83x — 4x% — 21
Profit functionP=R—-C=(83x —4x? —21) —x3 —12x%? +48x + 11 = —x3 + 8x? +
35x — 322 = —3x% + 16x + 3522 = —6x + 16
dx dx

Whenj—j::O, —3x%2+16x+35=03x%2—16x—35=03x%>—-21x +5x—35 =

03x(x —7) +5(x—7) = 0(3x +5)(x —7) = 0x = 7 or —x = Zisinadmissible. Also

ZZTZ < 0 ~The profit is maximum when the output is 7 units.
The maximum profit =73 + 8.72 4+ 35.7 — 32 = —343 4+ 392 + 245 — 32 = Rs. 262 /—
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UNIT-4
ANALYTICAL GEOMETRY
We will discuss here about the slope of a line or gradient of a line.
Concept of slope (or gradient):

If 6 (# 90°) is the inclination of a straight line, then tan 6 is called its slope or gradient. The slope
of any inclined plane is the ratio between the vertical rise of the plane and its horizontal distance.

A
'y

Inclined plane

Vertical rise

Horizontal distance

slope = verticalrise/horizontaldistance =AB/BC = tan 0
Where 0 is the angle which the plane makes with the horizontal
Slope of a straight line:

The slope of a straight line is the tangent of its inclination and is denoted by letter ‘m’ i.e. if the
inclination of a line is 0, its slope m = tan 0.

Condition for perpendicularity
We will discuss here about the condition of perpendicularity of two straight lines.

Let the lines AB and CD be perpendicular to each other. If the inclination of AB with the
positive direction of the x-axis is 0 then the inclination of CD with the positive direction of the x-
axis will be 90° + 6.

Therefore, the slope of AB = tan 6, and the slope of CD = tan (90° + 0).
From trigonometry, we have, tan (90° + 6) = - cot 0

Therefore, if the slope of AB is m; and

the slope CD = m; then

m; = tan 6 and m, = - cot 0.

So,m; -my=tan 0 - (- cot0) =-1

Two lines with slopes m; and m; are perpendicular to each other if and only if m; - mp=-1



1. Find the equation of the line passing through the point (-2, 0) and perpendicular to the line 4x
—3y=2.

Solution:

First we need to express the given equation in the form y = mx + c.

Given equation is 4x — 3y = 2.

By=-4x+2

y=4/3x-2/3

Therefore, the slope (m) of the given line = 4/3

Let the slope of the required line be m;.

According to the problem the required line is perpendicular to the given line.
Therefore, from the condition of perpendicularity we get,

m; - 4/3=-1

= m,; =-3/4

Thus, the required line has the slope -3/4 and it passes through the point (-2, 0).

Therefore, using the point-slope form we get

y-0=-3/4{x - (-2)}
=y =-3/4(x +2)

=4y =-3(x+2)

=4y=-3x+6

= 3x + 4y + 6 = 0, which is the required equation.
Condition of parallelism

If two lines are parallel then they are inclined at the same angle 6 with the positive direction of
the x-axis. So, their slopes are equal.

Two lines with slopes m; and m; are parallel if and only if m; = m,

Note: If the slope of a line is m then any line parallel to it will also have the slope m.
1. Prove that the lines 3x —2y — 1 = 0 and 9x - 6y + 5 = 0 are parallel.

Solution:

The slope of the lines can be found by comparing the equations with y = mx + c.



Equation of the first straight line 3x -2y -1 =0

Now we need to express the given equation in the form y = mx + c.
3x-2y-1=0

= -2y=-3x+1

= y=-3/2x+1/-2

= y=3/12x-1/2

Therefore, the slope (m;) of the given line = 3/2

Equation of the second line 9x - 6y + 5 =0

Now we need to express the given equation in the form y = mx + c.
9x-6y+5=0

=-6y=-9x -5

= y=—9/-6x — 5/-6

= y=3/2x+5/6
Therefore, the slope (mj;) of the given line = 3/2

Now we can clearly see that the slope of the first line m; = the slope of the second line m;
Therefore, the given two lines are parallel.

Slope of a line joining two points

We will discuss here about the slope of the line joining two points.

To find the slope of a non-vertical straight line passing through two given fixed points:

Let P (x1,y1) and Q (x2,y>2) be the two given points. According to the problem, the straight line
PQ is non-vertical Xo# X;.

Required to find, the slope of the line through P and Q.

From P, Q draw perpendiculars PM, QN on x-axis and PL. L NQ. Let 0 be the inclination of the
line PQ, then £LPQ = 6.
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From the above diagram, we have

PL = MN = ON - OM = x,-x;
LQ::NQ—NL:NQ-MPZYZ'yI

Therefore, the slope of the line PQ = tan 6 = LQ/PL= y,-y1/Xx»-x;

Hence, the slope (m) of a non-vertical line passing through the points P (x;,y;) and Q (x2,y2) is
given by

slope = m = y,-y1/x;-x;
1. Find the slope of the line passing through the points M (-2, 3) and N (2, 7).
Solution:
Let M (-2, 3) = (x1, y1) and N (2, 7) = (X2, y2)
We know that the slope of a straight line passing through two points (X1, y;) and (X2, y») is
m= yy-yi/Xa-X;
Therefore, slope of MN = y,-y1/X,-x1=7-3/2+2=4/4=1
2. Find the slope of the line passing through the pairs of points (-4, 0) and origin.
Solution:
We know that the coordinate of the origin is (0, 0)
Let P (-4, 0) = (x4, y1) and O (0, 0) = (x2, y2)
We know that the slope of a straight line passing through two points (x;, y;) and (X2, y2) is

m= ys-yi/X2-X|



Therefore, slope of PO = y,-y;/x2-x;= 0/4=0
We will learn how to find the slope and y-intercept of a line.
slope and y-intercept of a given line:
Step I: Convert the given equation of the line in the slope-intercept form y = mx + c.

Step II: Then, the co-efficient of x is slope (m) and the constant term term with its proper sign is y-
intercept (c).

1. Find the slope and y-intercept of the line 2x - 3y - 4 = 0.
Solution:

Given equation is 2x - 3y -4 =0

= -3y=-2x+4

= y=2/3x—-4/3

Therefore, the slope (m) of the given line = 2/3 and its y-intercept (¢) = - 4/3
2. Find the slope and y-intercept of the line y = 4

Solution:

First we need to express the given equation in the form y = mx + c.
Given equation is y = 4

= y=0x+4

Therefore, the slope (m) of the given line = 0 and its y-intercept (c) = 4



UNIT-4
INTEGRAL CALCULUS

Differential Calculus is centred on the concept of the derivative. The original motivation
for the derivative was the problem of defining tangent lines to the graphs of functions and
calculating the slope of such lines. Integral Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of the functions. If a function f is
differentiable in an interval I, i.e., its derivative f ' exists at each point of I, then a natural
question arises that given f ' at each point of I, can we determine the function? The functions that
could possibly have given function as a derivative are called anti derivatives (or primitive) of the
function. Further, the formula that gives all these anti derivatives is called the indefinite integral
of the function and such process of finding anti derivatives is called integration. Such type of
problems arise in many practical situations. For instance, if we know the instantaneous velocity
of an object at any instant, then there arises a natural question, i.e., can we determine the position
of the object at any instant? There are several such practical and theoretical situations where the
process of integration is involved. The development of integral calculus arises out of the efforts
of solving the problems of the following types: (a) the problem of finding a function whenever
its derivative is given, (b) the problem of finding the area bounded by the graph of a function
under certain conditions. These two problems lead to the two forms of the integrals, e.g.,

indefinite and definite integrals, which together constitute the Integral Calculus.

We already know the formulae for the derivatives of many important functions.
From these formulae, we can write down immediately the corresponding formulae
(referred to as standard formulae) for the integrals of these functions, as listed below

which will be used to find integrals of other functions.



Derivatives

. i xﬂ+| _xn
B el ai ;

Particularly, we note that

d
E{i’]ﬂ :
(ii) i[’sain x)=cosx .
dx
(iii) i[—cnsx]:sinx .
el
; d Lz
(1v) ;i—x-{tan_r}—secx =

(v) —(-cot x)=cosec’x -
dx
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(iX) o e 32
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{K} E[m Ex}:l+_r2
d . 1
(xi) (oot x) =1

Integrals (Anti derivatives)

r n+l

_[x"dx: +C.,n=-1

n+l

dex: x+C

Icos xdx=sinx+C
Isin yiv=—cos x4+ C

I.@ecz ydx=tan x4+ C

_I-cose:::x dy =—cotx +C

Is&c xtanxdx=secx +C
Icosﬂc xcotx dx=— cosec x+C

v i
I - =gin~' x+C
P

il o
I X ——cos” x+C
-

=tan~! x+ C

dx
-I-l+x2

d.
I] 'I._, = oot 240
+ X
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(xvi) E

log a
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jx-Jx——
=

.jf‘dx= e +C
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Find the following integrals.

+C
log a
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7. rf4dr=I1+4x'f L
J X X
[ 1 -2 2
8. dx:szdx: s Al
Jxa/x X
3

w0

; J{1+3r}rzdr: _[r: i3f de=lliPic
3 4

Methods of Integration In previous section, we discussed integrals of those
functions which were readily obtainable from derivatives of some functions. It was based
on inspection, i.e., on the search of a function F whose derivative is f which led us to the
integral of f. However, this method, which depends on inspection, is not very suitable for
many functions. Hence, we need to develop additional techniques or methods for finding
the integrals by reducing them into standard forms. Prominent among them are methods
based on: 1. Integration by Substitution 2. Integration using Partial Fractions 3.

Integration by Parts 7.3.1 Integration by substitution

Now, we discuss some important integrals involving trigonometric functions and
their standard integrals using substitution technique. These will be used later without

reference.



(i) _[lan x dx =log|sec x|+ C
We have .

sin x
elx

Itan xdrzj
Cos X

Put cos x=13s0 lhal sin x dy=—dt
Then jtan xcix=—_[%=—lug|r|+c=—lng|msr|+C‘
or jnm x de=log [sec x|+ C

(ii) jtﬂl’x dx = log|sinx |+C

Cos X

; jcm xtiT.t=I — ¢l
We have —

Put sin x =1 s0 that cos x dx = dt
di' < .
ot xdy=|— = = i
Then IC Xdx I! boglt|+C = log[sin x|+ C

‘iii) .J‘seexdx=lng|secx+tnn x|+C

We have

secx (secx +tan x
jsecxdxzj- ( }d.t
Sec r +tan x

Put sec x + tan x =1 so that sec x (tan x+ sec x) dx = di

Therefore, Iscc .tdx=j£F=lﬂg|r|+C =logsec x+ tan x|+ C

iv) .Icusec x dx =log|cosec x - cot x|+ C

We have

cosec x(cosec x +ool x) i

jcmﬁ:x dx:j {cosec x +cotx)

Put cosec x + cotx = I so that — cosec x (cosec x 4+ cot x) dv = 41

ot
So jcnsecx dx:—j—:—]ogIIIZ—luglcmmx +ootxl+ C
!



—log

3 2
cosec” x—cot” .rl

osec y=ool X I

-Iug lcosec x —cot 4+ C

INTEGRALS OF SOME PARTICULAR FUNCTION

In this section, we mention below some important formulae of integrals and apply them
for integrating many other related standard integrals:

dx 1
(1) sz_az = —log

j d.r=

1
(2) —
aext 2%

-1 X
3 z=—tll]'] '+ C
X +a a a

3 zl
x+yx —a’|+C

e
=sin”'=+C

j dx
a..,faz-xz a

dx
(6) -—-—--=lﬂg|.r +yx +at
J‘«.,r‘.rl +a’

We now prove the above results:

(4) j o =log
:,ri:u'2 -t

(5)

+C
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() ‘We have x2_g® (x—a)(x +a)

l (x+a)-(x—a) _L[ S }
T 2al| (x—a)(x+a) 2a|lx—a x+a
dx dx

f+a

&L[Iaglu—ajl—lagltx+ﬂ]] +C
1
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dx 1
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¥ —a 2a

i

1
2a

]

Therefore, I P Iirxz Zc.rl [I ;ir 3 +.[ ﬂij.t_ril

1
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1

S a+x
2a

+C

1

=X

(2) Inview of (1) above, we have

1 :L (a+x)+{a-x)| 1 1 |
a —x* 2a| (a+x)(a-x) __'Eﬂ_x"'a.u

Th F . J- elr
erefore, o

sl

ol
?z.-
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= —[=log la=xl+logla+x]]+C
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g

fa+x

log +C

a—X



8.2.7 Integration by parts
If u and v are functions of x such that u is differentiable and v
is integrable, then

‘[u v = uv - [1‘ du

-

Observation:

(1) When the integrand is a produet, we try to simplify and use addition
and subtraction rule. When this is not possible we use integration
by parts.

(1)  While doing integration by parts we use 'TLATE' for the relative

preference of u . Here,

I — Inverse trigonometic function
L — Logarithmic function

A — Algebraic function

T — Trigonometric function

E — Exponential function

Example 18
Evaluate J X2 i
Solution :
Let u =x ., dv =¢& dx
du =dx , v=¢
Ix.ex de = x€& — je” dx

¢ - +
efx—=1)+ C



Evaluate Ix.siulx dx

Solution:
Let u = x , sim2xdx = dv
—cos2x
de=dx § —— =y
2
e —xcos 2y cos2y
rsm2x dx = ——— % J b
. 2 2
—xcos2x 1 sin 2x
— +
2 2 2
— xcos2x sin 2 x
2 4

AN APPLICATION OF INTEGRATION

Marginal cost, Total cost and Average cost:
Let the cost C of producing and marketing x units of a commodity be € = f(x) The
L))

Average cost per unit is AC = i "

The Marginal cost is MC= % =f(x).

The Marginal cost is derivative with respect to x of the total cost function C = f(x).

Therefore the total cost function C is the integral with respect to x of the marginal cost
function.

ie [f(x)dx + c.

The constant of integration can be obtained by knowing an initial condition. Usually this
is determined by knowing the fixed cost, that is the cost when x = 0

Marginal Revenue, Total Revenue and Average Revenue :

Let y = f(x) be the price unit where x is the number of units sold.. Then the total
revenue is given by R = xy = xf (x).



The Average Revenue or the revenue per unit is given by AR = 5 = f(x)

The Marginal Revenue is given by MR = Z—i = R(x).

The marginal function is the derivative of revenue function. Thus the revenue function is
the integral of the marginal revenue.

ie R(x) = [R'(x)dx +c.

The constant of integration is determined by an initial condition. The initial condition is
that the revenue is zero if the demand is zero.

NOTE: Total profit function is given by P(x) = R(x) — c(x).

EXAMPLE 1:

The Marginal cost function for production is % = 10 + 24x — 3x2. If the total cost of

producing one unit is Rs. 25.Find the total cost function and average cost function.

Sol:

Z—C= 10 + 24x — 3x2.

x
Integrating, C=/(10 + 24x — 3x%)dx + ¢,
=10x + 12x? —x3 + ¢;
To find c; we take the conditions that ¢ = 25 when x=1.
Therefore 25= 10+12-1+¢;
~c=4
= The total cost function is C= 10x + 12x% — x3 + 4.
The average cost function AC is

C 10x+12x*>—x3+4 4
AC =—= =—+10+ 12x — x?
X X X




DEFINITE INTEGRAL

The definite integral of the continuous function f(x) between the

b
limits x=a and x=b is defined as [f(x) & =[F(x) [ =F(b)-F(a)
where ‘a‘ is the lower limit and ‘b’ is the upper limit and F(x) is the

integral of f(x).

To evaluate the definite integral, integrate the given function as
usual . Then obtain the difference between the values by substituting
the upper limit first and then the lower linut for x.

Example 25
F

Evaluate “4:-: g T, 1} dx
1

Selution:
i)

4 2 2
{4L+2L+x}
2

(4% +2x+1) d

e b

4 1
= (2+24)—(1+1+1)
= (16+4+2)-3

= 19



2 -
Evaluate J. l dx

:1+1::
Selution:
x 10
5 dt
dl, dx = J_
> Ldx” = i
Put 1+2 =t
2xdx = dt
When x=2 ; t= 35
x=3: t=10

= [log t]lj = log 10 - log 5
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UNIT-5
DIFFERENTIAL EQUATIONS

Exact differential equation.
A first order differential equation of type M (x, y)dx+ N(x,y)dy =0

is called an exact differential equation if there exists a function of two variables u(x,y) with

continuous partial derivatives such that du(x, y) = M (x, y)dx+ N(x, y)dy

The general solution of an exact equation is given by u(x, y)+ J. f(y)dy = c ,where c is an arbitrary

constant
Test for Exactness
Let functions M (x, y) and N(x,y) have continuous partial derivatives in a certain domain D.
. . . . . ..OM ON
The differential equation M (x, y)dx+ N(x,y)dy =0is an exact equation if and only if e = .
y X

Algorithm for Solving an Exact Differential Equation

1. First it's necessary to make sure that the differential equation is exact using the fest for exactness:

am _an
dy  Ox

2. Integrate M with respect to x keeping y constant ie Ide

0
3. Integrate those terms in N not containing x with respect to y.iej {N — a—jde} dy
o4

4. The general solution of the exact differential equation is given by J.de +J. {N - gJ‘de} dy=c
i

Examplel. Solve (5x* +3xy” —2xp")dx +(2x’y —3x°y* =5y")dy =0

M =5x* +3x*y* —2xp° N =2x’y-3x*y* - 5y*

M M
= o =6x’y—6x)° and N =6x’y—6x)° oM = N ..the givenequation is exact.

oy Ox oy ox


Antony Mary
Stamp


The required solution is given by J.de+j [terms of N not containing x]dy =c
J(5x4 +3x°y* —2x1")dx  + J. (-5yHdy =c

oty oy =

Equations Reducible to Exact equations.

Rulel. Ifl(aﬂ_a—N) is function of x alone ,say f (x )then I.F = ol
N oy ox

Rule2. If_—l(aﬂ - 6_N) is function of y alone ,say f (y)then I.F = IR
M 0Oy Ox

Rule3. If M is of the form M = yf,(xy) N is of the form N = xf,(xy),then I.F = M;

x — Ny
Ruled. IfMdx + Ndy = 0 is a hom ogeneous equationin x and y then I .F = _t
Mx + Ny
Example2. Solve (2xlogx—xy)dy +2ydx =0.
Solution . Given (2xlogx—xy)dy+2ydx =0. (1)
Here M =2y, N = 2xlogx-xy.
:%:2 and a—N:2(l+logx)—y =
oy ox
1 ONT oN —2 log x + 1
C — > = = 2 — — — = (.
~N '8 % Ox 2x log x — xyv ac
1= ol _ ef?vldx _pter _ 11
X

2
(HI1.F = =Y et (2log x — y)dy = 0= mdx + ndy = 0which is exact.
X
The required solution is given by J.mdx+j [terms of n not containing x]dy =c

= The required solution is given byI 2—ydx +j (—y)dy =0.
X

2
= The required solution is given by 2ylogx— y7 =0.

Example3. Solve (y* +2y)dx+(xy’ +2y* —4x)dy =0.

Solution . Given (V* +2y)dx+(xy’ +2y"* —4x)dy =0. (1)
Here M =y*+2y N=xy"+2y'—4x
_ 3 R
:%:4y3+2 and a—N:y3—4:> —l(aﬂ—a—N):—(‘ly +§) Sl 4)=_§=f(y).
oy ox M oy Ox v +2y y
-3

Ny =y

I.F= e'['f(y)d) = ej D e = y73 Z%

DHILF = (y+ %)dx +(x+2y-— j}—f)dy = 0= mdx + ndy = Owhich is exact.

The required solution is given by J.mdx+J. [terms of n not containing x]dy =c



= The required solution is given byj (y+ %)dx +I 2y)dy=c.
y
The required solution is given by x(y + %) +y'=c
y
Exampled. Solve y(xy+2x°y”)dx +x(xy—x’y*)dy =0.

Solution . Given  y(xy +2x”y*)dx + x(xy —x*y*)dy = 0. (1)
= y(1+2xy)dx+x(1—xy)dy =0

M = y(1+2xy) = yf,(xy) and N =x(1—xy) = xf,(xy),
1 1 1

Then I.F= — -
Mx—Ny  y(1+2xp)x—x(1-xy)y 3x%)?
1 2 1 1 .
(DLF = (z——+)dx+(z— ———)dy = 0= mdx + ndy = Owhich is exact.
3x°y  3x 3xy° 3y

The required solution is given by Imdx+f [terms of n not containing x]dy =c
. S 1 2 1
= The required solution is given by J. (z—+—)dx+ I (—)dy=c.
3x°y 3x 3y

1 +2logx_logy=

=> The required solution is given by — C.
3xy 3 3
3 3
Example5. Solve Q _ 2 +2y .
dx Xy
Solution . Given (x* + 1 )dx+(xy*)dy =0. (1)

Here M = (x’ +y*)and N =—(xy*)which arehom ogeneousin x and y.
1 1 1

4

thenl.F = = — =
Mx+Ny (xX+y)x+(—xy7)y x

2

3
()I.F = (l + y—4)dx - (y—3)dy = 0= mdx + ndy = Owhich is exact.
X X X

The required solution is given by Imdx+j [terms of n not containing x]dy =c

3
= The required solution is given by J (l + y—4)dx + I(O)dy =c.
X X

3

Y

= The required solution is given by log x — Fye) =c.
X

Example6. Solve (y* —2x’y)dx+(2xy” —x)dy =0



UNIT 4
LAPLACE TRANSFORMS
1. Introduction

A transformation is mathematical operations, which transforms a mathematical
expressions into another equivalent simple form. For example, the transformation
logarithms converts multiplication division, powers into simple addition, subtraction and
multiplication respectively.

The Laplace transform is one which enables us to solve differential equation by
use of algebraic methods. Laplace transform is a mathematical tool which can be used to
solve many problems in Science and Engineeing. This transform was first introduced by
Laplace, a French mathematician, in the year 1790, in his work on probability theory.
This technique became very popular when heaveside funcitons was applied to the
solution of ordinary differential equation in electrical Engeneering problems.

Many kinds of transformation exist, but Laplace transform and fourier transform
are the most well known. The Laplace transform is related to fourier transform, but
whereas the fourier transform expresses a function or signal as a series of mode of
vibrations, the Laplace transform resolves a function into its moments.

Like the fourier transfrom, the Laplace transform is used for solving differential
and integral equations. In Physics and Engineering it is used for analysis of linear time
invariant systems such as electrical circuits, harmonic oscillators, optical devices and
mechanical systems. In such analysis, the Laplace transform is often interpreted as a
transformation form the time domain in which inputs and outputs are functions of time,
to the frequency domain, where the same inputs and outputs are functions of complex
angular frequency in radius per unit time. Given a simple mathematical or functional
discription of an input or output to a system, the Laplace transform provides an
alternative functional discription that often simplifies the process of analyzing the
behaviour of the system or in synthesizing a new system based on a set of specification.
The Laplace transform belongs to the family of integral transforms. The solutions of
mechanical or electrical problems involving discontinuous force function are obtained
easily by Laplace transforms.



1.1  Definition of Laplace Transforms

Let f (t) be a functions of the variable t which is defined for all positive values of

t. Lets be the real constant. If the integral Of e f (t)dt exist and is equal to F(s), then
0

F(s) is called the Laplace transform of f (t) and is denoted by the symbol L[f(t)].
i.e. L[f(O)]=] e f(t)dt=FIs]
0
The Laplace Transform of f (t) is said to exist if the integral converges for some

values of s, otherwise it does not exist.

Here the operator L is called the Laplace transform operator which transforms the
functions f (t) into F(s).

Remark: Is_im F(s)=0.

1.2 Piecewise continuous function

A function f(t) is said to be piecewise continuous in any interval [a,b] if it is
defined on that interval, and the interval can be divided into a finite number of sub
intervals in each of which f (t) is continuous.

In otherwords piecewise continuous means f(t) can have only finite number of
finite discontinuities.

I |
| |}
—

AN
| /l
t, V \/ t

Figure 1.1

—

An example of a function which is periodically or sectional continuous is shown
graphically in Fig 1.1 above. This function has discontinuities at ti, t> and ts.

1.3  Definition of Exponential order

A function f (t) is said to be of exponential order if It_im e f(t)=0.



1.4 Sufficient conditions for the existence of the Laplace Transforms

Let f(t) be defined and continuous for all positive values of t. The Laplace
Transform of f (t) exists if the following conditions are satisfied.

(1) f(t) is piecewise continuous (or) sectionally continuous.
(i)  f(t) should be of exponential order.

1.5 Seven Indeterminates

0
1. 0 4 0 X 00 7 0°
0
2. = 5 17
3. Oxo 6. o0°,
2. Laplace Transform of Standard functions
1. Prove that L[e™] :iwhere s+a>0o0rs>-a

Proof:

By definition L[f())] = | e f(t)dt
0

L[e™] = Jete®dt = [t
0 0
at _ 1

Hence L[e?®] = —
s+a

2. Prove that L[] = L wheres>a
S—a

Proof:

By the defn of L[f()] = | e f(t)dt
0

0 0 _ e—(s—a)t *®
L[e*] = [etetdt= [eCVdt=
0 0 S—a 0



Hence L[e*]

3. L(cos at)

| e cosbxdx=

Hence L(cos at)

4. L(sin at)

L(sin at)

5. L(cos hat)

L(cos hat)

6. L(sin hat)

aZ+

o—38

e—SI
s? +a?

s> +a’

ax

b2

s
s’ +a’

o—38

1

s? +

0-—

a
s’ +a’

—st
e sinatdt= { € (=ssin at+ a cos at)}

a2

e~ cos at dt

0

(—scos at+asin at)} =0-
0

1
s? +a?

(=S)

ax

[ €¥sin bxdx= z—bz[asin bx —bcosbx]
a‘+

[acosbx—bsin bx]

o0

2 2
S"+a 0

(0-a)

%L(eat + e‘a‘)

1[ 1
- —+
2{s—a

L}rl s+a+s—a
s+a) 2\(s+a)(s—-a)



L(sin hat)

L(1)

L(1)

L(t")

L(t9

L(t")

L(t")

L(t)

L()

L(t")

1fs+ra)-(s-a)) . _a
2\ (s—a)(s+a)

J‘ efsttn dt
0

—-S

—st 1% 0 —st -
{(tn)e } K mnl(e_Jdt: (°‘°)+EI e 't"dt
o © 0

[ e*'t"dt
0

-st|” 0 —st -
|:(tn)e :| _J- ntn—l(e_J dt = (O—O)+EJ' et -1gt
o O So

")

L.

S
|
H
S
|
N
nllw
w N
2NN



| I
= Mypg-nt
s s" s
Lt _ n+1)
( ) - Sn+1 sn+1
In particular n=1,2,3....
1
we get L(t) = =
S
I
Ly = 2
s
|
L = 2
S

2.1 Linear propertyof Laplace Transform

Lo LM £9®) = L) £L(®)

2. L(KF(H) £g() KL(F(0)

Proof (1): By the defn of L.T

L[FO] = et f(t)dt
LM £90] = [ e [fmgm]at
T e f (t)dt iT e g(t)dt
= L[f®]+Llo®]
Hence L[f(t) zg)] = L[f®)] ~L[g®)]
(2)  L[Kf®)] = KL[f(t)]
By the defn of L.T

L[KF(D)] = [ eKf ()t



= K[ ef(t)dt

o—38

= KL[f(D)]

Hence L[K(t)] = KL[f(t)]

2.2  Recall
1. 2 sin A cos B = sin(A+B) + sin(A-B)
2. 2 cos A sin B = sin(A+B) - sin(A-B)
3. 2 cos A cos B = cos(A+B) + cos(A-B)
4. 2 sin A sin B = cos(A-B) - cos(A+B)
5. sin? A = 1C0S2A

2
6. cos2 A = 1+cos2A
7. sin 3A = 3sin A — 4 sin*A
8. cos 3A = 4cos® A — 3 cosA
9. sin (A+B) =sin A cos B + cos A sin B
10. sin(A-B)=sinAcosB-cosAsinB
11.  cos (A-B) =cosAcosB +sinAsinB
12.  cos (A+B) =cosAcosB-sinAsinB
3.1  Problems
1. Find Laplace Transform of sin? t
Solution

L(sin’t)

I_(1—005 2tj
2

= 1L(1—cosZt): 1(1— 25 j
2 2\s s“+4




2. Find L(cos®t)
Solution:

We know that cos®A = 4 cos®A — 3 cos A

hence cos?A %cos A+ % cos3A

L (cos?t)

1L(3cost+cos3t)= 1( 235 + 2S j
4 4\s°+1 s°+9

3. Find L(sin 3t cos t)

Solution:

We know that sin A cos B= %(sin(A+ B) +sin(A—B))

hence sin 3tcost %(Sin 4t +sin 2t)

L(sin 3t cost)

1L(sin4t+sir12t)=l(24 +22 j
2 2(s°+16 s°+4

_ 2 1
s2+16 s’ +4

4, Find L(1 + et — 5e*)

Solution

L[1+e3t— 5e*) L[1] L[e3] + 5L (%Y

1 1 5

S s+3 s-4
6. Find L(3 + e% + sin2t — 5 cos 3t)
Solution:
L(3+e%+sin2t—5cos 3t) =3L(1) + L(e®) + L(sin 2t) — 5L(cos 3t)

1 2 5s
3 T2
$S—6 s°+4 s°+9

:&l+
S



7. Find L(sin (2t + 3))
Solution:

L(sin(2t + 3)) L(sin 2t cos 3 + sin 3 cos 2t)

cos 3L (sin 2t) + sin 3L(cos 2t)

cos 3 22 +sin 3 5
s°+4 s°+4

8. Find L(sin 4t + 3 sin h2t — 4 cos h5t + ™'
Solution:

L(sin 4t + 3 sin h2t — 4 cos h5t + ™)

L(sin 4t) + 3L (sin h2t) — 4L (cos h5t) + L(e™)

4 2 S 1
> +3. -4.— +
s°+16 s° -4 s°—=25 s+5

4 6 4s 1
2 + 2_ 4 <2 _ +
s°+16 s°—4 s°-25 s+5

9. Find L(( +1)?

Solution:
L((1 +1t)?) = L(1+2t+1t)
= L(1) +2L(t) + L(t?)
1 1 2
= ;+ 2.5—2+S—3
3.2 Note

1. T(n+l) = | x"e™dx (By definition)
0

I'n+l)=n,n=1,23,...
I'(n+1) =n’(n),n>0

12, Find L(iﬂyzj

Jt



Solution:

L(%HMJ = LY + L)
_ oty 18] rlyy) s arlhy)
e ke 2 22 g%
Jz 3z
s 4%
4. First Shifting Theorem (First translation)
1. IfL(f(t) = F(s). then L(e™ f(t)) = F (s+a)
4.1  Corollary: L(e*f(t)) = F(s-a)
4.2 Note:
1 L) = L[f()]sossa
= [FE)]—sa
= F(sta)
2. L(e*(1)) = L[f()]ssa
= [FE)]—sa
= F(s2)
43  Problems
1. Find L(te?)
Solution:
Lte?) = Lok (5] =
2. Find L(t°¢)

Solution:



5! 5!
L t5e't = L t5 sostl = (_\J = -
e) HOL==1E). s+
3. Find L(e* sin 3t)
Solution:
L(e?sin3t) = L(sin 3t)]s—se2
( 3 ] _ 3
2 . i .o
S“+9 ) 612 (s+2)°+9
_ s+1
(s+1)?-16

5. Theorem
If L(f(t)) = F(s), then L(tF(t)) = %(F(s))

similarly L2 £ (1) = (-1)2 % F(s)

d3
L(t3 (1)) = (D’ SFO)
In general, L(t"f(t)) = (—1)“§SnnF(s)

5.1 Problems
1. Fine L(te*)

Solution:

We know that  L(tff (t))= % L(f (1))
Here f(t)=e*
—d -d( 1
L t 3t - —L 3t - el
(e ) ds (e ) ds (3—3)

- [_6=30)-@] - 1
(s-3)"




2. Find L(tsin3t)
Solution:
L(1f ) - 0)
ds
~ ~ (2
L(tf (1)) = d—g L(sin3t) = d_(sj(szi9) = ( : Zsf)iog)t 3(25)
_ 6s
(s2 + 9)2
3. Find L(te‘Ztsin 3t)
Solution:
L(e‘2t (tsin 3t) = L(tsin3t),_.,,
- )= B
_ {152 +9)r_3—3(2s)} _ 6(s+2)
2+9f |, (s+22+9f
6. Theorem
IfL(F @) = F(s) and if Lt @ exist then L(@] =°f e f (t)ds
Recall
1. log(AB) =log A+log B
2. log(44)=1log A—log B
3. log A% =B log A
4, log1=0
5. log 0 =—o0
6. log 0 = o0

|



7. | —dx=log x
dx 1 X
8. =—tant>
Ia2+x2 a
9. tan(c0) = =
1 T 1
10. cot (%)za—tan (%)
Problems
2t
1. Find L(l_e J
t
Solutions:

a2t
Limi==_0 (Interminate form)
t—0 t 0

Apply L — Hospital Rule

o2t
Lim 2e
t—0 1

=-2

.".the given function exists in the limit t — 0

L{l_teﬂ] La—e? )ds

I
w38

(L - L(e* s

Bisls

= (logs—log(s—2))”

wof )]

1
»w—38

8
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2. Find L(l_cosatj

Solution:
Limi=cosat_0 (Indeterminte form)
t—0 t 0

Apply L — Hospital Rule.

. a sinat
Lim
t—0

=0 (finite)

.".the given function exists in the limit t — 0

I_(1—(:tos atj

L(l-cosat)ds = (L@) - L(cosat))ds

|
w — 8
n — 8

o0

_ T[l_ S jds _ (|ogs_%|og(sz+a2)j

s s?+a’ s

(Iog s—log (52 + az)}/zjw = (Iog >
s vs®+a® ),

S 1
= |l |l
s/1+a/2 1+a/2
S S S S
s
= |logl-log J
( s?+a’



_ S

= log > log | — ’ =log a’+s”
s?+a’ Vs? +a? s

11. Laplace Transform of Derivations

Here, we explore how the Laplace transform interacts with the basic operators of
calculus differentation and integration. The greatest interest will be in the first identity
that we will derive. This relates the transform of a derivative of a function to the
transform of the original function, and will allow to convert many initial - value
problems to easily solved algebraic Equations. But there are useful relations involving
the Laplace transform and either differentiation (or) integration. So we’ll look at them
too.

11.1. Theorem

If L(f(t)) = F(s) Then
()  LEm) = sL(f(t)) - f
(i) L)

and in genereal

S2L(f(1)) — sf(0) - £(0)

L(f(t)) = SIL(f(t)) — s™(0) — s"210)....../"1(0)
112 Note
Wehave, L) = sL(f(t)—T(0) ....()and
LE) = SPL(f(t) - sf (0) - F(0) 2)
When f(0) = 0 and f(0) = 0

(1) & (2) becomes
Lf'(t) = sLf(t) and Lf{t) = s°Lf(t)

This shows that under certain conditions, the process of Laplace transform replaces
differentiation by multiplication by the factor s and s 2 respectively.

13 Definition

If the Laplace transform of a function f (t) is F(S) (ie) L( f (t)) = F(S) then f (t) is called
an inverse laplace transform of F (s) and is denoted by

f () = LY(F(s))



Here L1 is called the inverse Laplace transform operator.

14.  Standard results in inverse Laplace transforms

Laplace Transform Inverse Laplace Transform
L@=1 L—l(lj 1
s s

L(eat)zi L—l
S—a

Le™)= 1 L
S+a

L(t) = iz Lt
S

|
L(t%) :% Lt
S

n!
Sn+1

L(t") =

[

(

5
-3 (s

&

[

where n is a +ve integer

L(sinat) = e L‘l[sz jaz)zsin at
L(cosat) = 7 iaz '—_1(52 iazjzcosat
L(sin hat) = 2 faz L‘l(sz fazjzsm hat
L(cos hat) = Y L‘l(sz jazjzcos hat

15 Partial Fraction

The rational fraction P(x)/Q(x) is said to be resolved into partial fraction if it can be
expressed as the sum of difference of simple proper fractions.



Rules for resolving a Proper Fraction P(x) / Q(x) into partial fractions
Rule 1

Corresponding to every non repeated, linear factor (ax+b) of the denomiator Q(x), there

where A is a constant, to be determined.

exists a partial fraction of the form

ax+b

For Example
. 2x—7 A B
(i) =——+

(x-2)(3x-5) x-2 3x-5
. 5x% +18x +22 A A C
(i) = + +

X-D(x+2)(2x+3) x-1 x+2 2x+3
Rule 2

Corresponding to every repeated linear factor (ax b) of the denominator Q(x), there exist
k partial fractions of the forms,

A Ay A A

ax+b' (ax+b)2 (ax+b)® (ax+b)¥

where A1, Ay, ..... Ay are constants to be detemined.

For example

(0 -3 __ A B C
(x+2)2x-3)%2 x+2 2x-3 (2x-3)2

(ii) X+2 :A+B+C+D
(x-D@2x-1°% x-1 (2x+1) (@2x-)* (@2x+1)°

Rule 3

Corresponding to every non-repeated irreducible quadratic factor ax? * bx + c¢ of the
Ax+B

ax? +bx+c

denominator Q(x) there exists a partial fraction of the form where A and B
are constants to be determined.

(ax® + bx + ¢) is said to be an irreducible quadratic factor, if it cannot be factorized into
two linear fractors with real coefficients.



Example

(0 X2 +1 _Ax+B Cx+D
(X2+8(x*+9) x*+4 x*+9
(i) 8x° —5x* +2x+4 A B Cx+D

= + +
(2x-1)%(Bx*+4) 2x-1 (2x-1)? 3x*+4

In the case of an improper fraction, by division, it can be expressed as the sum of integral
function and a proper fraction and then proper fraction is resolved into partial fractions.

Inverse Laplace Transform using Partial Fractions

1. Find Ll[;J
(s+D(s+3)

Solution:

Let F(s) = —r
(s +D)(s+3)

Let us split F(S) into partial fractions,

1 A N B
(s+D(s+3) — (s+1) (s+3)
1 = A(S+3) + B(S+1)
Putting S =-1 Putting S=-3
A=Y B=-1
R S S
" (s+1)(s+3) (s+1) (s+3)
. (_1 J EL—{L)_EL—{LJ
(s+D(s+3) 2 s+1) 2 s+3
= le_t _le_:gt
2 2

- %(e—t _e—3t)



2. Find L{—Sz”‘z J
s(s+3)(s-2)

Solution:

. s’+s-2 A B C
Consider, —=—+—+——
s(s+3)(s—2) s 3 2

s?+s-2  A(s+3)(s—2)+Bs(s—2)+Cs(s+3)
s(s+3)(s—2) s(s+3)(s—2)

s2+5-2=A(s+3)(s—2)+Bs(s—2) +Cs(s+3)

puts=-3 puts=2 puts=0
9-3-2-=B(-3)(5) 4+2-2-=C(2)(B) -2=AB3)(-2)
4=15B 4 =10C A=%
B:i -.C= i
15 10
C:g
5
$4s-2 11 .4 1 2 1
s(s+3)(s-2) 3's 15s+3 55s-2

2
| STEs=2 =1L1(1j+iu(—l J+EL1(—1 j
s(s+3)(s-2)) 3 s) 15 s+3) 5 s—2

=—(1) e + ge”
3. Find L‘l(z;j
S“+55+6
Solution:
Consider, > __A B

15516 (512)(513) (5+2) (s+3)

S=A(s+3)+B(s+2)



Put s=-3 Put s=-2

-3 =A(0) + b(-1) -2 =A(1) +B(0)
3=-B A=-2

B=3

S -2 3

5+2)(5+3) (5+2) (s+3)

-J_{———JL———jzle( ! J+3L{: B J
(s+2)(s+3) (s+2) (s+3)

=-2e? + 3
4 Find LY ——
(s+1)
Solution:
Consider, > = A + B >
(s+D)° s+1 (s+1)
s _ A(s+1)+B
(s+1)° (s+1)?
s=A(s+1)+B
Put s=-1 Put s=0
B=-1 0=A+B
0=A-1
A=1
_Ss - 1 1
(s+1)? s+1 (s+1)2
Lt S = 1 i_ 1
(s+1)? s+1 (s+1)?

- e (o)
(s+1) (s+1)2



1
et gt L_l(_j
s2

et —e ' (t)=e " (1-1)

16. Convolution of two functions

If f (t) and g(t) are given functions, then the convolution of f (t) and g(t) is defined as

[ f(u)gt—u)du. It is denoted by f () * g (t) .

16.1  Convolution Theorem
If f (t) and g(t) are functions defined for ¢ >0, then L(f(t) * g(t)) = L(f (t))L(g(})
(ie) L(F() * 9(9) = F(s)- G(s)

where F(s) = L(f(t)), G(s) = L(g(1))

Proof :

By definition of Laplace Transform,

We have L(f (t))*g(t) RS TOR O}

1
o8

e‘“{j f(u)(t —u)du}dt
0

e f (u)g(t —u)dudt

1
o8
o

on changing the order of integration,

= f(u){? e‘“g(t—u)du}dt
0 u
Put t—u=v When t=u,v=0
dt =dv When t=o, v=w
L@ o) = | f(u){‘f e‘s(““’g(v)dv}du
0 0

1]
o—3

f(u)e-w{T es"g(v)dv}du
0



T eS”f(u)duT e *'g(v)dv
0 0

T etf @)dt] e *tg(t)dv
0 0

L(F)®)L(a®)
L) *9(t) = F(s).G(s)

Corollary

Using the above theorem

We get,

L™ (F(s).G(s)) fO*a9®

L™ (F(s)*L(G(s))

Note
f(t)*g(t) = gO*f@)
1. Use convolution theorem to find L™ _r
(s+a)(s+h)
Solution:
Lfl 1 — Lfl 1 * Lfl 1 — e—at * efbt
(s+a)(s+h) (s+a) (s+b)
t t
- ,[ e—aue—b(t—u)du - j e—aue—bt+budu
0 0
—(a-bju Tt bt
= ot & - e—(e—(a—b)t 1)
—(a-b) |, —(a-h)
—bt —bt
- e + e - 1 (e—bte—at)
—(a-b) (a-b) (a-h)
2. Use convolution theorem to find L*lz;
s(s”+1)

Solution:



L*1+ = L—l(l)*rl( 21 ) = 1*sint
s(s“+1) S s°+1

t . . t
= [ sin(t-udu = [—Cos(t “—}
0 -1 0
= cosO—cost = 1-—cost
3. Find L_l[ﬁj using convolution theorem
S™+a

Solution:

S S 1
|__:L - = |__l .
((sz+az)2) (52+a2 sz+a2j

S S 1
il
((32+a2)J s’+a’® s’ +a’

1.
= cosat*—sinat
a

t
= 1[ cosausin a(t—u)du
ao

_ 1} (sina(t—u+u)J2rsin a(t—u—u)joIu

t
= ij (sin at+sin a(t — du))du
2ap

—cosa(t —2u) ﬂt

= —|usin at+(
—2a

0

1. cosat cosat
= —|tsinat+ -
2a| 2a 2a

tsin at
2a




APPLICATIONS OF INVERSE LAPLACE TRANSFORMS

" 1 R ' g5
1. Using L. T solve yi=3y'+2y=e given y(0) =1, »'(0)=0

Solution:
y'=3y+2y=e" and y(0)=1y(0)=0

Taking L. T on bothsides,

L[y ®]-3L[y®]+2L[y®] = L[]
1

s*L[y()]—sy(0) = »'(0) = 3[sL[y(t)] - y(0)] + 2 L[y(t)] = T

2 1
STLy(t)]-s=0-=3sL[y(t)]+3+2L[y(t)] = =

(s*=3s+2)L[y(t)] = L oy
s+1

§=25=2

(s=D(s=2)L[v(1)] = e

§s=25-2 .y & B 5 C
(s+1)(s=1)(s=2) s+1 s-1 s5-2
57 =25=2 = A(s—1)(s—2)+B(s+1)(s—-2)+ C(s+1)(s-1)

Put s =1 we get

Liy()] =

1-2-2==-28
-3=-28

-3=-28B

el
2

Put s =2, we get Put s = -1, we get
4-4-2=3C 142-2=64
= 1

C=— - —
3 A 6

/6 3/2 2/3
Ly = s{+1+s/—l+s£2
1Tl 31 2 1
+
1

— +_
s+1 2s-1 3s5-=-2

6

£ 1. 3ol 1 T2l 1

VO N RN NS

M=% [s+l] 2 [s-l] 3 l:s—Z]
Lo ¥, 5
6

e +=e' +—e
2 3



